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Assessing Confounding, Effect Modification, and Thresholds in the
Association between Ambient Particles and Daily Deaths

Joel Schwartz

Environmental Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts,
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Studies on four continents have reported
associations between daily concentrations of
ambient particles and daily deaths (1,2). The
magnitude of the regression coefficients var-
ied, but were remarkably similar compared to
epidemiologic studies of other exposures.
Several arguments have been made to ques-
tion the relevance of these findings for public
health and preventive measures. It has been
argued that the deaths are occurring in per-
sons who were already seriously ill and who
would have died in a few days anyway. It has
been argued that air pollution is responsible
for the deaths, but that airborne particles are
not the responsible agent; rather, other pollu-
tants confound the particle findings. It has
also been argued that the particle associations
only exist at higher concentrations, and
therefore, most days are below a presumed
threshold for effect; hence public health
interventions to lower exposure would have
no impact on most days. 

Two recent papers addressed the first
argument by showing that the association
between daily deaths and airborne particles
persisted after accounting for any short-term
displacement of (reduced time until) deaths
(3,4). In this paper, I address the latter two
issues in a multiple-city analysis of particulate
air pollution and daily deaths. I also indirect-
ly address the first issue by an analysis strati-
fied by location of death. 

Recently, Sunyer et al. (5) reported that
persons with a previous emergency room visit
for chronic obstructive pulnmonary disease
(COPD) had a greater risk of air pollution-
induced mortality. In general, there is interest

in potential effect modifiers for particulate air
pollution. Among these are social and eco-
nomic factors that may represent differences
in underlying risk. For example, income has
been shown to be a potent predictor of life
expectancy. These factors differ among cities
in the United States, and these diffferences
can be used to explore their role as effect
modifiers for the impact of airborne particles. 

Methods

Data. I selected 10 U.S. cities with approxi-
mately daily PM10 (particulate matter ≤ 10
µm) monitoring to provide a reasonable
number of locations for a combined analysis.
The cities were New Haven, Connecticut;
Pittsburgh, Pennsylvania; Birmingham,
Alabama; Detroit, Michigan; Canton, Ohio;
Chicago, Illinois; Minneapolis–St. Paul,
Minnesota; Colorado Springs, Colorado; and
Spokane and Seattle, Washington. Daily
deaths in the metropolitan county containing
each city were extracted from National
Center for Health Statistics mortality tapes
(6) for the years 1986–1993. I also computed
separate daily counts of deaths in the hospi-
tals and deaths out of hospitals. Minneapolis
and St. Paul were combined and treated as
one city. Daily weather data were obtained
for the same years, from the nearest airport
weather station, and daily concentrations of
PM10, sulfur dioxide, ozone, and carbon
monoxide were obtained for those years from
the U.S. Environmental Protections Agency’s
Aerometric Information Retrieval System
(AIRS) monitoring network (Research
Triangle Park, NC). Nitrogen dioxide data

were not available in enough of the cities to
allow examination of that variable. 

Social and economic factors were extract-
ed from the 1990 decennial Census (7) for
use as potential effect modifiers. The variables
used were the unemployment rate, the per-
centage of the population living below the
poverty level, the percentage of the popula-
tion with a college degree, and the percentage
of the population that was nonwhite. 

The assignment of PM10 exposure raised
a number of issues. Many of the locations
have more than one monitoring location,
but typically only one monitor operates on a
daily basis, with the others operating every
third or sixth day. If data from all of the
monitors were simply averaged, the daily
mean would change on days when new
monitors were included merely because their
annual average differs from the monitoring
station that operates on a daily basis. 

