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Researchers have found that acute episodes of
increased particulate matter (PM) are associ-
ated with nonaccidental mortality (Goldberg
et al. 2001), total mortality (Katsouyanni et al.
2001; Laden et al. 2000; Mar et al. 2000;
Wichmann et al. 2000), cardiovascular deaths
(Hoek et al. 2001; Ostro et al. 2000), respira-
tory deaths (Braga et al. 2001; Hoek et al.
2001), elderly deaths (Katsouyanni et al.
2001), asthma in children and the nonelderly
(Lin et al. 2002; Norris et al. 1999; Sheppard
et al. 1999), and morbidity (Schwartz 1999;
Zanobetti et al. 2000). In all of these studies,
the approach taken by the researchers to estab-
lish a connection between ambient PM levels
and health end points consists of relating mea-
sured PM levels on a given day to mortality or
morbidity rates on the same or closely follow-
ing days while adjusting for possible confound-
ing factors such as weather, day of the week,
and long-term trends in mortality rates. By far,
the most common model used to establish this
relationship is the Poisson generalized additive
model (GAM). Poisson GAMs are well suited
for addressing the question of whether levels of
ambient PM in the outdoor environment are
associated with health end points, but they
may not be the best approach for quantifying
the relationship between PM exposure and
health end points because direct exposure data
cannot be collected for large populations over
long periods of time. As a result, Poisson

GAMs cannot give direct estimates of increases
in the relative risk of morbidity and mortality
as a result of exposure to PM.

In attempting to explore the relationship
between PM exposure and morbidity or mor-
tality, care should be taken not to assume that
the relationship between ambient levels and
mortality implies a similar connection between
exposure and mortality. It is well documented
that ambient levels poorly approximate true
exposure (Dockery and Spengler 1981; Lioy
et al. 1990; Spengler et al. 1985; Tamura and
Ando, unpublished data), and ignoring the
discrepancy between exposure and ambient
levels in investigations of health effects can lead
to biases and underestimation or overestima-
tion of the uncertainty about effects even in
simple models (Armstrong et al. 1992). One
recent study from the Health Effects Institute
(HEI; Cambridge, MA) shows that PM studies
are no different: ignoring exposure informa-
tion can result in biases and misrepresentation
of uncertainty when linking PM to health
effects (Samet et al. 2000).

In an effort to include exposure informa-
tion in a model linking levels of PM ≤ 10 µm
in aerodynamic diameter (PM10) and mortal-
ity, an HEI study (Samet et al. 2000) pro-
posed a multistage Bayesian Poisson regression
model, a generalization of the GAM, that
includes exposure information. The focus of
the HEI study was on Baltimore, Maryland,

where daily mortality, PM10, and weather
variables were collected from 1987 through
1994. Within Baltimore, Samet et al. used the
Poisson GAM form to relate PM10 exposure
(instead of ambient levels) to mortality. At the
next stage of the hierarchy, the latent exposure
is related to ambient PM levels using a linear
regression form. To provide information
about the coefficients of the regression relating
the latent exposure to ambient levels, Samet
et al. hypothesized that the same linear form is
appropriate for each of five exposure studies
and linked the coefficients in each study and
the Baltimore population together through
another level in the hierarchy.

Although the approach of Samet et al.
(2000) takes an important step forward by
including exposure information in an epi-
demiologic model, the method of relating
ambient levels to exposure levels could be
improved. The assumption that the linear
relationship between PM10 levels and true
exposure is similar between the Baltimore
population and the populations in the five
exposure studies may be unwarranted. In con-
trast to this HEI approach, an alternative
approach for relating ambient pollutant levels
to true personal exposure that has gained
acceptance more recently is the use of com-
puter exposure simulators. Zidek et al. (2003)
presented a general statistical framework for
the construction of these simulators. Exposure
simulators use activity data and microenviron-
ment pollutant-level data to estimate pollutant
exposure levels for individuals. One of the
most sophisticated exposure simulators to date
for PM is the Stochastic Human Exposure and
Dose Simulation (SHEDS-PM) (Burke et al.
2001). For a single individual, SHEDS-PM
stochastically simulates a PM level for each of
the environments in which the individual
spends time. Once SHEDS-PM has defined
the microenvironmental levels, the total PM
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exposure for the individual is estimated by
weighting the PM levels in the various environ-
ments by the amount of time the individual
spends in each of those environments. By
examining the estimated PM exposure levels of
several individuals created in this manner, the
distribution of exposure levels for a population
can be characterized.

