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The epidemiologic associations between
asbestos exposure and malignant lung diseases
(pleural mesothelioma, bronchogenic carcino-
ma) and fibrotic diseases (pleural plaques and
asbestosis) are well known (1). However, the
mechanisms linking the exposure of humans
to asbestos and the subsequent development of
these diseases are largely unknown. Various
types of asbestos have been assessed for their
genotoxic properties, using karyotypic and
morphologic approaches in a number of
rodent and human cell lines (2). These studies
revealed differences in responses to asbestos in
various cell types. Mesothelial cells are the tar-
get cells of asbestos-induced mesothelioma.
Asbestos induces genotoxic changes and apop-
tosis in human mesothelial cells [(HMC);
(3,4)], but until now early changes of surface
properties as well as cellular dielectric parame-
ters were not investigated after the exposure of
cells to asbestos in vitro. Such investigations
can supply more information about morphol-
ogy and permeability of the cellular mem-
brane and about dielectric parameters of the
cytoplasm reflecting ion concentration, polar-
ization of membranes of cytoplasmic com-
partments (organelles), dielectric relaxation of 

biomolecules (protein, DNA, amino acid, and
small polypeptides), and ionic or protonic dis-
placement along protein structures associated
with the cytoskeleton.

Such information can be obtained from
electrorotation (ROT) measurements char-
acterizing electrical and dielectrical proper-
ties of cells. The ROT of cells is a useful
technique for studying the dielectric proper-
ties of individual cells under conditions of
minimal physiologic damage (5). The inves-
tigation of the effects of chemicals and envi-
ronmental factors on the dielectric behavior
of cells is increasingly becoming an area of
scientific interest. ROT was used to charac-
terize alterations of dielectric properties of
lymphocytes (6), cell membrane changes
after viral infection and transformation
(7–9) as well as platelet activation (10),
biofilms (11) and microbial contamination
(12), the effect of chemicals on cells (13),
cytoplasmatic dielectric properties (14), dif-
ferent cellular compartments of individual
cells (15), and mobile charges on membranes
(16). Rotation at physiologic ionic strength
(17) and low-frequency ROT of erythrocytes
(18) have also been studied. All of these

ROT studies were performed using conven-
tional microscopes for rotation measure-
ments. Cell rotation in these studies was
measured by “eye and stopwatch.” In our
laboratories, we developed a computerized
automated instrumentation that makes
ROT measurements more objective, produc-
tive, and comfortable (19) as compared to
the conventional techniques. The new
instrumentation allows objective measure-
ments with a considerable productivity (~ 10
cells within one measuring cycle of 10 sec).

The phospholipid content can be mea-
sured to analyze changed morphology of the
cellular membrane. The two major classes of
the plasma membrane (PM) phospholipids,
the choline- and aminophospholipids, are dis-
tributed asymmetrically between the two
leaflets of the PM. Sphingomyelin and phos-
phatidylcholine make up the majority of the
outer leaflet, whereas ethanolamine and serine
phospholipids reside predominantly in the
leaflet facing the cytosol (20). Recently it was
found that so-called flippases (translocases)
flip phosphatidylserines (PS) from the cyto-
plasm-facing leaflet to the opposite orienta-
tion (21) if apoptotic cellular changes occur
(22). Such changes in PM structure can also
influence dielectric properties of the cell.

