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Polycyclic aromatic hydrocarbons (PAHs) are
important environmental contaminants that
are generated by the incomplete combustion of
organic compounds. PAHs enter the environ-
ment through natural sources such as forest
fires and seeps in ocean floors and through
anthropogenic activities, including combustion
of fossil fuels and wood and petroleum refining
(Douben 2003; Latimer and Zheng 2003).
PAH contamination in estuarine settings origi-
nates from point sources such as municipal
wastewater discharges, industrial outfalls, and
oil shipping and refinery operations, and from
non-point sources such as urban runoff and
dry and wet depositions of atmospheric PAHs
(Latimer and Zheng 2003). The ubiquity of
PAH contamination at U.S. national priority
sites (Superfund sites), along with their known
and suspected human toxicity, has led to the
listing of PAHs as eighth on the Agency for
Toxic Substances and Disease Registry’s
(ATSDR) priority list; 15 individual PAHs are
also listed throughout the priority list of
275 entries (ATSDR 2003). Furthermore,
environmental contamination by PAHs has
steadily increased in recent years (Van Metre
et al. 2000).

Some PAHs have impacts on early life
stages of fish, including reduced growth, 

cranial–facial malformations, yolk sac and
pericardial edema, and subcutaneous hemor-
rhaging (Billiard et al. 1999; Carls et al.
1999; Hawkins et al. 2002). These deformi-
ties closely resemble the “blue sac syndrome”
that has been described in several fish species,
including rainbow trout (Oncorhynchus
mykiss), zebrafish (Danio rerio), medaka
(Oryzias latipes), and killifish (Fundulus
heteroclitus), exposed to certain halogenated
aromatic compounds that are agonists for the
aryl hydrocarbon receptor (AHR) (Chen and
Cooper 1999; Elonen et al. 1998; Helder
1981; Toomey et al. 2001; Walker and
Peterson 1991; Wannemacher et al. 1992).
These compounds include coplanar poly-
chlorinated biphenyls (PCBs) and 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD),
collectively referred to here as planar halo-
genated aromatic hydrocarbons (pHAHs).
Some of the PAHs that induce these deformi-
ties are, like TCDD and coplanar PCBs, ago-
nists for the AHR (Billiard et al. 2002).

The AHR is a cytoplasmic receptor whose
activation initiates the transcription of a bat-
tery of genes, including the monooxygenase
cytochrome P4501A (here generally referred
to as CYP1A, although two CYP1As exist
in mammals as well as in rainbow trout;

mammalian CYP1As are referred to as
CYP1A1 and CYP1A2; Hankinson 1995).
The AHR pathway is similar between mam-
mals and nonmammalian vertebrates, includ-
ing fish, reptiles, and birds (Hahn 1998);
however, two AHRs (AHR1 and AHR2)
have been identified and characterized in sev-
eral fish species, including killifish and
zebrafish (Andreasen et al. 2002; Hahn et al.
1997; Karchner et al. 1999). The mechanism
for the toxicity of pHAHs has been widely
studied, and there are well-established posi-
tive relationships among compounds’ affinity
for the AHR, their potency for CYP1A
induction, and their toxicity (Guiney et al.
1997; Heid et al. 2001; Safe 1990, 1993).

