SWIFT BAT SURVEY OF AGNs

J. TUELLER,¹ R. F. MUSHOTZKY,¹ S. BARTHELMY,¹ J. K. CANNIZZO,^{1,2} N. GEHRELS,¹ C. B. MARKWARDT,^{1,3} G. K. SKINNER,^{1,3} AND L. M. WINTER^{1,3} *Received 2007 July 24; accepted 2008 March 17*

ABSTRACT

We present the results of the analysis of the first 9 months of data of the *Swift* BAT survey of AGNs in the 14–195 keV band. Using archival X-ray data or follow-up *Swift* XRT observations, we have identified 129 (103 AGNs) of 130 objects detected at $|b| > 15^{\circ}$ and with significance >4.8 σ . One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the log *N*–log *S* distribution, and find the slope to be 1.42 ± 0.14 . Characterizing the differential luminosity function data as a broken power law, we find a break luminosity log $L_*(\text{erg s}^{-1}) = 43.85 \pm 0.26$, a low-luminosity power law slope $a = 0.84^{+0.16}_{-0.22}$, and a high-luminosity power law slope $b = 2.55^{+0.43}_{-0.30}$, similar to the values that have been reported based on *INTEGRAL* data. We obtain a mean photon index 1.98 in the 14–195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGNs above $10^{41} \text{ erg s}^{-1}$ of $2.4 \times 10^{-3} \text{ Mpc}^{-3}$, which is about 10% of the total luminous local galaxy density above $M_* = -19.75$. We have obtained X-ray spectra from the literature and from *Swift* XRT follow-up observations. These show that the distribution of log n_{H} is essentially flat from $n_{\text{H}} = 10^{20}$ to 10^{24} cm^{-2} , with 50% of the objects having column densities of less than 10^{22} cm^{-2} . BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log $n_{\text{H}} > 22$.

Subject headings: galaxies: active - gamma rays: observations - surveys

1. INTRODUCTION

It is now realized that most of the AGNs in the universe have high column densities of absorbing material along our line of sight, which significantly changes their apparent properties across much of the electromagnetic spectrum. In many well-studied objects, this material significantly reduces the soft X-ray, optical, and UV signatures of an active nucleus, essentially "hiding" the object. While it is commonly believed that extinction-corrected [O III] can be used as an "unbiased" tracer of AGN activity (Risaliti et al. 1999), there is a large scatter between [O III] and 2-10 keV X-ray flux (Heckman et al. 2005) and between [O III] and BAT flux (Meléndez et al. 2008). We acknowledge that some Compton-thick AGNs are detected in [O III] that cannot be detected in hard X-rays, but Compton-thick AGNs are outside the scope of this paper. Therefore, surveys of AGNs which rely primarily on rest-frame optical and UV studies are very incomplete and have led to misleading results concerning the number, luminosity function, and evolution of active galaxies (e.g., Barger et al. 2005).

While the distribution of column densities is under intensive investigation, it is clear from both X-ray (Tozzi et al. 2006; Cappi et al. 2006) and IR data (Alonso-Herrero et al. 2006) that a large fraction of AGNs have column densities greater than 3×10^{22} cm⁻² in the line of sight. Using the Galactic reddening law (Predehl & Schmitt 1995), this is equivalent to $A_V > 13$, making the nuclei essentially invisible in the optical and UV bands. This effect seems to dominate the population seen in deep X-ray surveys (e.g., Barger et al. 2005; Brandt & Hasinger 2005), where a large fraction of the X-ray-selected objects do not have optical counterparts with classical AGN signatures.

² CRESST/Joint Center for Astrophysics, University of Maryland, Baltimore County, Baltimore, MD 21250.

³ CRESST/Department of Astronomy, University of Maryland, College Park, MD 20742.

There are only two spectral bands in which the nuclear emission is strong and where, provided the column densities are less than 1.5×10^{24} cm⁻² (Compton-thin objects), this obscuring material is relatively optically thin. These bands, the hard X-ray (E >20 keV) and the IR (5–50 μ m), are optimal for unbiased searches for AGNs (Treister et al. 2005). While recent results from Spitzer are finding many AGNs via their IR emission, IR selection is hampered by several effects (Barmby et al. 2006; Weedman et al. 2006; Franceschini et al. 2006): (1) the strong emission from star formation, (2) the lack of a unique "IR color" to distinguish AGNs from other luminous objects (Stern et al. 2005), and (3) the wide range in IR spectral parameters (Weedman et al. 2006). Thus, while an IR survey yields many objects, it is very difficult to quantify its completeness and how much of the IR luminosity of a particular galaxy is due to an active nucleus. These complications are not present in a hard X-ray survey, since at E > 20 keV virtually all the radiation comes from the nucleus and selection effects are absent for Compton-thin sources. Even for moderately Compton-thick sources, a hard X-ray survey has significant sensitivity, but without an absorption correction the luminosity will be underestimated. Essentially every object more luminous that 10^{42} erg s⁻¹ is an AGN. A hard X-ray survey is thus unique in its ability to find all Compton-thin AGNs in a uniform, welldefined fashion, and to determine their intrinsic luminosity. However, due to the relative rarity of bright AGNs (even the ROSAT all-sky survey has only ~ 1 source deg⁻² at its threshold; Voges et al. 1999), one needs a very large solid angle survey to find the bright, easily studied objects.

With the recent *Chandra* and *XMM* data (e.g., Alexander et al. 2003; Giacconi et al. 2002; Yang et al. 2004; Mainieri et al. 2002, 2005; Szokoly et al. 2004; Zheng et al. 2004; Barger et al. 2001, 2003) there has been great progress in understanding the origin of the X-ray background and the evolution of AGNs. It is now clear that much of the background at E > 8 keV is not produced by the sources detected in the 2–8 keV band (Worsley et al. 2005), and is likely to come from a largely unobserved

¹ NASA Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771.

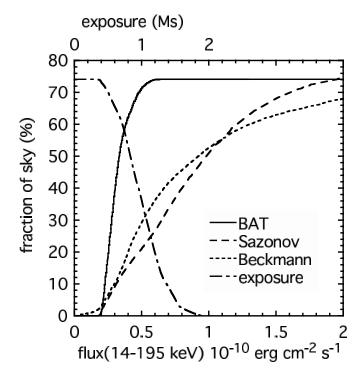


FIG. 1.—Percentage of the sky covered as a function of limiting flux in erg cm⁻² s⁻¹ (14–195 keV) and of effective exposure (*upper scale*). As only the sky $|b| > 15^{\circ}$ is considered here, the maximum value is 74%. The corresponding curves as a function of limiting flux for the analyses of *INTEGRAL* data by Beckmann et al. (2006b) and by Sazonov et al. (2007) are shown for comparison, the flux having been converted assuming a power-law spectrum with index –2.

population of AGNs with high column density and low redshift z < 1. Thus the source of the bulk of the surface brightness of the X-ray background, which peaks at $E \sim 30$ keV (Gruber et al. 1999), is uncertain. The measurement of the space density and evolution of this putative population of highly absorbed AGNs and the derivation of the distribution of their column densities as a function of luminosity and of redshift is crucial for modeling the X-ray background and the evolution of active galaxies. Progress in this area requires both a hard X-ray survey of sufficient sensitivity, angular resolution, and solid angle coverage to find and identify large numbers of sources, *and* follow-up observations with softer X-ray spectral properties.

Due to a lack of instrumentation with sufficient angular resolution to permit identification of unique counterparts in other wavelength bands and with sufficient solid angle and sensitivity (Krivonos et al. 2005) to produce a large sample, there has been little progress in hard X-ray surveys for over 25 years (e.g., Sazonov et al. 2005, 2007). This situation has been radically changed by the *Swift* BAT survey (Markwardt et al. 2005) and recent *INTEGRAL* results (Beckmann et al. 2006b; Sazonov et al. 2007; Krivonos et al. 2005; Bird et al. 2007) which have detected more than 100 hard X-ray selected AGNs, thus providing the first unbiased sample of Compton-thin AGNs in the local universe.

