
In 1993, Colborn et al. (1) pointed out that
large amounts of industrial-derived endo-
crine-disrupting chemicals have been
released into the environment since world
War II, and they hypothesized that prenatal
or early postnatal exposure to these com-
pounds could result in permanent and irre-
versible damage to wildlife and humans.
Several studies on wildlife populations have
documented adverse effects that correlate
with exposure to one or more putative
endocrine-disrupting chemicals (2–9); how-
ever, in many instances it is difficult to
assign causality because of the complexity of
environmental contaminants and the lack of
analytical data that document contaminant
levels during critical windows of exposure.
Nevertheless, there have been several inci-
dents in wildlife populations that strongly
correlate with exposure to specific industrial
chemicals; this includes alligators in Lake
Apopka, Florida, exposed to a spill of
organochlorine pesticides from a chemical
waste site (5,8,9). The alligators display a
host of morphologic and hormonally related
abnormalities of the male and female repro-
ductive tracts, including reduced penis size
in males. This reduced penis size in male
alligators (5,8,9) and a report (10) which
suggested that sperm counts had decreased
globally (from 113 × 106 to 66 × 106/mL)
during 1938–1990 generated considerable
public, media, regulatory, and scientific con-
cern about the possible role of environmen-
tal exposures to endocrine disruptors and
their role in decreased male reproductive

capacity and breast cancer in women. In
1995, I critically reviewed the endocrine-dis-
ruptor hypothesis; based on the available
data, I was highly skeptical about the causal
linkage between exposure to environmental
(industrial-derived) endocrine disruptors and
adverse human health effects (11). Some of
this skepticism was related to the relatively
low levels of exposure to synthetic endocrine
disruptors, particularly those with estrogenic
activity (xenoestrogens), as compared to high
dietary concentrations of naturally occurring
endocrine-active compounds in fruits and
vegetables and their derived food products.
Since 1995, the endocrine-disruptor
hypothesis has spurred new scientific studies
that address several relevant issues, and I
will highlight and discuss these in this
paper. In addition, the National Research
Council has published a comprehensive
report on “Hor-monally Active Agents in
the Environment” (12).

Wildlife and Laboratory
Animal Studies
The effects of environmental endocrine dis-
ruptors on wildlife populations are being
extensively investigated; adverse developmen-
tal and reproductive effects have been pri-
marily linked to organochlorine compounds
such as polychlorinated biphenyls (PCBs),
polychlorinated dibenzo-p-dioxins (PCDDs),
and polychlorinated dibenzofurans (PCDFs),
as well as alkylphenols derived from alkylphe-
nol ethoxylate (AE) surfactants. Persistent
organochlorine pollutants (POPs), including

both pesticides such as DDT/DDE and
PCBs, were among the first industrial com-
pounds identified in the environment.
Moreover, with improvement of analytical
techniques, an ever-increasing number of
structurally diverse POPs have been detected
in environmental samples at low concentra-
tions (2,6,13,14). The use and production of
DDT and PCBs were restricted and banned
in most countries in the 1970s; however,
these compounds are still the most abundant
POPs in most wildlife and human samples,
even though their concentrations have sig-
nificantly decreased over the past 30 years
(14–16). Lower concentrations of POPs in
the Great Lakes region are correlated with
“dramatic improvements in reproductive
success and significant increases in popula-
tions of cormorants, gulls, terns, herons and
other predatory birds in the Great Lakes
basin” (16).

There has been particular concern about
the discharge and environmental persistence
of AEs and their alkylphenol degradation
products, which have been identified in rela-
tively high concentrations in industrial sewage
effluents and in sediments in lakes and rivers
in Europe (4,17–21). Concentrations of these
compounds in North American rivers and
sediments tend to be lower. Soto et al. (20)
showed that nonylphenols extracted from
polystyrene were estrogenic, and Jobling and
Sumpter (17) showed that the estrogen-regu-
lated yolk protein, vitellogenin, was induced
in male fish collected near sewage outflows in
the United Kingdom. Moreover, Fairchild et
al. (22) hypothesized that the estrogenic
effects of nonylphenol, a solvent/emulsifier
(an AE) used in pesticide spraying, may be
related to declines of Atlantic salmon in
Atlantic Canada. The widespread estroge-
nized fish populations in British rivers and
estuaries have been extensively investigated
(23–25) and were initially linked to
nonylphenols and related compounds; how-
ever, the recent identification of etiologic
agents from sewage treatment effluents that
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received mainly domestic wastes was some-
what surprising (23,24). The major estrogenic
components were the natural hormones 17β-
estradiol (E2) and estrone, with minor
amounts of the birth control pill ingredient
17α-ethinylestradiol. Routledge et al. (23)
concluded that 

environmentally relevant concentrations of nat-
ural steroidal estrogens are sufficient to account
for the levels of vitellogenin synthesis observed
in caged male fish placed downstream of certain
[sewage treatment works] effluent discharges in
British rivers. 