Building upon the Bayesian model used in
the HEI study (Samet et al. 2000), we propose
a Bayesian hierarchical model for modeling
the relationships among levels of ambient fine
PM (particulate matter ≤ 2.5 µm in aero-
dynamic diameter; PM2.5), average exposure to
PM2.5, and cardiovascular mortality that
incorporates an exposure simulator similar to
SHEDS-PM. Unlike most studies, our model
allows us to directly quantify the effect of
exposure to PM2.5 on cardiovascular mortality.
Bayesian hierarchical modeling is a framework
that allows multiple data sources and statistical
modeling techniques to be incorporated into a
single coherent statistical model (Gelman et al.
1995). In contrast to the Poisson GAM, our
model describes the hierarchical nature of the
process that connects monitor readings of
PM2.5 to cardiovascular mortality by using a
three-level hierarchy. The hierarchy is summa-
rized in Table 1. At the first level, we describe
the relationship between PM2.5 monitors and
a continuous surface of ambient PM2.5 con-
centrations by allowing for monitor error and
considering the spatial properties of PM2.5. At
the next level, we link average ambient PM2.5
concentrations at the county level to average
population exposure at the county level using
an exposure simulator similar to SHEDS-PM.
Finally, the third level links average exposure
levels to daily cardiovascular mortality counts
using the Poisson GAM form. By incorporat-
ing all of these levels into a single Bayesian
hierarchical model, we are able to estimate the
effect of PM2.5 exposure on cardiovascular
mortality and to combine several disparate
sources of data in a meaningful way. Although
not clearly marked in Table 1, note that the
modeled process from level 1 feeds into the
modeling technique for level 2, and the mod-
eled process from level 2 feeds into the model-
ing technique for level 3. By fitting our model
using 3 years of data in seven counties in
North Carolina (Alamance, Chatham,
Durham, Guilford, Johnston, Randolph, and
Wake), we found that increased PM2.5 expo-
sure is related to increased risk of cardio-
vascular mortality on the same day and the
next 2 days. The size of the observed effect is
greater than that observed between ambient
PM2.5 levels and cardiovascular mortality,
although similar patterns in the effects appear.

Materials and Methods

Mortality data for North Carolina for the
years 1999–2001 were obtained from the

website of the Odum Institute at the
University of North Carolina (Odum Institute
2003). These data were subdivided to include
only deaths from cardiovascular causes
[International Classification of Diseases, 10th
Revision (ICD-10) codes I00 to I99; World
Health Organization (WHO) 1992]. PM2.5
data for all available monitors in North
Carolina during 1999–2001 were obtained
from the U.S. Environmental Protection
Agency (EPA) Aerometric Information
Retrieval System/Air Quality Subsystem
(AIRS/AQS) database (U.S. EPA 2003b).
Each monitor in North Carolina takes read-
ings on a daily, 1-in-3-day, or 1-in-6-day
schedule. Daily meteorologic data across
North Carolina were obtained from the
National Oceanographic and Atmospheric
Association’s (NOAA) National Climatic
Data Center (Asheville NC) via online sub-
scription (NOAA 2003). For each county, the
values of the three variables of interest (daily
maximum temperature, average wind speed,
and relative humidity) were assumed to be
equal to the values of those variables reported
by the weather station closest to the centroid
of the county. We imputed missing meteoro-
logic data (~ 2% missing overall) by calculat-
ing the average value for all other counties
with complete data on the same day and sub-
stituting that average value for the missing
value. Data on human activity patterns were
obtained from the Consolidated Human
Activities Database (CHAD; U.S. EPA
2003a). This database contains the results of
12 studies in which individual 24-hr details of
activities and the environments in which those
activities took place were recorded. We
restricted our use of the database to records
contained in the National Human Activity
Pattern Survey (NHAPS) portion of the
CHAD and to records of individuals > 20
years of age. Demographic data on the county
level were obtained from the U.S. Census
Bureau (2003). The population counts for the
2000 census were assumed to be representative
of the population counts across the time
period studied (1999–2001). We used two
level-3 summary files in our analysis, P1 and
PCT35, which include total population
counts by county and the number of individu-
als > 16 years of age in each county by sex,
age, and employment status, respectively.

The model that we propose for relating
PM2.5 readings at monitors to daily cardio-
vascular mortality counts is a three-level hier-
archical Bayesian model. The three levels in
our model are as follows: a) linking monitor

readings to ambient levels over the study
region, b) linking ambient levels to exposure
levels, and c) linking exposure levels to 
mortality (Table 1).