In this paper we describe results from the first 9 months of the hard X-ray survey using the BAT instrument (Barthelmy et al. 2005) on the *Swift* mission (Gehrels et al. 2004), concentrating on sources with $|b| > 15^{\circ}$. Above this latitude limit, we have identified all but one of the sources detected at >4.8 σ with optical counterparts using *Swift* XRT and archival X-ray data. With these same data we have also obtained X-ray spectra. With a median positional uncertainty of 1.7' and a sensitivity limit of a few times 10^{-11} erg cm⁻² s⁻¹ in the 14–195 keV band, the BAT data are

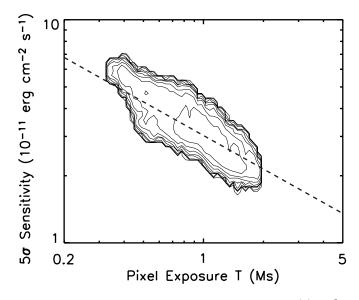


FIG. 2.—BAT survey 5 σ sensitivity in the 14–195 keV band for $|b| > 15^{\circ}$ as a function of exposure. The contours, spaced at logarithmic intervals, indicate the number of pixels ($|b| > 15^{\circ}$) in the all-sky mosaic with a given exposure and sensitivity. The dashed line indicates the survey sensitivity curve of Markwardt et al. (2005), without adjustment.

about 10 times more sensitive than the previous all-sky hard X-ray survey (*HEAO 1* A-4; Levine et al. 1984) and the positions are accurate enough to allow unique identifications of nearly all of the sources.

Spectra are characterized by a photon index Γ , where $N(E) \propto E^{-\Gamma}$. Luminosities are calculated using $h_{70} = 1$, $\Omega = 0.3$.

2. BAT SURVEY

The second BAT catalog is based on the first 9 months of BAT data (starting 2005 mid-December) and has several refinements compared to the catalog of the first 3 months of data (Markwardt et al. 2005). The combination of increased exposure, more uniform sky coverage, and improved software has increased the total number of BAT sources by a factor ~ 2.5 .

We show the sky coverage in Figure 1 and the sensitivity of the survey as a function of exposure in Figure 2. There is a loss of sensitivity due to increased noise at low Galactic latitudes from nearby bright sources, and because of spacecraft constraints there tends to be somewhat reduced exposure in directions close to the ecliptic plane. Nevertheless the sensitivity achieved is comparatively uniform.

We have picked a significance threshold of 4.8 σ , which, based on the distribution of negative pixel residuals (Fig. 3), corresponds to a probability of ~1 false source in the catalog. In Table 1 we show all the sources detected at >4.8 σ and with $|b| > 15^{\circ}$. The table also includes sources that have been confidently identified with AGNs but that lie at $|b| < 15^{\circ}$ or, while having significances less than 4.8 σ in the final analysis, have appeared at higher significance in partial or preliminary analyses. Of the 44 AGNs presented in Table 1 of Markwardt et al. (2005), only J1306.8–4023 does not appear in Table 1 of this study. The spectral type is from Véron-Cetty & Véron (2006), and where that is not available, we examined 6dF, SSDS, or our own observations and classified the AGNs. There are seven objects that do not have an optical classification, of which two have not been observed and the remainder do not have optical AGN lines.

We have verified the completeness of our sample by examining the values of V/V_{max} as a function of significance. Above

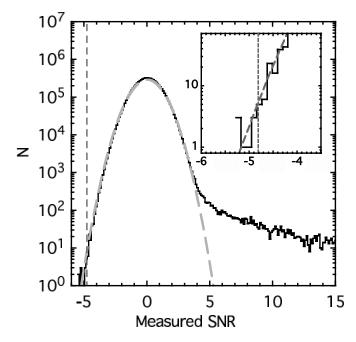


FIG. 3.—Histogram of the pixel values at $|b| > 15^{\circ}$ in the 9 month survey allsky map relative to the local estimated noise level. The data closely follow a Gaussian distribution with $\sigma = 1.024$ except for the tail at high positive values due to sources. The insert shows an expansion of the region below SNR = -4. Because of oversampling, more than one pixel corresponds to a single source.

4.8 σ detection significance we find a value of 0.5, as expected for a complete sample from a uniform distribution (Fig. 4).

Basing the detection on significance in the total 14–195 keV band is close to optimal for sources with average spectra. We might miss some sources because their spectra are much steeper. However, as shown in Figure 5, there is no apparent correlation between BAT hardness ratio and detection significance and thus we believe that this selection effect is negligible in the present sample.

Because source detection is based on the entire 9 months of data, it is possible that some sources might have been missed if they had been very bright for only a fraction of the observing time. This is confirmed by comparing the present results with those of Markwardt et al. (2005). We found that nine of the Markwardt et al. sources do not lie above our significance threshold of 4.8σ in the 9 months of data.

The accuracy of source positions (Fig. 6) based on the total AGN sample depends on significance; however, at the significance limit of 4.8 σ of our survey, the maximum 2 σ error circle radius is $\sim 6'$.

3. SAMPLE IDENTIFICATION

BAT is a wide-field (~2 steradians) coded-aperture hard X-ray instrument (Barthelmy et al. 2005). During normal operations it usually covers ~60% of the sky each day at <20 mcrab sensitivity. The BAT spectra were derived from an all-sky mosaic map in each energy bin averaged over 9 months of data beginning on 2004 December 5. The survey was processed using the BAT Ftools⁴ and additional software normalize the rates to on-axis and to make mosaic maps. The intrinsic binning in the BAT survey data product has 80 energy bins but to reduce processing time we used four energy bins for this survey. The energy bin edges are 14, 24, 50, 100, and 195 keV for the 9 month survey, but will be expanded to eight bins in the 22 month survey by dividing each of the current bins. The energies are calibrated in-flight for each detector using an on-board electronic pulser and the 59.5 keV gamma-ray line and neptunium L-shell X-ray lines from a tagged ²⁴¹Am source. The average count rate in the map bin that contains the known position of the counterpart was used. Due to the strong correlation of the signal in adjacent map bins of the oversampled coded-aperture image, it is not necessary to perform a fit to the PSF. Each rate was normalized to the Crab Nebula rate using an assumed spectra of $10.4E^{-2.15}$ photons cm⁻² s⁻¹ keV⁻¹ for the BAT energy range. Due to the large number of different pointings that contribute to any position in the map, this is a good approximation of the average response. This has been verified by fitting sources known to have low variability and generally produces a good connection to X-ray spectra in sources. Error estimates were derived directly from the mosaic images using the rms image noise in a region around the source of roughly 3° in radius. This is the optimum procedure due to the residual systematic errors of 1.2-1.8 times statistical values in the current BAT mosaics. Analysis of the noise in the images suggests that the variations in noise are small on this scale. Analysis of negative fluctuations shows that the noise is very well fit by a Gaussian distribution and that this normalization is very accurate on average. All fitting of the BAT data was performed on this normalized data using a diagonal instrument response matrix. This procedure correctly accounts for instrumental systematics in sources with spectral indices similar to the Crab. While there may be significant systematic errors for sources with spectra that are much flatter than the Crab, this is not a significant problem for any of the sources presented in this paper.

We first attempted to identify the BAT sources using archival X-ray, optical, and radio data. The typical high Galactic latitude BAT source is a bright (2MASS J-band magnitude >13) and nearby (z < 0.1) galaxy. While the counterpart is often a *ROSAT* or radio source, this is not a reliable indicator. In particular we found little or no correlation between the BAT counting rates and the ROSAT all-sky survey fluxes (Fig. 7), making it difficult or impossible to utilize the ROSAT data to consistently identify the sources. An examination of random positions suggests this type of source rarely falls in a BAT error circle. While this approach was fruitful, we found a significant number of objects with either no obvious counterpart or multiple possible counterparts, due to clustering. We have followed up with Swift XRT all but one of the BAT sources in the second catalog that did not have evident identifications with previously known AGNs, or that did not have archival X-ray measurements of absorption column $n_{\rm H}$ from XMM, ASCA, Chandra, or BeppoSAX. We find that if the Swift XRT exposure is on the order of 10 ks or greater, we have a high probability of identifying an appropriate candidate. We define an appropriate candidate as one which is within the BAT 2 σ error contour and whose X-ray flux is commensurate with the BAT detection. Because of the possibility of source variability and of the low time resolution possible with the BAT data (\sim 2 weeks per significant data point) we require only that the X-ray flux is consistent with an absorbed power law model that has a flux within a factor of 10 of that predicted from the BAT detection. A detailed analysis of the variability of the BAT data is presented in Beckmann et al. (2006b) and a comparison of the XRT and other data in Winter et al. (2008).

We have based our identifications on observations in the harder, 2–10 keV, part of the XRT band to minimize the probability of a false identification. A *Swift* XRT detection limit of 0.001 counts s⁻¹, or 10 total counts (0.5–10 keV) in a 10 ks exposure, corresponds to a 0.5–10 keV flux of about 3.7×10^{-14} erg cm⁻² s⁻¹ for an unabsorbed source or to 6.3×10^{-14} erg cm⁻² s⁻¹ for one

⁴ See http://heasarc.nasa.gov/ftools/ftools_menu.html.