The variance of PM10 measurements also
can differ from monitoring location to mon-
itoring location. Day-to-day changes in
which monitors are included in the daily
average would also result in changes in the
day-to-day variation in the exposure measure
that do not represent true changes in expo-
sure, but only changes in the sampling of
monitors. To remove these influences, I used
the following algorithm. The annual mean
was computed for each monitor for each
year and subtracted from the daily values of
that monitor. I then standardized these daily
deviances from each monitor’s annual aver-
age by dividing by the standard deviation for
that monitor. The daily standardized devia-
tions for each monitor on each day were
averaged, producing a daily averaged stan-
dardized deviation. I multiplied this by the
standard deviation of all of the centered
monitor readings for the entire year and
added back in the annual average of all of
the monitors. This gave a daily average
PM10 concentration for each day in each
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I examined the relationship between daily deaths and airborne particles in 10 U.S. cities with vary-
ing climatic conditions and seasons in which particle concentrations were high. Airborne particles
were associated with significant increases in daily deaths [0.67% increase for a 10 µg/m3 increase
in particles; 95% confidence interval (CI), 0.52–0.81%]. This association was the same in summer
and winter. To examine potential confounding by other pollutants, I regressed city- and season-
specific effect sizes against the relationship between airborne particles and other pollutants.
Controlling for other pollutants did not substantially (or significantly) change the estimated effect
of airborne particles. Socioeconomic differences between cities likewise did not modify the effect.
The increase in daily deaths that occurred out of hospitals (0.89% per 10 µg/m3; CI, 0.67–1.10%)
was substantially greater than the increase in deaths in hospitals (0.49%; CI, 0.31–0.68%). This is
consistent with results previously reported in Philadelphia, Pennsylvania, and suggests that the
particle-associated deaths are not just being brought forward by a few days. It is also consistent
with recent animal and human studies of the mechanisms of particle toxicity. Key words: airborne
particles, air pollution, climate mortality. Environ Health Perspect 108:563–568 (2000). [Online
3 May 2000]
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city. I then computed the mean of the PM10
concentration on the day of death and the
day preceding death to use as my exposure
index. Most studies have found that a 2-day
average is a better predictor of mortality than
a single day’s exposure. Rather than optimiz-
ing in each location, I used the same 2-day
average to ensure comparability. 

Analytical methods. For each city, a gen-
eralized additive Poisson regression was fit
(8,9), modeling the logarithm of the expect-
ed value of daily deaths as a sum of smooth
functions of the predictor variables. The
generalized additive model allows regressions
to include nonparametric smooth functions
to model the potential nonlinear dependence
of daily admissions on weather and season. It
assumes that 

log[E(Y)] = β0 = S1(X1) + ... +Sp(Xp),

where Y is the daily count of deaths, E(Y) is
the expected value of that count, the Xi are
the covariates and the Si are the smooth (i.e.,
continuously differentiable) functions. For
the Si I used loess (10), a moving regression
smoother. This approach is now standard in
air pollution time series (11). For each
covariate, it is necessary to choose a smooth-
ing parameter that determines how smooth
the function of that covariate should be.
Three classes of predictor variables were used:
a smooth function of time to capture seasonal
and other long-term trends in the data,
weather and day-of-the-week variables to cap-
ture shorter term potential confounding, and
PM10. The choice of smoothing parameter
for each set of variables is described below.

The purpose of the smooth function of
time is to remove the basic long-term pattern
from the data. Seasonal patterns can vary
greatly between Birmingham and Spokane,
for example, and a separate smoothing para-
meter was chosen in each city to reduce the
residuals of the regression to “white noise”
(12) (i.e., remove serial correlation). This
approach was used because each death is an
independent event, and autocorrelation in
residuals indicates there are omitted time-
dependent covariates whose variation may
confound air pollution. If the autocorrelation
is removed, remaining variation in omitted
covariates has no systematic temporal pat-
tern, and hence confounding is less likely.
This approach has been described previously
(12). Sometimes it was necessary to incorpo-
rate autoregressive terms (13) to eliminate
serial correlation from the residuals. 

The other covariates were temperature,
dew point temperature, and barometric pres-
sure on the same day, the previous day’s
temperature, and day of the week. To allow
for city-specific differences, the smoothing
parameters for these covariates were also
optimized separately in each location. The

criterion used was to choose the parameter
for each variable that minimized Akaike’s
Information Criterion (14). 

