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In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA)
analyzed animal cancer bioassay data over different periods of life. In this article, we report an
improved analysis of these data (supplemented with some chemical carcinogenesis observations not
included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We
use likelihood methods to avoid excluding cases where no tumors were observed in specific groups.
We express dosage for animals of different weights on a metabolically consistent basis (concentra-
tion in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of
dummy variables to represent exposures during fetal, preweaning, and weaning-60-day postnatal
periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals.
Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the
birth—weaning period per dose + (body weight’75-day) for mutagenic carcinogens and a somewhat
smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater
in males than in females. We found a similar increased sensitivity in the fetal period for direct-act-
ing nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring
metabolic activation. For the birth-weaning period, we found an increased sensitivity for direct
administration to the pups similar to that found for indirect exposure via lactation. Radiation
experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but
the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the
comparable dosage delivered in young adults (90-105 days of age). Key words: carcinogenesis,
fetal, ionizing radiation, mutagenic chemicals, risk assessment, statistical analysis, susceptibility.
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Standard animal cancer bioassays were designed
as a qualitative screen for carcinogenic activity.
In this context, it is easy to see how the addi-
tional difficulties of dosing at early life stages
might have been considered to provide an only
modest incremental return of qualitative haz-
ard identification information compared with
the extra effort and complexity of assuring ade-
quate and comparable delivery of test sub-
stances over a full lifetime of exposure, from
conception through adulthood. Therefore,
conventional animal cancer bioassay studies

* What health prevention benefits should be
expected from reducing exposures by vari-
ous amounts for toxicants in ambient air,
drinking water, and foods subjected to the
chemical transformations from different
methods of cooking? Do the incremental
benefits of specific intervention measures
justify their costs, when compared with
available alternatives? [National Research
Council 2002; Office of Management and
Budget (OMB) 2000].

In the current revision of cancer risk assess-

conducted by the U.S. National Toxicology

Program (NTP) and elsewhere have been

designed to start dosing in early adulthood—

usually 6-8 weeks of age in mice and rats

(NTP 1993, 1999).

Over the last couple of decades, however,
animal bioassay results have been routinely
used as a basis for quantitative projections of
potential cancer risks for populations exposed
over a full lifetime, from conception through
death. Moreover, the results of such risk pro-
jections are routinely used to arrive at a variety
of types of determinations needed for practical
decisions, for example:

* How extensive is the cleanup that is needed at
hazardous waste sites to achieve risks that are
below Xincidence of harm with Z confidence?
[Hattis and Anderson 1999; U.S. Environ-
mental Protection Agency (EPA) 2001]
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ment guidelines by the U.S. EPA (2003a), a
question has arisen about whether human
exposures during early life stages—during
adolescence and before—should be attached
any greater weight in risk projections than
exposures during adulthood that are analo-
gous to exposures represented in conventional
animal bioassay testing. After reviewing an
extensive set of nonconventional animal
bioassay testing results, the U.S. EPA (2003b)
concluded that there was appreciable evidence
that juvenile exposures to mutagenic carcino-
gens conferred greater risks per day of dosing
than do exposures during adulthood. The
U.S. EPA proposed that for mutagenic chem-
icals, exposures in the first 2 years of life
should be assumed to be 10 times as potent as
exposures in adulthood. A similar 3-fold
increase in expected risk was proposed for

assessments of the effects of exposures
between 2 and 15 years of age.

Both the age cutoffs used in this proposal
and the extent of the assumed increase in sen-
sitivity relative to adults were the products of
relatively informal analyses of the assembled
database. There was no analysis of data for
carcinogenesis after transplacental exposure in
the fetal period, and there was no distinction
between preadult exposures before versus
after weaning. Moreover, comparisons were
done based on juvenile:adult ratios of raw
cancer incidence (the fraction of animals
observed to develop tumors) for comparably
dosed animals. This potentially introduced
distortions of two types: first, there was no
allowance for tumor multiplicity (more than
one effective tumor generation event per ani-
mal) in animal groups where a large fraction
of the animals developed tumors, and second,
the ratio analysis necessarily excluded data
sets in which no tumors were observed in
adult animals. In this article, we somewhat
expand the database assembled by the U.S.
EPA (2003b), and we present a more formal
statistically weighted analysis of relative can-
cer potency in terms of cancer transforma-
tions per animal per unit dose for animals in
different age groups, scaled to the highest
experimental dose used either in adult ani-
mals or (if no fully adult animals were tested)
the oldest age group of animals included in
the experiment. We also derived separate
summary relative potency estimates for the
fetal, birth-weaning (approximately 21 days
in rodents), and weaning—60-day periods.
Where dosage spans multiple age groups, we
used dummy variables to represent the
observed tumor risk as the sum of cancer con-
tributions from dosing in different periods.
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The data were analyzed in a series of subsets
(mutagenic vs. nonmutagenic chemicals vs.
radiation; male vs. female; liver vs. nonliver) to
show how the results depend on various factors.