1	TABLE	
TABLE	SURVEY	
	Swift	

			R.A.°	Decl. [°]					log L ^e	$\log n_{\rm H}$					J	
No.	Swift Name ^a	ID _ρ	(deg)	(deg)	>15°d	SNR	$f_{\rm BAT}^{\rm e}$	ы	$(erg \ s^{-1})$	(cm^{-2})	Ref. ^f	Complex ^g	Type ^h	Note ⁱ	(mag)	f _{ROSAT} Rate ^{j,k}
1	SWIFT J0042.9–2332	NGC 235A	10.7200	-23.5410	y	4.47	3.2	0.022229	43.56	23.00	1	y	Sy 2†		10.58	0.024
2	SWIFT J0048.8+3155 ¹	Mrk 348	12.1964	31.9570	\mathbf{y}^*	13.00	9.5	0.015034	43.68	23.32	0	, y	Sy 2		11.24	0.009
3	SWIFT J0059.4+3150	Mrk 352	14.9720	31.8269	y*	4.90	3.7	0.014864	43.27	20.75	б		Sy 1		12.49	0.615
4	SWIFT J0114.4-5522	NGC 454	18.5946	-55.3986	У	4.54	2.3	0.012125	42.88	22.95	1	y	Sy 2	33	13.98	
5	SWIFT J0123.9–5846 ¹	Fairall 9	20.9408	-58.8057	\mathbf{y}^*	8.90	4.7	0.04702	44.39	20.36	4		Sy 1		11.85	3.350
6	SWIFT J0123.8-3504 ¹	NGC 526A	20.9766	-35.0654	\mathbf{y}^*	8.20	5.2	0.019097	43.63	22.30	4	y	Sy 1.5		11.60	0.123
7	SWIFT J0134.1-3625	NGC 612	23.4906	-36.4933	\mathbf{y}^*	4.89	3.2	0.029771	43.81	23.70	S	y	Gal/Radio	34	11.68	
8		ESO 297-018	24.6548	-40.0114	\mathbf{y}^*	9.03	4.9	0.025201	43.85	23.84	1	y	Sy 2		9.18	
9		NGC 788	30.2769	-6.8155	\mathbf{y}^*	8.37	5.9	0.013603	43.39	23.48	9	у	Sy 2		10.02	
10	SWIFT J0206.2-0019	Mrk 1018	31.5666	-0.2914	\mathbf{y}^{*}	5.31	3.5	0.04244	44.17	20.53	1		Sy 1.5		11.60	0.360
11	SWIFT J0209.7+5226	LEDA 138501	32.3929	52.4425		5.13	3.9	0.0492	44.34	21.18	1		Sy 1			0.752
12	SWIFT J0214.6-0049	Mrk 590	33.6398	-0.7667	\mathbf{y}^{*}	5.67	3.7	0.02638	43.77	20.43	7		Sy 1.2		10.71	2.689
13	SWIFT J0216.3+5128	2MASX J02162987+5126246	34.1243	51.4402		4.93	3.6			22.25	1		Galaxy†	35	14.27	
14	SWIFT J0218.0+7348	[HB89] 0212+735	34.3784	73.8257		4.27	2.6	2.367	48.05	23.38	1		BL Lac			0.044
15		NGC 931	37.0603	31.3117	\mathbf{y}^{*}	8.56	7.3	0.016652	43.66	21.65	8		Sy 1.5		10.40	0.342
16		NGC 985	38.6574	-8.7876	\mathbf{y}^*	5.07	3.7	0.043	44.21	21.59	8	y	$Sy 1 \ddagger$		11.63	1.281
17		ESO 416-G002	38.8058	-29.6047	y	4.76	3.2	0.059198	44.42	< 19.60	6		Sy 1.9		12.15	0.356
18		ESO 198-024	39.5821	-52.1923	\mathbf{y}^*	7.82	3.9	0.0455	44.27	21.00	8		Sy 1		12.68	2.380
19		QSO B0241+622	41.2404	62.4685		11.19	7.3	0.044	44.52	21.98	10		Sy 1			0.414
		NGC 1142	43.8008	-0.1836	\mathbf{y}^{*}	9.80	7.8	0.028847	44.17	23.38	6	y	Sy 2†		10.06	0.011
51		2MASX J03181899+6829322	49.5791	68.4921		4.89	3.5	0.0901	44.85	22.59	1		Sy 1.9	36	15.13	
	SWIFT J0319.7+4132	NGC 1275	49.9507	41.5117		13.51	11.5	0.017559	43.90	21.18	11		Sy 2		11.02	4.756
23		PKS 0326-288	52.1521	-28.6968	y	4.50	2.3	0.108	44.84				Sy 1.9	37	14.19	
24	SWIFT J0333.6-3607 ¹	NGC 1365	53.4015	-36.1404	\mathbf{y}^{*}	13.93	7.2	0.005457	42.67	23.60	4	y	Sy 1.8		7.36	0.101
25	SWIFT J0342.0-2115	ESO 548-G081	55.5155	-21.2444	\mathbf{y}^*	5.45	3.3	0.01448	43.19	20.48	1		Sy 1		9.35	0.258
26		1ES 0347-121	57.3467	-11.9908	\mathbf{y}^{*}	5.29	3.6	0.18	45.51	20.55	8		BL Lac			1.210
27		PGC 13946	57.5990	-50.3099	\mathbf{y}^*	5.99	2.9	0.036492	43.95	22.72	1		Galay	35	11.68	
28		2MASX J03565655-4041453	59.2356	-40.6960	\mathbf{y}^*	5.22	2.4	0.0747	44.51	22.52	1		Sy 1.9	37	13.27	0.007
29		3C 105	61.8186	3.7071	y	4.01	3.4	0.089	44.83	23.43	1		Sy 2		15.16	
30		3C 111.0	64.5887	38.0266		13.41	12.5	0.0485	44.84	21.98	8		Sy 1		13.63	0.398
31	SWIFT J0426.2-5711	1H 0419–577	66.5035	-57.2001	\mathbf{y}^*	5.49	2.9	0.104	44.91	19.52	8		Sy 1			4.563
32	SWIFT J0433.0+0521 ¹	3C 120	68.2962	5.3543	\mathbf{y}^*	13.15	11.2	0.03301	44.45	21.19	8		Sy 1		11.69	2.174
33	SWIFT J0444.1+2813	2MASX J04440903+2813003	71.0376	28.2168		7.15	7.6	0.01127	43.33	22.72	1		Sy 2		10.88	
34	SWIFT J0451.4–0346	MCG -01-13-025	72.9230	-3.8094	\mathbf{y}^*	5.62	4.5	0.015894	43.41	20.62	-		Sy 1.2		11.14	0.281
35	SWIFT J0452.2+4933	IRXS J045205.0+493248	73.0208	49.5459	4	7.59	5.6	0.029	44.04	21.65			Sy I		12.26	0.590
30	SWIFT JUDUD.8-2301	XSS JU2024-2548	CU44.0/	9508.57	y	07.11	0.1	0.035043	44.24	60.77	-		5y 2		13.//	0.00
37		40 051 /+17	70.0476	16.4988	÷	7.12	8.7	0.01/8/9	67.64				5y 1.5			0.670
38		Ark 120	70,000 07	-0.1498	Y,	1.12	5.0 5.1	0.052290	44.11 2 2 2	20.50	4		Sy I		07.11	2.120
	2011 1000 1 1 MS	ESU 302-UUIS	70.0520	8/ 09.75-	Y	10.49	1.0	0.012642	43.20	C7.U2	c	y	C.I VC		01.11	0.000
40	SWIFT J0519.5-4545	PICTOR A	0/.56.67	-45.7790	Y	4.23	2.2	0.035058	43.80	21.00	×		Sy I/Liner		13.63	0.626
41		PKS 0521-365	80.7416	-36.4586	¥,	6.02	2.8	0.05534	44.31	21.11	× į		BL Lac		12.50	0.883
42		PKS 0537-441	84.7098	-44.0858	\mathbf{y}^*	5.79	3.1	0.8904	47.09	20.54	12		BL Lac		13.45	0.178
43	SWIFT J0539.9–2839	[HB89] 0537–286	84.9762	-28.6655	y	4.27	2.5	3.104	48.32	20.77	×		Blazar			0.092
44	SWIFT J0550.7-3212	PKS 0548-322	87.6699	-32.2716	\mathbf{y}^*	7.39	4.	0.069	44.70	21.50	8		BL Lac		13.59	2.533
45	SWIFT J0552.2-0727	NGC 2110	88.0474	-7.4562	\mathbf{y}^*	32.46	25.6	0.007789	43.54	22.57	8		Sy 2		9.26	0.010
46	SWIFT J0554.8+4625	MCG +08-11-011	88.7234	46.4393		11.37	11.1	0.020484	44.02	20.30	4		Sy 1.5		10.49	1.689
4/	SWIFT 10557.9-3822	EXU 055620-3820.2	£80C.68	-38.3340	y*	9.82	2.0	0.0338/	44.14	22.23	×	Y	Sy I		11.86	c01.0