Thus, although initial concern regarding the
estrogenic disruption of fish in U.K. rivers
focused on synthetic estrogenic AE surfac-
tants, human and possible animal discharges
were the major sources of these environmen-
tal endocrine disruptors. This highlights the
difficulties in assigning causality to environ-
mental endocrine-disrupting chemicals with-
out thoroughly investigating all potentially
active agents.

Strong support for the endocrine-disrup-
tor hypothesis has come from laboratory ani-
mal studies where increasing numbers of 
synthetic chemicals have been shown to
exhibit estrogenic/antiestrogenic, andro-
genic/antiandrogenic, and other endocrine-
like activities (6,26–33). Included in this list of
chemicals is p,p´-DDE, a major environmen-
tal contaminant that has been shown to exhib-
it antiandrogenic activity in both in vivo and
in vitro models (28). Research from several
laboratories has shown that in utero exposure
to extremely low doses of 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD; ≤ 1 µg/kg),
an aryl hydrocarbon receptor (AhR) agonist,
can result in a host of neurodevelopmental
and reproductive tract problems in juvenile
and adult rodent offspring (26,27,30–32).

Studies on in utero exposure to the estro-
genic drug diethylstilbestrol (DES) have
served as an important model for delineating
problems associated with exposure to estro-
genic compounds in both animal models and
in humans; DES-induced effects on the male
and female reproductive tracts strongly sup-
port the endocrine-disruptor hypothesis
(34,35). Bisphenol A, an important interme-
diate in the production of polycarbonates, is
a weakly estrogenic industrial compound in
most, but not all, assays (36–38). For exam-
ple, bisphenol A induces mammary gland
growth in Noble rats at doses as low as 0.1
mg/kg/day; this is similar to the dose
required for the potent estrogen DES to
induce the same response (34). The estro-
genic activity of bisphenol A in CF-1 mice
has also generated controversy (39–41); vom
Saal et al. (39) reported that fetal exposure to
low doses of bisphenol A (2 or 20 µg/kg/day)
resulted in increased prostate weight in the
male offspring. Results for bisphenol A, E2,

and DES all gave low dose inverted U-shape
dose–response curves for this effect; at higher
doses, decreased prostate weight was observed
in the offspring (39,40). In contrast, Cagen
et al. (41) did not observe this low dose effect
for bisphenol A or DES in CF-1 mice. Thus,
the “low dose” hypothesis for this response
should be resolved for bisphenol A and other
estrogenic compounds.

Decreased Male Reproductive
Capacity and Endocrine
Disruptors
Sperm counts. The concern over decreased
sperm counts and male reproductive capaci-
ty was triggered by a paper on the meta-
analysis of 61 sperm count studies which
concluded that “There has been a genuine
decline in semen quality over the past 50
years” (10). This study (10) and a subse-
quent paper (42) hypothesized that 

We argue that the increasing incidence of repro-
ductive abnormalities in the human male may be
related to increased oestrogen exposure in utero.

PCBs and TCDD-like compounds, as well as
DDE, may also contribute to this problem
(42,43). The validity of the meta-analysis
(10) was quickly debated (44–48), but more
importantly, new research on this problem
was initiated throughout the world. Results
of single location and laboratory studies gave
highly variable results. Some reports showed
that over the last 15–25 years, there were sig-
nificant decreases in sperm quantity, whereas
other studies showed either no declines or
slight increases (49–58). Auger et al. (49)
investigated semen quality among fertile men
in Paris and reported that 

The mean concentration of sperm decreased by
2.1% per year from 86 × 106 per milliliter in
1973 to 60 × 106 per milliliter in 1992.