Goodglick et al. (23) studied the mem-
brane-damaging effect of asbestos and suggest-
ed that asbestos-induced lipid peroxidation
may be part of the damaging mechanisms
resulting in apoptosis. Early and late stages
of apoptosis can be discriminated depend-
ing on the PS content of the plasma mem-
brane. Annexin V is a calcium-dependent 
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Asbestos induces cytogenetic and genotoxic effects in cultured cell lines in vitro. For further investi-
gations of the fiber-induced cellular changes, electrorotation (ROT) measurements can be used to
determine early changes of surface properties and dielectric cellular changes. In the present study,
human mesothelial cells (HMC) were exposed to nontoxic concentrations of crocidolite asbestos (1
µg/cm2) for 12, 24, 30, 50, and 72 hr, and were investigated for changes in dielectric properties,
morphologic and biochemical changes using ROT measurements, electron microscopy, and flow
cytometry, respectively. The results of ROT measurements revealed slightly increased internal con-
ductivity and decreased membrane conductance of HMC during the first 12 hr of exposure to croci-
dolite. This may be due to functional changes of ion channels of the cellular membrane. However,
after exposures of ≥ 30 hr, reduced internal conductivity and increased membrane conductance of
HMC occurred. These effects may be caused by permeabilization of the cell membrane and the leak-
age of ions into the surrounding medium. The membrane capacitance of HMC is always decreased
during exposure of cells to crocidolite fibers. This decreased membrane capacitance may result from
the observed reduction in the number of microvilli and from the shrinkage of cells as observed by
electron microscopy and flow cytometry. Changes in composition of the plasma membrane were
also observed after the labeling of phosphatidylserines (PS) on the cell surface. These observed
changes can be related to apoptotic events. Whereas during the first 50 hr of exposure only a small
number of HMC with increased exposure of PS on the cell surface was detected by flow cytometry,
the dielectric properties of HMC showed marked changes during this time. Our results show that
surface property changes of the cellular membrane of HMC as well as interior dielectric changes
occur after the exposure of cells to crocidolite fibers. The observed changes are discussed in terms of
complex combined cellular effects after amphibole asbestos exposure. Key words: apoptosis, crocido-
lite, electron microscopy, electrorotation, flow cytometry, phosphatidylserine, plasma membrane.
Environ Health Perspect 108:153–158 (2000). [Online 10 January 2000]
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phospholipid-binding protein that preferen-
tially binds to PS but shows minimal binding
to other phospholipid species on the external
surface (24). During the early stage of apopto-
sis, PS translocase is inhibited and the
increased exposure of PS to the external sur-
face of the cell potentially provides a signal to
surrounding phagocytes (25).

In the current study, we investigated the
time course of changes of the plasma mem-
brane and cell interior after the exposure of
HMC to crocidolite asbestos. We were inter-
ested in determining when surface properties
of amphibole asbestos-treated cells begin to
change, what kind of changes occur, and
which relationship exists to the dielectric para-
meters of the cytoplasm. For these investiga-
tions, dielectric properties of the cell 
membrane and the cytoplasm were analyzed
by ROT measurements and the translocation
of PS to the external surface was measured in
dependence on exposure time (12–72 hr)
using flow cytometry. Electron microscopy
was used to study the possible relationship
between membrane capacitance as assessed by
ROT measurements and cell surface structure. 

Material and Methods

Cell culture and treatment conditions. We
obtained HMC by effusion of ascites fluid
from noncancerous patients at the University
Hospital in Rostock, Germany. Fluid sam-
ples were centrifuged and the pelleted cells
were transferred to 25-cm2 tissue culture
flasks (Nunc, Wiesbaden, Germany) and
grown in a 1:1 mixture (v/v) of M199 and
MCDB 105 medium (Sigma, Deisenhofen,
Germany) supplemented with 5–10 ng/mL
epidermal growth factor, 0.4 µg/mL hydro-
cortisone, and 7% fetal calf serum. The iso-
lated mesothelial cells were identified and
characterized by their positive staining for
cytokeratins, using a panepithelial monoclon-
al antibody against human cytokeratins
AE1/AE3 (Biofenex, San Ramon, CA). After
the fourth passage, HMC changed into giant
genomically instable cells with an irregular
pattern and a lack of intracellular cytokeratin
expression. Because of this phenomenon only
HMC of the first passage were used for the
experiments. Mesothelial cells were treated
with a nontoxic concentration of crocidolite
asbestos [Union Internationale Contre le
Cancer (UICC) standard; 1 µg/cm2]. The
average fiber length, diameter, and number
of fibers per microgram were determined.
The average dimensions for chrysotile and
crocidolite were 0.10 and 0.25 µm in diame-
ter and 2.24 and 1.71 µm in length, respec-
tively. The percentage of asbestos fibers with
length ≥ 5 µm was approximately 5% for
both types of asbestos fibers. Fibers were ster-
ilized by autoclaving (120°C for 20 min) and
were suspended in PBS.