			R.A.°	Decl. ^c					$\log L^{\rm e}$	$\log n_{\rm H}$					J	
No.	<i>Swift</i> Name ^a	ID^{b}	(deg)	(deg)	>15°d	SNR	$f_{\rm BAT}^{\rm e}$	ы	(erg s ⁻¹)	(cm^{-2})	Ref. ^f	Complex ^g	Type ^h	Note ⁱ	(mag)	fROSAT Rate ^{j,k}
48	SWIFT J0602.2+2829	IRAS 05589+2828	90.5446	28.4728		5.08	5.6	0.033	44.15	21.57	1		Sy 1			0.866
49	SWIFT J0601.9-8636	ESO 005-G004	91.4235	-86.6319	\mathbf{y}^*	5.64	4.2	0.006228	42.56	23.88	1		Sy 2†	38	9.53	
50	SWIFT J0615.8+7101 ¹	Mrk 3	93.9015	71.0375	y*	14.27	10.1	0.013509	43.61	24.00	13	У	Sy 2		10.03	0.061
51	SWIFT J0623.9-6058	ESO 121–IG 028	95.9399	-60.9790	\mathbf{y}^{*}	4.85	2.8	0.0403	44.03	23.20			Sy 2	39	11.63	0.011
52	SWIFT J0640.4-2554	ESO 490–IG 026	100.0487	-25.8954		5.14	3.6	0.0248	43.71	21.48	1		Sy 1.2		11.09	0.273
53	SWIFT J0640.1-4328	2MASX J06403799-4321211	100.1583	-43.3558	y	4.51	2.8			23.04	-		Galaxy†	35	14.24	
54	SWIFT J0641.3+3257	2MASX J06411806+3249313	100.3252	32.8254		5.51	5.5	0.047	44.46	22.98	6		Sy 2	40	14.01	
55	SWIFT J0651.9+7426	Mrk 6	103.0510	74.4271	\mathbf{y}^{*}	9.55	6.6	0.01881	43.72	23.00	14	У	Sy 1.5		11.07	0.062
56	SWIFT J0742.5+4948	Mrk 79	115.6367	49.8097	\mathbf{y}^*	7.09	4.7	0.022189	43.72	20.76	15		Sy 1.2		11.19	2.196
57	SWIFT J0746.3+2548	SDSS J074625.87+254902.2	116.6078	25.8173	\mathbf{y}^*	5.92	4.7	2.9793	48.55	22.00	16		Blazar	16		0.032
58	SWIFT J0759.8-3844	IGR J07597–3842	119.9208	-38.7600		7.79	5.3	0.04	44.29	21.70	1		Sy 1.2			
59	SWIFT J0841.4+7052 ¹	[HB89] 0836+710	130.3515	70.8951	\mathbf{y}^{*}	11.38	7.0	2.172	48.39	20.98	8		Blazar			0.755
60	SWIFT J0902.0+6007	Mrk 18	135.4933	60.1517	\mathbf{y}^{*}	5.35	3.1	0.011088	42.93	23.39	6	У	Galay	41	11.50	
61	SWIFT J0904.3+5538	2MASX J09043699+5536025	136.1539	55.6007	\mathbf{y}^{*}	5.21	3.4	0.037	44.03	21.89	1		Sy 1		13.55	
62	SWIFT J0911.2+4533	2MASX J09112999+4528060	137.8749	45.4683	\mathbf{y}^*	5.35	3.0	0.026782	43.69	23.42	1		Sy 2		13.18	
63	SWIFT J0917.2-6221	IRAS 09149–6206	139.0371	-62.3249		4.51	3.2	0.0573	44.40	22.19	-		Sy 1			0.120
64	SWIFT J0918.5+0425	2MASX J09180027+0425066	139.5011	4.4184	y	4.72	3.1	0.156	45.31	23.00	-		QSO 2**	42	14.91	
65	SWIFT J0920.8-0805	MCG -01-24-012	140.1927	-8.0561	\mathbf{y}^*	6.44	4.6	0.019644	43.60	22.80	12		Sy 2		13.18	
66	SWIFT J0923.7+2255 ¹	MCG +04-22-042	140.9292	22.9090	\mathbf{y}^*	6.38	4.1	0.032349	43.99	20.60	1		Sy 1.2		11.83	1.626
67	SWIFT J0925.0+5218 ¹	Mrk 110	141.3036	52.2863	\mathbf{y}^*	9.26	5.4	0.03529	44.19	20.58	8		Sy 1		13.20	1.691
68	SWIFT J0945.6–1420 ¹	NGC 2992	146.4252	-14.3264	\mathbf{y}^*	9.07	6.6	0.007709	42.94	22.00	17		Sy 2		9.67	0.280
69	SWIFT J0947.6-3057	MCG -05-23-016	146.9173	-30.9489	\mathbf{y}^*	28.67	21.9	0.008486	43.55	22.47	18		Sy 2		10.53	0.256
70	SWIFT J0959.5-2248 ¹	NGC 3081	149.8731	-22.8263	\mathbf{y}^*	11.34	8.8	0.007956	43.09	23.52	19		Sy 2		9.91	0.008
71	SWIFT J1023.5+1952 ¹	NGC 3227	155.8775	19.8650	\mathbf{y}^{*}	22.01	12.9	0.003859	42.63	22.80	20	У	Sy 1.5		8.59	0.100
72	SWIFT J1031.7-3451 ¹	NGC 3281	157.9670	-34.8537	\mathbf{y}^*	10.24	7.3	0.010674	43.27	24.30	12	У	Sy 2		9.31	0.012
73	SWIFT J1038.8-4942	2MASX J10384520–4946531	159.6854	-49.7826		4.86	3.3	0.06	44.46	22.17	1		Sy 1†	43	13.24	0.100
74	SWIFT J1040.7-4619	LEDA 093974	160.0939	-46.4238		4.26	3.4	0.023923	43.64	22.96	1		Sy 2		11.44	0.007
75	SWIFT J1049.4+2258	Mrk 417	162.3789	22.9644	\mathbf{y}^*	6.39	3.6	0.032756	43.95	23.60	6	y	Sy 2		12.74	
76	SWIFT J1104.4+3812 ¹	Mrk 421	166.1138	38.2088	\mathbf{y}^*	14.02	6.8	0.030021	44.15	20.30	21		BL Lac		11.09	16.220
77	SWIFT J1106.5+7234 ¹	NGC 3516	166.6979	72.5686	\mathbf{y}^*	18.26	10.6	0.008836	43.26	21.21	×	У	Sy 1.5		9.74	4.280
78	SWIFT J1127.5+1906	RX J1127.2+1909	171.8178	19.1556	y	4.14	2.2	0.1055	44.79	21.30	- 1		Sy 1.8	33		
	SWIFT J1139.0-3743	NGC 3783	174.7572	-37.7386	\mathbf{y}^*	20.46	16.1	0.00973	43.53	22.47	4 -	У	Sy I		9.83	0.130
٥٥ و ا	SWIFT J1139.1+3913 SWIFT 11142 7+7043	5B5 11507394 11CC 06738	176 2169	2061.60	× *	40.4 0.04 0.04	0.7	0.006519	44.00 17.71	80.61 59.00	- 0		c.1 yc		11.63	0.275
82	SWIFT J1145.6-1819	2MASX J11454045-1827149	176.4186	-18.4543	~ *>	5.26	3.9	0.032949	43.98	20.54			Sv 1		13.93	3.293
83	SWIFT J1200.8+0650	CGCG 041-020	180.2413	6.8064	~ >	4.53	2.5	0.036045	43.88	22.83			Sy 2	42	12.15	
84	SWIFT J1200.2-5350	IGR J12026–5349	180.6985	-53.8355		5.37	4.0	0.027966	43.86	22.34			Sy 2		11.48	0.026
85	SWIFT J1203.0+4433	NGC 4051	180.7900	44.5313	\mathbf{y}^*	9.01	4.6	0.002335	41.74	20.47	8	У	Sy 1.5		8.58	3.918
86	SWIFT J1204.5+2019	Ark 347	181.1237	20.3162	У	4.39	2.3	0.02244	43.42	23.20	1		Sy 2		11.76	0.004
87	SWIFT J1206.2+5243	NGC 4102	181.5963	52.7109	\mathbf{y}^{*}	5.00	2.4	0.002823	41.62	20.94	22		Liner		8.76	
88	SWIFT J1209.4+4340 ¹	NGC 4138	182.3741	43.6853	y	4.53	2.1	0.002962	41.62	22.90	23		Sy 1.9		9.90	
89	SWIFT J1210.5+3924 ¹	NGC 4151	182.6358	39.4057	\mathbf{y}^*	74.10	37.4	0.003319	42.96	22.48	24	y	Sy 1.5		8.50	0.651
90	SWIFT J1218.5+2952	Mrk 766	184.6105	29.8129	y	4.60	2.3	0.012929	42.94	21.72	×		Sy 1.5		11.10	4.710
91	SWIFT J1225.8+1240 ¹	NGC 4388	186.4448	12.6621	\mathbf{y}^*	45.63	25.3	0.008419	43.60	23.63	4	У	Sy 2		8.98	0.516
92	SWIFT J1202.5+3332	NGC 4395	186.4538	33.5468	\mathbf{y}^*	5.05	2.6	0.001064	40.81	22.30		У	Sy 1.9		10.66	
93	SWIFT J1229.1+0202 ¹	3C 273	187.2779	2.0524	\mathbf{y}^*	44.58	26.2	0.15834	46.25	20.54	×		Blazar		11.69	7.905
94	SWIFT J1235.6–3954 ¹	NGC 4507	188.9026	-39.9093	×*	23.56	19.3	0.011802	43.78	23.46	4	У	Sy 2		9.93	0.032
95	SWIFT J1238.9-2720	ESO 506-G027	189.7275	-27.3078	\mathbf{y}^*	16.87	13.2	0.025024	44.28	23.60	-	У	Sy 2	43	11.14	