PM10 was treated as having a linear asso-
ciation with daily mortality in this analysis to
facilitate the combination of coefficients
across cities. Robust regression was used to
reduce sensitivity to outliers in the dependent
variable. To reduce sensitivity to outliers in
the pollution variable, the baseline analysis
was restricted to days when PM10 levels were
< 150 µg/m3, the currently enforced ambient
standard. This also ensures that the results are
unambiguously relevant to questions of revi-
sion of those standards. 

Assessment of confounding. Confounding
is usually assessed by including the potential
confounder in the regression. This is a prob-
lem for air pollution epidemiology because
atmospheric patterns, such as the height of
the inversion layer, tend to produce parallel
increases and decreases in all air pollutants.
This creates considerable collinearity, and
hence instability, in the estimated regression
coefficients. However, while most pollutants
tend to go up and down together within each
city, the increase (in micrograms per cubic
meter) in one pollutant that accompanies a 1
µg/m3 increase in another pollutant varies
considerably among cities, as this depends on
the source term. For example, some cities
have very low sulfur fuels, and hence very dif-
ferent slopes in the association between PM10
and SO2 than in cities with high sulfur fuels.
In the eastern United States, PM10 peaks in
the summer, when O3 levels are high and
CO levels are low, whereas in many western
U.S. cities, PM10 peaks in the winter. This
creates considerable variation in the slopes
between PM10 and the other pollutants, par-
ticularly if analyses are stratified by season.
This variation is often larger than the varia-
tion in within-city correlations among the
pollutants, and my approach to confounding
takes advantage of this fact. It is based on the
observation that if the PM10 effect is really
due to confounding by another pollutant, I
would expect a larger PM10 effect in cities or
seasons where 1 µg/m3 PM10 is representing
more of that other causal pollutant. 

In this paper I use a hierarchical model-
ing approach to take advantage of this varia-
tion to assess confounding. In such an
approach, the first stage consists of standard
regression analyses, producing regression
coefficients for the exposure or exposures of
interest. In a second stage, those coefficients
are regressed against explanatory factors. This
approach has been widely used in the social
sciences (15) and has begun to be applied in
epidemiology (16). The city-specific Poisson
regressions described above are the first stage.
The second stage can be used to assess con-
founding by cooccuring pollutants. Consider,

for simplicity, a Gaussian outcome and imag-
ine that Xt is the concentration on day t of
the pollutant that is causally associated with
the outcome Yt. Hence

Yt = β0 + β1Xt + error. [1]

Xt is correlated with another pollutant, Zt,
which is not causally related to Yt. Therefore
I may write

Xt = γ0 + γ1Zt + error. [2]

What happens if Zt is used as the exposure
variable instead of Xt? Substituting Equation
2 into Equation 1 I have

Yt = β0 +β1γ0 + β1γ1Zt + error. [3]

I have confounding by the omitted covariate
Xt, and the coefficient of Zt will be propor-
tional to γi, the slope of the association
between Xt and Zt. This can be illustrated by
some simple simulations. Figure 1 shows the
results of a simulated example where one
variable has a true association with the out-
come, and the second variable does not but is
correlated with the first. The slope between
the pollutants varies across different (simulat-
ed) cities, which are represented as different
points in the figure. Figure 1 shows how the
estimated effect size of the noncausal variable
varies with γi, the slope between the pollu-
tants in each city. The effect size for the non-
causal pollutant varies randomly about a line
with a zero intercept. The zero intercept fol-
lows from Equation 3, where I see that if γ1 is
zero, the expected effect size for the non-
causal variable is zero. If I formalize this by
performing a regression in the second stage,
where, for example, the PM10 effect size (in
single pollution models) in each town is
regressed against the SO2 to PM10 slope in
each town, I would expect a zero intercept in
the regression if the effect of PM10 is all due
to confounding. If both pollutants have a
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Figure 1. Scatterplot showing the results of a simu-
lation. Plotted are the effect-size estimate for one
pollutant as a function of the regression coefficient
between it and a confounding pollutant that is
causally related to the outcome. The squares show
the results when the first pollutant has no causal
association with the outcome. The diamonds show
the expected results when both pollutants are
causally connected to the outcome, but the second
pollutant confounds the association with the first.
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causal impact on the number of deaths, the
effect size for PM10 in each city may be over-
stated in a single-pollutant model. In that
case, I would expect a nonzero intercept for
PM10 but one that is smaller than the average
PM10 effect size. This is shown by the dia-
monds in Figure 1. These data points are
from a second set of simulations where both
exposures were associated with the outcome.
In this case, if I perform a second-stage
regression, the intercept is an estimate of the
effect size I would see for PM10 in a city
where it is uncorrelated with SO2, which is
to say, the unconfounded PM10 effect size. I
used this approach to examine confounding. 