ROT measurements. The general driving
force of the particle rotation is a phase differ-
ence between the electric field-induced
polarization and the external rotating field.
This gives rise to a torque acting on the par-
ticle that depends on the frequency of the
applied field, the geometry, and dielectic
properties of the particle (18,26–28). ROT
is a sensitive, noninvasive method for study-
ing the dielectric properties of individual
viable cells under conditions of minimal
physiologic damage. There is general agree-
ment that the dielectric characteristics of cells
are closely associated with their biologic func-
tion and constitute a physical component of
the cell phenotype (10,18,27–33).

We used automated instrumentation for
ROT measurements, as described previously
(19). Briefly, the device consists of a micro-
scope with a rotation chamber, a video camera,
and a computer that includes a field generator.
Four rectangular signals in phase quadratur are
applied to platinum–iridium electrodes to pro-
vide a rotating electric field. The cell rotation
induced by this field is measured as a function
of the field frequency ranging from 1 Hz to 24
MHz. The software developed for automated
measurements allowed us to perform the
entire operation including video digitalization,
object recognition, tracking, calculation of the
rotation speed of single objects, selection of
objects, storage, and representation as well as
statistic analysis of the data.

For ROT measurements, we washed
untreated and fiber-treated HMCs twice in
sodium chloride solution (conductivity 24
µS/cm) containing glucose to achieve the
osmolarity of 300 mOsm. One hundred
microliters of this suspension was sealed into
the rotation chamber and measured immedi-
ately after the settling of the cells. Every point
of the rotation curve represented measure-
ments of 20–30 cells. The ROT spectrum
consisted of 15 measuring points and was usu-
ally completed within 20–30 min. Cell rota-
tion induced by the applied rotating field was
measured as a function of the field frequency
ranging from 1.5 kHz to 24 MHz. The mea-
sured data were fitted to a function containing
two Lorentz functions. Heights and center
points of the Lorentz functions were calculated
to achieve a minimum deviation to the mea-
sured rotation velocity. The Lorentz functions
corresponded to the first-order approximation
of the theoretical curves, which were too com-
plex for straight fitting of the cell parameters.

The reproducibility of the automated
rotation measurement was performed by mea-
suring the same cell population repeatedly
(19). The mean variability over the whole fre-
quency range was approximately 4%.

From the ROT spectrum four dielectric
parameters can be derived: specific mem-
brane capacity and conductivity (which

reflect membrane thickness, composition,
morphologic complexity, and the transport
of charge carriers across the membrane) and
cell internal conductivity and permittivity
(reflecting the electrical mobility of ion
species and the combined properties of cyto-
plasmic water and intracellular barriers to
charge movement, respectively). These
dielectric properties are derived qualitatively
from changes of magnitude and frequency of
the antifield and co-field peaks as compared
to theoretical curves (18,27,28,34). 

Electron microscopy. For transmission
electron microscopy (TEM), treated and
untreated cells were fixed with 4% glutaralde-
hyde in 0.1-M phosphate buffer for 1 hr,
washed in the same buffer, and postfixed with
1% OsO4. The samples were dehydrated,
embedded, polymerized, and sectioned in the
usual manner. After the preparation of ultra-
thin sections with an Ultrotom III (LKB,
Sweden) and contrasting with uranyl acetate
and lead citrate, the samples were examined in
an EM 902A transmission electron micro-
scope (Zeiss, Jena, Germany). 

For scanning electron microscopy (SEM),
the adherent cell cultures were fixed with 4%
glutaraldehyde in PBS for 1 hr, washed, post-
fixed with 1% OsO4, dehydrated with alco-
hol, and critical point dried. The cells were
examined in the adherent stage after coating
with gold in a DSM 960A scanning electron
microscope (Zeiss).

Flow cytometry. Annexin-V-fluorescein
isothiocyanate (FITC) (PharMingen
Deutschland GmbH, Hamburg, Germany)
was used to quantitatively determine the per-
centage of HMC with an increased level of
exposed PS on the cell surface. These changes
can be related to apoptotic events. The assay
is based on the fact that PS is exposed on the
surface of irreversibly damaged cells, and the
assay makes use of the high affinity of annex-
in-V for PS. Treated and untreated mesothe-
lial cells were washed with cold PBS, cen-
trifuged, and resuspended in 1 × binding
buffer (10 mM Hepes/NaOH, 140 mM
NaCl, 2.5 mM CaCl2). Approximately 105

cells were incubated with 0.25 µg/mL FITC-
conjugated annexin-V and 5 µg/mL propidi-
um iodide (PI). After staining, the cells were
measured within 45 min.