TABLE 1—Continued

z) f _{ROSAT} Rate ^{j,k}			9 0.614				5		0 0.496						1.710					4 0.885				7 4.122	9		2.000 7				6 0.034		4 2.653						0 0.010 7 0.460			
i (mag)	11.48	8.96	12.29	19.9	13.4	9.5 1	11.2	10.01	10.8	10.89		10.24	11.4	9.71		10.64	10./	0	12.5	13.0	12.7	12.5	10.3	10.67	7.8	12.0	8.11	11.3	12.9	14.2	8.66	10.6	12.5	10.6	11.2	10.0	:	11.58	11.10	-		
Note ⁱ	4				45		46								47											07				48						0	49			50	4	
Type ^h	Sy 2	Sy 1†	Sy 2†	Blazar	Sy 1	Sy 2†	Galay C 1 o	o.1 Vc	Sv 1.2	Sv 1.9	Sy 1.5	Sy 1.2	Sy 1.5	Sy 1.9	BL Lac	5y 1.5	BI 1.00	SV 2	Sv 1	Sy 1	Sy 1.9	Sy 1	Sy 2	BL Lac	Sy 2	- 1 VC	Sv 1	Sy 2	Sy 1	Sy 1	5y 1.5	SV 2	BL Lac	Sy 1	Sy 2	Sy 2	Sy 1	Sy 1.2	Sy 2 Sv 1+	Sy 1	Sy 1	•
Complex ^g		y					Y :	~ ;	× ×	~ >	•					y			^	•				у										y	y	у	y	У	y			
Ref. ^f	1	4	6	8		4 0	ۍ د	07 o	• ×	b xx	9	8	8	4	- 0	×	××	ہ ح) ∞	8	1	1	4	8	- >	07 -	- 8	8	8	27	87 OZ	55	15	1	1	ε	30	× c	~ - x	•	1	
$\log n_{\rm H}$ (cm ⁻²)	22.48	20.30	21.50	20.41	20.60	24.60 22.20	23.39	4C.C2	21.67	25.82	22.37	21.65	20.53	22.53	20.72	20.41	21.21	23.63	21.32	20.40	23.26	21.61	24.34	22.40	23.34	06.12 20.67	21.13	23.17	21.03	23.20	20.76 23.60	23.30	21.11	21.75	23.60	23.96	21.25	20.70	23.28	22.39	21.98	
$\log L^{\rm e} ({\rm erg \ s^{-1}})$	44.26	43.21	43.58	46.57	43.72	42.18	43.83	40.40 47.74	42.74	43.90	45.49	44.24	43.97	43.30	45.71	43.59	45.75 45.06	43.23	44.20	43.79	44.50	44.28	43.81	44.11	42.44	cu. 11	44.81	43.58	44.88	44.50	42.57 44 53	44.91	44.33	43.39	43.42	43.45	45.14	44.43	43.31 44 80	44.10	43.12	
М	0.036675	0.009	0.02443	0.5362	0.02988	0.001878	0.025137	1401010	0.007749	0.022975	0.012879	0.016054	0.030451	0.006181	0.237	0.01717	0.120	0.0003	0.036422	0.029577	0.0547	0.031	0.02448	0.03366	0.003699	0.0214	0.05787	0.013286	0.0561	0.0629	0.005214	0.05607	0.047	0.014884	0.0139	0.014467	0.104	0.0344	0.011348 0.084	0.02	0.0147	
$f_{\rm BAT}^{\rm e}$	5.8	9.1	2.8	3.2	2.5	19.4	4 v	1 4. / 8	7.5	6.6	7.0	30.0	4.4	23.6	3.1	ю. 1. 2.	4./ 7	0 0	5.1	3.0	4.5	8.6	4.7	4.9	9.1	10.9 3 0	8.1 8.1	9.7	10.1	3.3	6.2 4 1	10.9	4.1	4.9	6.1	6.1 2 0	5.0	9.7	3.6	13.9	2.7	
SNR	8.57	14.62	4.09	5.47	4.82	24.48	8.45	CC.0	9.06	10.52	8.93	33.62	8.67	30.36	4.92	9.11	5.75 166	8 96	5.56	4.66	6.13	6.38	4.43	7.63	8.76	0.0 2 6 2 6 2	10.96	9.50	17.32	5.92	5.68 4.79	16.74	6.68	5.08	9.05	9.05	8.52	8.36	5 86	21.74	4.21	
>15°d	\mathbf{y}^*	×*		\mathbf{v}^*	\mathbf{y}^*	÷	* ^ *	×*	× *>	~ *>	•	\mathbf{y}^*	\mathbf{y}^*	\mathbf{v}^*	* ^ *	, V	, Y	× *>	~ *>	~ ^	, *		y	\mathbf{v}^*		*1	~ *>	×*	\mathbf{y}^*	÷	y,		\mathbf{v}^*	, *			* ^ *	* ^ *	ر *×	r		
Decl. ^c (deg)	-16.1799	-5.3442	-57.8343	-5.7893	53.7917	-49.4682	11.6459	-10./280 42.0102	-34 2056	4.5426	-60.6400	-30.3096	69.3082	-3.2075	25.7240	25.1368	-20.044/ 17 6724	-17 2532	10.4378	57.9026	51.7754	-30.5845	2.4008	39.7602	-62.8206	-29.1800 20.1305	32.6973	-65.4276	79.7714	34.1797	-10.3235 2 5068	40.7339	65.1485	-61.1002	25.7336	25.7234	75.1340	-10.7235	-57.0688 82.0801	50.9828	56.9429	
R.A. ^c (deg)	189.7763	189.9142	190.3572	194.0465	195.9978	196.3645	197.3040	200.0019	00000107	204.5665	206.8500	207.3304	208.2644	213.3119	214.4862	214.4981	214.8454 217 1361	1001.112	226.0050	233.9682	247.0169	252.0635	253.2454	253.4676	259.2478	2100.402 266.4004	278.7590	279.5847	280.5375	292.5554	295.6694 298.0658	299.8681	299.9994	302.1954	307.1463	307.1203	310.6554	311.0406	313.0097 318 5049	321.1589	321.9413	
ID ^b	XSS J12389–1614	NGC 4593	WKK 1263	3C 279	SBS 1301+540	NGC 4945	NGC 4992	MCU -03-34-004	Cell A MCG06-30-015	NGC 5252	4U 1344–60	IC 4329A	Mrk 279	NGC 5506	1E 1415+259	NGC 5548	ESU 511-G030 1ES 1476+478	NGC 5728	Mrk 841	Mrk 290	Mrk 1498	2MASX J16481523-3035037	NGC 6240	Mrk 501	NGC 6300	UKS 1/54-292 1PVS 1174538 1+200823	3C 382	ESO 103–035	3C 390.3	NVSS J193013+341047	NGC 6814 3C 403	Cve A	1ES 1959+650	NGC 6860	MCG +04-48-002	NGC 6921	4C +74.26	Mrk 509	IC 5063 2MASX 121140128+8204483	IGR J21247+5058	IGR J21277+5656	
<i>Swift</i> Name ^a	SWIFT J1239.3-1611	SWIFT J1239.6-0519 ¹	SWIFT J1241.6-5748	SWIFT J1256.2–0551	SWIFT J1303.8+5345	SWIFT J1305.4-4928	SWIFT J1309.2+1139	SWIFT J1322.2-1041 SWIFT 11225 A A201 ¹	SWIFT 11335 8-3416	SWIFT J1338.2+0433	SWIFT J1347.4-6033	SWIFT J1349.3–3018 ¹	SWIFT J1352.8+ 6917^{1}	SWIFT J1413.2–0312 ¹	SWIFT J1417.7+2539	SWIFT J1417.9+2507	SWIFI J1419.0-2639 SWIFT 11478 7±4734	SWIFT 11442 5-1715	SWIFT J1504.2+1025	SWIFT J1535.9+5751	SWIFT J1628.1+5145 ¹	SWIFT J1648.0-3037	SWIFT J1652.9+0223	SWIFT J1654.0+3946	SWIFT J1717.1-6249	SWIFT 11745 A+2006	SWIFT J1 835.0+3240	SWIFT J1838.4-6524 ¹	SWIFT J1842.0+7945 ¹	SWIFT J1930.5+3414	SWIFT J1942.6-1024 SWIFT 11952 4+0237	SWIFT J1959.4+4044	SWIFT J1959.6+6507	SWIFT J2009.0-6103	SWIFT J2028.5+2543a	SWIFT J2028.5+2543b	SWIFT J2042.3+7507 ¹	SWIFT J2044.2-1045 ¹	SWIFT J2052.0-5/04 SWIFT 12114 4+8206	SWIFT J2124.6+5057	SWIFT J2127.4+5654	
No.	96	97	98	99	100	101	102		105	106	107	108	109	110	111	112	113	115	116	117	118	119	120	121	122	125	125	126	127	128	129	131	132	133	134	135	136	137	138 139	140	141	