The critical role of AHR in pHAH toxicity
has been demonstrated by AHR knockout
studies in which AHR knockout mice do not
show typical dioxin-induced toxicity compared
with their AHR-expressing littermates
(Fernandez-Salguero et al. 1996). There is evi-
dence that some of the toxicity of these pHAHs
may be directly due to CYP1A activity; for
example, CYP1A2 knockout mice are resistant
to liver damage and uroporphyria when
exposed to TCDD (Smith et al. 2001). And
male CYP1A1 knockout mice are protected
against TCDD-mediated lethality and wasting
syndrome (Uno et al. 2004b). Furthermore,
Cantrell et al. (1996) were able to reduce
TCDD-induced DNA degradation and dam-
age to the medial yolk vein in medaka by
cotreating the embryos with the P450 inhibitor
piperonyl butoxide (PBO). Dong et al. (2002)
found that cotreatment of zebrafish embryos
with the partial AHR antagonist and CYP1A
inhibitor α-naphthoflavone (ANF) or the P450
inhibitors SKF525A or miconazole reversed the
reduction of blood flow in the mesencephalic
vein and midbrain apoptosis caused by TCDD.
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Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has
led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause defor-
mities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydro-
carbons (pHAHs) that are agonists for the aryl hydrocarbon receptor (AHR). Previous studies have
suggested that activity of cytochrome P4501A, a member of the AHR gene battery, is important to
the toxicity of pHAHs, and inhibition of CYP1A can reduce the early-life-stage toxicity of pHAHs.
In light of the effects of CYP1A inhibition on pHAH-derived toxicity, we explored the impact of
both model and environmentally relevant CYP1A inhibitors on PAH-derived embryotoxicity. We
exposed Fundulus heteroclitus embryos to two PAH-type AHR agonists, β-naphthoflavone and
benzo(a)pyrene, and one pHAH-type AHR agonist, 3,3´,4,4´,5-pentachlorobiphenyl (PCB-126),
alone and in combination with several CYP1A inhibitors. In agreement with previous studies, coex-
posure of embryos to PCB-126 with the AHR antagonist and CYP1A inhibitor α-naphthoflavone
decreased frequency and severity of deformities compared with embryos exposed to PCB-126 alone.
In contrast, embryos coexposed to the PAHs with each of the CYP1A inhibitors tested were
deformed with increased severity and frequency compared with embryos dosed with PAH alone.
The mechanism by which inhibition of CYP1A increased embryotoxicity of the PAHs tested is not
understood, but these results may be helpful in elucidating mechanisms by which PAHs are
embryotoxic. Additionally, these results call into question additive models of PAH embryotoxicity
for environmental PAH mixtures that contain both AHR agonists and CYP1A inhibitors.
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Another study by Teraoka et al. (2003) showed
that a morpholino knockdown of CYP1A and
AHR2 in zebrafish prevented the pericardial
edema and trunk circulation failure caused by
TCDD.

Although there is a strong, positive
relationship between the ability of PAHs to
bind the AHR and their induction of CYP1A
(Billiard et al. 2002), conclusions regarding the
role of the AHR pathway and CYP1A activity
in the toxicity of PAHs have been less clear. In
a mammalian study, homozygous CYP1A1
knockout mice showed less liver damage and
survived the acute effects of injection of the
PAH benzo(a)pyrene (BaP) for 3 days longer
than did those that were heterozygous for
CYP1A1 (Uno et al. 2001). However, these
CYP1A1 knockout mice also showed 4-fold
higher levels of BaP–DNA adducts than did

those heterozygous for CYP1A1. This study
suggests that acute lethality of BaP was reduced
by lack of CYP1A1 but that genotoxicity was
actually increased by the lack of CYP1A1 (Uno
et al. 2001). In a recent study by this group,
BaP administered in the diet caused lethality in
CYP1A1 knockout mice at a dose that was not
lethal to CYP1A1-expressing mice (Uno et al.
2004a). These authors suggested that rather
than CYP1A1 activity enhancing the toxicity
of BaP, as has been previously suggested,
CYP1A1 is critical for the detoxication of
orally administered BaP in mice.

Billiard (2002) compared a variety of
PAHs with various affinities for the AHR and
potencies for CYP1A induction in juvenile
rainbow trout; chemicals ranged from the
strong CYP1A inducer benzo(k)fluoranthene,
to the relatively weak, alkylated inducer

retene and the noninducer phenanthrene.
Billiard (2002) found that the rank order for
CYP1A induction in these fish did not pre-
dict the rank order for the induction of blue-
sac-like symptoms; in fact, the only PAHs
that caused blue-sac-like symptoms were
retene and phenanthrene, the low- and non-
inducing PAHs used in that study. Hawkins
et al. (2002) observed apparent additive toxic-
ity in juvenile and larval rainbow trout coex-
posed to one of two PAHs, the alkylated
AHR agonist retene or the non-AHR-agonist
phenanthrene, with the P450 inhibitor PBO.
In contrast, another study found that cotreat-
ment with the partial AHR antagonist and
CYP1A inhibitor ANF prevented the reduc-
tion of circulation in the dorsal midbrain of
zebrafish caused by the PAH-type AHR ago-
nist β-naphthoflavone (BNF; Dong et al.

Table 1. AHR agonists and CYP1A inhibitors used in this study.