Description of the Databases

An overview of the data is presented in
Table 1. Experimental results described in
detail by the U.S. EPA (2003b) were corrected
in a few cases and supplemented as follows:

* We added esophageal tumors for diethyl-

nitrosamine (DEN; Peto et al. 1984); liver

but not esophageal tumors from this article

were included in the U.S. EPA analysis (U.S.

EPA 2003b). Additionally, we added control

observations reported by Peto et al. (1991).

The exposure time was corrected for some

vinyl chloride groups; we also included addi-

tional control and comparison group infor-
mation for 52-week exposures described by

Maltoni et al. (1984).

We consolidated 6,000 and 10,000 ppm

exposure groups for vinyl chloride; both of

these are far greater than saturating levels for
the metabolic activation of this chemical.

Results for control (zero-dose) groups were

also consolidated in several cases.

We added the results of a major single-dose

study of N-nitrosomethylurea by Terracini

et al. (1976) and data from several reports on
carcinogenesis from ionizing radiation in rats
and mice (Cahill et al. 1975; Castanera et al.

1971; Di Majo et al. 1990; Knowles 1985;

Sasaki 1991).

* We deleted groups that did not show defined
observations for controls (numbers of animals
tested and numbers with tumors).

Data for two nonmutagenic chemicals
(DDT and dieldrin) were eliminated from the
analysis because of the complexity of the dos-
ing protocol used. In these experiments, some
groups were given gavage exposures, some
direct dietary exposures, and some both in
sequence. This rendered unambiguous calcu-
lations of comparable dosages for the different
groups difficult.

The principal analyses maintain the sub-
divisions between continuous-dosing proto-
cols (in which dosing was maintained at a
given rate for a defined period) versus discrete-
dosing experiments (in which only a single
dose, or up to four single doses were given to
the animals at defined ages).

The full databases as well as models used
for the statistical analyses of continuous, dis-
crete, and radiation dosing data are available
on our website (Hattis 2004).

Modeling Methods

Dosimetric conversions. The assessment of
comparable dosimetry for animals in different
life stages has been a substantial issue in discus-
sions of the analysis of these data. For various
experiments in the original U.S. EPA listing
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(U.S. EPA 2003b), doses are quoted in terms
of a concentration in an environmental
medium (parts per million in diet or water or
air to the individual for exposures after wean-
ing, and to the mother in the case of fetal and
birth-weaning exposures); in other cases, doses
that were directly administered to animals via
intraperitoneal or other injections were origi-
nally expressed in terms of micrograms per
kilogram body weight or similar units. For
entry into our analysis, we left the doses
expressed in terms of environmental media
concentrations unchanged, but we transformed
the doses expressed as micrograms per kilo-
gram body weight into micrograms/(kilogram
body weight)*/> by multiplying by estimated
individual body weights to the one-quarter
power. [Body weights for this purpose were
taken from Nomura (1976) for mice and from
the NTP (1999) and Zhang et al. (2001) for
rats.] The aim of this transformation was to use
a dose metric that (to the extent possible with
available information short of physiologically
based toxicokinetic modeling) is expected to be
approximately proportional to internal daily
average systemic concentrations of the parent
compounds or putative active metabolites for
continuous dosing, or area under the concen-
tration—time curve (AUC) for discrete dosing.
The basis for this approach is similar to the
principal current basis for dosimetric conver-
sions for interspecies projections of cancer
risks: that risks are assumed to be similar across
species if the internal time-integrated concen-
trations of active metabolites are similar across
species. Similarity of internal time-integrated
concentrations is assessed with the aid of obser-
vations that both bulk uptake and elimination
processes tend to scale across species with
metabolic rates—approximately in proportion
to body weight to the three-quarters power
(Boxenbaum 1982; Federal Council for
Science, Engineering and Technology 1992;
Travis and White 1988; Travis et al. 1990).
We have recently found that a similar transfor-
mation reconciles clearance rates of drugs

Table 1. Overall description of the databases.

across age groups in humans—at least after a
period of severely deficient clearance in the first
few months of infancy. Table 2, documenting
this result, is based on a new regression analysis
of human data for pharmaceuticals and meth-
ods that have been previously described
(Ginsberg et al. 2002; Hattis et al. 2003). We
have not located a comparable set of 7 vivo
clearance observations in rats or mice. The lit-
erature does contain several reports that indi-
cate depressed liver-metabolizing activity in the
neonatal period based on in vitro measure-
ments of the activity of some liver enzymes
(Basu et al. 1971; Macleod et al. 1972) and
differences between the sexes in the maturation
of metabolizing capabilities (with generally
greater activity observed in males). To assess
the possible influence of a neonatal deficit of
either activating or detoxifying activity on our
findings, in the “Results” we include compara-
tive analyses of the single-dose data for apparent
relative sensitivity at narrowly defined time
windows—contrasting day 1 after birth with
later periods before and after weaning. We per-
formed these comparisons for the two carcino-
gens that are thought to be direct acting (not
requiring metabolic activation) and for those
that putatively need metabolic activation before
directly DNA-reactive substances are generated.
We also assessed differences in apparent life-
stage—related sensitivity between the sexes.