In contrast, using a similar approach, Bujan
et al. (50) reported that from 1977 to 1992,
“sperm concentration has not changed with
time in the Toulouse area.” In 1996, Fisch et
al. (59) reported that semen quality of 1,283
men from three sperm banks in the United
States had not declined over the last 25 years
(1970–1995). The surprising results of this
study were the large demographic differences
in sperm counts: sperm donors from New
York had the highest number (131.5 ± 3.5 ×
106/mL, mean ± SEM), followed by
Minnesota (100.8 ± 2.9 × 106/mL) and
California (72.7 ± 3.1 × 106/mL). 

In a separate study, Paulsen et al. (54)
reported no change in sperm counts in
Washington State between 1972 and 1993
(46.5 × 106/mL to 52 × 106/mL); by
accounting for geographic differences in an
analysis of 29 U.S. studies from 1938 to
1996, Saidi et al (60) reported “no significant

change in sperm counts during the last 60
years.” Geographic differences in sperm
counts have been reported in French men
(61) and Danish men (62) and also in a
Canadian study among 11 academic fertility
centers (63). The latter report shows that
among 48,968 samples of sperm taken from
Canadian men between 1984 and 1996,
there was a significant overall downward
trend in sperm counts (63); however, when
the data from 1975 to 1983 were included,
“there was no significant trend in sperm den-
sity” (63). The analysis of data from the indi-
vidual centers (1984–1996) showed that 6
centers had a downward trend and 5 centers
had small but insignificant increases in sperm
counts. However, the most remarkable
results from these studies were the differences
(geographic) between centers: in 1984, sperm
counts ranged from 51 × 106/mL to 121 ×
106/mL, and in 1996, these values ranged
from 48 × 106/mL to 137 × 106/mL (63).
The predictive value of sperm count data
taken from self-selected volunteers is clearly
subject to multiple variables including mea-
surement methods, temperatures, time of
day, and seasonal variability. Handelsman
(52) reported that mean sperm counts taken
from five different sets of volunteers at the
same hospital in Sydney, Australia, varied
from 142 × 106/mL to 63 × 106/mL, which
exceeded the differences in the decline in
sperm counts reported in the 1992 meta-
analysis by Carlsen et al. (10). Handelsman
(52) concluded that 

This highlights the invalidity of extrapolating
similar findings on sperm counts of selected vol-
unteers to the general male community or in
using such study groups to characterize sperm
counts in supposedly healthy men. 

These data suggest that we do not know
if sperm counts are actually up or down.
Our knowledge of sperm counts and their
temporal variability in normal populations is
minimal, and the contributions of the envi-
ronment (i.e., lifestyle, diet, contaminants,
etc.) are also unknown.

Hypospadias and cryptorchidism.
Cryptorchidism is a condition in which one
or both testicles have not descended, and
hypospadias occurs when the urethral open-
ing is displaced. Both of these responses have
been observed in male offspring of rodents
exposed in utero to estrogenic and antiandro-
genic compounds (64,65). Weidner et al.
(66) reported a significantly increased risk of
cryptorchidism, but not hypospadias, among
male offspring of female (but not male) gar-
deners. This study suggests a possible link
between in utero exposure to agricultural
chemicals used in gardening; however, the
identity of potential toxic chemicals and
their mode of action are unknown.
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Sharpe and Skakkebæk (42), suggested
that decreased male reproductive capacity
may be related to exposure to endocrine dis-
ruptors (42), and pointed out that some
studies reported increases in hypospadias and
cryptochidism in male infants. Paulozzi (67)
analyzed international trends in rates of
cryptorchidism and hypospadias from several
different countries and categorized regions
by gross domestic product (in 1984).
Hypospadias increased in more affluent areas
but not in less affluent areas up to 1985,
whereas no increases have been observed
since 1985. Before 1985, there were also
region-specific trends in rates of cryp-
torchidism (increases in two U.S. and one
South American system); however, since
1985, rates have actually declined in most
systems (67). Thus, the specter of a global
decrease in male reproductive capacity is not
supported by international trends for
hypospadias or cryptorchidism; however,
like the sperm count data, there is some evi-
dence that incidence of these problems is
also dependent on demography.