Compound Type Structure Mechanism of action Sample references

AHR agonists
BNF Synthetically derived Matsuda et al. 1995; Ronisz and

model PAH Förlin 1998

BaP Environmentally Chaloupka et al. 1993; Fent and 
relevant PAH Bätscher 2000; Van Veld et al. 1997

PCB-126 Environmentally Abnet et al. 1999; Dabrowska et al. 
relevant pHAH 2000

CYP1A inhibitors
ANF Synthetically derived Partial AHR antagonist Goujon et al. 1972; Lu et al. 1996;

model PAH and competitive inhibitor Merchant et al. 1990, 1992, 1993;
of CYP1A Merchant and Safe 1995; Miranda 

et al.1998; Testa and Jenner 1981

PBO Methlenedioxybenzene P450 inhibitor; forms a Hodgson and Philpot 1974; Miranda
derivative metabolic intermediate et al. 1998; Murray and Reidy 1990;

with heme group of P450 Testa and Jenner 1981

FL Environmentally Competitive inhibitor of Willett et al. 1998, 2001
relevant PAH CYP1A in vitro; modestly

lowers CYP1A protein 
expression in vivo

AA Environmentally relevant Mechanism-based CYP1A Watson et al. 1995
aromatic amine inhibitor; binds to CYP1A 

and causes its degradation



2002). From these studies, it is clear that the
relationship between CYP1A activity and
PAH toxicity is complex and that reduced
CYP1A activity is sometimes, but not always,
protective of PAH toxicity.

In an attempt to a) clarify the role of
CYP1A activity in the toxicity of PAHs and
b) explore the possible effects of co-occurring
PAH-type CYP1A inducers and inhibitors, we
cotreated Fundulus heteroclitus (killifish)
embryos with three different AHR agonists
[the pHAH 3,3´,4,4´,5-pentachlorobiphenyl
(PCB-126) and the PAHs BNF and BaP] and
four CYP1A inhibitors that work by various
mechanisms (Table 1). The compounds here
collectively referred to as CYP1A inhibitors
have all been shown to inhibit CYP1A activity
(see references in Table 1); however, the speci-
ficities of these CYP1A inhibitors for CYP1A
over other P450s in our system are not known.
These inhibitors included the aforementioned
model compounds ANF and PBO and the
environmentally relevant hydrocarbons fluo-
ranthene (FL) and 2-aminoanthracene (AA)
(Watson et al. 1995; Willett et al. 1998,
2001). We then observed embryos for in ovo
CYP1A activity, as measured by ethoxy-
resorufin-O-deethylase (EROD) activity, and
for deformities, including pericardial edema,
heart elongation, cranial–facial malformations,
and tail abnormalities. In these experiments,
we used a wide range of concentrations of
AHR agonists to elicit a range of EROD
inductions with and without inducing defor-
mities; concentrations of inhibitors were
selected with the goal of eliciting the maximal
inhibition of EROD without inducing defor-
mities. Our results indicate that coexposure to
PAH-type AHR agonists and CYP1A
inhibitors consistently enhanced embryotoxic-
ity beyond levels predicted by an additive toxi-
city model.

Materials and Methods

Reagents. BaP, BNF, ANF, FL, AA, PBO, and
ethoxyresorufin were purchased from Sigma
Aldrich (Saint Louis, MO). PCB-126 was pur-
chased from Chem Service (West Chester,
PA). Dimethyl sulfoxide (DMSO) and acetone
were purchased from Mallinckrodt Baker
(Phillipsburg, NJ).

Fish care. Adult killifish were captured
with minnow traps from King’s Creek,
Virginia (a well-characterized reference site
with low sediment PAH levels; Mulvey et al.
2002) and transported to the Ecotoxicology
Laboratory of Duke University. Fish were
maintained in 70-L or 100-L aquaria at 24°C
with a 16-hr light/8-hr dark cycle and were
fed TetraMin flakes (Tetra Sales, Blacksburg,
VA) ad libitum. Fish were held in laboratory
conditions for at least 3 weeks before embryo
acquisition. Embryos were obtained from
in vitro fertilization of pooled oocytes stripped

from 9–12 females with pooled milt from
4–5 males.

In ovo EROD. We used an in ovo EROD
method, modified slightly from the method
described by Nacci et al. (1998, in press), to
measure the CYP1A activity of embryos.
Several hours after fertilization, embryos with
dividing cells were selected and placed individ-
ually in 20-mL scintillation vials with 10 mL
artificial seawater (20 parts per thousand;
Instant Ocean, Mentor, OH) containing
21 µg/L ethoxyresorufin with or without an
EROD inducer (BNF, BaP, or PCB-126)
and/or an EROD inhibitor (ANF, AA, FL, or
PBO). We used either acetone or DMSO as
the solvent, and solvent concentrations were
< 0.015% for all treatments except the high
doses in the ANF-alone dose group (Figure 1),
in which solvent concentrations were ≤ 0.1%.
Embryos were in dosing solution for 7 days,
during which resorufin, the fluorescent product

