III. R&D Activities, Technology, and Cost Considerations

Instructor – John Boyes, Sandia National Lab

- Energy Storage R&D
 - US Department of Energy
 - California Energy Commission (CEC)
 - Electricity Storage Association (ESA)
 - EPRI
- Life Cycle Cost Analysis and Capital Cost – Benefit Comparison

Why Energy Storage?

Energy Storage Mediates Between

Variable Sources and Variable Loads

DOE Energy Storage Program

- Develop advanced electricity storage technologies, in partnership with industry, for modernizing and expanding the electric supply.
- This will improve the quality, reliability, flexibility and cost effectiveness of the existing system.

Benefits of Energy Storage

- Transmission & Distribution
 - Line and Transformer Deferral
 - Stability
 - Voltage Regulation
- End-Use
 - Power Quality/Reliability
 - Peak Load Reduction
 - Distributed Generation Support

- Generation
 - Spinning Reserve
 - Capacity Deferral
 - Area/Frequency Regulation
 - Load Leveling
 - Renewables Support

ESS Program Scope

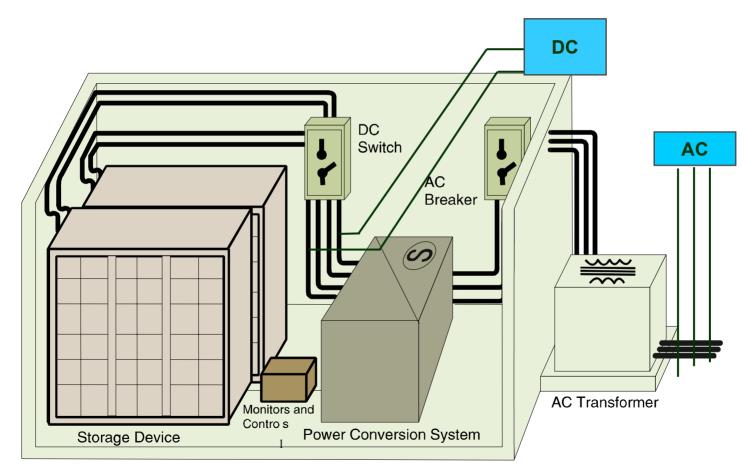
Broad Technology Base

- **Batteries** ٠
- Controls •
- Flywheels

- Power Electronics
- SMES
- Ultracapacitors

Applications Focus

- **Power Quality** •
- •
- Peak Shaving
- Distributed Resources Renewable Generation


POWER Applications

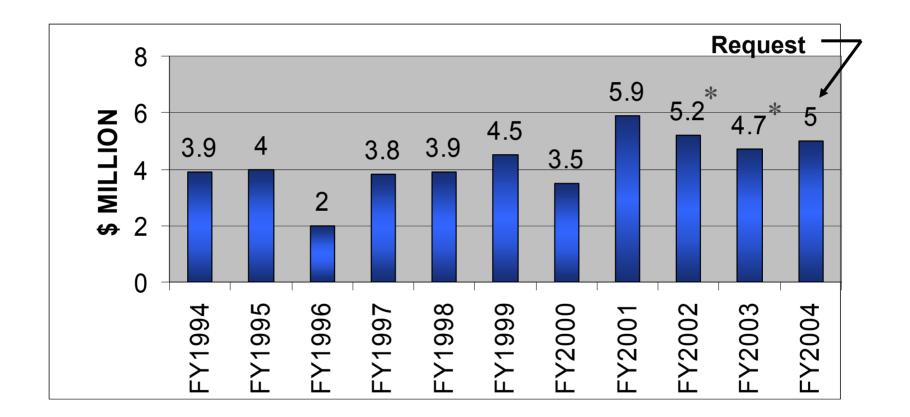
ENERGY Applications

LOAD	PQ, Digital Reliability	DER Support for Load Following	Peak Shaving to Avoid Demand Charges
GRID	Voltage Support, Transients	Dispatchability for Renewables, Village Power	Mitigation of Transmission Congestion, Arbitrage
	seconds	minutes	hours

Electricity Energy Storage System

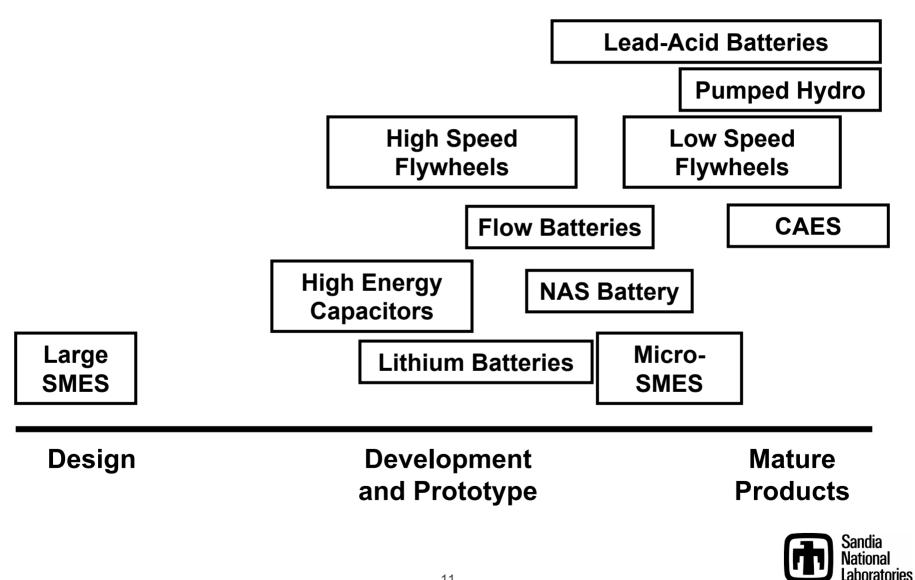
Energy Storage Systems Program Goals

- Develop and evaluate integrated energy storage systems
- Develop batteries, SMES, flywheels, electrochemical capacitors and other advanced energy storage devices
- Improve multi-use power electronics, controls, and communications components
- Analyze and compare technologies and application requirements
- Encourage program participation by industry, academia, research organizations and regulatory agencies



DOE/ESS Program Elements

- System Integration
 - pursues a strategy to reduce the inefficient, one-of-a-kind system engineering historically required when utility energy storage systems have been designed and built
 - evaluate and disseminate information on systems in the field
- Subsystem Development develop and evaluate the components of the energy storage system to achieve lower cost, higher performance, and better integration than currently available.
 - storage component (e.g., flywheel, battery, electrochemical capacitors or SMES)
 - power conversion and control subsystems
- Strategic Research formulation and application of analytical methodologies necessary to identify utility applications and estimate the technical and economic benefits of energy storage.


DOE Energy Storage Systems Program Funding

* After earmarks

Commercial Maturity of Storage Technologies

Recent Program Highlights

- Two R&D 100 Awards for program projects
 - ETO high power electronic switch Solitronics, Virginia Polytechnic Institute, DOE/ESS, Sandia, American Competitiveness Institute
 - Fiber optic current sensor Airak Inc., DOE/ESS
- Partnerships formed with TVA and AEP to monitor and analyze data from a Regenesys and a NAS system
- ETO High Power testing initiated in collaboration with the Naval Surface Weapons Center in Philadelphia

Recent Program Highlights

- Li-ion BESS completed factory system testing and installed at Southern Co. for field testing
- Partnership formed with California Energy
 Commission for an Energy Storage Initiative
- Study using PJM data shows that potential for energy storage systems is in the GWs
- EESAT 2002 Conference
 - 165 Attendees from 13 countries

DOE ESS Success Story 12.5 MVA Purewave® UPS

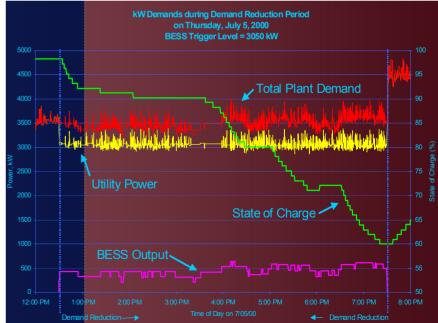
- S&C Electric Company
- STMicroelectronics wafer fabrication plant Phoenix, Arizona
- Installed in utility substation