Level 1. Central to our model relating PM
levels to mortality is that, for any given day, a
continuous surface of ambient PM2.5 levels
exists over the study region; this is what
would be measured if we obtained an infinite
number of monitor readings (spatially dense)
without error each day. The first level of our
model specifies the spatial distribution of
PM2.5 and relates that distribution to readings
taken at monitors on a single day.

We conducted a spatial analysis of PM2.5
and determined that PM2.5 exhibits strong spa-
tial correlation over the region of interest
[details reported by Calder et al. (2003)]. In
order to incorporate this information into a
statistical model, we assigned a joint multi-
variate normal distribution to any set of obser-
vations of the PM2.5 surface. Although we
acknowledge that PM2.5 readings tend to be
right-skewed rather than normally distributed,
this simplification is not expected to have a
strong impact on the overall model fit and sim-
plifies model fitting considerably. On any day t
and for any set of sites s(1), … , s(nΨ), the dis-
tribution of the PM2.5 surface Ψt at those
points is Ψt | θ ~ MNnΨ (Mtθ, Σ), where Ψt =
[Ψt(s1) … , Ψt[s(nΨ)]T, MN is the multivariate
normal distribution, Mt is a design matrix of
covariates, θ is a parameter vector, and Σ is an
nΨ × nΨ spatial covariance matrix constructed
using information from our exploratory spatial
analysis of outdoor PM2.5 levels. For each site,
s(1), … , s(nΨ), Mt includes a row with ele-
ments representing an overall mean, maximum
temperature, average wind speed, and two
sinusoidal terms that capture seasonal cycles.
We considered the corresponding five regres-
sion coefficients, θ = (θ0, … , θ4), to be
unknown, and we minimized prior influence
by placing vague N(0, 100) priors on these
parameters.

The sites s(1), … , s(nΨ) for which the
spatial distribution of PM2.5 is estimated need
not be locations with monitors. The matrices
Mt and Σ are defined for any location in our
modeled domain. In fact, in our implementa-
tion we modeled the spatial process at several
locations that do not have monitors to better
characterize the average ambient level over the
entire spatial area of each county.

In relating monitor readings to the ambi-
ent surface we have defined, we assumed that
the PM2.5 monitors measure the ambient
PM2.5 surface with some error (measurement
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Table 1. Summary of levels of hierarchical model.

Level Data Modeling techniques Modeled process

1 Meteorology ambient monitor Spatial statistical model Spatial surface of ambient PM2.5 levels
2 Demographics activity patterns Exposure simulator Population exposure levels
3 Mortality confounders Poisson GAM Cardiovascular mortality



error and other random sources of error) at
their locations: Xt(s) | Ψt(s), σx

2 ~ N[Ψt(s),
σx

2], where Xt(s) is the monitor reading at
monitoring site s at time t, Ψt(s) is the value
of the ambient surface at the location of mon-
itoring site s at time t, and σx

2 is the variance
of the measurement error. This construction
automatically incorporates the additional
uncertainty about the ambient PM2.5 surface
on days when fewer monitors take readings.
Days when more monitors take readings
(every third or sixth day) will carry more
information about the ambient surface than
will days when only a subset of daily monitors
takes readings, so our uncertainty about the
ambient surface will be smaller on these days.

In order to construct a prior distribution
for σx

2, the variance of the measurement error
at the PM2.5 monitors, precision and accuracy
data were downloaded from the AIRS/AQS
database (U.S. EPA 2003b). Using these data,
we developed an inverse-gamma (649,
1433.405) prior distribution (mean = 2.2,
variance = 7.5 × 10–3) for σx

2. This prior was
developed using a simple conjugate inverse-
gamma/normal model [e.g., Gelman et al.
(1995)] with an inverse-gamma (1, 1) prior
on σx

2 before observing data.
By creating a continuous surface of ambi-

ent PM2.5 levels, we gained several advantages
over the more common “monitor averaging”
approach. First, information on the ambient
PM2.5 level on any given day is shared across
counties, allowing more accurate characteriza-
tion of ambient levels in all locations. Second,
the interpolation of a continuous ambient sur-
face allows inference about the ambient level in
counties that do not contain any PM2.5 moni-
tors, thereby giving better representation to
rural counties. Third, the Bayesian specifica-
tion of the prior distribution on the ambient
level allows natural incorporation of seasonal
cycles and meteorologic effects on PM2.5 levels.
Finally, we can characterize the average ambi-
ent level in any county on any day by averag-
ing the spatial surface over the county.