of CYP1A metabolism of ethoxyresorufin,
accumulated in the embryos’ bi-lobed urinary
bladders. On day 7 of development, embryos
were placed in clean artificial seawater, and
embryo bladders were visualized by fluorescent
microscopy (50× magnification using rho-
damine red filter set; Axioskop; Zeiss,
Thornwood, NY). EROD activity was mea-
sured as intensity of the bladder fluorescence
and was quantified digitally by IPLab software
(Scanalytics Inc., Fairfax, VA). In ovo EROD
values were expressed as a percentage of con-
trol intensity. Individuals with deformed blad-
ders or with fluorescence in areas other than
the bladder (e.g., the pericardial sac in some
embryos with severe pericardial edema) were
excluded from in ovo EROD measurement.
Although ethoxyresorufin has been shown to
be nondetrimental to embryos (Nacci et al.
1998), coexposures of ANF and BNF were
done with and without ethoxyresorufin to rule

Article | Wassenberg and Di Giulio

1660 VOLUME 112 | NUMBER 17 | December 2004 • Environmental Health Perspectives

0 100

BNF (µg/L)

3,000

2,500

2,000

1,500

1,000

500

0

100

90

80

70

60

50

40

30

20

10

0

D
ef

or
m

ity
 in

de
x

Pe
rc

en
t c

on
tr

ol
 E

RO
D

EROD: BNF alone
EROD: BNF + 1 mg/L PBO
EROD: BNF + 9 mg/L PBO
Deformity index: BNF alone
Deformity index: BNF + 1 mg/L PBO
Deformity index: BNF + 9 mg/L PBO

501

Figure 3. Effects of BNF with and without 1 or
9 mg/L PBO cotreatment on in ovo EROD and defor-
mity index; n = 7–10 for each treatment group,
except for EROD measurements in the 50 µg/L BNF
+ 9 mg/L PBO (n = 5) and 100 µg/L BNF + PBO
(n = 6) treatment groups, because the remainder of
embryos were too deformed to score for in ovo
EROD. EROD values are mean ± SEM. See
“Results” for explanation of statistical differences.
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Figure 2. Effects of BNF with and without 100 µg/L
ANF cotreatment on in ovo EROD and deformity
index. The EROD value is missing for the 110 µg/L
BNF + ANF treatment group because embryos in
this treatment group were too deformed to score
for in ovo EROD; n = 8 or 9 for each treatment
group, except for EROD measurement in the
1.1 µg/L BNF + ANF (n = 6) and 11 µg/L BNF + ANF
(n = 2) treatment groups, because the remainder of
embryos were too deformed to score for in ovo
EROD. EROD values are mean ± SEM. See
“Results” for explanation of statistical differences. 
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Figure 1. Dose–response curves showing percent control in ovo EROD induction and deformity index in
embryos exposed to (A) BNF or (B) ANF. EROD values are missing for the 1,000, 5,000, and 10,000 µg/L con-
centrations because embryos from these treatment groups were too deformed to score for in ovo EROD.
For the BNF control group, n = 20; for all other BNF treatments, n = 9 or 10. For each ANF treatment group,
n = 8–10. EROD values are mean ± SEM. See “Results” for explanation of statistical differences. 



out a possible interactive effect of the ethoxy-
resorufin. No differences were observed
between the deformities of embryos with or
without ethoxyresorufin (data not shown).

Deformity assessment. Embryos were
scored blind for heart elongation (tube heart),
pericardial edema, tail shortening, and hemor-
rhaging on day 10 of development. Heart
deformities were found to be the most sensitive
end point scored, so this end point was used
for further analysis. Heart elongation severity
was ranked between 0 and 5, and a deformity
index for each treatment was calculated as sum
of scores for individuals in that treatment
group divided by the maximum score possible
(the number of individuals multiplied by 5).
This quotient was then multiplied by 100.

Experimental approach. Embryos were
exposed to nominal concentrations of one of
three AHR agonists alone and in combination
with nominal concentrations of one of four
CYP1A inhibitors. We used the AHR agonists
PCB-126, BNF, and BaP (Table 1). BNF
and BaP were chosen as model PAH-type
AHR agonists. BNF is a synthetic compound,
commonly used as a model AHR agonist in
studies, whereas BaP is a naturally occurring
PAH, commonly found in environmental
mixtures. We chose PCB-126 as a model
pHAH-type AHR agonist.