Of course, the actual models fit to mor-
tality data are log-linear. That is, I assume
that

E(Yt) = λ0exp(βZt),

where λ0 is the baseline risk before considering
pollution. Since the relative risks associated
with air pollution are generally < 1.1, exp(βZt)
~ 1 + βZt, and the results are as before. 

More formally, the two-stage approach
consists of first fitting regressions of daily
deaths against PM10 in each location, con-
trolling for season, weather, and day of the
week. I assume these estimated coefficients
β^i are normally distributed about some true
city-specific coefficient that is proportional
to γi, plus possibly an effect of PM10 net of
confounding, that is, 

β^i ~ N(α + δγi, ∑).

In the second stage, I estimate α using a
weighted regression, with inverse variance
weights. 

I have added one further refinement to
increase the power of the analysis. In most
cities, O3, CO, and SO2 show greater differ-
ences in their mean level between the indoor-
heating season and the warm season than does
PM10. This indicates that further variability
in the slope between these pollutants and
PM10 can be obtained by dividing the data in
each city into the indoor-heating season
(defined as November through April) when
CO and SO2 are high but O3 is low, and the
warm season, when the opposite is true. This
increases our ability to determine whether the
PM10 effect size varies with the slope between
PM10 and the other pollutants. To accom-
plish this, the regressions were fit separately in
each city in each of the two seasons. 

Assessment of effect modification. To test
for effect modification, I used social and eco-
nomic factors in the meta-regression instead
of the slopes between pairs of air pollutants.
This tests for an interaction term, where, for
example, the effect of air pollution increases
as the unemployment rate increases. Here
our primary interest is in the coefficient of
the effect modifier, which tells how much

the PM10 effect changes for a 1% increase in
the unemployment rate, for example. 

Assessment of low-level dose–response rela-
tionships. If there is a threshold for the effect
of PM10 on daily deaths, then the observed
slope for PM10 represents an average of the
true slope above the threshold and a slope of
zero below the threshold. One unambiguous
way to determine whether the effect persists at
low PM10 concentrations is to limit the analy-
sis to days with low concentrations. I chose a
cutoff of 50 µg/m3, well below the current
standard of 150 µg/m3 for PM10. If a thresh-
old exists above that concentration, I would
expect the mean effect estimate in the 10
cities to fall to zero. If there is a threshold
< 50 µg/m3, I would expect the average effect-
size estimate to fall because a larger fraction of
the days are below the threshold in the
restricted analysis than in the analysis that
included days up to 150 µg/m3. I refit the
individual city analyses with a restriction lim-
iting the analysis to days < 50 µg/m3 to test
this hypothesis and combined the results
using inverse variance weighting. 

Location of death analysis. In addition to
examining all cause mortality, I computed
separate daily counts of deaths occurring in
and out of hospitals. This is of interest for
several reasons. First, it indirectly addresses
the question of whether the time until death
is only being reduced by a few days. One
would expect people who are on the brink of
death to disproportionately die in hospitals
because many are in the hospital already. If
air pollution primarily affected those people,
I would expect its impact on hospital deaths

to be larger than on out-of-hospital deaths.
Second, the 1952 London smog disaster has
been cited as providing biological plausibility
to the observed associations at lower concen-
trations (17). If this association is real, one
would expect the impact of particulate air
pollution on deaths in and out of hospitals
to show similar patterns to those observed
during the London smog disaster. 