- 45 operations since August, 2000 (8/02)
- System cost US\$ 300/kVA

Vernon BESS GNB Industrial Power

Critical Load Backup Energy Management

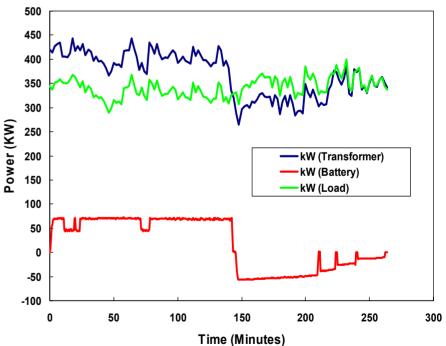
- Lead Smelter: Battery Recycling
- Near Los Angeles, CA
- 5 MW, 3.5 MWH VRLA Battery
- 1996 Commissioning



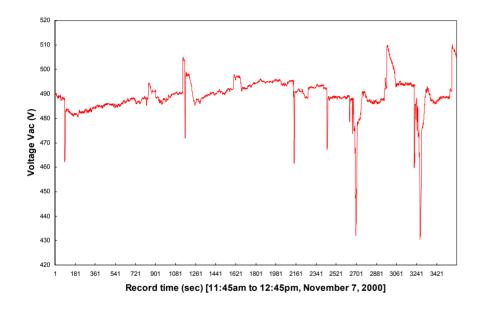
Vernon BESS Performance

Power Quality 45 Minute Utility Outage

Energy Management 500-600 kW Peak Shaving



400 kWh Zinc Bromine BESS ZBB Inc. Detroit Edison


- Demonstrated Interconnection to utility
- Demonstrated ability on automatically control in peak shaving
- Invited back next summer

ZBB Power Quality Application

- Reduced voltage drop due to 75 hp motor starts
- Eliminated spikes as dryer turns off

Akron MI, Grain Dryer Site

Record time (sec) [2:47pm to 3:47pm, November 20, 2000]

Lithium Batteries

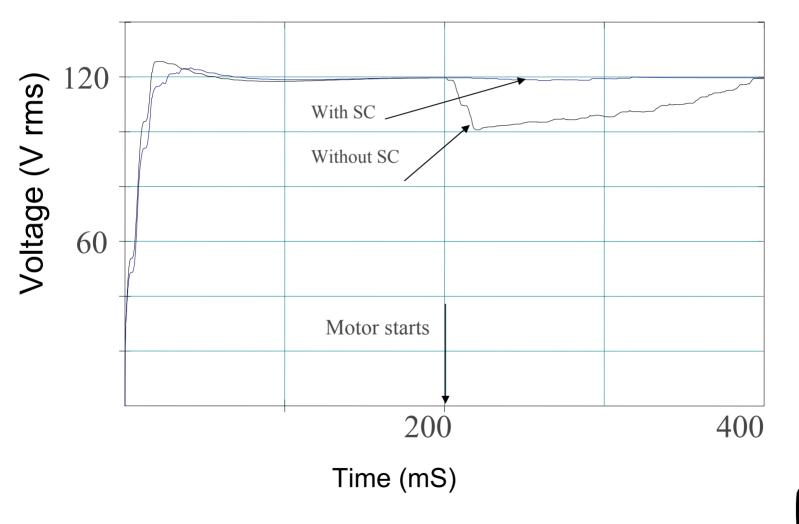
Lithium Battery modules

100 kW – 1 minute SAFT Li-ion battery with Satcon PCS for DER-Microturbine application

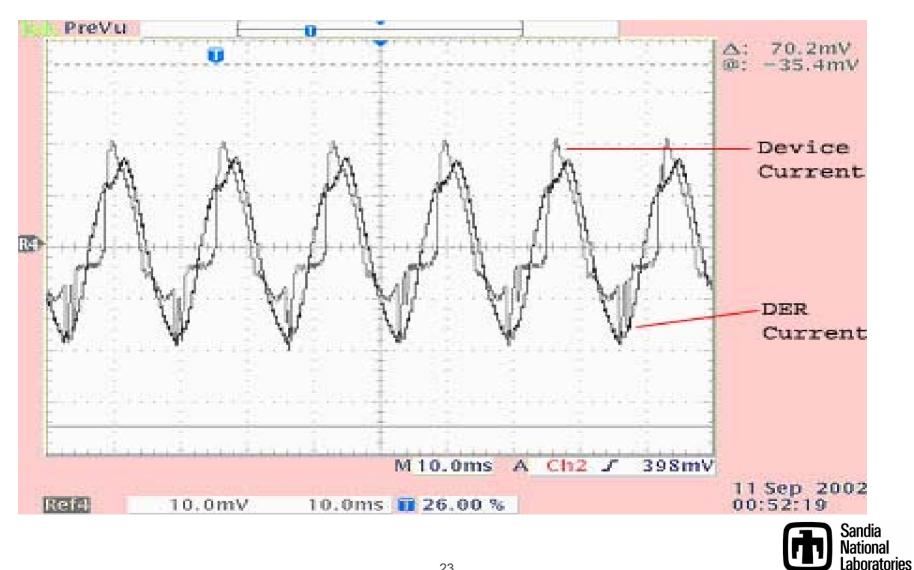
Electrochemical Capacitors

- EC capacitors offer the potential of very high power density and high cycle lifetimes
- Applications include all high power applications
 - Transmission stability
 - Power quality
 - Distributed resource support
- Microturbine stand alone load following
 - Current surges (e.g. motor starts) can trip a microturbine

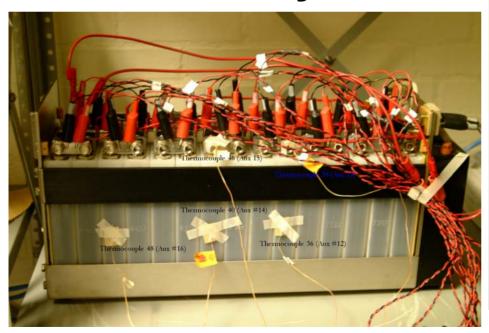
Possible Solutions to Motor Start Problem


• Proposed-- DER Side

SC provides supplementary current to sustain DER



Proposed Approach


Sandia National Laboratories

Experimental Results

Sandia Testing of EC Capacitors

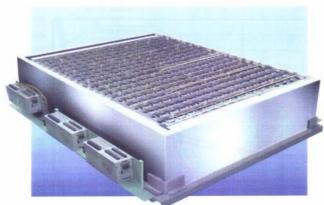
ESMA EC Capacitor and Experimental PEAC PQ System

Regenesys Monitoring with TVA

•120 MWh Regenesys® electrical energy storage system

•Peak Shaving – 12 MW for 10 hours

100 kW Regenesys Module



NAS Battery Monitoring with AEP

- 2 NGK Insulators Ltd., NAS[™] battery modules
- 300 kW of PQ protection for 30 seconds
- 100 kW of peak shaving capacity for 7 hours
- AEP site, in Gahanna OH.

50kW SUPER POWER NAS BATTERY DESIGN AND PERFORMANCE

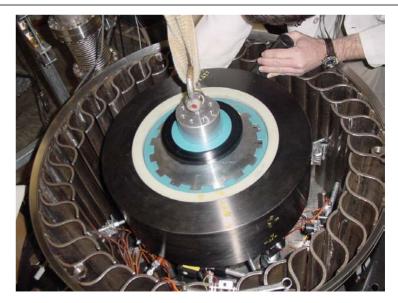
Pulse Power	250kW (30 seconds)			
Rated Power	50kW			
Energy	360kWh			
Dimensions	2200W ×1762D ×640H [mm]			
Weight	3600kg			

Flywheels

- Low Speed (steel) flywheels are commercially available for power quality applications (Pillar, Caterpillar, Active Power)
- High speed (composite) flywheels are entering commercial products (Urenco, Beacon, ...) or in development (Boeing, AFS Trinity, ...)
- Flywheels promise lower maintenance, longer life, higher power density, and higher efficiency than conventional batteries