For ionizing radiation exposures, we have
chosen to leave the doses in units of absorbed
energy—rads or grays. If the oxidative products
generated by radiation are the actual carcino-
genic agents, and if these are predominantly
destroyed by metabolism-dependent processes
that operate at rates that scale with metabolic
rates, it is possible that achieving comparable
integrated dose x time levels of the active agents
might require the same (body weight)w5 con-
versions as used for chemicals. Making such a
transformation would tend to decrease the
time-integrated dosage for the younger post-
natal animals and therefore would tend to
increase the assessed sensitivity per dose relative

Dose groups with exposures in specific life stages

No. of (no. of animals x tumor-site observations)
Dosing chemicals or Total dose Control Birth—  Weaning—60  Adult
protocol radiation types groups groups Fetal weaning days (= 60 days)
Continuous 9 (5 mutagenic)?  1519(103 liver) 29(2,562) 14(820)  62(3,071) 62(6,128)  85(7,544)
Discrete (1-4x) 6 (all mutagenic)® 2742(90 liver) 45(2,926) 8(290) 1179(4,681) 857(3,596) 37(979)
Radiation 4¢ 138 (42 liver)  21(4,283) 18(1,323) 18(1,744) 18(1,529)  63(3,668)

In some experiments, tumor observations were reported separately for two or more anatomical sites (e.g., liver and
stomach). In these cases, the numbers reported here count the same individual animals more than once.

aThe chemicals classified as mutagenic were benzidine, benzo(a)pyrene, DEN, safrole, and vinyl chloride; the chemicals clas-
sified as not mutagenic were amitrole, diphenylhydantoin, ethylene thiourea, and polybrominated biphenyls. eThe numbers of
groups do not add to the total because some groups had dosing in more than one life stage. “Benzo(a)pyrene, DEN, dimethyl-
benzanthracene, ethylnitrosourea, methylnitrosourea, and urethane. “Sixty-six groups were dosed on the first day after birth,
69 groups received exposures between days 1 and 21, 19 groups were dosed on day 21, and 68 groups were dosed between
days 22 and 60; this finer breakdown is presented in the expanded-time analysis of the single-dose data in Table 11. The sum
of these numbers exceeds the total because some groups received dosing in more than one of these more finely divided time
categories. €The ionizing radiation exposures were from '¥Cs gamma rays, X rays, neutrons, and internal beta rays resulting
from the injection of tritiated water.
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to adult exposures. As it happens, such a trans-
formation would have brought the radiation
results more closely into alignment with the
results for mutagenic chemicals.

Equation fit and statistical optimization.
One basic difference between our methodology
and that used for these data by the U.S. EPA
(2003Db) is a transformation of the raw observa-
tions of tumor incidence in different groups
into the estimated number of tumor transfor-
mations per animal. This corrects for the fact
that researchers cannot usually distinguish
between cases where one or more than one
tumor was induced in a particular organ within
a specific animal (or where more than one
tumor would have been induced at the site
studied had the animal lived to the end of the
observation period). To accomplish this, we
use the same Poisson transformation that has
been traditionally used for the multistage and
related statistical models of carcinogenesis.

The Poisson distribution is appropriate for
processes that occur as the result of indepen-
dent events where the number of possible
events occurring in a particular unit of observa-
tion is unlimited. Our use of the Poisson distri-
bution in this case derives from the basic fact
that tumors start in individual cells (Fialkow
1997; Knudson, 1973, 1977). Each tumor is
conceived to be an independent event arising
as the result of the completion of the last stage
mutation in one stem cell out of many other
susceptible stem cells in a particular organ. It
should be noted that this last-stage event will
not generally have occurred during the pread-
ult life stages that are the focus of our analysis,
but the effects of these early life exposures will
manifest as incremental tumors that occur dur-
ing the life-long period of observation of the
animals.

Fraction of animals with tumors

= Prumor
=1 _Pnotumor [1]
Pno tumor = e’ = €XP(—m)> (2]

where m is the tumor transformations per
animal at the studied site. Solving for 7z

m= _ln(Pno tumor)

= —In(1 — fraction of animals with tumors).

(3]

Because most of the experiments use only a
single dose of carcinogen for each age group,
no more sophisticated multistage treatment of
tumor dose response is possible with these
data. Given this, relative cancer transformation
rates in different age groups in comparison
with adult animals were estimated by fitting
the continuous data to the following equation:

Fraction with tumors
-1 _f—[B+A(a+fF+ cC+ w\%]’ [4]

where B is the group background transforma-
tions per animal; A is the group adult transfor-
mations per animal at the highest adult dose
rate; 4 is the fraction of the adult period with
dosing at the maximum adult rate (this term
reflects an adjustment where a group received
less than the full adult dosing rate); fis the
fraction of the fetal period with dosing at the
maximum adult rate (also adjusted for dose
rate as needed); Fis the fetal:adult sensitivity
ratio; ¢ is the fraction of the birth-weaning
period with dosing at the maximum adult rate
(also adjusted for dose rate as needed); C'is the
birth-weaning:adult sensitivity ratio; w is the
fraction of the weaning—60-day period with
dosing at the maximum adult rate (also
adjusted for dose rate as needed); and Wis the
weaning—60-day:adult sensitivity ratio.