We used the inhibitors ANF, PBO, FL,
and AA in this study; their mechanisms of
actions are listed in Table 1. We chose ANF
because it is well characterized for its activities
as both a partial AHR antagonist (Merchant
et al. 1990, 1992) and a competitive CYP1A
inhibitor (Goujon et al. 1972; Testa and
Jenner 1981). BNF and ANF dose–response
curves were first established using a range of

concentrations and scoring for deformities and
in ovo EROD (Figure 1). Subsequently, coex-
posures were performed using a range of BNF
concentrations that spanned concentrations
found to induce EROD, but not deformities,
to concentrations that caused both EROD
induction and deformities, with a concentra-
tion of ANF (100 µg/L) that dramatically low-
ered in ovo EROD measurements but did not
by itself cause deformities (Figure 2).

In order to distinguish between the effects
of AHR antagonism and CYP1A inhibitory
effects, both of which occur with ANF expo-
sure, we also used the P450 inhibitor PBO.
PBO is a quasi-irreversible P450 inhibitor that
acts by forming a metabolic intermediate com-
plex with the heme group of P450 enzymes,
thereby preventing the redox cycling of the
enzyme (Hodgson and Philpot 1974; Testa
and Jenner 1981). We cotreated embryos with
a range of BNF concentrations (1–100 µg/L)
and either 1 or 9 mg/L PBO (Figure 3).

To test the effects of EROD inhibition on
embryos coexposed to an environmentally rele-
vant AHR agonist, BaP and ANF coexposures
were conducted. In this experiment the ANF
concentration was 100 µg/L, a concentration
previously established as effective at lowering
in ovo EROD without inducing deformities.
BaP concentrations ranged from 1 to 100 µg/L
(Figure 4).

To test the effectiveness of environmentally
relevant PAHs at inhibition of in ovo EROD
and to determine how inhibition by these
compounds affected deformities, embryos were
exposed to a range of FL and AA concentra-
tions alone and with 1 µg/L BNF (Figure 5).

In order to assess interactions between a
representative pHAH and a CYP1A inhibitor
in killifish, embryos were exposed to concen-
trations of PCB-126 that spanned from con-
centrations known to induce EROD that
cause low-deformity indices, to concentra-
tions that induce severe deformities, with and
without 100 µg/L ANF (Figure 6).

Data analysis and representation. Data
were analyzed using Statview for Windows
(Version 5.0.1; SAS Institute Inc., Cary, NC).
EROD values were analyzed by one- and two-
way analysis of variance (ANOVA). When
ANOVA yielded significance (p < 0.05),
Fisher’s protected least-significant differences
was used as a post hoc test. Deformity data
were ordinal in nature and were therefore
assessed using rank order tests—the Mann-
Whitney U-test for analyses with two variables
and the Kruskal-Wallis test for analyses with
three or more variables. p-Values corrected for
ties in rank are reported for these analyses as
“tied p-values.” Each graph represents a separate
experiment. Although deformities were ana-
lyzed statistically using individual severity rank-
ings, deformity data are shown as a deformity
index for clarity. Interactions were characterized
as synergistic based on significance of a one-
group chi square analysis comparing the
observed frequencies of deformities with fre-
quencies predicted by an additive interaction
(calculated as a sum of the deformity frequency
for each treatment; predicted frequency had
minimum value of 1 for this analysis because
chi square calculation requires predicted fre-
quency in the denominator of an equation).

Results

Embryos dosed with BNF alone showed in ovo
EROD induction at all concentrations tested
(p ≤ 0.0002) that was maximal at the 10 µg/L
concentration (Figure 1A). At 50 and
100 µg/L, EROD activities declined to below
the maximal level (p = 0.0001 and 0.0003,
respectively). Coincident with this decline,
embryos exposed to 50 and 100 µg/L BNF
exhibited elevated deformity indices (effect of
BNF on deformities, tied p < 0.0001).
Embryos exposed to 10, 100, and 500 µg/L
ANF alone displayed lower EROD activities
than controls (Figure 1B; p < 0.0001).
Embryos exposed to ANF levels > 500 µg/L
were too deformed to allow for measurement
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Figure 4. Effects of BaP with and without 100 µg/L
ANF cotreatment on in ovo EROD and deformity
index; n = 9 or 10 for each treatment group, except
for EROD measurement in the 5 µg/L BaP + ANF
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remainder of embryos were too deformed to score
for in ovo EROD. EROD values are mean ± SEM. See
“Results” for explanation of statistical differences.
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Figure 5. Effects of FL (A) and AA (B) with and without 1 µg/L BNF cotreatment on in ovo EROD and deformity
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of in ovo EROD. Embryos exposed to 10 µg/L
ANF and 100 µg/L ANF exhibited no defor-
mities, whereas those exposed to ≥ 500 µg/L
ANF exhibited high deformity indices (effect
of ANF on deformities, tied p < 0.0001).