Results 

Table 1 shows the populations, mean daily
deaths, and means of the environmental vari-
ables in the 10 study locations. The Census
data are shown in Table 2. PM10 was only
modestly correlated with the weather variables
in most of the 10 locations, and the correla-
tions varied considerably, as shown in Table
3. There was considerable variation in the
relationship between PM10 and the other air
pollutants across locations and seasons. The
SO2/PM10 coefficients ranged from a low of
0.079 to a high of 1.24. This is more than an
order of magnitude, providing enough power
to determine if there is a trend to higher
PM10 slopes in locations where 1 µg/m3 PM10
represents more SO2. The same was true for
the other pollutants, where the O3/PM10
slopes ranged from -0.22 to 1.07 and the
CO/PM10 slopes ranged from 0.013 to 0.08. 

Table 4 shows the estimated effect of a
10 µg/m3 increase in PM10 for all deaths, for
deaths out of hospitals, and for deaths in hos-
pitals. PM10 was a significant predictor of all-
cause mortality [0.67% increase for a 10
µg/m3 increase in PM10; 95% confidence
interval (CI), 0.52–0.81%]. The effect size
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Table 1. Characteristics of the study locations. 

1990 PM10 Dew Temperature Pressure 
City Population Deaths (µg/m3 ) point (°F) (mmHg)

New Haven 804,219 20.4 28.6 40.1 50.5 29.8
Birmingham 651,525 19.1 34.8 51.7 62.4 29.4
Pittsburgh 1,336,449 63.3 36.4 41.2 52.1 28.8
Detroit 2,111,687 59.7 36.9 40.7 50.9 29.3
Canton 367,585 9.9 29.31 41 50.4 28.7
Chicago 5,105,067 133.4 36.5 39.8 50.3 29.3
Minneapolis–St. Paul 1,518,196 32.3 27.5 35.5 46.3 29.1
Colorado Springs 397,014 6 27.1 28.9 48.9 24.0
Spokane 361,364 8.7 40.6 34.2 47.9 27.5
Seattle 1,507,319 29.3 32.5 43.9 52.5 29.6

Table 2. Demographic characteristics of study locations.

Percent Percent with Percent below Percent 
City unemployed college degree poverty level nonwhite

New Haven 5.8 24.2 7.9 14
Birmingham 6.5 19.9 16.0 36
Pittsburgh 6.3 22.6 11.5 12
Detroit 12.4 13.7 20.1 43
Canton 7.2 14.3 11.1 8
Chicago 8.0 22.8 14.2 37
Minneapolis–St. Paul 4.8 30.7 9.9 11
Colorado Springs 7.3 25.8 10.4 14
Spokane 7.3 20.6 13.7 5
Seattle 4.1 32.8 8.0 15



was identical in the summer and winter peri-
ods. However, the effects of airborne particles
were substantially higher for deaths out of the
hospital than for deaths in the hospital.

Table 4 also shows the results when
restricted to days with PM10 < 50 µg/m3. The
slope of airborne particles was larger when
restricted to low air pollution days. These
results are illustrated graphically in Figure 2.

Table 4 also shows the estimated effect of
PM10 after controlling for potential con-
founding by SO2, O3, and CO (i.e., the inter-
cept term in the regression of the baseline
PM10 effect on the coefficient relating PM10
to each of the other pollutants). For all three
cooccurring pollutants, the effect size after
controlling for confounding was not substan-
tially (or statistically significantly) different
from the baseline result. This is illustrated in
Figure 3. These results indicate that there is
no trend to a higher PM10 coefficient in cities
or seasons with higher slopes between the
cooccurring pollutants and PM10. This is
illustrated in Figure 4, which shows the effect
size for PM10 in each city and season plotted
against the O3/PM10 coefficient. 

Figure 5 shows the estimated effect mod-
ification by different measures of social and
economic status. It shows how much more
of an increase in daily deaths is associated
with a 10 µg/m3 increase in PM10 if the city
had a 5% higher unemployment rate, an
additional 5% of the population living
under the poverty level, an additional 5% of
the population with college degrees, or an

additional 5% of the population nonwhite.
These are substantial increases in each of the
postulated effect modifiers, but they are
associated with no noticeable change in the
estimated PM10 effect. 