In Equation 4, the terms designated with
lowercase letters represent the input dosing and
tumor response data for each group of dosed
animals or controls. Where continuous daily
dosing occurred over only part of a life stage,
we entered the fraction of the life stage where
dosing occurred. Similarly, where dosing for a
particular group occurred at a fraction of the
maximal rate given to adults, that fraction was
entered as input data. This model form treats
contributions to ultimate cancer transforma-
tion events from different life stages as additive.

The equation has two types of estimated
parameters (designated with upper case letters).
First, A and B are used only within specific

experiments (a particular tumor type associated
with exposure to a particular chemical in a par-
ticular animal group). By contrast, the three
remaining “generic” parameters (5, G, and W)
are estimated based on the results of all the
dose groups for all chemicals and animals
included in a particular run that contained
some dosing within each life stage, compared
with controls. Thus, for these generic parame-
ters, the results represent summary central esti-
mates [and upper (UCL) and lower confidence
limits (LCL)] for all chemicals, tumor types,
species (rats and mice), and other characteris-
tics of the included experimental data. In light
of this, in the “Results” we present alternative
sets of estimates designed to explore the influ-
ence of sex, mutagenic character, tumor site,
and other characteristics on the assessments of
differences in susceptibility among life stages.
Finally, because the doses used in the model
fitting were expressed in terms of dose + (body
weight)®7, the units of the relative sensitivity
parameters should similarly be understood
to be

Life-stage — specific cancer transformations per dose

Body weight"”>-day

_ Adult cancer transformations per dose 5]

Body weight””*-day

Estimates of the uppercase terms were derived
by minimizing the “deviance” between
observed and model predicted data points, as
described by Haas (1994) and McCullagh
and Nelder (1989): For nonzero numbers of
tumors in a particular group the “deviance” is

23 [N,, m(%) +(7;- Nl,)ln( - ”g)], (6]

izl 1-m

i i

where £ is the number of dose groups; V; is the
number of animals with tumors in group 4
T; is the total number of animals in group %
7, is the model-predicted proportion of ani-
mals with tumors in group 7 and 7' is N/ 7;.
This deviance-minimization optimization
was accomplished in Microsoft Excel spread-
sheets using the “solver” facility (Microsoft

Table 2. Geometric mean ratios? of child/adult clearance/body weight and (clearance/body weight%7®): regression results from 104 data groups for 27 drugs for

humans in various age ranges.

Form for expressing Premature Full-term 1 week— 6 months—

total body clearance neonates neonates 2 months 2-6 months 2 years 2-12 years 12-18 years

Mg/kg body weight 0.52@ 0.66 0.77 1.21 1.71 1.42 0.97
(0.43-0.63) (0.61-0.73) (0.71-0.84) (1.06-1.39) (1.52-1.92) (1.31-1.53) (0.78-1.2)

Mg/(kg body weight)075 b 0.23 0.31 0.38 0.68 1.03 1.08 0.93
(0.19-0.28) (0.28-0.34) (0.35-0.42) (0.59-0.78) (0.91-1.17) (1.00-1.17) (0.74-1.17)

Data in parentheses indicate the + 1 SE range.

aThese data are the antilogs of the B coefficients that result from fitting the equation: log(mean clearance) = B, (intercept) + B; x (1 or 0 for chemical 1) + B, x (1 or 0 for chemical 2)
+...+ By x (10r0forage group 1) + B, x (1 or 0 for age group 2) + .... A more complete description of the underlying data and methodology has been reported by Ginsberg et al. (2002),
Hattis et al. (2003), and Hattis (2004). ®Input clearance/(kg body weight)®7> data for the regression results reported in this line were calculated from clearance/body weight data by multi-
plying by group mean estimated body weights®%. For children = 2 years of age, body weights for this transformation were estimated using the formulas described by Hattis et al. (2003),
averaged for both sexes. Body weights of 2.5 and 3.5 kg were assumed for premature and full-term neonates < 1 week of age, respectively, and a log-linear interpolation was made
between 3.5 kg at age 1 week and 6.3 kg at 2 months for groups with mean ages in that interval.

1154

voLUME 112 | NumBer 11 | August 2004 « Environmental Health Perspectives



Article | Age-related differences in carcinogenesis

Corporation, Redmond, WA). Haas (1994)
also provided procedures for deriving profile-
likelihood-based confidence intervals (Venzon
and Moolgavkar 1988) for these fitted parame-
ters based on the chi-square statistic. For each
confidence interval estimate, all parameters
other than the one being assessed were allowed
to vary. Thus, the upper and lower 95% confi-
dence limits for the birth-weaning:adult sensi-
tivity estimates reflect possible uncertainties in
all the group background transformations per
animal, group adult transformations per ani-
mal, and the sensitivities of fetal and wean-
ing—60-day life stages relative to adults. A
similar approach was used for the discrete dos-
ing data and for the combined continuous and
discrete data by dividing the doses by the esti-
mated numbers of days in each dosing period
(8 days for the fetal dosing period, 21 days for
the birth—-weaning life stage, 39 days for the
weaning—60-day life stage, and 663 days for
the adult period).