Superconducting Flywheel Development Boeing Phantom Works

Joint Project with Superconducting Project Initiative


Advantages of

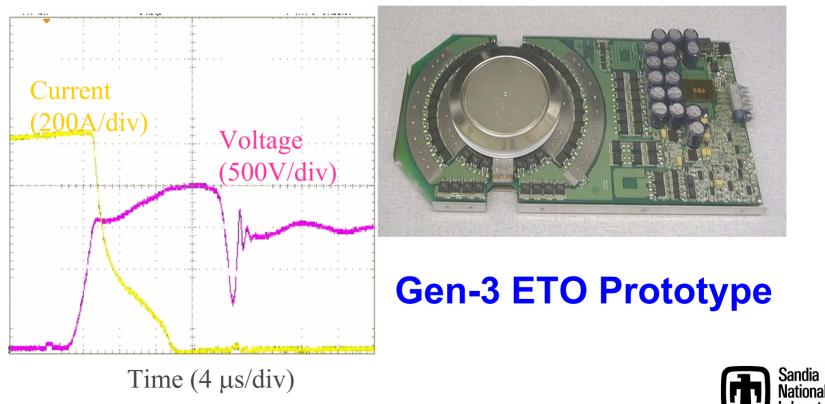
Superconducting Bearings

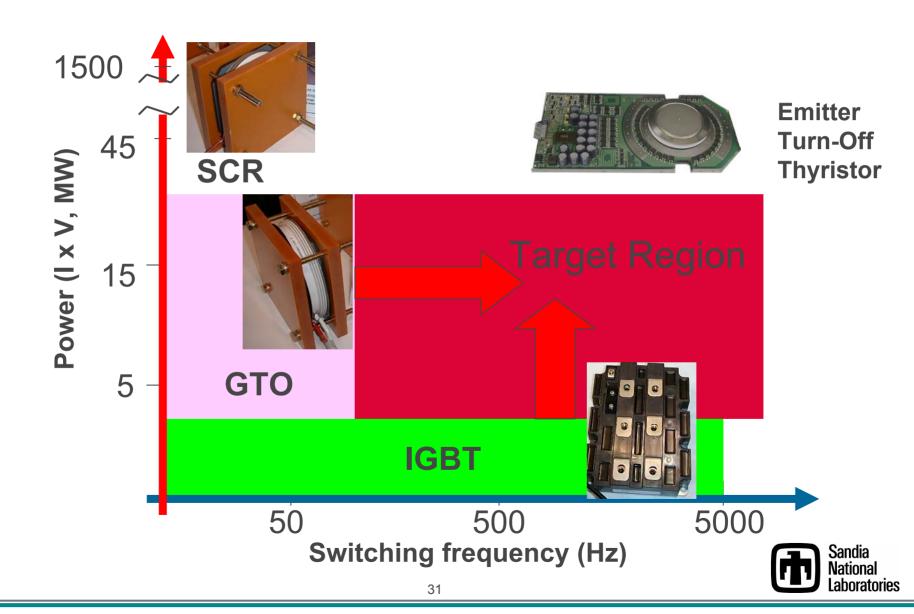
Much lower frictional losses No electronic bearing controls required Simple bearing design Passive control for greater reliability and life Lower weight, cost, and maintenance

ESS Project Goals

- Develop low-cost rotor/bearing
- Determine & enhance system reliability

Power Electronics


- Power Electronic System is >25% of system cost
- Power Electronic Systems do not have the desired reliability
- Power Conversion from storage to/from desired output contributes significantly to system size, complexity and design tradeoffs
- ETO High power, fast switching speed
 - collaboration with
 - Navy NSWC
 - ACI
 - TVA
 - Virginia Tech


Emitter Turn-off (ETO) Thyristor Development

Dr. Alex Q. Huang

Center for Power Electronics Systems, Virginia Tech

Power Electronic Devices (High Power)

Electric Vehicle – Stationary Systems

- Study completed on secondary usage of EV batteries in stationary applications.
- Concept is viable
- Possible applications include transmission support, telecom, light commercial and residential load following, (assuming the growth of distributed generation for residential)
- Hurdles include
 - Lack of infrastructure for acquiring, testing, reconfiguring batteries
 - Difficulties in configuring individual battery systems into large scale assemblies
 - Uncertain remaining lifetime
 - Uncertain economics

Technical and Economic feasibility of Applying Used EV Batteries in Stationary Applications, Cready et. al., SAND2002-4084

http://infoserve.sandia.gov/sand doc/2002/024084.pdf

Benefit calculations and potential market

- DOE has conducted several Energy Storage Opportunities, Applications and Benefits studies
- DOE in collaborating with the California Energy Commission in a energy storage procurement
- DOE wrote "Benefits and Market Analysis Handbook", Appendix 14, for the CEC RFP
 - Methodology for calculating economic benefit of storage system in California market
 - Estimated market potential for 15 applications in California
 - www.energy.ca.gov/contracts

California Benefits and Market Potential

	Discharge Duration*				
Application/Benefit	Minimum	Highest	Lifecycle Financial Benefits (\$/kW)	Maximum Market Potential (MW)	Ten-year Economic Benefits (\$Million)**
Bulk Electricity Price Arbitrage	1	10	200 to 300	735	147 to 220
Distribution Upgrade Deferral 50 th Percentile of Benefits	2	6	666	804	536
Distribution Upgrade Deferral 90 th Percentile of Benefits	2	6	1,067	161	172
Transmission Upgrade Deferral	4	6	650	1,092	710
T&D Congestion Relief	2	6	72***	3,200	230
Customer Time-of Use Energy Cost Management	2 Seconds	5 Seconds	82	1,000	82
Customer Demand Charge Management	6	11	465#	4,005	1,862

*Hours unless other units are specified.

**Over ten years, based on lifecycle benefits times maximum market potential (market estimates will be lower).

***Placeholder values. The actual benefit was not estimated.

California Benefits and Market Potential

	Discharge Duration*				
Application/Benefit	Minimum	Highest	Lifecycle Financial Benefits (\$/kW)	Maximum Market Potential (MW)	Ten-year Economic Benefits (\$Million)**
End-user Electric Service Reliability	.25	5	359	4,005	1,438
Renewables Capacity firming	6	10	172##	1,800	310
Renewables Contractual Time-of- Production Payments	6	11	651##	500	326
T.O.U.Energy Rates Plus Demand Charge Reduction	6	11	866	4,005	3,468

*Hours unless other units are specified.

**Over ten years, based on lifecycle benefits times maximum market potential (market estimates will be lower).

***Placeholder values. The actual benefit was not estimated.

#Does not include incidental energy-related benefit.

##Wind generation.

NOTE: Benefits listed that are not applications are: 1. Avoided Electric Supply Capacity Cost, 2. Ancillary Service,

3. Avoided Transmission Access Charges, and 4. Avoided Power Quality-related Cost.

California Benefits and Market Potential

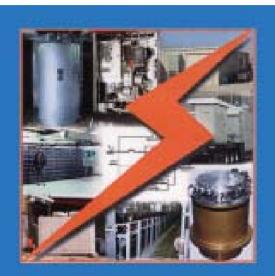
	Discharge Duration*				
Application/Benefit	Minimum	Highest	Lifecycle Financial Benefits (\$/kW)	Maximum Market Potential (MW)	Ten-year Economic Benefits (\$Million)**
Avoided Central Generation Capacity Cost	4	6	215	3,200	688
Ancillary Services	1	5	72***	800	58
Avoided Transmission Access Charges	1	6	72***	3200	230
Reduced PQ-related Financial Losses	10 seconds	1 Minute	717	4,005	2,872

*Hours unless other units are specified.

**Over ten years, based on lifecycle benefits times maximum market potential (market estimates will be lower).

***Placeholder values. The actual benefit was not estimated.

#Does not include incidental energy-related benefit.


##Wind generation.

NOTE: Benefits listed that are not applications are: 1. Avoided Electric Supply Capacity Cost, 2. Ancillary Service,

3. Avoided Transmission Access Charges, and 4. Avoided Power Quality-related Cost.

EESAT 2003 Conference http://www.sandia.gov/eesat

EESAT 2003

register at: http://www.sandia.gov/eesat

The recent of second stilleness \$11

Or contact EESAT 2003 Sandia National Laboratories P.O. Box 5800, MS0613, Telephone: 505-845-8056 eesatinfo@sandia.gov

Electric Energy Storage Applications & Technology Conference 2003

Sir Francis Drake Hotel San Fransico, CA, USA October 27 - 29, 2003

Save \$150.00 — Register BEFORE September 28, 2003 DEADLINE for special hotel room rate — September 28, 2003 Request "EESAT 2003" room rate at 800-227-5480

SESSIONS.