TABLE 1—Continued

						TAB	LE 1—C	TABLE 1—Continued								
Swift Name ^a	ne ^a	Πþ	R.A. ^c (deg)	Decl. ^c (deg)	>15°d	SNR	$f_{ m BAT}^{ m e}$	N	$\log L^{\rm e}$ (erg s ⁻¹)	$\log n_{\rm H} \\ ({\rm cm}^{-2})$	Ref. ^f	Complex ^g	Type ^h	Note ⁱ	J (mag)	f _{ROSAT} Rate ^{j,k}
12200	SWIFT J2200.9+1032	UGC 11871	330.1724	10.5524	у	4.52	3.9	0.026612	43.80	22.21	1		Sy 1.9		11.72	
12201	SWIFT J2201.9-3152 ¹	NGC 7172	330.5080	-31.8698	×*	12.28	12.4	0.008683	43.32	22.89	8		Sy 2		9.44	0.012
12209	SWIFT J2209.4-4711	NGC 7213	332.3177	-47.1667	•••	6.70	5.2	0.005839	42.59	20.60	8	y	Sy 1.5		7.97	3.940
12235	SWIFT J2235.9-2602	NGC 7314	338.9426	-26.0502	×*	5.24	5.7	0.00476	42.45	21.79	8	, y	Sy 1.9†		9.06	0.236
1223	SWIFT J2235.9+3358	NGC 7319	339.0148	33.9757	y*	6.23	4.1	0.022507	43.68	23.38	25	, Y	Sy 2		11.09	0.001
1224	SWIFT J2246.0+3941	3C 452	341.4532	39.6877	· >	4.78	3.3	0.0811	44.73	23.43	31	•	Sy 2		13.35	
1225	SWIFT J2253.9+1608	3C 454.3	343.4906	16.1482	×*	21.25	19.0	0.859	47.83	20.77	32		Blazar		14.50	0.263
1225	SWIFT J2254.1–1734 ¹	MR 2251–178	343.5242	-17.5819	•*	9.53	10.8	0.06398	45.03	20.80	8	y	Sy 1		12.54	1.037
1230	SWIFT J2303.3+0852	NGC 7469	345.8151	8.8740	y *	9.35	8.3	0.016317	43.70	20.61	8		Sy 1.2		10.11	1.700
1230	SWIFT J2304.8–0843	Mrk 926	346.1811	-8.6857	•*	5.19	5.5	0.04686	44.45	21.14	8		Sy 1.5		11.84	3.530
1231	SWIFT J2318.4-4223 ¹	NGC 7582	349.5979	-42.3706	×*	10.24	6.7	0.005254	42.61	22.98	8	y	Sy 2		8.35	0.048
steri giv ven	isk (**) indic en is based o t is that of th	Nore.—Double asterisk (**) indicates that we classify 2MASX J09180027+0425066 as a QSO because its luminosity is greater than $10^{44.5}$ erg cm ⁻² s ⁻¹ , and as type II because of its very strong narrow O III lines in SSDS ^a The <i>Swift</i> name given is based on the source coordinates from the latest analysis of <i>Swift</i> data except that where a name has been previously published it is kept to avoid confusion.	y 2MASX J091 linates from the database (exce	80027+04250 s latest analysis pt in those few	56 as a Q ⁵ of <i>Swift</i> cases the	6 as a QSO because of <i>Swift</i> data except cases there is none)	ie its lum ot that wh e).	6 as a QSO because its luminosity is greater than $10^{44.5}$ erg cm ⁻² s ⁻¹ , and as type II because of its v of <i>Swift</i> data except that where a name has been previously published it is kept to avoid confusion cases there is none).	er than 10 ^{44.5} s been previc	erg cm ⁻² s usly publis	s ⁻¹ , and as shed it is l	type II becau cept to avoid o	ise of its very confusion.	y strong n	arrow O III	lines in SSDS.
s that nits o	the source of 10 ⁻¹¹ erg	¹ 22000.0 coordinates for the identified counterpart. ^A Y, "includes that the source is at $ b > 15^{\circ}$ and so, if the SNR is also >4.8 σ (indicated by "Y*"), is included in the quantitative analysis. ^B A T fluxes (in units of 10 ⁻¹¹ erg cm ⁻² since) and luminosities are in the band 14–195 keV. Distances for luminosity were calculated using the measured redshift and assuming it was due to Hubble flow. Luminosity errors must	so, if the SNR inosities are in	is also >4.8 σ the band 14–19	(indicated 5 keV. Di	1 by "y*" stances for), is inclu r luminos	indicated by "y*"), is included in the quantitative analysis. 5 keV. Distances for luminosity were calculated using the metapolar $c = 0.01 \text{ meta}$	intitative anal ated using the	ysis. e measured	redshift aı	nd assuming it	was due to F	Hubble flov	w. Lumino:	ity errors must
e n _H	Reference for the $n_{\rm H}$ value; see below.	Include the error in measured that and the error in distance due to the random velocity f Reference for the $n_{\rm H}$ value; see below.	uce que lo une i	random velocii		01 galaxies (∼ >00 km s	, s ma u									
' ind ntain 1 obs	icates that to s optically d servations. 1	^g "Complex = y" indicates that the spectrum differs significantly from a simple power law with absorption and an Fe line. ^h This column contains optically derived types. For well-studied AGNs, the optical type was derived from Véron-Cetty & Véron (2006). For the remaining sources, we determined type by examining the spectrum from archival data or from our own observations. The few remaining AGNs without an accessible spectrum are flagged with a dagger (†).	significantly fi ell-studied AG AGNs without	rom a simple p Ns, the optical an accessible	ower law ype was d	with abso lerived fro are flagged	rption an m Véron- 1 with a c	nd an Fe line. -Cetty & Véron dagger (†).	(2006). For t	he remainir	ıg sources	, we determine	ed type by ex	amining th	he spectrun	ı from archival
tyl ar	be and/or z, ts s^{-1} from	Reference for the type and/or z , where this is not from NED; see below. ROSAT flux in counts s^{-1} from the HEASARC database (Schwope et al. 2000).	rom NED; see l abase (Schwop	below. e et al. 2000).	4	2		2								
abe	to use than 1 et al. 2004).	^k The J band is better to use than the K band because it is expected to have a better sensitivity in detecting local AGNs. The colors of hard X-ray selected AGNs have J/K values ~ 1 at low redshifts, and galaxies at low z also have $J/K \sim 1$ (Watanabe et al. 2004). The 2MASS survey is more sensitive in J (see http://www.ipac.caltech.edu/2mass/releases/second/doc/figures/secvi2af5.gif, where it is shown that the survey goes ~ 1 mag more sensitive in have $J/K \sim 1$ (Watanabe et al. 2004). The 2MASS survey is more sensitive in J (see http://www.ipac.caltech.edu/2mass/releases/second/doc/figures/secvi2af5.gif, where it is shown that the survey goes ~ 1 mag more sensitive in	it is expected to y is more sensiti	b have a better ive in J (see htt	sensitivity p://www.i	/ in detecti pac.caltec	ing local . h.edu/2n	AGNs. The col nass/releases/se	lors of hard X scond/doc/fig	-ray selecte	ed AGNs] 2af5.gif, v	here it is show	es ~ 1 at low vn that the su	redshifts, rvey goes	and galaxi ~1 mag m	es at low z also ore sensitive in
d in	the 3 month	Sources detected in the 3 month survey (Markwardt et al. 2005)	It et al. 2005).	, F F F F	20.01	THE COLUMN	TE / 11-	, -0000 1			-9000 1- 4			-10001-1	(E) C -1	
non	e daggers (TT	KEERENCES.—Double dagges (17) indicate our interpretation of published spectra. (1) <i>Swift</i> AK1; (2) ALE/AKylas et al. 2002; (5) AMM/ L. M. winter et al. 2008a, in preparation; (4) Lutz et al. 2004; (5) Sambruna et al. 1998;	retation of publ	usned spectra. (A TUWC (1	TKI; (2) A	I E/AKyl	as et al. ZUUZ; (2) XMMI L. I	4. winter e	t al. Zuuge	, in preparauc	n; (4) Luiz e	it al. 2004;	TOILING (C)	ina et al. 1996;