Level 2. Level 2 of our model links average
ambient PM2.5 levels in a county to the average
exposure level within that county. In this level
of the model, we used a deterministic popula-
tion-level exposure simulator to assist in relating
ambient levels to true exposure. Our simulator
uses human activity data, information about

PM2.5 levels in indoor environments, and the
average ambient concentration on a given day
to approximate the exposure level of several
individuals in a county on that day. Then, the
exposure levels for these individuals are aver-
aged to estimate an average exposure level for
all individuals in the county on that day. The
population-level exposure simulator used in
our model is an adaptation of the SHEDS-PM
simulator proposed by Burke et al. (2001).
Like SHEDS-PM, our simulator calculates
exposure for an individual person using an
activity diary and ambient PM2.5 levels as
inputs. This process is repeated for several
individuals, and the resulting average exposure
is estimated as the mean of the individual
exposure levels.

Assuming that the outdoor PM2.5 level is
known and the activity pattern of an individ-
ual is known, our simulator calculates indi-
vidual exposure as follows:

[1]

where ζict is the exposure level for individual i
in county c on day t, mico is the number of
minutes the individual spends outdoors, mice
is the number of minutes the individual
spends in indoor microenvironment e (resi-
dential, office, school, store, vehicle, restau-
rant, and bar), mic,smoke is the number of
minutes the individual spends with smokers
present, mic,cook is the number of minutes the
individual spends cooking, Loct is the ambient
PM2.5 level in county c on day t, Lect is the
PM2.5 level in indoor microenvironment e in
county c on day t, Lsmoke is the addition to the
PM2.5 level in the current microenvironment
when smokers are present, Lcook is the addi-
tion to the PM2.5 level in the current micro-
environment when the individual is cooking,
and 1,440 is the number of minutes in a day.
When the simulator is implemented in our
statistical model, Loct is set equal to the aver-
age ambient level in the county at time t, Ψ

–
ct.

Additional PM2.5 measures from smoking
and cooking are fixed at 10 µg/m3 [based on
values reported by Burke et al. (2001)] and
5 µg/m3 [based on findings of Wallace et al.
(2003)]. We kept these values constant to sim-
plify computation; a more accurate approach
would be to account for the brief shock these
activities give to indoor PM2.5 levels stochasti-
cally. Note that this equation makes no dis-
tinction between the toxicity of indoor and
outdoor particles in our model. The values of
Lect for indoor microenvironments are calcu-
lated as linear functions of the outdoor level:
Lect = ae + beLoct for e in the set {residential,
office, school, store, vehicle, restaurant, bar}.

Values of ae and be are shown in Table 2.
These values were calculated using simplifica-
tions of values reported by Burke et al. (2001)
for SHEDS-PM.

In each of the counties in which we hope
to model the relationship between exposure
and cardiovascular mortality, we applied the
exposure simulator to several individuals to
estimate an average exposure value. In order
to apply the simulator, we used activity data
that are representative of the true activity pat-
terns in each county in which we modeled the
mortality/exposure link. We simulated the
activity data by randomly sampling 100 indi-
viduals from the county of interest using cen-
sus demographic information (U.S. Census
Bureau 2003) and matching each individual
with an activity record from the CHAD (U.S.
EPA 2003a). These activity records are drawn
from diaries kept across the entire country.
Despite possible geographic mismatches, this
method of obtaining activity information is
usually sufficient for obtaining representative
activity information (Özkaynak H, personal
communication). To simplify model imple-
mentation, a single activity pattern was associ-
ated with each individual, and no adjustments
were made for different times of the year (i.e.,
winter vs. summer activity patterns).

To account for possible discrepancy
between the simulator predicted value of
exposure and true exposure levels, we speci-
fied that the average exposure level in a given
county is normally distributed around the
value predicted by the simulator: Zct | Ψ

–
ct,

σz
2 ~ N[ξ(Ψ

–
ct), σz

2], where Zct is the average
exposure level in county c at time t, Ψ

–
ct is the

average ambient level in county c at time t,
ξ(Ψ

–
ct) is the average exposure level predicted

by the simulator in county c at time t as a
function of the average ambient level, and σz

2

is the variance of the error in the simulator.
We place a uniform (0, 25) prior on σz

2.
Although there is not enough information in
the data to estimate σz

2 accurately, allowing it
to be random incorporates our uncertainty in
the simulator into the model resulting in
more accurate uncertainty estimates at the
third level.