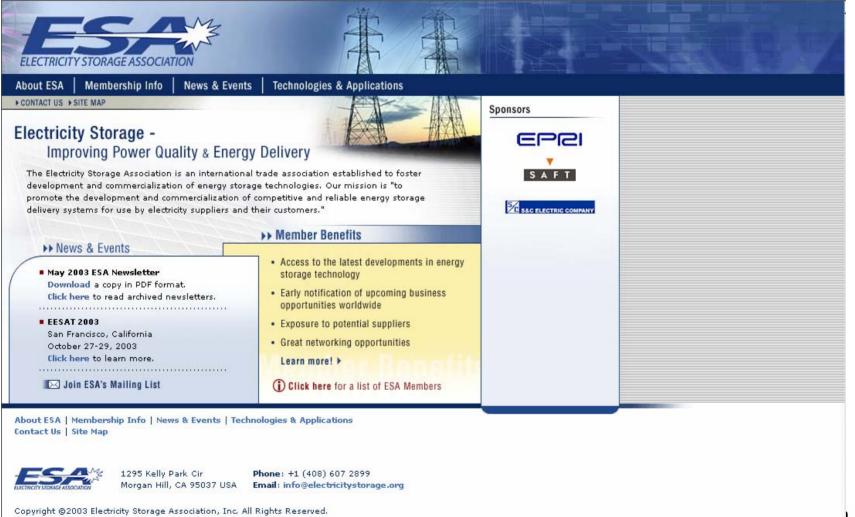
- Super Capacitor Development and Applications
- Storage with Distributed Generation.
- Lead Acid Battery Life Predictions
- Compressed Air Systems
- Technology Advances
- Flywheels Systems.
- Large Applications
- Power Electronics
- Lithium Batteries

TECHNOLOGIEB

Pumped Hydro

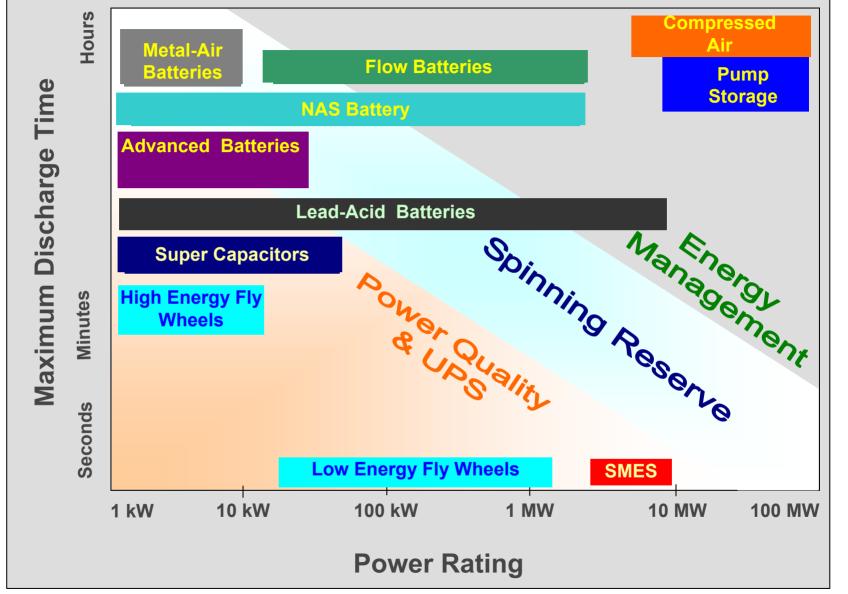
+ SMES

- Battery Energy Storage
- + Super Capacitors
- + Flywheels
- · CAES
- Power Electronics


special dinner at Tommy Toys included with registration

Sandia National Laboratories

http://www.sandia.gov/eesat


Electricity Storage Association www.electricitystorage.org

Web site developed by Innovative Internet Marketing Solutions

Electricity Storage Association

ESA Table on advantages and disadvantages of various technologies

Storage Technologies	Main Advantages (relative)	Disadvantages (Relative)	Power Application	Energy Application
Pumped Storage	High Capacity, Low Cost	Special Site Requirement		
CAES	High Capacity, Low Cost	Special Site Requirement, Need Gas Fuel		
Flow Batteries: PSB VRB ZnBr	High Capacity, Independent Power and Energy Ratings	Low Energy Density	0	
Metal-Air	Very High Energy Density	Electric Charging is Difficult		•
NaS	High Power & Energy Densities, High Efficiency	Production Cost, Safety Concerns (addressed in design)	•	•
Li-ion	High Power & Energy Densities, High Efficiency	High Production Cost, Requires Special Charging Circuit	٠	0
Ni-Cd	High Power & Energy Densities, Efficiency			0
Other Advanced Batteries	High Power & Energy Densities, High Efficiency	High Production Cost	•	0
Lead-Acid	Low Capital Cost	Limited Cycle Life when Deeply Discharged	•	0
Flywheels	High Power	Low Energy density		0
SMES, DSMES	High Power	Low Energy Density, High Production Cost		
E.C. Capacitors	Long Cycle Life, High Efficiency	Low Energy Density		•

EPRI Storage Handbook Collaboration with the DOE/ESS Program

- 1. Introduction
 - Purpose
 - Electricity Storage Background and Experience Overview
 - Scope, including T&D Applications and ES Systems Overview
 - Guidelines/Cautions for Applications of ESH
 - Plan for Updates and Expansions
- 2. National Perspective of ES Benefits (DOE Outline)
- 3. T&D Applications for Benefit/Cost Assessments
 - Description of Selected ES Applications, including Graphics and Matrix with Distinguishing Range of Duty Parameters plus Specific Parameters for Benefit/Cost Assessments
 - Bases for Selected Combined Applications
 - Representative ES Systems Match-up with Applications
- 4. Energy Storage Benefits and Benefit Quantification
 - Bridge Discussion from National Benefits (Chapter 2)
 - Bases for ES Benefits per Application for T and/or D Utilities
 - Methodology and Input Parameters for Benefit Quantification, including Generic Examples
 - Methodology of Delineating Benefits for Combined Applications
- 5. Common Financial Parameters and Cost Elements
 - Cost Methodology and Groundrules
 - PCS Functionality and Cost per Application
 - BOP and Other Common Cost per Application
- 6-15. Individual ES Systems, namely PbA, NiCd, NAS, ZnBr, VRB, Regenesys, SMES, FW, UC, CAES
 - Description, Status, Applications, Benefits/Costs Assessment, References
- Other More Advanced ES On Hold

Energy Storage R&D

- Small but active DOE program
- Industry Association
- Technology is emerging with some applications economical today
- The outlook for energy storage is bright

Reference Materials

- DOE/ESS Publications List
- Web sites

DOE ESS Program Publications List

SAND Report #	Title	Author(s)	Date	Document Location
SAND93-1754	Specific Systems Studies of Battery Energy for Electric Utilities	A. A. Akhil L. Lachenmeyer S.J. Jabbour N. H. Clark	Aug 93	http://infoserve.sandia.gov/sand_doc/1993/931754.pdf
SAND93-3900	Battery Energy Storage: A Preliminary Assessment of National Benefits (The Gateway Benefits Study). Sandia National Laboratories	A. A. Akhil, et al.	Dec 93	http://infoserve.sandia.gov/sand_doc/1993/933900.pdf
SAND94-2605	Battery Energy Storage for Utility Applications: Phase I – Opportunities Analysis. Sandia National Laboratories	P. C. Butler	Feb 94	http://infoserve.sandia.gov/sand_doc/1994/942605.pdf
SAND93-3899	Utility Battery Storage Systems Program Report for FY93. Sandia National Laboratories	P. C. Butler	Feb 94	http://infoserve.sandia.gov/sand_doc/1993/933899.pdf
	"Sodium Beta Batteries," Handbook of Batteries, Chapter 12, McGraw Hill	J. W. Braithwaite W. L. Auxer	Jan 95	
SAND95-1545C	Assessment of Utility Side Cost Savings from Battery Energy Storage. Sandia National Laboratories. Proceedings of the 1996 IEEE Power Engineering Society Winter Meeting, Baltimore, MD	R. G. Jungst, M. D. Anderson, and J. T. Alt	Jan 96	http://infoserve.sandia.gov/sand_doc/1995/951545c.pdf