Discussion

In an analysis of multiple cities across the
United States, PM10 was a significant pre-
dictor of daily deaths. The association was
identical in analyses restricted to the indoor-
heating season and the warm months. This is
consistent with previously published results
(18). Given the large differences in the con-
centrations of cooccurring pollutants between
the summer and winter months, this alone is
evidence that the particle associations cannot
be primarily due to confounding with other
pollutants. 

The association differed by location of
death, with a larger effect on deaths out of
hospitals. These results are consistent with
previous reports from Philadelphia (19) and
with the experience in the great London
smog episode of 1952 (17). This suggests
that most of the PM10-associated deaths are
not in people who are desperately ill and
hence that, in most cases, increased mortality
is not a result of time of death simply being
reduced by a few days. 

A higher risk of death out of the hospital
suggests that sudden death is a major compo-
nent of the air pollution-associated risk and,
indeed, “dead on arrival” deaths were most
strongly associated with air pollution in the
Philadelphia analysis (16). Recently, more
mechanistic evidence has been developed that
supports the notion that airborne particles can

be associated with sudden death. A study of
subjects with implanted cardiac defibrillators
found an increased risk of ventricular tachy-
cardia and ventricular arrhythmia associated
with PM2.5 (20). Arrhythmia is one of the
major causes of sudden death. Arrhythmia
and sudden death have also been produced in
rats by combustion particles (21) under exper-
imental conditions where the responses
cannot be attributed to cooccurring pollu-
tants. This association is also supported by
studies of electrocardiogram changes that are
precursors to arrhythmia. Godleski et al (22)
reported an association between these electro-
cardiogram changes and exposure to concen-
trated air particles under experimental
conditions in animals with preexisting illness-
es. Similar changes have been reported to be
associated with airborne particles in three epi-
demiologic studies using continuous electro-
cardiogram monitoring in humans (23–25).
Increases in heart rate have been associated
with exposure to airborne particles in studies
in Baltimore, Maryland (25); Germany and
Boston, Massachusetts (26); and Utah (27). 

Another major cause of sudden death is
thrombotic processes leading to myocardial
infarctions. Here again, recent animal and
human studies indicate that airborne particles
may be affecting these processes. Exposure to
combustion particles has been associated with
increased plasma fibrinogen in rats (28), and
an episode of high particulate air pollution
was associated with increased plasma viscosity
in a large epidemiology study (29). The 
findings of the present study are therefore
consistent with a growing body of more
mechanistic research in humans and animals. 

There was no trend of higher PM10
effect sizes in towns with higher SO2/PM10
slopes, nor in towns with higher O3/PM10
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Table 3. Correlations between PM10 and weather
variables. 

Temperature Pressure
City (°F) Dew point (mmHg)

New Haven 0.05 -0.11 0.11
Birmingham 0.26 0.19 0.19
Pittsburgh 0.45 0.44 0.44
Detroit 0.37 0.38 0.38
Canton 0.42 0.45 0.45
Chicago 0.36 0.32 0.32
Minneapolisa 0.29 0.26 0.26
Colorado Springs -0.34 -0.42 -0.42
Spokane -0.01 -0.16 -0.16
Seattle -0.22 -0.29 -0.29
aMinneapolis–St.Paul.

Table 4. Estimated effect of a 10-µg/m3 increase
in PM10 on daily deaths in the meta-analysis. 

Percent increase 
Model in deaths 95% CI

Overall 0.67 0.52–0.81
Summer only 0.67 0.48–0.86
Winter only 0.66 0.45–0.87
In hospitals 0.49 0.31–0.68
Out of hospitals 0.89 0.67–1.10
Days < 50 µg/m3 0.87 0.62–1.12
Confounding by

SO2 0.57 0.25–0.90
CO 0.90 0.42–0.97
O3 0.69 0.53–1.26

Figure 2. Percent increase in daily deaths associ-
ated with a 10-µg/m3 increase in PM10 from six
separate analyses. Hosp, hospital. Results are
shown for all deaths for summer and winter com-
bined (Sum/Win), summer only, winter only,
deaths in hospitals, deaths out of hospitals, and
all deaths, but restricted to days when PM10 was
< 50 µg/m3. 
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or CO/PM10 slopes. This indicates that the
PM10 effects are not likely to be caused by
confounding by other pollutants. These
results address the issue of whether the PM10
effect is due to the other pollutants: they do
not address the question of whether those
other pollutants have significant associations
with daily deaths as well. This will be
addressed in a later study. 