Results and Discussion:
Relative Sensitivity of Different

Life Stages in Animals

Before considering the age-related differential

sensitivity results for continuous versus discrete

dosing in detail, it is worth noting that they

may be reflecting somewhat different factors.

The continuous dosing results:

¢ Include enzyme induction effects, if any

* Inherently reflect a dilution of any fluctua-
tions in short-term sensitivity caused by, for
example, waves of cell proliferation in spe-
cific organs in narrow time windows

* Possibly present fewer complications from
high-dose kinetic and dynamic nonlinearities

* Have somewhat more straightforward
implications for adaptation of traditional
chronic dosing assessments.

On the other hand, the results from experiments

where dosing was administered at discrete times:

* Almost always exclude direct enzyme induc-
tion effects

* Are capable of revealing short-term sensitivity
fluctuations, to the extent that these occur

* Are likely to be done at somewhat higher
dose rates, with some increase in potential
complications from high-dose nonlinearities

* Have more straightforward implications for
assessment of risks from acute exposure
events.

Results for overall continuous chemical,
discrete chemical, and radiation dosing data
sets. Table 3 shows the results of fitting the
continuous and discrete dosing data as a whole,
together with similar results for radiation expo-
sures. In all three sets of data, the birth—wean-
ing period is suggested to be the most sensitive
per day of dosing, followed by the fetal period
and the weaning—60-day period. Each inde-
pendent data set yields a central estimate of the
birth-weaning sensitivity that is about 5- to
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10-fold greater than the sensitivity per day of
dosing in adulthood, with doses expressed per
body weight®7>.

Mutagenic versus nonmutagenic chemi-
cals. In the case of the continuous dosing
data, some of the chemicals were classified by
the U.S. EPA (2003b) as mutagenic, and
some not. (All of the chemicals with discrete
dosing data, and ionizing radiation, are muta-
genic.) Table 4 shows the continuous dosing
results broken out for mutagens versus non-
mutagens. In contrast with the mutagens, for
nonmutagenic carcinogens none of the age
groups manifest significantly greater sensitiv-
ity than is seen for adults (defined as 1 in

these tables). It should also be noted that sep-
arating out the nonmutagens leaves the muta-
genic compounds showing significantly more
birth-weaning period sensitivity than is seen
for either the discrete-dosing chemical data or
the radiation observations.

Male versus female animals. Tables 5-7
show the contrast between results in male ver-
sus female animals for continuously dosed
mutagens, mutagenic chemicals delivered in
discrete doses, and radiation experiments,
respectively. The differences appear most
prominent for the continuous dosing data
(Table 5), where males seem to have much
larger increases in sensitivity relative to adults

Table 3. Summary of results from fitting cancer bioassay data: relative susceptibility of different life stages

per day of dosing.

Maximum
Dosing type and age group likelihood estimate 95% LCL 95% UCL
All continuous chemical dosing experiments?
Fetal period (8 days beginning on GD12) 49 05 9.3
Birth—weaning (21 days) 8.7 6.5 10.8
Weaning—60-days (39 days) 0.000 0.000 0.24
All discrete chemical dosing experiments®
Fetal period (8 days beginning GD12) 5.1 3.6 8.5
Birth—weaning (21 days) 10.5 7.2 16.2
Weaning—60-days (39 days) 1.51 1.03 2.31
All ionizing radiation dosing experiments®
Fetal period (8 days beginning GD12) 35 2.2 5.7
Birth—weaning (21 days) 53 . 8.3
Weaning—60-days (39 days) 2.4 18 34

GD, gestation day. Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body
weight®7-day) relative to comparably dosed adults.

2Based on a total of 151 group tumor incidence observations for nine chemicals. ?Based on a total of 274 group tumor inci-
dence observations for six chemicals. °Based on a total of 138 group tumor incidence observations for four radiation types.

Table 4. Comparative results for continuous dosing of chemicals classified as mutagenic versus those classi-
fied as nonmutagenic (U.S. EPA 2003b): relative susceptibility of different life stages per day of dosing.

Maximum
Mutagenicity class and age group likelihood estimate 95% LCL 95% UCL
Chemicals classified by the U.S. EPA as mutagenic®
Fetal period 8.4 35 155
Birth-weaning 24 17.1 34
Weaning—60-days 3.7 0.0 9.1
Chemicals classified by the U.S. EPA as nonmutagenic?
Fetal period 0.0 0.0 17.4
Birth-weaning 3.0 0.0 4.7
Weaning—60-days 0.0 0.0 2.0

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight®7*-day) relative
to comparably dosed adults.
aFive compounds, 43 tumor incidence observations. “Four compounds, 108 tumor incidence observations in animal groups.