Testicular cancer. Testicular cancer is
one of the major types of cancer in young
men, and there is evidence suggesting a pre-
natal etiology (68). Cryptorchidism is one of
the known risk factors for testicular cancer,
suggesting that in utero or early postnatal
exposure to estrogens or antiandrogens may
contribute to development of this tumor in
young men (68–72). Testicular cancer is
generally increasing in most countries, and it
was suggested that p,p´-DDE, an antiandro-
gen, could play a role in the development of
this cancer (43). However, Ekbom et al.
(15) pointed out that DDE concentrations
in breast milk in the four Scandinavian
countries are not significantly different,
whereas the incidence of testicular cancer
(1985–1989) varies from 14.5/105 males in
Denmark (highest) to 3.6/105 males in
Finland (lowest). Moreover, as the overall
incidence of testicular cancer has increased
in all Scandinavian countries during the last
25–30 years, there has been an 80–90%
decrease in average breast milk DDE con-
centrations, showing an inverse relationship
between testicular cancer and DDE concen-
tration (15). Similar inverse correlation can
be observed in most other developed coun-
tries, including the United States (73). Many
countries in similar regions (e.g., bordering
the North Sea) do not have major differences
in human or environmental concentrations
of persistent organochlorine pollutants, and
differences in production and human expo-
sure to other synthetic chemicals are unlikely.
Environmental exposures have not been
linked or correlated with testicular cancer,
and the environmental and lifestyle factors,
including diet and occupational exposures,

that are responsible for this disease are
unknown and should be investigated.

Sex ratios and endocrine disruptors. A
recent study (74) reported that accidental
exposure to high concentrations of TCDD
in Seveso resulted in lower sex ratios
(male/female) at birth; this observation has
been noted for high level occupational expo-
sures to some chemicals (74–76). There is
evidence from several countries, including a
recent U.S. study, that in the past few decades
there have been small but significant decreases
in sex ratios (77–79). The potential role of
male/female sex ratios as sentinel health indi-
cators “that may be linked to environmental
factors” was proposed by Davis et al. (80),
based on their observations that the propor-
tion of males born in Denmark (1950–1994),
The Netherlands (1950–1994), Canada
(1970–1990), and the United States (1970–
1990) had decreased. However, in the United
States, although the overall sex ratio decreased
from 1.053 in 1969 to 1.049 in 1995, this
small decline was observed only for Cau-
casians but not African Americans (77); the
authors concluded that “environmental expo-
sures are unlikely to account for the observed
trends.” In a more recent comprehensive
study, Vartainen et al. (81) examined sex
ratios in Finland over the past 250 years.
From 1751 to 1920, there was an increase in
male/female birth ratios, and with the excep-
tion of pre- and post-World War I and II
years, there has been a decline in these ratios
since 1920. The authors concluded that 

the present data do not support the hypothesis
that agricultural or industrial environmental
estrogens play any significant role

because, in Finland, major production and
exposures to these types of chemicals
occurred after 1950. James (82) initially pro-
posed that newborn sex ratios may be a use-
ful indicator of male reproductive hazard but
has subsequently concluded that “population
sex ratios at birth are not useful monitors of
reproductive hazard.” 

Fertility. Temporal changes in human
fertility have not been extensively investigat-
ed; however, a recent study in Sweden (83)
concluded that 

a decrease in male fertility cannot be ruled out …
but if present, it is minor and totally outweighed
by other favorable developments. 

Akre et al. (83) observed declining infertility
among successive birth cohorts, and “this
strongly argues against a substantial deterio-
ration in sperm quality.” This was explained
by the decreasing incidence of gonorrhea
between 1970 and 1992. Previous studies
that demonstrated adverse effects of DES on
male and female offspring are unquestion-
able (34,35); however, Wilcox et al. (84)

reported that fertility of DES-exposed males
was not significantly different from males in
a control group. DES was not used in
Finland, but in a recent study, Hemminki et
al. (85) reported reproductive effects of in
utero exposure to estrogen and progestin
drugs on male and female offspring. There
were some differences in times of birth
between controls and hormone- or drug-
exposed individuals (e.g., time to first birth
after marriage, mean time between first and
second live birth); however, the overall fertil-
ity in both groups was similar. Hemminki et
al. (85) concluded that 

Estrogen- and progestin-containing drugs as used
in the study population did not have much
impact on the fertility of offspring.

Thus, pharmacologic doses of estrogenic
drugs did not affect fertility, and it is unlike-
ly that much lower concentrations of weakly
estrogenic industrial compounds would
affect fertility. Thus, with the exception of
testicular cancer, data from more recent
studies suggest that there does not appear to
be a worldwide decrease in disorders of the
male reproductive tract.

