Processed Foods Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
 

Research Project: NEW TECHNOLOGIES TO PROCESS VALUE-ADDED, HEALTHY FOODS FROM FRUITS AND VEGETABLES

Location: Processed Foods Research

Title: FEASIBILITY OF USING INFRARED HEATING FOR BLANCHING AND DEHYDRATION OF FRUITS AND VEGETABLES

Authors
item Pan, Zhongli
item Olson, Donald
item Ameratanga, K.S.P. - UC DAVIS, DAVIS, CA
item Olsen, Carl
item Zhu, Yi - UC DAVIS, DAVIS, CA
item McHugh, Tara

Submitted to: American Society of Agricultural Engineers Meetings Papers
Publication Type: Proceedings/Symposium
Publication Acceptance Date: May 20, 2005
Publication Date: July 16, 2005
Publisher's URL: http://asae.frymulti.com/techpapers.asp?confid=tfl2005
Citation: Pan, Z., Olson, D.A., Ameratanga, K., Olsen, C.W., Zhu, Y., Mc Hugh, T.H. 2005. Feasibility of using infrared heating for blanching and dehydration of fruits and vegetables. American Society of Agricultural Engineers Meetings Papers. ASAE Paper No. 056086. p. 1-13. St. Joseph. MI.

Interpretive Summary: Blanching and dehydration are two essential processes with high energy consumption for fruits and vegetables. Blanching is normally achieved using hot water and steam that can cause losses of nutrients. It is desirable to develop alternative blanching and dehydration technology with high process and energy efficiencies to produce high quality fruit and vegetable products. The results showed that all tested fruits and vegetables could be effectively blanched in relatively short times and the products had good appearances. The required blanching times were related to physical and chemical properties. Especially when the products needed to be further dehydrated, using infrared heating could perform simultaneous blanching and dehydrations.

Technical Abstract: The objective of this study was to evaluate the feasibility of using medium and far infrared heating for blanching and dehydration of various fruits and vegetables. The infrared blanching was referred as infrared dry-blanching (IDB) in this study since no water or steam was used. A catalytic infrared blancher/dryer was used to perform the blanching and dehydration functions. For the blanching study, fruits and vegetables, including pears, baby carrots, sweet corn and french fries, were blanched with a radiation energy intensity of 5.7 kW/m2. The pears were cut into 12.7 mm cubes and french fries had cross sections of 12.7 x 12.7 mm. The sweet corn kernels were removed from the cobs before blanching. The whole baby carrots had a diameter of 15 mm. It took 2, 4, 1, and 3.5 min to inactivate the peroxidase in the pear cubes, whole baby carrots, cut corn and french fries, respectively. The IDB also showed a high heating rate. It was concluded that all tested fruits and vegetables were effectively blanched in relatively short times and the products had good appearances. When the pear cubes were further dehydrated to 50% weight reduction with a radiation energy intensity of 2.7 kW/m2 after the blanching, the total time saving of IDB was 43.9% compared to steam blanching followed by heated air drying. The texture and appearance of IDB processed pears appeared to be superior compared to the control samples produced with steam blanching and heated air drying. Therefore, the IDB can be used for performing simultaneous blanching and dehydrations.

   

 
Project Team
McHugh, Tara
Pan, Zhongli - John
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   IMPROVEMENT OF CONSISTENCY AND ACCURACY OF RICE SAMPLE MILLING
   DEVELOPMENT OF NEW PROCESSING TECHNOLOGIES FOR IMPROVING THE QUALITY AND SAFETY OF SPECIALTY CROPS AND FISH BY-PRODUCTS
   EDIBLE APPLE AND TOMATO ANTIMICROBIAL FILMS
 
 
Last Modified: 11/07/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House