Table 5. Comparative results for male versus female animals for mutagenic chemicals given in continuous
dosing experiments.

Maximum
Sex and age group likelihood estimate 95% LCL 95% UCL
Male
Fetal period 35 16.5 72
Birth-weaning 133 80 245
Weaning—60-days 0.0 0.0 97
Female
Fetal period 2.3 0.24 9.7
Birth-weaning 3.4 1.1 8.4
Weaning—-60-days 41 18 98

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight®7-day) relative
to comparably dosed adults, for continuous dosing for chemicals classified by the U.S. EPA (2003b) as mutagenic (three
compounds, 16 tumor incidence observations).
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for the fetal and birth-weaning life stages, and
by contrast, females show a large increase in
sensitivity for the weaning—60-day period.
Considerable reserve is in order in interpreting
the latter result, however, in the light of the
slender database available for the continuous
dosing analysis (only 3 chemicals and 16 dose
groups for each sex) and the fact that neither
the larger set of discrete-dosing data (Table 6)
nor the radiation-dosing data (Table 7, based
on fetal and weaning—60-day stages only)
exhibits a similar enhanced female relative sen-
sitivity for the weaning—60-day period, com-
pared with males.

One way of weighing the different obser-
vations from continuous versus discrete chem-
ical dosing experiments is to combine the two
sets of results into a single model for analysis.
The results of such a combination for male
and female life-stage relative sensitivity ratios

Table 6. Comparative results for male versus female
dosing experiments.

are shown in Table 8. The combined data
tend to reinforce the suggestion that there are
male—female differences in age-related sensitiv-
ity patterns but fail to sustain the initial sug-
gestion from the continuous dosing data of an
increase in the sensitivity for females in the
weaning—60-day period relative to adults. On
the other hand, the combined data do indicate
an increased sensitivity for this period in
males. The combined data for the fetal and
birth-weaning periods indicate much more
prominent excess sensitivity relative to adults
in males than in females.
Distributional form for the statistical
uncertainties in estimated life stage/adult sen-
sitivities. Figures 1 and 2 show lognormal
probability plots (Hattis and Burmaster 1994)
of the statistical uncertainty distributions for
the life stage:adult sensitivity ratios for the male
and female combined discrete and continuous

animals for mutagenic chemicals given in discrete

Maximum
Sex and age group likelihood estimate 95% LCL 95% UCL
Male animals
Fetal period 5.7 35 1.1
Birth—weaning 1.1 6.6 19.5
Weaning—60-days 0.99 2.6
Female animals
Fetal period 44 2.1 10.2
Birth—weaning 9.7 5.6 20
\Weaning—60-days 1.45 0.75 3.2

Data are maximum likelihood estimate and confidence limits of cancer inductions per dose/(body weight®’*-day) relative to
comparably dosed adults, for discrete dosing for chemicals classified by the U.S. EPA (2003b) as mutagenic (six compounds,

137 tumor incidence observations).

Table 7. Comparative results for male versus female animals for radiation dosing experiments.

Maximum
Sex and age group likelihood estimate 95% LCL 95% UCL
Male animals?
Fetal period 7.4 32 43
Birth—weaning No data No data No data
Weaning—60-days 2.3 1.6 33
Female animals?
Fetal period 2.7 15 5.4
Birth—weaning 47 3.4 8.7
Weaning—60-days 24 14 46

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose in rads or grays relative to

comparably dosed adults.

aSixty-six tumor incidence observations for two forms of radiation (X rays and neutrons). 5Sixty-nine tumor incidence
observations for three forms of radiation (jamma rays, neutrons, and internal exposure to beta rays from tritiated water).

Table 8. Comparative results for male versus female animals for mutagenic chemicals: analysis of combined

data from continuous and discrete dosing experiments.