In a separate experiment designed to
explore the interaction between ANF and
BNF coexposures, embryos were dosed with
a range of BNF concentrations with or with-
out 100 µg/L ANF (Figure 2), the dose of
ANF shown to be most effective in inhibiting
EROD without causing deformities by itself
(Figure 1). Embryos exposed to BNF alone
exhibited significant EROD induction at all
concentrations (p < 0.0001). Cotreatment
with ANF significantly inhibited in ovo
EROD activities (p < 0.0001). Embryos
cotreated with ANF and 110 µg/L BNF were
too deformed for in ovo EROD measure-
ments. In embryos treated with BNF alone,
deformities were noted only at the 110 µg/L
concentration (effect of BNF alone on defor-
mities, tied p = 0.0011). However, ANF-
cotreated embryos were deformed at all BNF
concentrations. That is, embryos were
deformed at BNF concentrations three orders
of magnitude lower when BNF treatment
was combined with 100 µg/L ANF than
when treated with BNF alone (overall effect
of BNF and ANF on deformities, tied
p < 0.0001 for each).

In an experiment exploring the effect of
cotreatment of embryos with BNF and PBO
(Figure 3), all BNF concentrations significantly
induced in ovo EROD activities (p < 0.0001).
Cotreatment with both concentrations of PBO
(1 and 9 mg/L) lowered in ovo EROD across
all BNF concentrations (p < 0.0001). Embryos
exposed to PBO at the low concentration had
very low deformities that were not statistically
different from controls (tied p = 0.3173).
Embryos exposed to the high concentration

of PBO had an elevated deformity index
(effect of PBO alone on deformities, tied
p = 0.0448). Coexposures to BNF and PBO
caused increased deformity indices over those
seen in embryos dosed with BNF alone or
PBO alone at all BNF concentrations (overall
effect of BNF and PBO on deformities, tied
p < 0.0001 and = 0.0021 respectively).

We also examined a range of concentra-
tions (1–100 µg/L) of BaP, an environmentally
relevant PAH, with and without coexposure to
100 µg/L ANF (Figure 4). BaP alone signifi-
cantly induced EROD at all doses tested
(p < 0.0001), and ANF cotreatment lowered
the in ovo EROD activity (p < 0.0001).
Embryos dosed with BaP alone exhibited low
deformity indices that were not statistically dif-
ferent from controls (effect of BaP alone on
deformities, p = 0.1856), whereas those dosed
with BaP in combination with 100 µg/L ANF
had elevated deformity indices at all BaP con-
centrations tested (overall effect of ANF on
deformities, tied p < 0.0001).

Exposure to environmentally relevant
CYP1A inhibitor FL by itself caused in ovo
EROD activities below control levels
(p < 0.0001; Figure 5); however, when embryos
were coexposed to FL with 1 µg/L of the
inducer BNF, EROD activities were induced
(p < 0.0001) and there was an FL-dose–depen-
dent decrease in in ovo EROD activities
(p < 0.0001). Embryos exposed to FL alone did
not exhibit elevated deformity indices (tied p =
0.3764); BNF at this concentration also did not
cause an elevated deformity index (effect of
BNF alone on deformities, tied p = 0.1681).
However, when FL exposure was combined
with 1 µg/L BNF, high deformity indices were
observed at FL levels of ≥ 50 µg/L (overall effect
of FL on deformities, tied p = 0.0002; overall
effect of BNF on deformities, tied p < 0.0001).

Exposure to AA alone elicited slight
EROD induction at the 10 and 50 µg/L con-
centrations (p < 0.0001 and p = 0.0163,
respectively; Figure 5); however, when
embryos were coexposed to 1 µg/L BNF, the
BNF-mediated EROD induction was inhib-
ited in a dose-dependent fashion by increasing
AA concentrations (p < 0.0001). Embryos
dosed with AA alone exhibited low deformity
indices (not significant, tied p = 0.6609), but
when embryos were coexposed to AA with
1 µg/L BNF, deformity indices were elevated
in cotreatments of BNF with AA concentra-
tions of ≥ 50 µg/L (overall effect of AA and
BNF on deformities, tied p < 0.0001 for each).