Recent animal studies, in which exposure
can be controlled and limited to airborne par-
ticles, support the finding of an independent
particle effect. For example, Zelikoff et al.
(30) reported that exposure to concentrated
air particles after infection with streptococcal
pneumonia was associated with a doubling of
the area of lung involvement and a doubling
of the bacterial burden of rats within 48 hr.
Effects of particle exposure on influenza mor-
tality have also been noted (31). 

The PM10 effect was not substantially
modified by socioeconomic status measured
at the city level, but when the analysis was
restricted to days with PM10 concentrations
< 50 µg/m3, the effect was greater. These
results are inconsistent with a threshold for
PM10 at any concentrations except those
substantially < 50 µg/m3. Indeed, they sug-
gest that the PM10 slope increases at lower
concentrations, rather than approaching
zero. This tendency for a lower slope at high
concentrations has been noted in London
(32) and in the APHEA study (Air Pollution
and Health: a European Approach) (33). A
study of six U.S. cities recently reported a
higher slope for PM2.5 when the analysis was
restricted to days < 30 µg/m3 (34).

One limitation of studies such as these is
the use of outdoor monitoring stations rather
than personal exposure monitors. Because the
difference between these measurements can
be large, some have questioned whether the
associations reported in daily time–series stud-
ies could be causal. Several recent papers have
addressed parts of this issue. Wilson and Suh
(35) pointed out that outdoor monitors are
surrogates for personal exposure to particles of
outdoor origin, such as motor vehicle exhaust
and sulfates. Current personal monitors

measure personal exposure to particles of all
sources, including resuspended house dust,
environmental tobacco smoke, and cooking
aerosols. Hence, personal exposure to particles
of outdoor origin are more closely related to
outdoor concentrations than some interpreta-
tions of personal monitoring data suggest.
This has been confirmed by Janssen et al.
(36), who found median correlations between
personal particle monitors in adults and out-
door monitors were much higher after exclud-
ing environmental tobacco smoke (ETS)
exposure. Janssen et al. (36) also highlighted
another key issue. Most of the difference
between personal PM exposure and outdoor
concentrations reflects cross-sectional varia-
tions among persons. For time–series studies,
it is the longitudinal correlation that matters,
and Janssen et al. (36) reported considerably
higher longitudinal correlations between per-
sonal PM exposure and outdoor concentra-
tions, with a median of 0.70 for PM10 in the
absence of ETS exposure. Finally, two recent
articles examined the statistical implications of
the measurement error. Schwartz and Levin
(37) pointed out that most of the difference
between personal and central measurements
of exposure in the time–series context are
Berkson error, and hence do not bias the esti-
mates. Zeger et al. (38) have explored the
issue in more detail and have shown that the
remaining bias is negative—that is, an under-
estimation of the effect. Hence, measurement
error in exposure is an unlikely cause of these
associations. 

In sum, this study provides evidence that
airborne particles influence the number of
daily deaths and that these effects are not
primarily attributable to other air pollutants.
The data show the same pattern of higher
relative effect on deaths out of the hospital

that was seen in an air pollution episode
where causality of the pollution effect is well
accepted. That pattern, moreover, is consis-
tent with recent animal and human data on
the effects of particles on risk factors for sud-
den death. Finally, the public health benefit
of each incremental reduction of 1 µg/m3

appears to be higher at the lower air pollu-
tion levels that prevail on most days. This
suggests that intervention strategies that
lower average levels, rather that those that
address the few peak days, are the most
appropriate. This is an important considera-
tion, as a number of cities (e.g., Mexico City,
Mexico; Athens, Greece) have adapted strate-
gies that limit driving or industrial activity on
peak pollution days. Such approaches do
lower average levels, but are costly and disrup-
tive, and the same effort put into reducing
everyday emissions appears likely to produce
greater public health benefit. 
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