Maximum Avrithmetic

Sex and age group likelihood estimate 95% LCL 95% UCL mean
Male animals

Fetal period 25 15.6 42 27

Birth-weaning 57 38 90 59

Weaning—60-days 5.0 3.1 8.6 5.3
Female animals

Fetal period 1.77 1.05 29 1.83

Birth-weaning 44 3.3 6.0 45

Weaning—60-days 0.82 0.50 1.29 0.85

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight®7>-day) relative
to comparably dosed adults (nine compounds, 153 tumor incidence observations).
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dosing data for mutagenic carcinogens. In this
type of plot, correspondence of the points to
the fitted line is an indicator of the fit of a log-
normal distribution to the statistical uncer-
tainties in central estimate life stage:adult
sensitivity ratios. (The Zscore that makes up
the x-axis is the number of standard errors
above or below the median of the normal dis-
tribution logy( transformed values.) It can be
seen that the uncertainty distributions are well
described by the lognormal fits. We stress that
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Figure 1. Lognormal plots of likelihood-based uncer-
tainty distributions for cancer transformations per
daily dose for various life stages for mutagenic
chemicals (relative to comparable exposures of
adults) for combined discrete and continuous dosing
experiments in females. Log(birth—weaning/adult):
y = 0.646 + 0.0785x; A2 = 1.000. Log(fetal/adult): y =
0.246 + 0.134x; A% = 1.000. Log(weaning—60 days/adult):
y=0.0880 + 0.124x; A2 =0.999.
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Figure 2. Lognormal plots of likelihood-based uncer-
tainty distributions for cancer transformations per
daily dose for various life stages for mutagenic
chemicals (relative to comparable exposures of
adults) for combined discrete and continuous dosing
experiments in males. Log(birth-weaning/adult): y =
1.76 + 0.113x; A2 = 0.999. Log(fetal/adult): y = 1.41 +
0.132x; R? = 1.000. Log(weaning—60 days/adult):
y=0.705 + 0.133x; A% = 0.999.
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these plots are of confidence limits on the
aggregate central tendency results for all chem-
icals in the covered groups. The uncertainties
in estimates for individual chemicals are being
analyzed separately (Hattis et al., unpublished
data), together with implications for human
risk for a particular mutagenic chemical.

Rats versus mice. Table 9 shows compara-
tive results for life-stage—specific relative tumor
sensitivities in rats versus mice for the com-
bined discrete and continuous dosing experi-
ments. There is a suggestion that the rat data
may indicate somewhat larger effects relative to
adults for the fetal and weaning—60-day life
stages; however, the 95% confidence limits
overlap. In the light of the very limited num-
bers of chemicals with relevant observations for
rats, there should be no strong inference that
the suggested rat/mouse differences are real.

Direct-acting carcinogens versus agents
requiring metabolic activation. All but two of
the mutagenic carcinogens covered in the
database are thought to require metabolic
activation to produce DNA-reactive agents
(U.S. EPA 2003). The two exceptions are the
nitrosoureas—methyl- and ethylnitrosourea.
Comparing life stage:adult sensitivity results for
the metabolically activated versus direct-acting
compounds can shed light on whether the pre-
vious results, including the relevant dosimetry,
are likely to have been appreciably distorted by
immaturity of metabolic activating systems in
the neonatal period.

Table 10 shows the relevant comparison
using our standard breakdown of life stages,
based on the single-dose data. The results
indicate a clear difference in fetal sensitivity
for direct-acting versus metabolically activated
compounds. As might have been expected,
there is, if anything, less carcinogenic suscep-
tibility in the fetal period for metabolically
activated compounds, whereas the fetal life
stage shows 5- to 25-fold greater sensitivity
than adults for the direct-acting nitrosoureas.

Table 11 shows the results of using a finer
breakdown of time periods, made possible by
the focus on data resulting from direct dosing at
discrete times. Beyond the fetal period, there is
no apparent difference in the pattern of relative
sensitivity with age between the nitrosoureas
and the metabolically activated carcinogens. In
both cases, relative sensitivity peaks near birth
and declines progressively thereafter until it
reaches about double the adult sensitivity at
day 21. Beyond the fetal period, there is thus
no indication of a perinatal deficit in metabolic
activating activity for this set of carcinogens.

Direct dosing in the birth—weaning period
versus dosing via lactation. Another important
dosimetric issue is whether the lactational
exposures resulting from primary dietary expo-
sure to maternal animals are in fact equivalent
to doses directly administered to pups during
the birth-weaning period. Table 12 shows the

results of separate estimations of the relative
tumor susceptibility for direct versus lactational
exposure for the combined set of continuous
and discrete dosing experiments. The data
show that no diminution in birth-weaning
sensitivity is indicated for lactational exposures
compared with direct administration of known
doses. If anything, the lactational exposures
appear somewhat more potent than direct
administration per unit of estimated external
exposure, although the 95% confidence limits
overlap. One possible interpretation of this
result, if repeated, is that some of the bolus

doses given in the direct administration experi-
ments may have partially saturated metabolic
activation pathways, leading to less effective
dose of DNA-reactive metabolites per unit
exposure than when similar materials are
administered more slowly via milk.

Radiation results for different times dur-
ing the “adult” period. The “adult” compari-
son groups for the discrete chemical dosing
experiments generally were exposed in early
adulthood—within 4-6 months of age. By
contrast, the radiation experiments include
groups extending to much older ages—up to

Table 9. Comparative results for mice versus rats in combined discrete plus continuous dosing experiments.

Maximum
Species and age group likelihood estimate 95% LCL 95% UCL
Mice?
Fetal period 6.5 42 9.9
Birth—weaning 17.7 13.2 24
Weaning—-60-days 23 1.53 33
Rats?
Fetal period 18.9 8.3 45
Birth—weaning 21 11.7 38
Weaning—-60-days 39 1.94 73

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight®>-day) relative to
comparably dosed adults: discrete plus continuous dosing for chemicals classified by the U.S. EPA (2003b) as mutagenic.
aEight compounds, 265 tumor incidence observations. ’Four compounds, 44 tumor incidence observations.

Table 10. Comparative results for discrete dosing of chemicals for direct-acting nitrosoureas versus other
mutagenic carcinogens thought to require metabolic activation to DNA-reactive compounds: standard

breakdown of life stages.