ACCAL R. F. Mushotzky et al. 2008, in preparation; (7) Gallo et al. 2006; (8) Tartarus database; (9) XMM/ R. F. Mushotzky et al. 2008, in preparation; (10) *EXOSAT*/R. F. Mushotzky et al. 2008, in preparation; (11) Bassani et al. 1998; (12) Bassani et al. 2006; (14) Immler et al. 2006; (15) XMM/ [06) Sambruna et al. 2006; (17) Gilli et al. 2006; (18) *RXTE*; (19) Maiolino et al. 2003; (15) XMM/ Perlman et al. 2005; (17) Gilli et al. 2006; (18) *RXTE*; (19) Maiolino et al. 2003; (20) XMM/Gondoin et al. 2003; (15) XMM/ Perlman et al. 2006; (17) Gilli et al. 2006; (18) *RXTE*; (19) Maiolino et al. 1998; (20) XMM/Gondoin et al. 2005; (21) XMM/ Perlman et al. 2005; (23) *Chandra*/R. F. Mushotzky et al. 2005; (23) *Rispi* et al. 2005; (31) Stanbruna et al. 2006; (15) XMM/ (15) Sambruna et al. 2006; (17) Gilli et al. 2006; (18) *RXTE*; (19) Maiolino et al. 1999; (20) XMM/Gondoin et al. 2003; (31) XRT/ Forms et al. 2005; (31) Stanbruna et al. 2005; (31) Stanbruna et al. 2005; (31) Stanbruna et al. 2005; (32) *Ginga*/Lawson & Tumer 1997; (33) Véron-Cetty & Véron-Cetty & Véron-Cetty & Véron-Cetty & Véron-2001; (34) Lewis et al. 2006; (45) Burenin et al. 2006; (46) SDSS—no AGN lines; (47) Giommi et al. 2005; (48) Halpern 2006; (49) Brinkmann et al. 1998; (70) form et al. 2005; (49) Brinkmann et al. 1998; (50) Mointe et al. 2005; (40) Brinkmann et al. 1998; (50) Kundra et al. 2005; (40) Brinkmann et al. 1998; (50) Kundra et al. 2005; (40) Brinkmann et al. 1998; (50) Kundra et al. 2005; (40) Brinkmann et al. 2006; (45) Burenin et al. 2006; (46) SDSS—no AGN lines; (47) Giommi et al. 2005; (49) Brinkmann et al. 1998; (50) Mointe et al. 2005; (40) Brinkmann et al. 1998; (40) Kine et al. 2005; (40) Brinkmann et al. 2006; (45) Burenin et al. 2006; (45) Brinkmann et al. 2006; (45) Brinkmann et al. 2006; (46) SDSS—no AGN lines; (47) Giommi et al. 2005; (49) Brinkmann et al. 1998; (50) Kinh et al. 2005; (40) Brinkmann et al. 2006; (45) Burenin et al. 2006; (45) SDSS—no AGN lines; (47) Giommi et al. 2006; (49) Brinkmann e

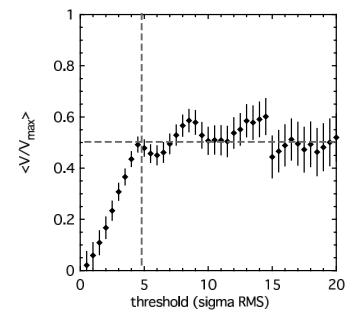


Fig. 4.—Plot of $\langle V/V_{\rm max} \rangle$ as a function of the significance threshold σ . For $\sigma > 4.5$ the average ratio is consistent with the nominal $\langle V/V_{\rm max} \rangle$ value of 0.5.

with an average $n_{\rm H}$ of 10^{22} . Using the Moretti et al. (2003) log *N*-log *S* distribution based on *Chandra* data there are ~50 or 20 sources deg⁻², respectively, at these levels. Thus the probability of finding a detectable source falling by chance within a 2 σ BAT error circle (6' radius at threshold) is high. However most of these sources would be expected to have a very low flux in the BAT band and thus not be candidates for the counterparts of the BAT sources. We select the brightest source or sources at energies >3 keV as possible counterparts. A joint fit to the BAT and XRT data is performed using a simple spectral model (partially covered power law) and allowing the relative normalization between the BAT and XRT data to be a free parameter to

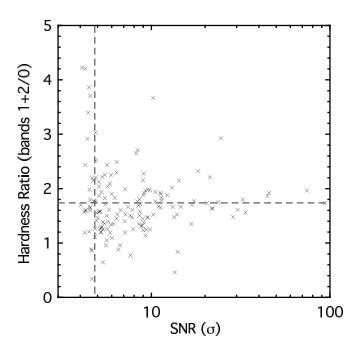


FIG. 5.—Hardness ratio [counts (25–100 keV)/counts (14–25 keV)] as a function of detection significance. There is no indication of discrimination against sources with soft spectra near the 4.8 σ survey threshold.

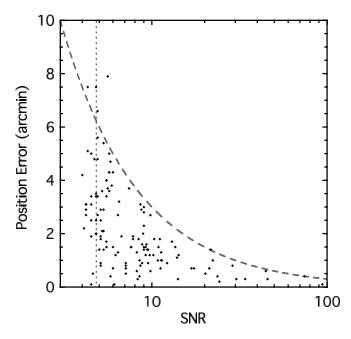


Fig. 6.—Distribution of mean offsets between positions measured with BAT and the counterpart as a function of the detection significance, SNR. The dashed line corresponds to 30/SNR, or 6' at 5 σ significance. The vertical dotted line is at the 4.8 σ threshold used in this study. Sources below this threshold are not complete and have been identified because their known spectrum is consistent with the BAT result. Note that near the threshold the errors can occasionally be larger than this model predicts.

account for variability. Agreement is defined as a relative normalization factor <10. A more complex model is not usually required because the XRT data have insufficient statistical significance to constrain complex models. See Winter et al. (2008) for a complete description. More complex models are required in a few cases where our sources have very high column densities or are Compton thick (L. M. Winter et al. 2008b, in preparation). These cases are flagged in the table as complex. We have used similar criteria for identifications based on archival data from other missions.