Level 3. In the third level of the model,
we linked exposure directly to mortality
using the Poisson GAM form commonly
used in studies of the link between PM2.5
and mortality. Mortality was assumed to be
Poisson distributed with a mean that depends
on average PM2.5 exposure in the current and
3 previous days as well as the values of several
confounders: 

Yct | µ, Zct, … , Zc,t–3, β0, … , β3, η1, … , ηP

~ Poi (λct, Ec), 

log(λct) = µ + β0Zct + β1Zc,t–1 + β2Zc,t–2 

+ β3Zc,t–3 + ΣP
p = 1ηp fp(Cpct), 

ζict ico oct ice ect
e

ic, ic,

m L m L

m L m L

= + ∑





+ +( )

1
1 440

1
1 440

,

, smoke smoke cook cook
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Table 2. Coefficients for relating ambient PM2.5
level to the level in indoor microenvironments.

Indoor microenvironment (e) ae be

Residential 0.0049 0.578
Office 3.6 0.18
School 6.8 0.6
Store 9.0 0.74
Vehicle 33 0.26
Restaurant 9.8 1.0
Bar 9.8 1.0



where Yct is the mortality in county c on day t,
Ec is the expected daily mortality rate in
county c (necessary for adjusting the mean
level so that the β and η parameters have the
same interpretation in all counties), λct may be
interpreted as a relative risk of death in county
c on day t, µ is an overall baseline relative risk
of death in the study region over the time
period studied, β0, … , β3 are parameters
describing the influence of county-level aver-
age exposure on mortality rate, fp(Cpct) are
transformations of confounding variables, and
η1, … , ηP are parameters describing the
influence of confounding variables on mortal-
ity. For our data set, confounding variables
included a factor variable for the day of the
week, a cubic spline transformation of time to
account for long-term trends in cardiovascular
mortality, a cubic spline transformation of
maximum temperature, a cubic spline trans-
formation of relative humidity, and cubic
spline transformations of 1- to 3-day lagged
values of maximum temperature and relative
humidity. The cubic spline transformation of
time included 21 evenly spaced knots, and the
cubic spline transformations of maximum tem-
perature and relative humidity each included
five evenly spaced knots. The model was not
assessed for sensitivity to the placement of
these knot locations. We reparameterized the
confounding variable term into a design matrix
(C

~
) and coefficient vector (γ), and we placed

vague N(0, 100) priors on the coefficients. We
also placed vague N(0, 100) priors on all of the
β-parameters describing the strength of the
relationship between PM2.5 exposure and car-
diovascular mortality at different lags as well as
on the overall mean relative risk parameter, µ.

Summary. Although we have introduced
a three-level model, we emphasize that the
three levels of the model are all fitted simulta-
neously as a single coherent statistical model.
There are three main advantages to creating a
hierarchical Bayesian model for solving such a
complex problem. The most important
advantage is that uncertainty in parameters is
propagated throughout the model. For exam-
ple, our uncertainty about the true ambient
surface (due to errors in the monitors and the
necessity of spatial interpolation) carries
through to result in a corresponding level of
uncertainty about the effect of exposure on
cardiovascular mortality. The second impor-
tant advantage of hierarchical Bayesian mod-
eling is that it is simple to specify large,
complex models using simpler statements
about conditionally independent parameters.
It would be impossible to specify the joint
distribution of the thousands of parameters
involved in our model if we tried to model
the spatial properties of PM2.5, the relation-
ship between exposure and ambient levels,
and the relationship between exposure and
cardiovascular mortality simultaneously. In

contrast, the hierarchical approach allows us to
specify each level of the model conditionally
independent of other levels and to combine
the information at the end to obtain a joint
distribution of all parameters. The third
advantage is that elements of the hierarchy can
be substituted without changing the overall
form of the model. For instance, we could
substitute a different exposure simulator in the
second level of the model.

Results

Model fitting was performed using a Markov
chain Monte Carlo algorithm (Gelfand and
Smith 1990; Geman and Geman 1984;
Hastings 1970). The algorithm was imple-
mented with custom C++ software developed
using Microsoft Visual Studio (Microsoft
Corporation, Redmond, WA). Random num-
ber generation was performed using functions
from the Numerical Algorithms Group library
(NAG, Ltd, Oxford, UK). The algorithm was
run for 200,000 iterations, 50,000 of which
were discarded as “burn-in” iterations. To
reduce the storage space for the samples, the
remaining 150,000 samples were thinned by a
factor of 50, resulting in a total of 3,000 draws
from the joint posterior distribution.

The marginal posterior distributions of
several important parameters are summarized
in Table 3. For each of the parameters, we
include an estimate of the posterior mean
(calculated by averaging samples from the
posterior distribution) and posterior median
(calculated as the median of the sample), a
Monte Carlo error for the mean, and a pos-
terior 95% credible interval. The Monte
Carlo error for the mean describes how far off
our estimate of the true posterior mean is as a
result of using a Monte Carlo method for
exploring the posterior; it does not describe
the uncertainty in the actual parameter. The
95% credible interval does describe the uncer-
tainty in the parameter; it is an equal-tail
interval such that the posterior probability
that the parameter falls within the interval is
95%. Credible intervals are the Bayesian ana-
logue of the confidence interval but are much
easier to interpret because they give direct

information about the probability of a para-
meter falling within certain bounds.

