Plant Polymer Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Advanced Starch-Based Materials for Non-Food Applications

Location: Plant Polymer Research

Title: Dft Conformation and Energies of Amylose Fragments at Atomic Resolution Part I: Syn Forms of Alpha-Maltotetraose

Authors
item Schnupf, Udo
item Willett, Julious
item Bosma, Wayne - BRADLEY UNIV. CHEM DEPT
item Momany, Frank

Submitted to: Carbohydrate Research
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: November 19, 2008
Publication Date: February 11, 2009
Citation: Schnupf, U., Willett, J.L., Bosma, W.B., Momany, F.A. 2009. DFT Conformation and Energies of Amylose Fragments at Atomic Resolution Part I: Syn Forms of Alpha-Maltotetraose. Carbohydrate Research. 344(1):362-373.

Interpretive Summary: A thorough understanding of the conformational and energetic properties of carbohydrate molecules is essential for the design of new carbohydrate-based commercial products. This understanding is often hindered by the available experimental data and the large number of ways that the carbohydrate molecules can bend and fold. Alpha-Maltotetraose (DP-4) is a complicated system in terms of the number of possible molecular conformations, and we have used cutting edge theoretical methods to study the relative energies and structures of more than ninety DP-4 syn forms of these molecules. New and interesting molecular conformers have been identified from this study. Four glucose residue fragments of amylose have particular significance in nutritional and dietetic uses in enriched syrups, and are utilized as diagnostic testing materials for amylase enzymes. This work will lead to more efficient design methods for chemical modifications of starch that will result in biodegradable polymers with physical and structural properties useful for numerous commercial applications.

Technical Abstract: DFT optimization studies of ninety syn '-maltotetraose (DP-4) amylose fragments have been carried out at the B3LYP/6-311++G** level of theory. The DP-4 fragments studied include V-helix, tightly bent conformations, a boat, and a 1C4 conformer. The standard hydroxymethyl rotamers (gg, gt, tg) were examined at different locations in the residue sequence and their influence on the bridge conformations phi/psi values and conformer energy is described. Hydroxyl groups were considered to be homodromic, that is, they are either in the all clockwise, `c¿, or all counterclockwise, `r¿. Energy differences between conformations are examined in order to assess the stability of the different conformations and to identify the sources of energy that dictate amylose polymer formation. A small nearly cyclic compact structure is of low energy as one would expect when these flexible molecules are studied in vacuo. Many conformations in which the only differences are a single hydroxymethyl variation in the residue sequence, show similar energies and bridge conformations, with trends being a result of the hydroxymethyl as well as hydroxyl orientation. In general the `c¿ structures are of lower energy than the `r¿ structures, although this is only true for the in vacuo state. The solvent dependence on conformational preference of several low energy DP-4 structures was investigated via the continuum solvation method COSMO. These results suggest that the `r¿ structures may be favored for fully solvated molecules.

   

 
Project Team
Willett, Julious - J L
Momany, Frank
Finkenstadt, Victoria
Shogren, Randal - Randy
 
Publications
   Publications
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Determination of Structure-Property Relationships in Biological Macromolecules Using Biophysical Approaches
   Agricultural Polymers for Prevention of Corrosion on Metals
   Starch Foam Production by Extrusion
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House