We analyzed the cells with a FACSort flow
cytometer (Becton Dickinson, Heidelberg,
Germany) with data acquisition. We per-
formed data analysis using CELLQuest
Software (Becton Dickinson). Ten thousand
cells per sample were measured. 

Results

The ROT spectrum of untreated cells is
shown in Figure 1. Various mammalian cells
typically have two rotation peaks: antifield
rotation at frequencies below 3 MHz (due to
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the presence of a nonconducting plasma
membrane) and co-field rotation above 3
MHz (as a result of the difference in the
dielectric properties of the surrounding
medium and the cell interior) (7). The
curves presented in Figures 1 and 2 were fit-
ted to get minimal deviation from measured
data. The maximal rotation velocity for
untreated HMC was found at 15 kHz. After
a 12-hr treatment with crocidolite, the anti-
field peak moved to a frequency of 40 kHz
and the rotation speed increased approxi-
mately four times (Figure 1). The mean rela-
tive deviation between the two curves in
Figure 1 was 38%. The magnitude of the
antifield rotation was increased and the peak
occurred at a higher frequency. Furthermore,
magnitude and frequency of the co-field
rotation were also changed, although to a
smaller extent (Figure 1).

After 30 hr of fiber treatment, the peak
shifted to a frequency of 200 kHz (Figure 2).
The rotation speed of the treated cells
decreased up to 75% as compared to that
found in untreated cells.

In contrast to the early phase shown in
Figure 1, this later phase was characterized by
a decreased magnitude and an increased fre-
quency of the antifield rotation. A decreased
membrane capacity was also observed. After
50 hr of exposure to crocidolite, the antifield
peak shifted toward the control population.
After an exposure time of 72 hr, the difference
to the control measurements was only 15%.

Alterations of ROT spectra after crocido-
lite exposure, as shown in Figures 1 and 2,
are significant corresponding to the variabili-
ty of the rotation measurements. We mea-
sured the same cell population repeatedly to
evaluate the variability of the automated rota-
tion measurement. The measurements were
compared using the following equations for
mean rotation and SD:

where SD = standard deviation for all fre-
quencies; w = rotation speed; and f = fre-
quency. The variability SD/<ω> was 4%.

To determine if the observed effects of
crocidolite-treated mesothelial cells were typ-
ical for this kind of cells, we treated another
cell type, Syrian hamster embryo fibroblasts
(SHE cells), with crocidolite asbestos under
the same conditions. In the later phase after
fiber treatment (> 30 hr), there was a signifi-
cant difference in the dielectric behavior as
compared to HMC (Figure 3). Whereas the
frequency of the antifield peak increased for

HMC, SHE cells were characterized by a
corresponding decrease of frequency. The
peak height was decreased in both cases.

SEM as well as TEM studies revealed a
changed cell surface of HMC after treatment
with crocidolite (Figure 4). Long slender
microvilli can be observed in the untreated
control cells (Figure 4 A, B). After 12 hr the
number of microvilli was already decreased
(Figure 4 C, D) and after 48 hr an extensive
loss of microvilli was detected in crocidolite-
exposed HMC (Figure 4 E, F). Furthermore,
cytotoxic effects were detectable after the
exposure of cells to crocidolite asbestos. After
an exposure time of > 48 hr, cell shrinkage
(Figure 5 A, C) and bleb formation were
observed after the treatment of HMC with
crocidolite asbestos. For quantification of
cells with a reduced cell size, we performed
light scatter measurements. Figure 5 B, D
clearly show that the asbestos-treated cell
population had a reduced cell size (forward
scatter) and an increased granularity (side
scatter). Measurements of cell size of 30
untreated control cells and 30 crocidolite-
treated HMC using computer software
(CorelDraw 8.0; Corel Corporation, Wien,
Austria) revealed a reduction in size (control,
311.6 + 81.6 µm2; crocidolite-treated HMC,
228.2 ± 133.6 µm2; ≅ 73%) and extent (con-
trol, 122.2 ± 32.4 µm; crocidolite-treated
HMC, 69.3 ± 29.7 µm; ≅ 56.5%).

