

We must say that
there are as many
squares as there
are numbers. 9

8	м	Т	w	Т	F	8			
1	2	3	4	5	6	7			
8	9	10	п	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
April 2009									
s	М	т	W	т	F	s			
			1	2	3	4			
	-	_	-	-					

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

February 2009

I his book, the *Two New Sciences*, Galileo noted contradictory statements about positive whole numbers. Some numbers are perfect squares while others are not. If you counted to infinity (1, 2, 3, 4, etc.), you could write the square of each number next to it (1 next to 1, 4 next to 2, 9 next to 3, etc.). The paradox occurs because you would think the squares would become fewer and fewer when spread out over the countable numbers, but they never run out. There when spread out over the countable number to pair with another in a one-to-one correlation of infinite sets; thus, there cannot be more of one than of the other. Later, the German mathematician

of one than of the other. Later, the German mathematician Georg Cantor argued that the above theory was correct when applied to whole and rational numbers, but that some infinite sets are larger than others. Today, many math textbooks define an infinite set as one that can be placed in a 1-1 correspondence with a proper subset of itself.

Sumary	monday	I desidey	vi cunesuay	1 nur suay	I I May	Saturday		
1	2	3	4	5	6	7		
	$E_0 = \mathbf{m}$	mmm	mmm	m m m	m m …			
8	9 $E_1 = W$	10 W W	NV W W	12 W W	13 W ···	14		
	$E_2 = m$	w m w	mwm	wm w	m w …			
	Pyrim- W	m w m	wm w	m w m	m w …	Pi Day Albert Einstein's		
Daylight Savings Time Begins	Sundown) Square Root Day	m m w	wmm	w m w	m w …	Birthday SAT Test Date		
15	$16E_5 = m$	i≯m w	18 M W	19 W M	20 m …	21		
	$E_6 = m$	wm w	wm w	w m w	m w …			
	$E_7 = W$	mm w	m w m	wm w	m w …			
	$E_8 = m$	St. Patrick's Day	wmw	New Orleans, LA www.nsta.org	NSTA Conference	NSTA Conference		
22	$23^{2}_{9} = W$	24 W M	26 W W	26 W W	127 W ···	28		
	$E_{10} = W$	wm w	m w m	wmm	w m …			
	$E_{II}=m$	wm w	wm w	m m w	m m …			
NSTA Conference New Orleans, LA www.nsta.org	0 0 0 0	0 0 0 0 0 0 0 0 0		• • • • • •	• • •			
29	30 E _u ≒ W	3h W W	.Math Question — A geometric series is defined as the sum from n = 1 to infinity of the terms defined by x to the nth power. For what range of x does the geometric series converge?					
		Registration Deadline for May SAT		[əgəəvnoə ton ob sm	or X < 1 rthan or equal to 1, ter	,1 bno 1- neewte8 :A Isoni zi x îi :noitulo2]		

Manday Waaday Wadaaday Mhanaday