The pHAH PCB-126 significantly induced
in ovo EROD over controls at all doses tested
(p < 0.0001; Figure 6). Concentrations of
300 and 600 ng/L induced EROD levels less
than the maximal levels achieved by 30 and
100 ng/L (p < 0.0001 for each). Deformity
indices were elevated in embryos exposed to
PCB-126 concentrations of ≥ 100 ng/L (effect

of PCB-126 alone on deformities, tied
p > 0.0001). In the case of PCB-126, however,
coexposure with 100 µg/L ANF dramatically
decreased the deformity indices of PCB-126
treatment groups (overall effect of PCB-126
and ANF on deformities, tied p < 0.0001 and
= 0.0003, respectively).

Synergistic interactions, determined by one-
group chi square analyses, yielded deformity
frequencies greater than predicted additive 
values for cotreatments with BNF + ANF,
BaP + ANF, BNF + FL, and BNF + AA
(p < 0.001 for each; Figures 2, 4, and 5, respec-
tively). The interaction for BNF + 1 mg/L
PBO cotreatment approached significance
(p = 0.051); however, BNF + 9 mg/L PBO
cotreatment was not synergistic (Figure 3).

Discussion

The results of this study demonstrate that the
embryotoxicity of the pHAH PCB-126 was
decreased with coexposure to the CYP1A
inhibitor and AHR antagonist ANF. This
result is in general agreement with other stud-
ies showing the reduction of early-life-stage
toxicity of pHAHs when CYP1A activity or
AHR-mediated signaling was decreased
(Cantrell et al. 1996; Dong et al. 2002;
Teraoka et al. 2003). In contrast, in the present
study the embryotoxicities of two PAH-type
AHR agonists were increased when CYP1A
was inhibited by chemicals that act by various
modes of action. The data for the interactions
between the PAH-type inducers and inhibitors
clearly indicate a synergistic effect on embry-
otoxicity for coexposures to BNF + ANF,
BaP + ANF, BNF + FL, and BNF + AA. The
BNF + 1 mg/L PBO dose was nearly signifi-
cant for synergism (p = 0.051).

The various inhibitors used in this study
caused similar increases in PAH toxicity,
although these inhibitors varied in structure
and mechanism of inhibition. This suggests
that the increased toxicity of PAHs by
CYP1A inhibitors is due to the shared charac-
teristic of CYP1A inhibition and is not spe-
cific for a particular structure or mechanism
of inhibition. The PAH interactions with
CYP1A inhibitors observed in this study are
in general agreement with those found in a
previous study in which we showed that an
extract from a site highly contaminated with
PAHs was more toxic when coexposed with
several CYP1A inhibitors (Wassenberg and
Di Giulio 2004).

Although the pHAH PCB-126 and the
PAHs BNF and BaP share the characteristic of
being AHR agonists, the difference between
the effect of CYP1A inhibition in the pHAH-
versus the PAH-dosed embryos is striking.
This difference may be due to the fundamen-
tally different chemistries and somewhat dif-
ferent toxicities of these two classes of
compounds. PCBs and other halogenated
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Figure 6. Effects of PCB-126 with and without
100 µg/L ANF cotreatment on in ovo EROD and
deformity index; n = 9 or 10 for all treatment
groups. EROD values are mean ± SEM. See
“Results” for explanation of statistical differences. 



compounds are relatively stable, long-lived
compounds. Although pHAHs induce mono-
oxygenases such as CYP1A, metabolism of
these compounds is relatively slow (White et
al. 1997). The half-life of PCB-126 adminis-
tered to juvenile rainbow trout in their diet
was found to be between 82 and 180 days
(Brown et al. 2002). In contrast, PAHs are
rapidly metabolized. Half-lives of nine PAHs
orally administered to adult rainbow trout
were estimated to be ≤ 9 days (Niimi and
Palazzo 1986). In vitro metabolism of BaP was
found to be 2,000–4,000 times faster than
metabolism of the coplanar pHAH PCB-77 in
induced scup (Stenotomus chrysops) micro-
somes (Stegeman et al. 1981; White et al.
1997). This rapid metabolism of PAHs allows
for more rapid excretion of the compound but
can also activate PAHs into more reactive
intermediates that can bind to and damage
cellular constituents. Studies of PAH metabo-
lism by fish embryos are very limited.
However, Fong et al. (1993) demonstrated
extensive phase 1 and phase 2 metabolism of
7,12-dimethylbenz(a)anthracene by rainbow
trout embryos. Additionally, the presence and
inducibility of CYP1A in killifish embryos
observed in this and previous studies (Meyer
et al. 2002; Nacci et al. 1998; Toomey et al.
2001) support the hypothesis that PAH
metabolism is occurring in embryos in the
present study. Therefore, it is possible that
inhibition of CYP1A in the PAH-treated
embryos extended the half-life of the PAH,
causing prolonged AHR agonism, similar to
AHR agonism in pHAH-treated animals.