TEM study of HMC showed a strong
phagocytotic uptake of crocidolite fibers by
uncoated invaginations of the plasma mem-
brane and the accumulation of fibers inside
lysosomes and residual bodies. Membrane
accumulations such as myelin structures at
the end of fibers inside residual bodies are
typical after the uptake of crocidolite fibers.
Effects after the exposure of cells to chrysotile
(UICC standard) were similar but weaker
(data not shown). Typical features of apop-
totic cells, such as dehydration of cytoplasm,
vesiculation, and bleb formation on the cell
surface, fragmentation of nuclei, and chro-
matin separation, were also observed by
TEM in asbestos-exposed HMC (> 70 hr). 

A PS plasma membrane asymmetry was
detected by flow cytometry in amphibole
asbestos-exposed HMC after labeling PS
with Annexin V. Within 50 hr after expo-
sure to crocidolite asbestos, annexin V-bind-
ing to HMC was measured at a minor
extent (16–18%). In the untreated control
up to 12% of the cells showed Annexin-V
binding [mean, 8.7% ± 2.7%; (Figure 6)].
An increase (up to 40%) of annexin V-bind-
ing to PS can be observed only after 70 hr
of exposure to crocidolite (Figure 6).
Interestingly, our results after the exposure
of HMC to chrysotile (1 µg/cm2) were
completely different: The chrysotile data
(Figure 6) are shown for comparison. Even

after 30 hr of exposure to chrysotile, the
number of cells detected by annexin V is sig-
nificantly higher as compared to the crocido-
lite-treated cells (Figure 6). 

Mesothelial cells exposed to cisplatin
(50 µM) for 24 hr were used as the positive
control. We detected 58.6 + 10.3% of cells
with exposed PS on the surface in the
positive control.
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Figure 1. ROT spectra (rotation velocity vs. fre-
quency of the rotating field) of untreated (solid
line) and crocidolite-treated (dotted line) HMC
(concentration, 1 µg/cm2; exposure time, 12 hr).
Each point of the rotational curves of untreated
and crocidolite-treated cells represents the mean
of 20–30 cells. 
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Figure 2. ROT spectra of untreated (solid line) and
crocidolite-treated (dotted line) HMC (concentra-
tion, 1 µg/cm2; exposure time, 30 hr). Each point of
the rotational curves of untreated and crocidolite-
treated cells represents the mean of 20–30 cells.
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Figure 3. ROT spectra of untreated, crocidolite-
treated, or chrysotile-treated Syrian hamster
embryo fibroblasts (control population: concen-
tration, 1 µg/cm2; exposure time, 30 hr). Each point
of the rotational curves of untreated, crocidolite-
treated, and chrysotile-treated cells represents
the mean of 20–30 cells.
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Discussion
Conventional dielectrophoresis and ROT
measurements have revealed that significant
differences exist in the dielectric properties of
cells in different physiologic states (14,35–37).
These findings demonstrate that cell dielectric
characteristics are closely associated with bio-
logic function and collectively constitute a
physical component of cell phenotype. This
dielectric phenotype provides a new additional
criterion for the classification of cells. 

Asbestos has several effects in cultured
cells, including mesothelial cells, such as
induction of gene expression (38), production
of growth factors and cytokines (39), inhibi-
tion of growth (40), induction of damage to
chromosomes (41) and DNA (40), transfor-
mation (42), and apoptosis (43). To date,
almost nothing is known about early surface
property changes of the cellular membrane
and interior dielectric changes of asbestos-
treated cells. In the present study we found
that two different phases of ROT spectra
existed after the treatment of HMC with
crocidolite asbestos. The first phase was
detectable after 12 hr and lasted approximate-
ly 18 hr. In this early phase after fiber treat-
ment, crocidolite induced an impairment of
the membrane charge carrier transposition
system followed by an increased interior con-
ductivity and decreased membrane conductiv-
ity. In the second phase (> 30 hr exposure), a
decreased internal conductivity and an
increased membrane conductivity occurred,
which can be interpreted as a result of perme-
abilization of the plasma membrane and leak-
age of ions into the surrounding medium.