Maximum
Metabolism class and age group likelihood estimate 95% LCL 95% UCL
Direct-acting mutagenic carcinogens?
Fetal period 11.6 5.4 25
Birth—weaning 10.2 5.1 21
Weaning—-60-days 2.7 1.37 5.6
Metabolically activated mutagenic carcinogens?
Fetal period 0.21 0.01 0.90
Birth—weaning 15.0 8.4 33
Weaning—-60-days 1.24 0.76 2.3

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight®75-day) relative

to comparably dosed adults.

aEthylnitrosourea and methylnitrosourea (108 tumor incidence observations). ?Benzo(a)pyrene, diethylnitrosamine,
dimethylbenzanthracene, and urethane (166 tumor incidence observations in animal groups).

Table 11. Comparative results for discrete dosing of chemicals for direct-acting nitrosoureas versus other
mutagenic carcinogens thought to require metabolic activation to DNA-reactive compounds: expanded

breakdown of ages.

Maximum
Metabolism class and age group likelihood estimate 95% LCL 95% UCL
Direct acting mutagenic carcinogens?
Fetal period 44 2.0 12.4
Day 1 6.2 36 18.0
Other birth—weaning (except 1 or 21 days) 3.7 1.8 10.0
Day 21 2.2 1.44 49
> 21 weaning—60-days 0.92 0.38 2.7
Metabolically activated mutagenic carcinogens?
Fetal period 0.13 0.01 0.52
Day 1 17.3 10.0 36
Other birth—weaning (except 1 or 21 days) 10.7 6.2 22
Day 21 19 1.06 37
> 21 weaning—60-days 0.87 0.54 1.52

Data are maximum likelihood estimate and confidence limits of cancer inductions per dose/(body weight®75-day) relative

to comparably dosed adults.

aEthylnitrosourea and methylnitrosourea (108 tumor incidence observations). YBenzo(a)pyrene, diethylnitrosamine, dimethyl-
benzanthracene, and urethane (166 tumor incidence observations in animal groups).
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Table 12. Effect of separate estimation of relative sensitivity in the birth-weaning period for lactational
exposures versus direct administration: combined continuous and discrete dosing data for nine mutagenic

carcinogens (317 tumor incidence observations).

Maximum
Dosing mode and age group likelihood estimate 95% LCL 95% UCL
Fetal period 6.0 55 8.8
Birth—weaning direct 116 8.5 16.1
Birth—weaning lactational 214 15.3 30
Weaning—-60-days 1.70 0.77 24

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight®75-day) relative
to comparably dosed adults: discrete + continuous dosing for chemicals classified by the U.S. EPA (2003b) as mutagenic.

Table 13. Relative sensitivity for radiation-related carcinogenesis indicated by an expanded breakdown of
adult age groups: all ionizing radiation dosing experiments (based on a total of 138 group tumor incidence

observations for four radiation types).

Maximum
Age group likelihood estimate 95% LCL 95% UCL
Fetal period 2.1 1.3 34
Birth—weaning 3.1 2.2 48
Weaning—60-days 15 1.1 2.1
6-12 months 0.32 0.00 0.69
Elderly (19-21 months) 0.36 0.19 0.60

Data are maximum likelihood estimates and confidence limits of cancer inductions per rads or grays relative to young

adults (90-105 days).

16-18 months. As shown in Table 13, these
data indicate a considerable reduction in sen-
sitivity for radiogenic cancer induction with
advancing age.

Liver tumors versus tumors in other organs.
As indicated in Table 1, many of the tumors
studied in these rodent experiments come from
the liver, particularly for the continuous dosing
studies. We have found that, in general, life-
stage—specific enhancements of sensitivity seem
to be greater for the liver than for the lung, but
life-stage—specific excesses in sensitivity are still
apparent for the aggregate of nonliver, nonlung
organs (Hattis 2004).

Toward quantitative applications in
human health risk assessment. On a qualita-
tive level, this analysis provides more detailed
understanding and confidence in the fact that
there is an increased early-life sensitivity for
mutagenic carcinogens—reinforcing the con-
clusions drawn by the U.S. EPA (2003b).
The next step toward applying these data for
quantitative human risk assessment is to
develop time/age mapping between rodents
and people. What ages in people approximately
correspond to the rodent fetal, birth-weaning,
and weaning—60-day periods studied in this
analysis? We are developing a preliminary map-
ping based on the times at which rodents and
people attain various fractions of the average
body weights they have at sexual maturity
(Hattis et al., unpublished data). In this second
article we also use a Monte-Carlo model-based
distributional analysis of the combined uncer-
tainties in «) the central estimates of life-
stage—related differences in carcinogenesis
susceptibility, as derived in this article; 4) the
chemical-to-chemical variation in the life-
stage—related susceptibility estimates; and ¢) the
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rodent/human time mapping uncertainty.
Quantitative assessment of these three uncer-
tainties together is needed for full distributional
analyses of cancer risks for exposures in early life
stages.
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