Xenoestrogens and Breast
Cancer
In 1992–1993, two studies from Connecticut
and New York reported higher concentrations
of PCBs and DDE, respectively, in breast
cancer patients as compared to controls
(86,87); this generated the hypothesis that
xenoestrogens, such as PCBs and DDE, were
preventable causes of breast cancer (88). This
hypothesis was supported by the two studies
on breast cancer patients (86,87) and also by
in vitro metabolic data on chemical-induced
metabolism of E2 to 2-hydroxyestrone (2-
OHE1) and 16α-hydroxyestrone (16α-
OHE1) metabolites in MCF-7 human breast
cancer cells (89). The hypothesis of Davis et
al. (88) was criticized on several counts (11),
and new research on the role of organochlo-
rine contaminants in the incidence of breast
cancer has clarified some of these issues.

PCB and DDE concentrations in breast
cancer patients. I was particularly skeptical
about the biologic plausibility of the xenoe-
strogen hypothesis because occupational
exposures to high concentrations of PCBs or
DDE have not been associated with increased
risk for breast cancer (11). In rodent carcino-
gen-induced mammary cancer models, DDE
and 3,3´,4,4´-tetrachlorobiphenyl both
increased and decreased mammary tumor for-
mation and growth (90–93), and the increase
in mammary tumor formation was primarily
associated with altered carcinogen metabolism
(91,92). Both TCDD and higher chlorinated
PCB mixtures inhibited formation of sponta-
neous mammary tumors in 2-year-old female
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Sprague-Dawley rats (33,94); this was consis-
tent with the antiestrogenic activity associated
with AhR agonists in breast cancer (95,96).

Several recent studies on DDE and PCB
concentrations in breast cancer patients ver-
sus controls have been carried out in Europe,
Asia, North and South America, and most
studies indicate that levels of these organo-
chlorine contaminants are not significantly
different in the two groups (Table 1)
(97–106). These data are consistent with an
earlier report by Krieger et al. (107) in a
California cohort. Several studies have also
investigated risk for breast cancer and corre-
lations with other organochlorine com-
pounds or other parameters. For example,
Moyisch et al. (101,106) reported an odds
ratio (OR) of 1.8 for women (parous women
who had never lactated) with high concen-
trations of hexachlorobenzene (HCB), but
Zheng et al. (108) did not observe higher
concentrations of HCB in patients in
Connecticut (304 cases and 186 controls)
and concluded that 

our study does not support a positive association
between environmental exposure to HCB and
risk of breast cancer. 

In a study in Copenhagen, Hoyer et al.
(102) reported that although correlations for
PCBs were not observed, the pesticide dield-
rin was associated with an increased risk for
breast cancer. The authors concluded that

these findings support the hypothesis that expo-
sure to xenoestrogens may increase the risk of
breast cancer.

Dieldrin is an exceedingly weak estrogen in
most assays, and the biologic plausibility that
trace concentrations of this contaminant
play a role in breast cancer is minimal. Some
recent studies have combined differences in
DDE or PCB concentrations with drug-
metabolizing enzyme polymorphisms in
breast cancer patients and control groups
(mixtures and congeners) to further investi-
gate correlations with breast cancer (106);
this approach in future studies may lead to
new insights. 

Estrogen metabolite ratios. Bradlow et
al. (89) investigated the effects of various

chemicals, including several organochlorine
pesticides, on the metabolism of E2 to 2-
OHE1 and 16α-OHE1 in MCF-7 human
breast cancer cells and concluded that “the
ratio of 16α-OHE1/2-OHE1 may provide
a marker for the risk of breast cancer.”
PCBs, DDE, and other weakly estrogenic
pesticides induced higher 16α-OHE1/2-
OHE1 ratios, and these data were initially
used to support the xenoestrogen hypothesis
in early reports showing higher concentra-
tions of PCBs or DDE in breast cancer
patients versus controls. The predictive util-
ity of the ratio was based on reports that
16α-OHE1 was highly estrogenic and high-
er levels of this metabolite were observed in
a small cohort of breast cancer patients
(89,109,110). In contrast, 2-OHE1 exhibits
partial antiestrogenic activity and was
labeled by Bradlow et al. as “the ‘good’
estrogen” (110). In my laboratory, we used
the radiometric assay, as previously
described (89), to investigate the effects of a
diverse spectrum of estrogens, antiestrogens,
and mammary carcinogens on estrogen
metabolism (111,112). The results showed
that the metabolite ratios in our study were
not predictive of carcinogens, estrogens, or
antiestrogens, and metabolite ratios varied
with the concentration of some compounds
in this assay. For example, the triphenyleth-
ylene antiestrogen 4´-hydroxytamoxifen
decreased the ratio, whereas the potent
steroidal antiestrogen ICI 182,780 increased
the ratio; we also observed other inconsis-
tencies between compounds with similar
effects on mammary cancer (111,112). We
concluded that induction of this metabolite
ratio in MCF-7 breast cancer cells was not
predictive for a wide variety of chemicals
that may affect breast cancer in vivo (112).
Some additional studies question the use of
the urinary 16α-OHE1/2-OHE1 ratio as a
predictor of risk for breast cancer
(113–115). In a recent study, Ursin et al.
(115) reported that in 66 postmenopausal
breast cancer patients and 76 control
subjects, 