According to the theory of Georgieva et al.
(27), the behavior of the antifield peak in the
early phase of the ROT spectra can be inter-
preted as a result of injury to the plasma mem-
brane charge carrier transposition system
(membrane channels, pores, and pumps). This
is characterized by a decreased membrane con-
ductance and by increased internal conductivi-
ty. Therefore, it is important to consider that
the apparent membrane conductivity is com-
posed of a tangential and transverse surface
conductance component. However, according
to minor changes in the surface charge of cells
(and therefore surface conductance), we can
assume that alterations of membrane conduc-
tivity are mainly represented by the transverse
component and thus can be interpreted as a
changed transport of charge carriers across the
membrane. Changes of magnitude and fre-
quency of the co-field rotation peak con-
firmed this interpretation of increased interior
conductivity. At the same time the internal
permittivity decreased; this may be due to
increasing viscosity and/or the decreasing
mobility of water molecules. According to
changes of the antifield and co-field peak, the
membrane capacitance was reduced during the

first hours after crocidolite exposure. It seems
reasonable to interpret this result in a manner
similar to those obtained for the later phase,
where we also found a reduction of the mem-
brane capacitance. A decrease in the morpho-
logic complexity and/or cell shrinking can be
expected to change the membrane dielectric
properties before these processes are visible by
electron microscopy.

The ROT behavior of HMC 30 hr after
treatment with crocidolite was considerably
changed as compared to the early phase and
can be interpreted as permeabilization of the

cellular membrane and its increased conduc-
tivity (which reflects the transposition of
charge carriers across the membrane). At the
same time, the internal conductivity of the
cells decreased due to the leakage of ions
into the surrounding medium. However, the
plasma membrane generally appears to be so
well preserved that the cell contents are
sealed within the cells. 

The cell membrane consists of a lipid
bilayer into which proteins and other bio-
molecules are incorporated. Lipid bilayer
capacity is mainly determined by the nonpolar
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Figure 4. Scanning and transmission electron microscopy of HMC. (A) and (B) show untreated cells from
SEM and TEM, respectively. Microvilli are detectable on the cell surface. (C) and (D) show SEM and TEM
results, respectively, after the treatment of HMC with crocidolite asbestos (1 µg/cm2); the loss of microvilli
can be observed after an exposure time of only 12 hr. (E) and (F) show that after a 48-hr exposure,
microvilli are no longer detectable by SEM and TEM, respectively. 



hydrocarbon groups and the number of
carbon atoms in the lipid hydrocarbon chain
(44), whereas the contribution of integral
proteins to the dielectric properties of the cell
membrane is dominated by the nonpolar
amino acid residues (45). The actual total area
of membrane covering a cell is larger than we
can assume for a smooth surface. This is due
to surface features such as microvilli, folds,
and blebs. We found a marked reduction in
microvilli. However, microvilli that may rep-
resent a potential reservoir of membrane
material to facilitate cell division and rapid
changes in morphology (46) increase the cell
surface area. Reduced membrane capacitance
may be the consequence of a decreased num-
ber of microvilli. However, the continuous
shrinking of cells, as observed in the later
phase, can also cause a decreased membrane
capacitance if the reduced surface area and the
possible delivery of membrane-bound water
are taken into account. In addition, the mem-
brane capacitance can also be influenced by
changes in membrane-molecule polarization
that can appear after PS translocation. The
observed decrease of membrane capacitance is
probably a complex process that originates
from more than one event.

After 50 and 72 hr of exposure to croci-
dolite, we found the same, albeit clearly

reduced, effect on HMC. This reduction can
be explained by the incubation procedure.
The cell cultures were grown after exposure
to fibers, which led to an increased portion
of “normal” cells in the later phase. 

According to the ROT theory (27), the
effect of crocidolite asbestos on SHE cells
(control cells) can be interpreted as an
increased membrane permeabilization char-
acterized by an increased membrane conduc-
tivity and a decreased internal conductivity.
This behavior, which has also been found in
HMC, seems to be a more general effect of
crocidolite independent of the kind of used
cells. The opposite effect of crocidolite on
the antifield peak frequency of SHE cells as
compared to HMC can be explained as an
increased membrane capacitance, which is
characteristic for increased morphologic
complexity. This interpretation is confirmed
by the increased peak height and the
decreased frequency of the co-field peak after
crocidolite treatment. Altogether, the
decreased morphologic complexity observed
for HMC treated with crocidolite asbestos
seems to be a more typical membrane reac-
tion of this cell type. These results are com-
parable with earlier findings from Kodama et
al. (47) and Dopp and Schiffmann (48).
These authors reported differences in

genotoxic effects between human and rodent
cell lines.