The posterior analysis indicates a positive
effect of PM2.5 exposure on the relative risk of
cardiovascular mortality. The posterior mar-
ginal expectations of the parameters indicate
that a 10-µg/m3 increase in average PM2.5
exposure is associated with a 2.5% increase
(95% credible interval, –3.9 to 9.6) in the
relative risk of current day cardiovascular
mortality, a 4.0% increase (–3.3 to 12.2) in
the relative risk of cardiovascular mortality the
next day, an 11.4% increase (2.8 to 19.8) in
the relative risk of cardiovascular mortality
2 days later, and a 1.1% decrease (–7.5 to 5.2)
in the relative risk of cardiovascular mortality
3 days later. These rates were calculated by
multiplying the β-value corresponding to the
effect by 10 and exponentiating. Only the
effect on the second day after exposure has a
> 95% posterior probability of exceeding zero.
Note that the estimates presented are marginal
expectations and therefore cannot be added
together (e.g., to get an overall risk of cardio-
vascular mortality from exposure to PM2.5) in
a meaningful way. The negative estimate on
the third day might be considered an unex-
pected effect, but it does lend some support to
the theory of harvesting (Schwartz 2000). This
theory hypothesizes that individuals close to
dying of cardiovascular-related causes may die
soon after a spike in PM2.5 exposure, leaving
only healthier individuals and consequently
decreasing the overall risk of cardiovascular
mortality in the total population.

We are unaware of any other study that
has attempted to directly estimate the effect of
PM2.5 exposure on mortality, but some related
estimates for PM10 are available from the HEI
study (Samet et al. 2000). In that study, a
10-µg/m3 increase in PM10 exposure is associ-
ated with a 1.4% increase in same-day relative
risk of mortality. Although the uncertainty
about the HEI estimate is much smaller
(probably as the result of a longer time period
of study), the point estimate is similar to the
one obtained in our analysis.

Although our main goal in this analysis was
to demonstrate the effect of PM2.5 exposure on
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Table 3. Marginal posterior summaries of several model parameters.

Parameter Description Mean (median) MC error for mean 95% Credible interval

µ Overall log RR –0.5963 (–0.6064) 0.0651 –1.2493 to 0.07618
β0 Same-day mortality 0.0025 (0.0026) 0.0002 –0.0040 to 0.0092
β1 Lagged mortality (1) 0.0039 (0.0038) 0.0003 –0.0034 to 0.0115
β2 Lagged mortality (2) 0.0108 (0.0108) 0.0003 0.0028 to 0.0181
β3 Lagged mortality (3) –0.0011 (–0.0010) 0.0002 –0.0078 to 0.0051
σz

2 Simulator variance 20.2853 (20.9932) 0.1489 12.3870 to 24.8422
σx

2 Monitor error 1.6495 (1.6476) 0.0009 1.5594 to 1.7457
θ0 Mean PM2.5 (µg/m3) 9.6856 (9.6916) 0.0275 6.1121 to 13.1849
θ1 Maximum temperature (°F) 0.0879 (0.0872) 0.0006 0.0224 to 0.1527
θ2 Wind speed (miles/hr) –0.0799 (–0.0798) 0.0009 –0.1607 to 0.0024
θ3 Sine term –0.8764 (–0.8699) 0.0061 –1.4987 to –0.2455
θ4 Cosine term –1.3451 (–1.3528) 0.0091 –2.3660 to –0.3142

Abbreviations: MC, Monte Carlo; RR, relative risk.



cardiovascular mortality, we can also address
the effect of changes in the ambient level on
the relative risk of cardiovascular mortality. To
determine the relationship between ambient
levels and relative risk induced by our model,
we examined the joint posterior distribution of
average ambient levels, Ψ