SAND96-1062	Sodium/Sulfur Battery Engineering for Stationary Energy Storage–Final Report	A. Koenig and J. Rasmussen	Apr 96	http://infoserve.sandia.gov/sand_doc/1996/961062.pdf
	Energy Storage Solutions for Premium Power, in IEEE Aerospace and Electronics Systems, vol. 11, pp. 41-44	G. P. Corey	Jun 96	
	Lead-Acid Batteries in Systems to Improve Power Quality, Fifth European Lead Battery Conference, Barcelona, Spain	P. C. Butler P. Taylor W. Nerbun	Oct 96	
SAND96-2238C	DYNASTORE Operating Cost Analysis of Energy Storage for a Midwest Utility. Sandia National Laboratories. Proceedings of the Twenty Ninth Annual Frontiers of Power Conference, Stillwater, OK	R. G. Jungst and M. D. Anderson	Oct 96	http://infoserve.sandia.gov/sand_doc/1996/962238c.pdf
SAND96-2900	Photovoltaic Battery & Charge Controller Market and Applications Survey	R. L Hammond J. F. Turpin G. P. Corey T. D. Hund S.R. Harrington	Dec 96	http://infoserve.sandia.gov/sand_doc/1996/962900.pdf
	DOE's Battery Storage Program, in Power Quality Assurance Magazine, Vol. 8, No. 1, p. 16	G. P. Corey G. A. Buckingham	Jan 97	
SAND97-0443	Cost Analysis of Energy Storage Systems for Electric Utility Applications	Akhil R. K. Sen S. Swaminathan	Feb 97	http://infoserve.sandia.gov/sand_doc/1997/970443.pdf

	Battery storage all but eliminates diesel generator, in Electrical World	M. Demarest P. Taylor D. Achenbach A. A. Akhil	Jun 97	
SAND97- 1275/1	Battery Energy Storage Market Feasibility Study	Akhil S. Kraft	Jul 97	http://infoserve.sandia.gov/sand_doc/1997/971275- 2.pdf
SAND97- 1275/2	Battery Energy Storage Market Feasibility Study– Expanded Report	Akhil S. Kraft	Jul 97	http://infoserve.sandia.gov/sand_doc/1997/971275- 2.pdf
	T&D in Alaska: Like an undeveloped nation, in Electrical World	P. Taylor, M. Demarest, and P. C. Butler	Aug 97	
SAND97-1136	Energy Storage Systems Program Report 1996	P. C. Butler	Aug 97	http://infoserve.sandia.gov/sand_doc/1997/971136.p df
SAND97-2334C	Battery evaluation methods and results for staionary applications	Butler; Paul Charles; Crow; James Terry; Taylor, Paula A. Energetics, Inc., Columbia, MD.	Sep 97	http://infoserve.sandia.gov/sand_doc/1997/972334c. pdf
SAND97-2700	Report on the Energy Storage Systems Program Executive Meetings Project	C. Platt, P. Taylor, L. Charles, and P. C. Butler	Nov 97	http://infoserve.sandia.gov/sand_doc/1997/972700.p df
SAND97-2926	Modeling of Battery Energy Storage in the National Energy Modeling System	S. Swaminathan, W. T. Flynn, and R. K. Sen	Dec 97	http://infoserve.sandia.gov/sand_doc/1997/972926.p df
SAND98-0591	Renewable Generation & Storage Project Industry & Laboratory Recommendations	N.C. Clark P. Butler C.P. Cameron	Mar 98	http://infoserve.sandia.gov/sand_doc/1998/980591.p df

SAND98-1513	Review of Power Quality Applications of Energy Storage Systems	S. Swaminathan and R. K. Sen	Jul 98	http://infoserve.sandia.gov/sand_doc/1998/981513.pdf
SAND98-1905	Battery Energy Storage Systems Life Cycle Costs Case Studies	S. Swaminathan, N. F. Miller, and R. K. Sen	Aug 98	http://infoserve.sandia.gov/sand_doc/1998/981905.pdf
SAND98-1733	Energy Storage Systems Program Report for FY97	P. C. Butler	Aug 98	http://infoserve.sandia.gov/sand_doc/1998/981733.pdf
SAND98-1904	Analysis of the Value of Battery Energy Storage with Wind & Photovoltaic Generation to the Sacramento Municipal Utility District	H. Zaininger	Aug 98	http://infoserve.sandia.gov/sand_doc/1998/981904.pdf
SAND97-1276	Final Report on the Development of a 250-kW Modular, Factory-Assembled Battery Energy Storage System	G. P. Corey W. Nerbun D. Porter	Aug 98	http://infoserve.sandia.gov/sand_doc/1997/971276.pdf
SAND98-2019	Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications	S. Atcitty S. Ranade A. Gray-Fenner	Sep 98	http://infoserve.sandia.gov/sand_doc/1998/982019.pdf
SAND99-0883	Energy Storage Systems Program Report for FY98	P. C. Butler	Apr 99	http://infoserve.sandia.gov/sand_doc/1999/990883.pdf
SAND99-0935	System and Battery Charge Control for PV-Powered AC Lighting Systems	G. Kern	Apr 99	http://infoserve.sandia.gov/sand_doc/1999/990935.pdf
SAND99-0936	Solar-Powered Systems for Environmental Remediation	C. Miralles, B. Jensen, A. Flack, B. Yelin, J. Cromwell, R. Lopez, and S. Berge	Apr 99	http://infoserve.sandia.gov/sand_doc/1999/990936.pdf
SAND99-1483	Performance and Design Analysis of a 250-kW, Grid- Connected Battery Energy Storage System	B. L. Norris and G. J. Ball	Jun 99	http://infoserve.sandia.gov/sand_doc/1999/991483.pdf

SAND99-1477	Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy	J. Wohlgemuth, J. Miller, and L. B. Sibley	Jun 99	http://infoserve.sandia.gov/sand_doc/1999/991477.pdf
SAND99-1854	Storage for PV Systems A Summery of the State of the Art of Superconducting Magnetic Energy Storage Systems, Flywheel Energy Storage Systems, and Compressed Air Energy Storage Systems	P. Taylor, L. Johnson, K. Reichart, P. DiPietro, J. Philip, and P. Butler	Jul 99	http://infoserve.sandia.gov/sand_doc/1999/991854.pdf
SAND99-1853	Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report	P. Eidler	Jul 99	http://infoserve.sandia.gov/sand_doc/1999/991853.pdf
SAND99-2356C	learned from the Puerto Rico Electric Power Authority battery energy storage system project Lessons	Farber-Deanda, Mindi Energetics, Inc., Washingrton, Dc; Torres, Wenceslao Puerto Rico Electric Power Authority, San Juan, Pr.; Boyes, John D	Sep 99	http://infoserve.sandia.gov/sand_doc/1999/992356c.pdf
SAND99-2232	Lessons Learned from the Puerto Rico Battery Energy Storage System	M. Farber De Anda J. D. Boyes W. Torres	Sep 99	http://infoserve.sandia.gov/sand_doc/1999/992232.pdf
SAND99-2570	Utility Test Results of a 2- Megawatt, 10-Second Reserve-power System	B. L. Norris and G. J. Ball,	Oct 99	http://infoserve.sandia.gov/sand_doc/1999/992570.pdf
SAND99-2691	Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report	N. C. Clark P. Eidler P. Lex	Oct 99	http://infoserve.sandia.gov/sand_doc/1999/992691.pdf
SAND2000-1040C	Overview of energy storage applications	Boyes, John D.	Apr 00	http://infoserve.sandia.gov/sand_doc/2000/001040c.pdf