the ratio of 2-OHE1 to 16a-OHE1 was 1.1%
higher in the patients (p = 0.84) contrary to the
hypothesis. 

The authors concluded that 
this study does not support the hypothesis that
the ratio of the two hydroxylated metabolites (2-
OHE1/16α-OHE1) is an important risk factor
for breast cancer.

Endocrine Disruptors in the
Diet

The potential adverse role of endocrine dis-
ruptors in the diet during critical periods of
development will depend not only on intake
concentrations of these compounds but also
on their concentrations in serum and in the
fetus. Intake concentrations of synthetic
estrogenic compounds and AhR agonists are
low as compared to dietary intakes of natur-
al phytoestrogens and AhR-active com-
pounds (e.g., indole-3-carbinol) in fruits
and vegetables (11). In one collaborative
study, we compared the estrogenic potency
of one glass of red wine (200 mL) with the
corresponding potency of the estimated
daily intake of organochlorine pesticide
residues in food (116) (Figure 1). The
reconstituted mixture in this study included
the following weakly estrogenic organochlo-
rine contaminants: 1,1,1-trichloro-2-(p-
chlorophenyl)-2-(o-chlorophenyl)ethane,
1 , 1 , 1 - t r i c h l o r o - 2 , 2 - b i s ( p - c h l o r o -
phenyl)ethane, 1,1-dichloro-2,2-bis(p-
chlorophenyl)ethylene, endosulfan-1, endo-
sulfan-2, p,p´-methoxychlor, and toxaphene.
The relative proportion of each chemical in
the mixture resembled the composition
reported in a recent U.S. Food and Drug
Administration market basket survey (117).
Using a series of seven in vitro assays, the cal-
culated estrogen equivalents (EQs) in extracts
from 200 mL red cabernet wine varied from
0.15 to 3.68 µg/day. In contrast, the EQs for
consumption of organochlorine pesticides
(2.44 µg/day) varied from nondetectable to
1.24 ng/day. These data, coupled with EQs
for other foods (118), demonstrate that
dietary intakes of naturally occurring phytoe-
strogens far exceed intakes of organochlorine
xenoestrogens. However, these data should
not be overinterpreted because organochlo-
rine compounds bioaccumulate and can be
identified in serum and because dietary intake
levels of other xenoestrogens are unknown. 
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Table 1. Recent reports on PCB and DDE concentrations in breast cancer patients versus control groups.

DDE PCBs Serum 
Reference Cases (n) Control (n) Cases (n) Control (n) fat (concentration)

vant’ Veer et al. (98) 1.35 (265) 1.51 (341) ✔ (µg/g)
Hunter et al. (99) 6.01 ± 4.56 (236) 6.97 ± 4.56 (236) 5.08 ± 7.51 (236) 5.16 ± 2.26 (236) ✔ (ng/mL)
Schecter et al. (100) 2.33 ± 0.46 (21) 2.37 ± 0.58 (21) – – ✔ (ng/mL)
López-Carrillo et al. (97) 4.75 (141) 4.07 (141) – – ✔ (ng/mL)
Liljegren et al. (104) 0.767 (43) 1.026 (35) 1.205 (43) 1.149 (335) ✔ (µg/g)
Guttes et al. (103) 0.805 (45) 0.496 (20) 0.625 (45) 0.505 (20) ✔ (µg/g)
Moysich et al. (101) 11.47 (154) 10.77 (192) 4.24 (154) 4.12 (192) ✔ (ng/mL)
Hoyer et al. (102) 10.2 (240) 9.5 (477) 8.6 (240) 8.7 (472) ✔ (ng/mL)
Helzlsouer et al. (105) 11.5 ± 7.1 (235) 13.6 ± 10.6 (235) 7.9 ± 6.4 (235) 9.7 ± 3.6 (235) ✔ (ng/mL)
Moysich et al. (106) 7.9 ± 6.4 (105) 9.7 ± 3.6 (105) 2.1 ± 2.0 (105) 2.2 ± 1.9 (105) ✔ (ng/mL)