–
ct, and log relative

risk, λct, on the same and closely following
days. Figure 1 shows smoothed images of the
joint distributions combining information
across counties. Lines have been added to the
figures to illustrate the overall direction of the
effect; the line is chosen to minimize the sum
of squared distances between samples from the
distribution (not shown) and the line. The
slope of the line is a summary of the effect of
an increase in average ambient level on the log
relative risk of cardiovascular mortality,
although it is not a parameter in the model. By
exponentiating the slope of the line, we obtain
an estimate of the proportional increase in rela-
tive risk associated with a unit change in ambi-
ent level. The lines imply that a 10-µg/m3

increase in ambient level is associated with a

0.09% increase in the relative risk of cardio-
vascular mortality on the same day, a 0.2%
increase the next day, a 1.0% increase 2 days
later, and a 1.4% decrease 3 days later. As with
the estimates of effect of exposure on cardio-
vascular mortality, these estimates are mar-
ginal effects and should be interpreted
individually; they should not be combined to
find an overall effect. These estimates tend to
be lower than some comparable estimates
reported in the epidemiologic literature. The
effect of 2-day mean ambient levels on total
mortality has been estimated at 3.3% for
chronic obstructive pulmonary disease, 2.1%
for ischemic heart disease [both estimates from
Schwartz et al. (1996)], and 1.5% for total
mortality from natural causes (Klemm et al.
2000), all higher than our largest estimate.
This result is not surprising because the inclu-
sion of an exposure link in our model should
weaken the direct relationship between ambi-
ent levels and mortality. The trend of a weaker
association between ambient levels and mor-
tality than between exposure and mortality is

similar to the trend reported in the HEI study
(Samet et al. 2000).

Although the assessment of the relationship
between PM2.5 and cardiovascular mortality is
the main focus of this analysis, estimates of
other parameters provide insights into some
components of the model. For instance, the
estimate of θ0, the baseline average ambient
PM2.5 level over all days examined (tempera-
ture at 0°F, wind speed at 0 miles/hr), indicates
that baseline ambient PM2.5 levels averaged
approximately 9.7 µg/m3 over the study region
from January 1999 through December 2001.
The Bayesian model provides an uncertainty
estimate for this parameter as well; the baseline
ambient PM2.5 level averaged between
6.1 µg/m3 and 13.2 µg/m3 with 95% posterior
probability. Some other effects to note are a
positive relationship between maximum daily
temperature and ambient PM2.5 levels (an
increase of 1°F in maximum temperature is
associated with an increase of 0.09 µg/m3 in
daily average ambient PM2.5 level) and a nega-
tive relationship between daily average wind
speed and ambient PM2.5 level (an increase of
1 mile/hr in average daily wind speed is associ-
ated with a decrease of 0.08 µg/m3 in daily
average ambient PM2.5 level). Finally, it is of
interest to examine the relationship between
average ambient levels and average exposure
levels in the counties of interest. The estimates
of these values are presented in Table 4 along
with some demographic information that was
used to choose individuals for the simulator.
No correlation between the demographic data
and posterior mean exposure levels was
observed for the seven counties in our study.

Another interesting parameter estimated in
our model is the relative risk of cardiovascular
mortality in each county at each time step, λct.
Examining the relative risk of cardiovascular
mortality over the time period studied reveals
some interesting patterns. All counties showed
similar patterns, so we only present the results
for Alamance County (Figure 2). The relative
risk of cardiovascular mortality in each county
follows a sinusoidal pattern that peaks when
the seasonal cycle for PM2.5 is at its lowest
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Figure 1. Joint distribution of ambient PM2.5 level and log relative risk on the same day (A), the next day
(B), 2 days later (C), and 3 days later (D), with lines summarizing the direction of association (described in
”Results”). Darker areas represent regions of higher probability. The exponential of the slope of the line in
each panel represents the proportion change in relative risk per unit change in ambient level.
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Table 4. Posterior mean ambient PM2.5 levels and exposure levels, and demographic characteristics.

Ambient PM2.5 Exposure level Percent Percent
County level (µg/m3) (µg/m3) male unemployed

Alamance 15.62906 13.83480 47 35
Chatham 15.64579 16.75560 48 36
Durham 15.65255 23.44071 47 34
Guilford 15.66802 28.88822 47 33
Johnston 15.61301 23.74197 48 34
Randolph 15.62650 24.23487 49 33
Wake 15.59123 12.85243 49 27

Figure 2. Posterior means for relative risk of mortality
in Alamance County over the period studied. Vertical
bars indicate 1 January for each year in the analysis.
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point (as implied by the estimates of θ3 and
θ4). The relative risk includes the influence of
all of the confounding variables (maximum
temperature, relative humidity, long-term
cardiovascular mortality trend, and day of the
week) in addition to the effect of PM2.5 expo-
sure on cardiovascular mortality. Therefore, we
conclude that overall cardiovascular mortality
is significantly affected by numerous factors
other than PM2.5; however, our analysis shows
that PM2.5 exposure plays an important role in
determining the relative risk of cardiovascular
mortality.