SAND2000-1317	"Energy Storage Systems Program Report for FY99"	J. D. Boyes	Jun 00	http://infoserve.sandia.gov/sand_doc/2000/001317.pdf
SAND2000-1550	Energy Storage Concepts for a Restructured Electric Utility Industry	J. lannucci and S. Schoenung	Jul 00	http://infoserve.sandia.gov/sand_doc/2000/001550.pdf
SAND2000-2065J	Summary of electrical test results for VRLA batteries	Crow, James Terry; Francis, Imelda; Butler, Paul Charles	Aug 00	http://infoserve.sandia.gov/sand_doc/2000/002065j.pdf
SAND2001-0765	Characteristics and Technologies for Long- vs. Short-term Energy Storage	S.M. Schoenung	Mar 01	http://infoserve.sandia.gov/sand_doc/2001/010765.pdf
SAND2001-2391P	<u>User facilities list</u>	Rivers, Kay Lynn; Bergeron, Laurie L.	Jun 01	http://infoserve.sandia.gov/sand_doc/2001/012391p.pdf
SAND2001-2022P	Introduction to advanced batteries for emerging applications	Symons, Philip C.; Butler, Paul Charles	Jun 01	http://infoserve.sandia.gov/sand_doc/2001/012022p.pdf
Power Quality Magazine	The Power of Energy Storage	Dr. Imre Gyuk Department of Energy	Mar 02	http://powerquality.com/ar/power_power_energy_storage/index.ht m
SAND2002-1314	Energy Storage Opportunities Analysis Phase II Final Report	P. C. Butler	May 02	http://infoserve.sandia.gov/sand_doc/2002/021314.pdf
SAND2002-3848P	Power source technology group at Sandia National Laboratories : current programs and future directions	Doughty, Daniel Harvey	Oct 02	http://infoserve.sandia.gov/sand_doc/2002/023848p.pdf
SAND2003-0362	Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace: A Study for the Energy Storage Systems Program	J. lannucci J. Eyer Paul C. Butler	Feb 03	http://infoserve.sandia.gov/sand_doc/2003/030362.pdf
SAND2002-4084	Technical and economic feasibility of applying used EV batteries in stationary applications. A study for the DOE energy storage systems program	Erin Cready, John Lippert, Josh Pihl, Irwin Weinstock, Phillip Symons, and Rudolph G. Jungst	Mar 03	http://infoserve.sandia.gov/sand_doc/2002/024084.pdf

Energy Storage Websites

- DOE Home Page
 - http://www.energy.gov/engine/content.do
- DOE/Sandia Energy Storage Program
 - <u>http://www.sandia.gov/ess/</u>
- Electricity Storage Association
 - <u>http://www.electricitystorage.org/</u>
- EESAT Conference
 - http://www.sandia.gov/eesat

III. Cont. Economic Analysis of Energy Storage

Instructor – John Boyes, Sandia National Lab

- DOE Energy Storage Systems Program is conducting economic analysis of the costs and benefits of electric energy storage
- Life Cycle System Costs by Susan Schoenung and William Hassenzahl
- Benefits and Market Analysis by Joe Iannucci and Jim Eyer
- Compare Capital Costs with Benefits work in progress

Life Cycle Cost Analysis Application Categories

Application Category	Discharge Power Range	Discharge Time Range	Stored Energy Range	Representative Applications
Bulk Energy Storage	10-1000 MW	1-8 hrs	10-8000 MWh	Load leveling, spinning reserve
Distributed Storage	100-2000 kW	0.5-4 hrs	50-8000 kWh	Peak shaving, transmission deferral
Power Quality	0.1-2 MW	1-30 sec	0.1-60 MJ (0.028-16.67 kWh)	End-use power quality and reliability

PCS* Costs for Long-Term Operation

	250	kW	1 N	1 MW		5 MW		MW
Technology	1 st unit	10 th unit						
Flywheel	500	225	300	175	200	150	150	125
Battery	500	225	300	175	200	150	150	125
SMES	550	250	350	200	250	175	200	150

Note: Power rating is based on continuous operation. Note: All costs are in \$/kW.

*PCS – Power Conditioning System

PCS Costs for Short-Term Operation 0 to 30 seconds

	250 kW		1 MW		5 MW		20 MW	
Technology	1 st unit	10 th unit						
Flywheel	350	150	200	175	140	100	100	90
Battery	350	150	200	175	140	100	100	90
SMES	400	175	250	200	190	125	150	115

Note: All costs are in \$/kW.

ries

Capital Costs

	Energy-Related Cost	Power–Related Cost	Balance of Plant (Bulk Storage)
Technology	(\$/kWh)	(\$/kW)	(\$/kWh)
Lead-acid Batteries (Flooded Cell)	150	125	150
Lead-acid Batteries (VRLA)	200	125	150
Ni/Cd	600	125	150
Regenesys®	100	275	50
High Temp Na/S	250	150	50
CAES	3	425	50
Pumped Hydro	10	1000	4
Pumped Hydro Variable Speed	10	1050	4 Sa
	55		

Other Cost Parameters

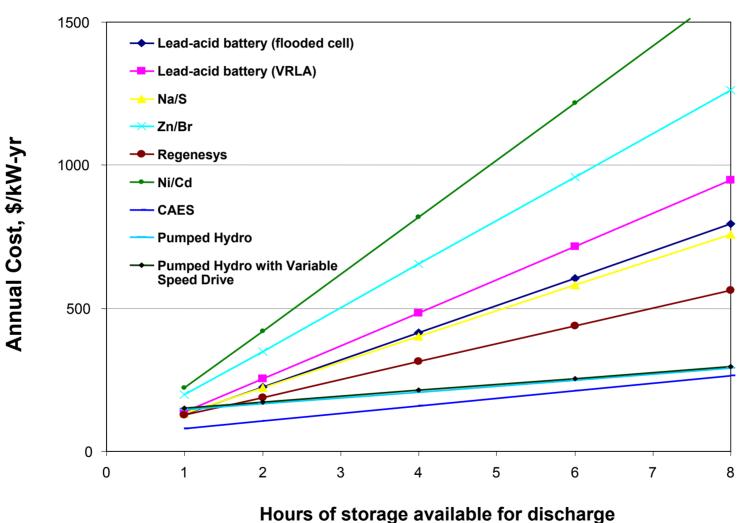
	Efficiency (AC to AC)	Replacement Cost	Replacement frequency	Fixed O&M
Technology		(\$/kWh)	(yr)	(\$/kW-yr)
Lead-acid Batteries (Flooded Cell)	0.75	150	6	15
Lead-acid Batteries (VRLA)	0.75	200	5	5
Ni/Cd	0.65	600	10	5
Regenesys®	0.65	\$150/kW	10	15
High Temp Na/S	0.7	230	10	20
(CAES)	0.73	0	None	2.5
Pumped Hydro	0.75	0	None	2.5
Pumped Hydro Variable Speed	0.78	0	None	2.5

Levelized Annual Cost Definition

```
(LAC) ($/kW-yr) =
```

financial carrying charge for capital equipment

- + levelized fixed O&M costs
- + levelized annual costs for replacement parts
- + levelized variable costs for energy and O&M