Recent reports have investigated serum
concentrations of some phytoestrogens
(119,120), and these can be compared to
endogenous hormone and organochlorine
xenoestrogen serum concentrations in human
populations. A recent study on women in
Long Island, New York, showed that total
serum concentrations of organochlorine pes-
ticides plus PCBs were < 10 ng/mL (121);
these values correspond to serum concentra-
tions from women sampled within the last
5–10 years (Table 1). Setchell et al. (119)
recently summarized serum concentrations of
endogenous estrogenic hormones in men,
women, and children as well as concentra-
tions of estrogenic isoflavones in various
groups. Serum concentrations of estradiol in
men, women, and neonates are variable
(between 10 and 500 pg/mL); however, con-
centrations in maternal blood and cord blood
are similar to concentrations of organochlo-
rine compounds (10,000 pg/mL). On the
basis of the low estrogenic potencies of these
xenoestrogens, it is unlikely that their effects
as estrogens are important. This does not
exclude endocrine- and estrogen-independent
toxic actions of organochlorine compounds
that are currently being investigated in several
laboratories. Serum concentrations of estro-
genic isoflavones (primarily genistein,
daidzein, and equol) can range from 552,000
to 1,755,000 pg/mL (mean = 988,000
pg/mL) in soy-fed infants; these are approxi-
mately 100-fold higher than organochlorine
concentrations (119). High isoflavone con-
centrations (~ 100,000 pg/mL) have also
been detected in Japanese men (119,120).
Thus, on the basis of current analytical data,
soy-fed infants are the group with the highest
exposure to estrogenic compounds during
critical periods of development. Most studies
associate consumption of phytoestrogen-con-
taining foods with health benefits (122,123);
however, as reported by Setchell et al. (119), 

To allay increasing concerns about soy-based for-
mulas, long-term follow-up studies are needed to
assess the potential beneficial or adverse effects of
phyto-oestrogen exposure in early life.

Summary

Environmental concentrations of persistent
organochlorine compounds have been
decreasing over the past two decades, and
this correlates with remarkable advances in
the detection of exceedingly low levels of
these compounds in human populations.
Undoubtedly, correlational studies of human
diseases with tissue and serum concentra-
tions of organochlorine compounds will
continue, and due to the large number of
these compounds, positive correlations with
some diseases will undoubtedly be made. It
is important that interpretation of data
obtained from these studies consider biologic
plausibility and temporal trends in concen-
trations as well as additional correlative
results from other reports.

Results of recent studies suggest that
there is not a global decrease in male repro-
ductive capacity and that an etiologic role
for xenoestrogens in female breast cancer is
unlikely. It is possible that new scientific
evidence may reinforce or weaken these
conclusions; it is also important to carefully
validate and replicate findings before media
announcements that may contribute to
unnecessary fear and worry by the public. A
recent book, The Culture of Fear (124), has
addressed some of the issues regarding
unreasonable fears by the public; it states, 

We compound our worries beyond all reason.
Life expectancy in the United States has doubled
during the twentieth century. We are better able
to cure and control diseases than any other civi-
lization in history. Yet, we hear that phenomenal
numbers of us are dreadfully ill. 

The role of endocrine disruptors and
human disease has not been fully resolved;
however, at present the evidence is not
compelling.

Note: A recent paper by many of the same coauthors
of the sperm count meta-analysis study (10) have
now reported “a significant increase in mean sperm
concentration from 53.0 × 106/mL in 1977 to 72.7
× 106/mL in 1995” among donors to the Central
Sperm Bank in Copenhagen (125).
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Figure 1. (A) Estrogen equivalents (EQs) in various food products and organochlorine compounds (OCs) (117) and (B) range of human serum concentrations of
natural estrogens, isoflavones, and OCs (116,119) in different groups. EQs (ng) were 0–1 for OC pesticides in food, 200–3,000 for red wine, 200–1,000 for beans, and
24,000 for cabbage.
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