Model validation and comparison. In order
to assess whether our model gives reasonable
results, we fitted different forms of the model
and compared the results obtained in each
case. We first considered the effect of eliminat-
ing both the spatial interpolation of ambient
levels (level 1) and removing the exposure link
(level 2 of our model). We call this alternate
model 1. We can only fit this model in three of
the seven original counties (Durham, Guilford,
and Wake) because only these three counties
contain at least one daily PM2.5 monitor. In
each county, we first obtained a PM2.5 reading
on each day by averaging the PM2.5 readings
from all monitors that took readings on that
day in the county. Prior distributions for all
parameters that remain in the model (µ,
β-parameters, and γ-parameters) are the same
as in our full Bayesian model. We compared
the results of this model with results obtained
by fitting Poisson GAMs in each of the three
counties individually.

The second alternate model that we fitted
replaces level 2 of our Bayesian model with a
simplified exposure link. Rather than including
an exposure simulator, we constructed alter-
nate model 2 by hypothesizing that exposure is
equal to the ambient level plus some error [i.e.,
Zct | Ψ

–
ct, σz

2 ~ N(Ψ
–

ct, σz
2)]. The remainder of

the model is specified exactly as in our original
Bayesian model. Summaries of the parameters
of most interest, the β-parameters, appear in
Table 5, which reports marginal posterior
means and 95% credible intervals for the
Bayesian models (alternate models 1 and 2)
and maximum likelihood estimates with 95%
confidence intervals for the classical Poisson
GAMs. Note that the parameters for alternate
model 2 are interpreted as the effect of a one-
unit increase in PM2.5 exposure on the log rela-
tive risk of cardiovascular mortality, whereas

the parameters in the other models relate ambi-
ent PM2.5 levels to the log relative risk of
cardiovascular mortality.

The results from alternate model 1, the
Bayesian model with no spatial interpolation
or exposure link, are comparable with the
results obtained by fitting the classical
Poisson GAM in each of the three counties.
This similarity gives evidence that the
Bayesian approach produces results similar to
those ordinarily obtained using the classical
Poisson GAM approach. However, using a
Bayesian model allows the incorporation of
additional data sources and levels into the
hierarchy, so the Bayesian model is more
readily expanded.

As expected, the results from alternate
model 2 are different from the results obtained
from the classical models and alternate
model 1; alternate model 2 summarizes the
effect of PM2.5 exposure, not ambient level,
on mortality. The results from alternate
model 2 are more comparable with those
obtained from our full Bayesian model. This
similarity indicates that our model is robust to
our choice of exposure simulator. However,
we do not conclude that the exposure simula-
tor is unnecessary because increased accuracy
of simulated exposures will lead to more accu-
rate estimates of the effect of exposure on
mortality.

Conclusions

By constructing a hierarchical Bayesian model
that divides the process linking PM2.5 moni-
tor readings and mortality into three intuitive
levels, we have shown that elevated PM2.5
exposure is related to increased risk of cardio-
vascular mortality in the closely following
days. We found that increases in the level of
PM2.5 exposure are most closely related to
increased relative risk of cardiovascular mor-
tality 2 days later. In addition, we have
demonstrated that the effect of increased lev-
els of exposure on cardiovascular mortality is
not equivalent to the effect of increased levels
of ambient PM2.5 on cardiovascular mortal-
ity. Our results are similar to those reported
in several studies lending additional support
to our findings. In addition, we estimate that
the association between ambient levels and
relative risk of cardiovascular mortality on
closely following days is lower than what has
been previously reported in the literature.

Despite the sophistication of our model,
the second level of the model leaves room for
improvement. A deficiency of the second level
is the absence of real exposure data. Another
limitation of the second level is the simplicity
of our exposure simulator; our exposure simu-
lator ignores changes in people’s activity pat-
terns over different days of the week and
different seasons, uses fixed values to relate
indoor and outdoor PM2.5 values, and may
introduce biases in estimation by assuming
that the outdoor level is the same for each
individual, calculating individual exposures,
and then averaging across individuals
(Freedman 1999).

Future work on this type of model might
focus on addressing the weaknesses in the sec-
ond level of our model. For example, if real
exposure data can be acquired, a data-driven
version could be substituted without substan-
tially changing the structure of the model.
Similarly, a more complex exposure simulator
that takes seasons and the day of the week
into account could be substituted to improve
the reliability of the results. Nonetheless, the
results obtained by incorporating a simple
exposure simulator into the model provide
valuable insight into the relationship between
PM2.5 exposure and cardiovascular mortality.
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