An increased appearance of PS at the
outer leaflet can influence the dielectric prop-
erties of cells, but it may also be related to
apoptotic events (49). Several authors report-
ed on the induction of apoptosis in mesothe-
lial cells by asbestos fibers (43,50–52).
Broaddus et al. (43) found that 6% of rabbit
pleural mesothelial cells (RPMC) showed an
increased annexin-V fluorescence intensity
(6%) in flow cytometry analysis after only 2
hr of exposure to crocidolite (concentration,
3 µg/cm2; control level, 2%). After a 6-hr
exposure, 10% of early apoptotic cells were
measured (control, 3%), and after a 24-hr
exposure, 21% of RPMC were apoptotic.
Longer exposure times were not investigated. 

In the present experiments, only annexin
V- and propidium iodide-labeling were car-
ried out. Detection of apoptotic cells requires
more biologic end points. 

Our results of flow cytometry show that
the number of crocidolite-treated HMC with
an increased level of PS on the cell surface
increases rapidly after a longer exposure time
(> 50 hr), but early changes already start after
a few hours of exposure. The number of cells
with exposed PS at the outer leaflet is rela-
tively high in the untreated control (8–12%).
This is possible because we used adherent cell
cultures for our investigations and we had to
trypsinize the cultures for flow cytometry
studies. Van Engeland et al. (53) described
specific membrane-damaging effects during
the harvesting of cells, thus allowing annexin-
V-FITC to bind to internally located PS.
This can result in a small percentage of false-
positive results (~ 5%). Nevertheless, all of
the cell cultures were treated in the same way. 

The time course of PS exposure (and
possibly of the induction of apoptosis) in
HMC is different after the treatment of cells
with crocidolite or chrysotile. In previous
investigations we showed that chrysotile
induces apoptosis to a much higher extent
(54), but we did not monitor the time
course. One possible reason for the different
time courses of induction of PS exposure
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Figure 5. SEM and flow cytometry measurements of untreated (A) and (B), respectively, and crocidolite
treated (C) and (D), respectively, HMC. After an exposure time of 30 hr (fiber concentration, 1 µg/cm2), cell
shrinkage can be observed (C), and flow cytometry results clearly show a reduced cell size (forward scat-
ter) and an increased granularity (side scatter).
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Figure 6. Detection of HMC with exposed PS on the
cell surface. HMC were incubated with annexin V
(PS binding) and propidium iodide (DNA stain) and
measurements were carried out by flow cytometry.
Chrysotile data are shown for comparison. 
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may be the different chemical composition
of crocidolite and chrysotile (amphibole and
serpentine asbestos, respectively). Chrysotile
is hollow and its iron content is low, in contrast
to crocidolite. Crocidolite is a more carcino-
genic fiber, and chrysotile induces higher
numbers of micronucleated and apoptotic
cells (54,55). The induction of cellular
changes and finally of apoptosis seem to be
different and seem to depend on the type of
fiber and, possibly, its physical properties. 

In conclusion, changes of the dielectric
properties of the plasma membrane and the
cell interior after the treatment of HMC with
crocidolite fibers can be determined from the
ROT spectra. The effect of crocidolite fibers
on the dielectric behavior of HMC is already
detectable after a short exposure time (12 hr).
In connection with the changed dielectric
properties of HMC, we found an extensive
loss of microvilli, a reduced cell size, an
increased granularity, and an increased PS
exposure at the outer leaflet of the plasma
membrane. It is possible that the observed
early cellular changes caused by amphibole
asbestos fibers are affiliated components of
the initiation step of the multistage process of
carcinogenesis. Further mutational events are
necessary (promotion step). Each of the suc-
cessive events is likely to make the cell more
unstable so that the risk of subsequent
changes or apoptotic cell death increases.
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