Some PAHs act through a narcotic mecha-
nism in which the compounds accumulate in
tissues to a level at which they physically inter-
fere with membranes (McCarty and Mackay
1993). The inclusion of a CYP1A inhibitor
with PAHs would be likely to slow metabolism
of the PAHs. However, it is not likely that nar-
cosis is responsible for the synergy observed in
these experiments. First, even if the total
amount of compound to which the embryos
were exposed in deformed treatment groups
accumulated within the embryo, the concen-
tration of PAH would not reach the
2–8 mmol/kg threshold for acute narcosis
(McCarty and Mackay 1993). Second, nar-
cotic modes of action are, by definition, addi-
tive, and an additive model of toxicity does not
fit our data.

It has been suggested that the toxicity of
pHAHs is at least in part tied to an oxidative
stress mode of damage (Nebert et al. 2000;
Stohs 1990). The pHAHs fit into the active
site for CYP1A but are poor substrates for
CYP1A metabolism, causing an uncoupling of
electron flow between the enzyme and the
substrate. This uncoupling, together with
increased expression of CYP1A via the AHR,
is believed to lead to the production of reactive

oxygen and oxidative damage (Schlezinger and
Stegeman 2001; Schlezinger et al. 1999;
Shertzer et al. 2004). We included PBO as an
inhibitor in our studies because it binds to the
heme group of P450s, thereby inhibiting elec-
tron flow from the enzyme and preventing
this uncoupling. Because PBO enhanced toxi-
city in PAH-cotreated embryos, P450 uncou-
pling is not supported as the mechanism
underlying the interactive toxicity of PAHs
and CYP1A inhibitors observed in this study.

However, other mechanisms of oxidative
stress may play a role in PAH-driven toxicity.
An oxidative stress mechanism for the toxicity
of the alkylated PAH retene has been pro-
posed based on reduced ratios of glutathione
to glutathione disulfide (GSH:GSSG) in rain-
bow trout larvae at retene exposures that
exhibited blue-sac-like symptoms (Billiard
2002). Many PAHs (including BaP) can be
metabolized to quinones (Bolton et al. 2000).
These reactive metabolic intermediates are
capable of further AHR agonism, redox
cycling, and generation of reactive oxygen
species, which can then perturb cellular redox
status and damage macromolecules and are
cytotoxic and mutagenic (Bolton et al. 2000;
Burezynski and Penning 2000). The metabo-
lism of PAHs to reactive compounds is clearly
associated with their genotoxicity and carcino-
genicity (Levin et al. 1982; Sjögren et al.
1996). Inhibition of CYP1A would likely alter
the metabolism of PAHs, possibly generating
more embryotoxic intermediates. However,
the extent to which altered metabolism
affected the PAH toxicity observed in this
study is not known. Current studies are
addressing mechanisms underlying the inter-
active toxicities reported herein.

Importance of findings. PAH contamina-
tion levels are increasing in aquatic systems
across the United States (Van Metre et al.
2000). Sites with PAH mixtures generally
contain agonists for the AHR that can induce
CYP1A activity, such as BaP, chrysene, and
benzo(k)fluoranthene. These mixtures may
also contain compounds that can act as
CYP1A inhibitors. The noncompetitive
CYP1A inhibitor FL, for example, is one of
the more prevalent PAHs found in marine
sediments, lakes, and rainwater (Latimer and
Zheng 2003; Van Metre et al. 2000).
Aminoanthracenes are components in coal
liquefaction products (Pelroy and Wilson
1981; Wilson 1980) and may also be found
in environmental mixtures. It is possible that
other compounds found in environmental
mixtures may also be as yet uncharacterized
CYP1A inhibitors. The synergisms found in
this study indicate that compounds such as
BaP, FL, and AA, which can be commonly
found in environmental mixtures, may be
substantially more toxic in their mixtures
than an additive approach to PAH toxicity

would predict, and that additive models cur-
rently used to estimate PAH toxicity (e.g.,
Barron et al. 2004; Di Toro et al. 2000) may
underestimate the toxicity of PAH mixtures.
Additionally, the observed end point for this
synergy was cardiovascular development dur-
ing early development, a sensitive life stage for
vertebrates in general.
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