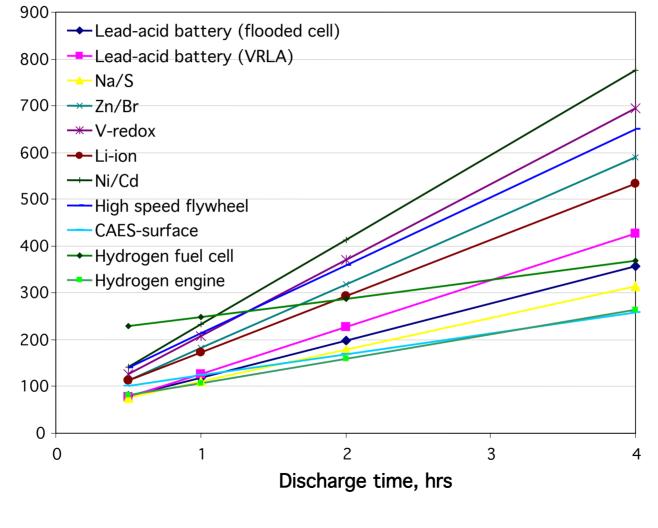

Economic Parameters for Life-Cycle Cost Analysis

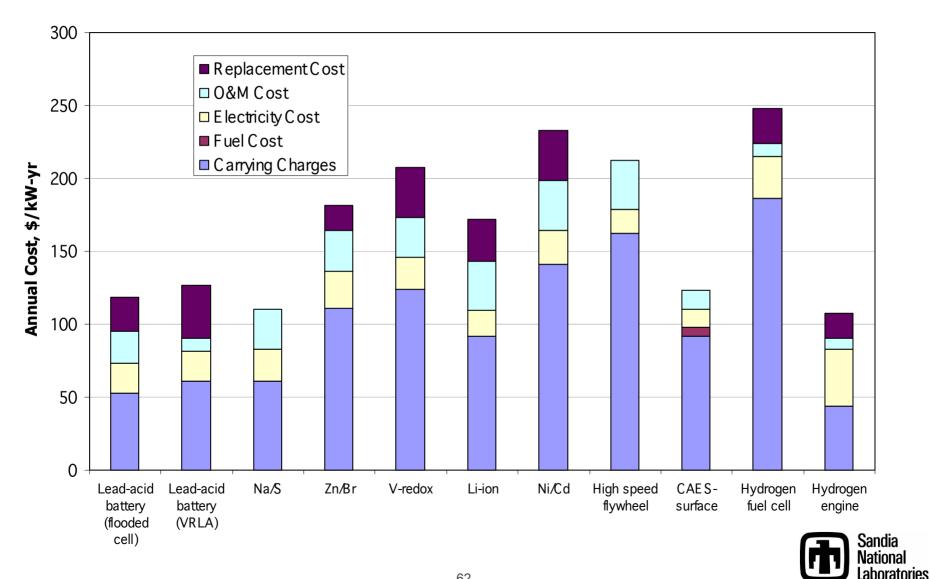
Parameter	Value		
General inflation rate	2.5%		
Discount rate	8.5%		
Levelization period	20 years		
Carrying charge rate	12%		
Fuel cost, natural gas	5 \$/MBTU		
Fuel cost escalation rate	0%		
Electricity cost	5 ¢/kWh		
Electricity cost escalation rate	0%		
O&M cost escalation rate	0%		

Levelized Annual Cost

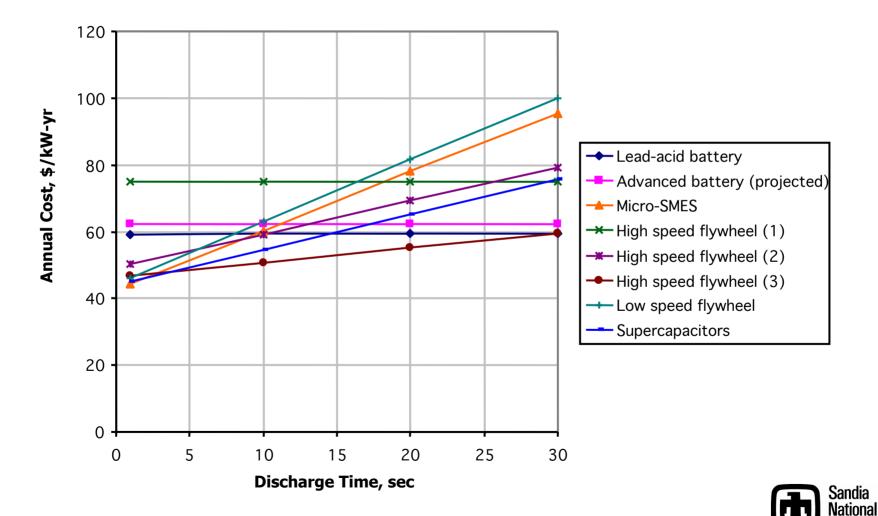
Bulk Energy Storage Technologies (10-1000 MW)

Sandia National Laboratories


Components of Annual Cost Bulk Storage Technologies (8 hr discharge)

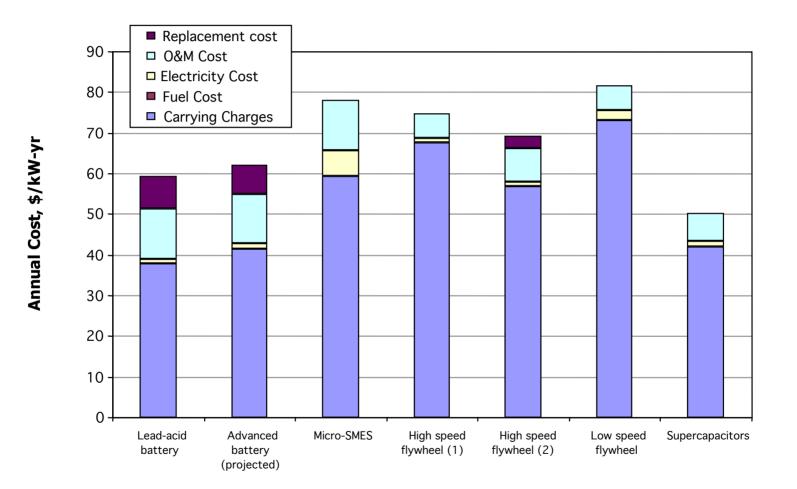

Levelized Annual Cost Distributed Storage Systems (100 kW-2 MW)

Annual Cost, \$/kW-yr



Sandia National Laboratories

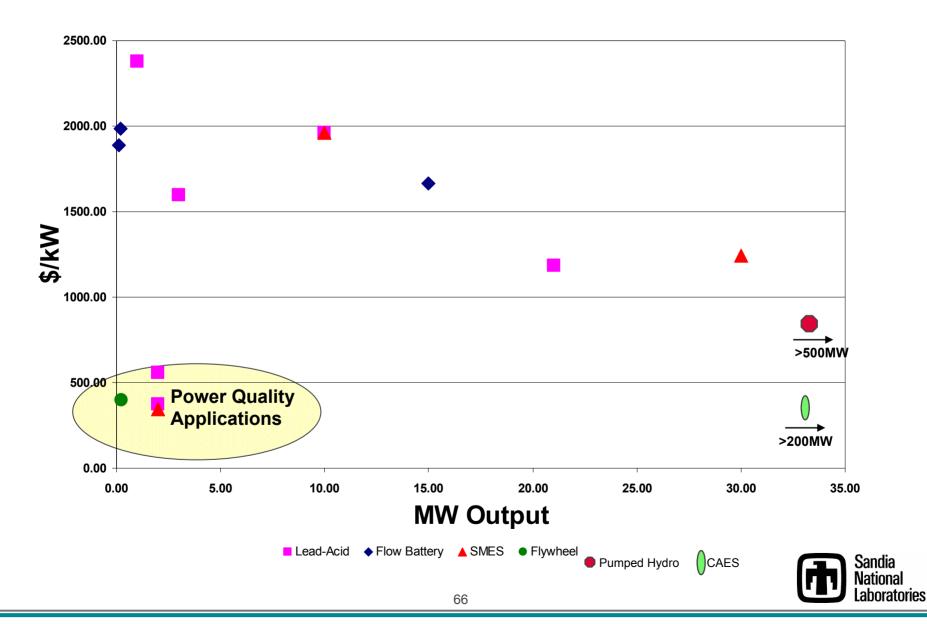
Components of Annual Cost Distributed Storage Technologies (1 hour discharge)



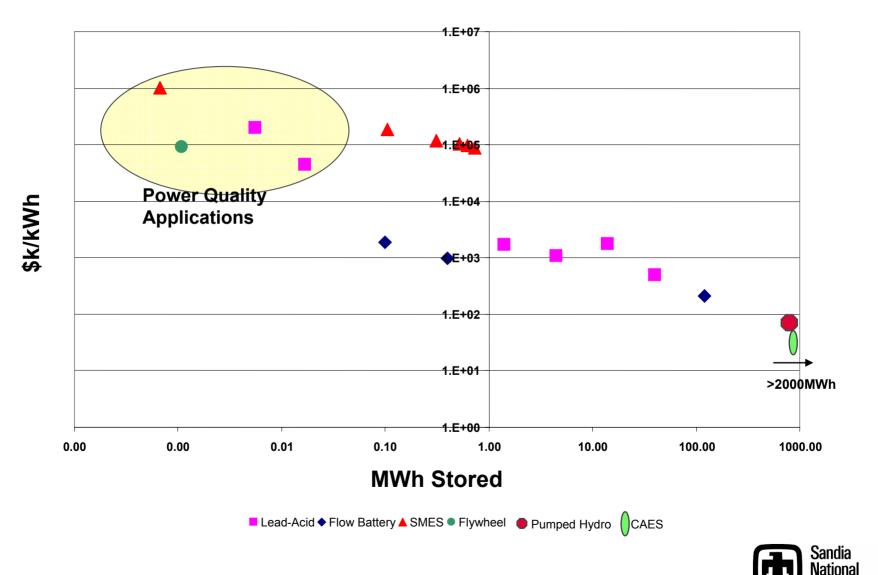
Levelized Annual Cost Power Quality Technologies (100 kW - 2 MW)

aboratories

Components of Annual Cost Power Quality Technologies (20 sec discharge)



Summary of System Costs Year 2000 US \$

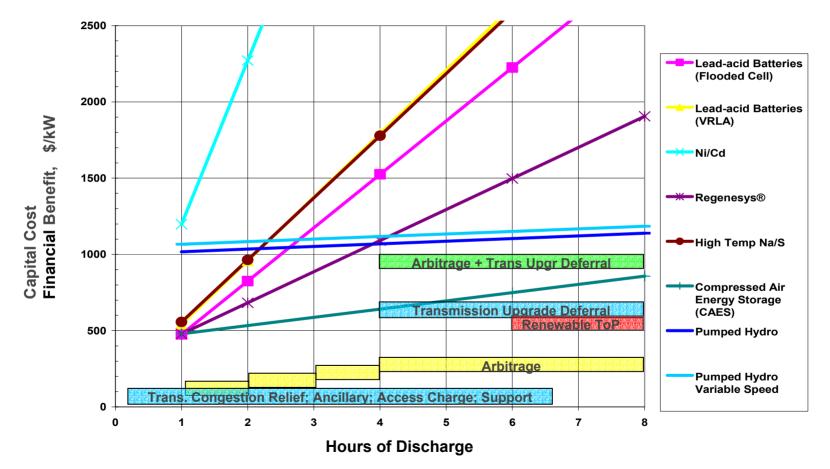

System Identification	System power rating MW	Total Cost \$k/kW	System Storage MWh	Total Cost \$/kWh	Comments
Puerto Rico BESS	21.00	1184.25	14.10	1763.78	1992
Chino	10.00	1961	40.00	490	1988
Vernon	3.00	1595	4.50	1063	1995
PQ2000	2.00	557	0.006	200629	Prototype
Purewave	2.00	375	0.017	45000	Early Production
Metlakatla	1.00	2376	1.40	1697	Remote
Powercell	0.10	1890	0.10	1890	Early Production
ZBB	0.20	1984	0.40	992	Estimate
Regenesys	15.00	1667	120.00	208	Estimate
ASC DSMES	2.00	343	0.0007	1030000	Early Production
SMES PREPA					
10MW	10.00	1963	0.10	188477	Estimate
30MW	30.00	1245	0.31	119517	Estimate
50MW	50.00	1071	0.52	102831	Estimate
60MW	60.00	1027	0.63	98611	Estimate
70MW	70.00	931	0.73	89336	Estimate
CAT UPS Flywheel	0.25	400	0.0011	92308	Early Production

System Costs Year 2000 US \$/kW

System Costs Year 2000 US \$k/kWh

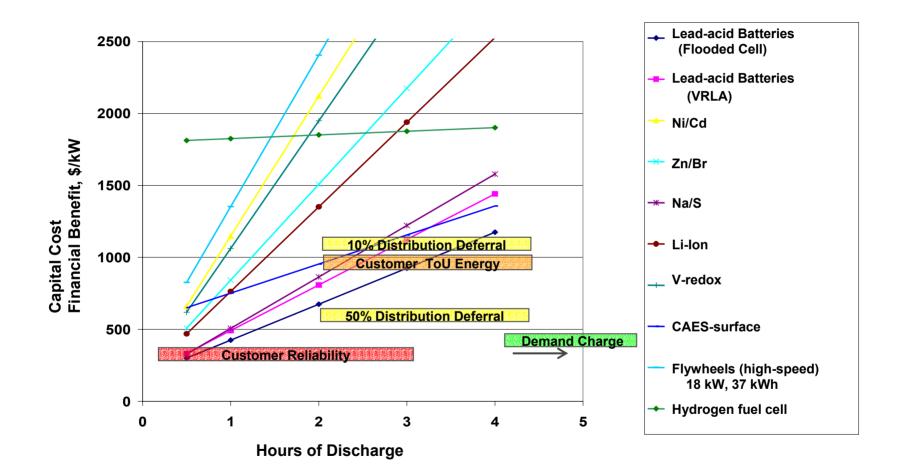
aboratories

General Applications Comparisons - Plant Cost Estimate

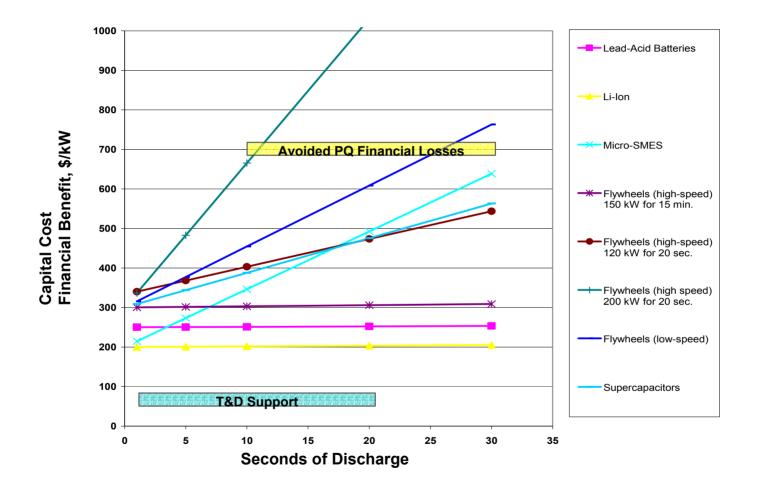

Energy Storage Technology	Plant Size	Energy Storage	Estimated Plant Cost (\$/kW)	Technology Maturity	Expected Cost Reduction Over 10 Year Period
CAES	350 MW	10 hrs	500	Mature	None
CAES Hybrid	20 MW	4 hrs	700	Demonstartion	20%
Pumped Hydor	1000 MW	4 hrs	\$1,000	Mature	None
Lead Acid Battery	20 MW	2 hrs	\$1,200	Mature	5%
Regenesys	12 MW	10 hrs	\$2,000	Demonstartion	25%
NAS Battery	6MW	8 hrs	\$2,000	Demonstartrion	20%
VRB	500 kW	10 hrs	\$3,500	Trial	20%
Ucap	100kW	10 sec	\$800	Trial	30%
UCAP	3 MW	6 sec	\$600	Concept	30%
Flywheel	1kW	4 hrs	\$8,000	Demonstartion	20%
Flywheel	300 kW	15 sec	\$330	Mature	5%
Flywheel	5 MW	10 sec	\$400	Concept	25 % Sandia
EPRI PEAC 68 National Laborato					

Comparing Costs and Benefits

- Life Cycle cost analysis calculated levelized annual cost based on 20 year lifetime
- Benefits and Market analysis calculated total economic benefit over 10 years
- To combine the two studies
- Capital costs only
- Replacement costs not included
- O&M and Charging costs included in Benefit calculation
- Benefits calculated for California Market



Capital Cost and Financial Benefit Bulk Storage Power > 10MW, Time 1-8 Hours


Capital Cost and Financial Benefit Distributed Storage, 100kW – 2 MW, ½ - 4 Hours

Distribution Upgrade & Customer TOU Projects?

Capital Cost and Financial Benefit Power Quality Applications

Conclusions

- A methodology has been developed to calculate the Life Cycle Cost of systems
- A methodology for calculating benefits and potential markets has been developed
- With current system costs, combining benefits shows potential markets today
- This work is exploring new ways is which storage can provide significant benefits in the near term
- Additional research is needed to fully understand the storage cost – benefit relationship

References

- Long vs. Short Term Energy Storage Technologies Analysis, A Life Cycle Cost Study – SAND2003-2783 August 2003, Susan Schoenung, William Hassenzahl
- Electric Energy Storage Benefits and Market Analysis,
 - Attachment 14 of California Energy Commission RFP #500-03-501 July 31, 2003, Joe Iannucci, Jim Eyer,

www.energy.ca.gov/contracts

 Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace, J. Iannucci, J. Eyer, and Paul C. Butler SAND2003-0362, February 2003. : http://infoserve.sandia.gov/sand_doc/2003/030362.pdf