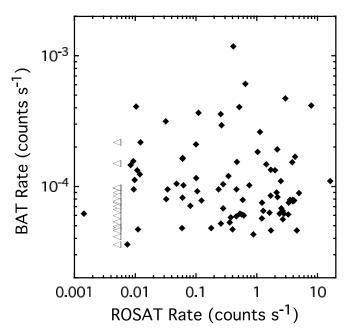


FIG. 7.—Comparison of *ROSAT* and BAT fluxes. Triangles indicate upper limits.

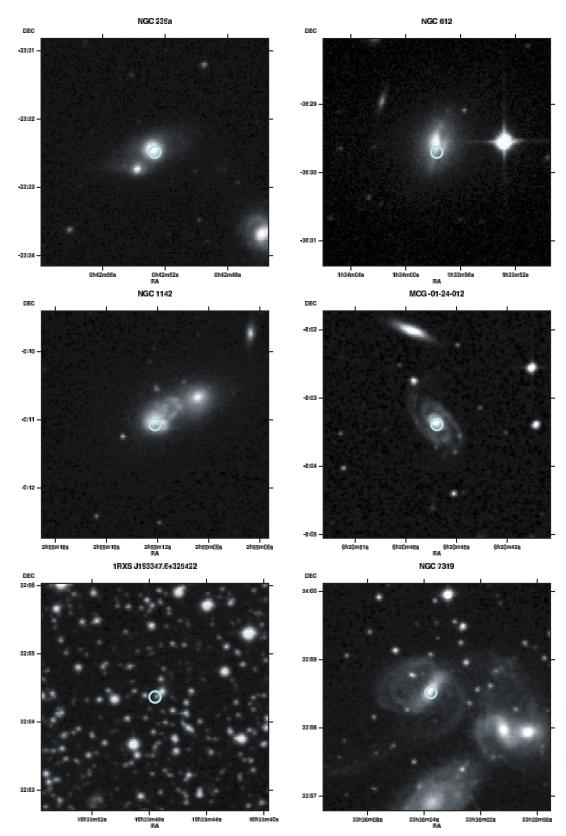


FIG. 8.-Examples of the optical counterparts and the XRT error circles for sources detected with BAT.

When an XRT counterpart has been found, the error circle radius is $\sim 4''$, and at the brightness of the optical counterparts (see below), there is a very high probability of identifying the object in 2MASS or DSS imaging data. For all but one of the $|b| > 15^{\circ}$ sources there is a redshift in the literature (based on

NED), or from our follow-up program (L. M. Winter et al. 2008b, in preparation) but often there is not an available optical spectrum. Thus a significant number of the objects do not have certain optical classifications. We have used the optical spectral types reported in Véron-Cetty & Véron (2006) for AGNs, where

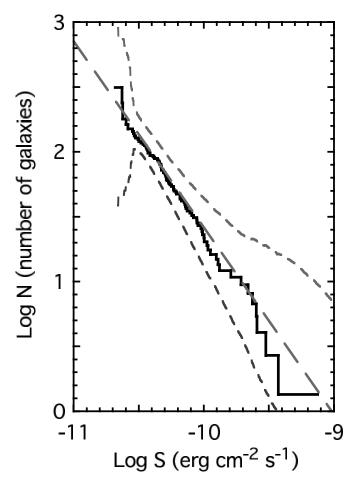


FIG. 9.—The log *N*–log *S* distribution for the BAT-selected AGNs. *S* is in units of erg cm⁻² s⁻¹ in the energy range 14–195 keV. The short-dashed lines show the 99% confidence contours observed in Monte Carlo simulations of observations of sources with a constant space density, and the long-dashed lines a slope of -1.5. The long-dashed line is derived from the best fit to the differential spectrum in Fig. 10.

available. In other cases we have used our own optical classifications based on SDSS or 6dF online data or what is available in NED and SIMBAD. We show in Figure 8 some of the optical counterparts and the XRT error circles.

With these criteria we have only one unidentified source out of 130 sources with $\sigma > 4.8$ and $|b| > 15^{\circ}$, but 13 out of 150 at $|b| < 15^{\circ}$. This difference arises from the much higher density of stars at lower Galactic latitudes and to the high degree of reddening and lack of large spectroscopic surveys in the Galactic plane. The relative completeness of the identifications in the BAT survey data contrasts with that of the INTEGRAL data (Masetti et al. 2006a; Bird et al. 2007) and is due to the extensive XRT follow-up and the accurate positions possible with the XRT. The one unidentified high-latitude source above 4.8 σ , SWIFT J1657.3+4807, has no reasonable X-ray counterpart in the XRT field of view. Obvious possibilities are (1) that this source is a transient, or (2) that it has an extraordinarily high column density such that the flux in the 2-10 keV band is reduced by a factor of \sim 300, e.g., a line-of-sight column density of $>3 \times 10^{24}$ cm⁻², or a line-of-sight Compton optical depth of 2 (which would also require that there be no scattering into the line of sight greater than 0.2%), or (3) that it is a "false" source, of which we expect ~ 1 in the survey above our significance threshold.

We have examined the BAT light curves of all of the sources in Table 1 (including those below the 4.8 σ threshold) and have

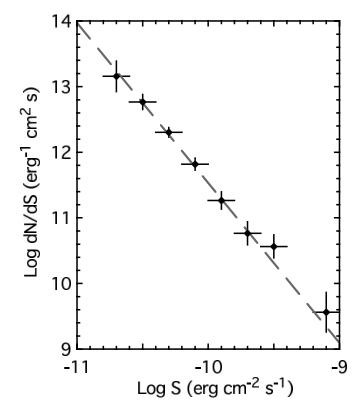


Fig. 10.—The differential log N-log S distribution corresponding to Fig. 9. The fitted line has a slope of -2.44 ± 0.14 .

determined that the sources SWIFT J0201.9–4513, SWIFT J0854.2+7221, SWIFT J1319.7–3350, and SWIFT J1328.4+6928 are almost certainly transients.

4. RESULTS

4.1. $\log N - \log S$

When investigating the $\log N - \log S$ law, correct allowance for sky coverage near the detection threshold is crucial. The sky coverage as a function of limiting flux that we have used (Fig. 1) was obtained using the same measured rms noise in the 9 month all-sky image that was used in assessing source significances. This direct measure of sky coverage is much more reliable than measures based on exposure as the systematic noise level varies across the sky and is not a simple function of exposure. At high fluxes the main uncertainties are due to Poisson statistics with a small number of objects. At low fluxes they are associated with the correction for completeness, which is a strong function of the flux, which is itself uncertain.

The log *N*-log *S* distribution (Figs. 9 and 10) is well fit by the standard $S^{-3/2}$ function for uniformly distributed sources and a normalization of 142.63 ± 9.864 AGNs with flux >3 × 10^{-11} erg cm⁻² s⁻¹. Formally we find a slope of 1.42 ± 0.14. Using a spectral slope for each object, we can compare this log *N*log *S* law with those derived from *INTEGRAL* data (Beckmann et al. 2006b; Krivonos et al. 2005; Sazonov et al. 2007). Converting our log *N*-log *S* into the Sazanov et al. 17–60 keV band we find a normalization which is extremely close to their value. Conversion into the 20–40 keV band leads to a normalization of twice the Beckmann et al. value. The agreement with Sazanov et al. shows that the log *N*-log *S* law in the 14–195 keV band is now established to better than 15% accuracy. We do not understand the disagreement with Beckmann et al. and assume that it is due to the complex correction for sky coverage and the strong

TABLE 2
COMPARISON OF FITS TO THE AGN LUMINOSITY FUNCTION

Reference	ENERGY BAND			L* (er	g s ⁻¹)
$[\log L_{14-195} (\text{erg s}^{-1}) = 44]$	(keV)	а	b	Native Band	14–195 keV
This work	14-195	$0.84^{+0.16}_{-0.22}$	$2.55^{+0.43}_{-0.30}$		43.85 ± 0.26
Beckmann et al. (2006b)	20 - 40	0.80 ± 0.15	2.11 ± 0.22	43.38 ± 0.35	43.99 ± 0.35
Sazonov et al. (2007)	17 - 60	$0.76^{+0.18}_{-0.20}$	$2.28^{+0.28}_{-0.22}$	43.40 ± 0.28	43.74 ± 0.28
Barger et al. (2005)	2-8	0.42 ± 0.06	2.2 ± 0.5	44.11 ± 0.08	44.54 ± 0.08
La Franca et al. (2005)	2 - 10	$0.97\substack{+0.08\\-0.10}$	$2.36^{+0.13}_{-0.11}$	44.25 ± 0.18	44.61 ± 0.18
Sazonov & Revnivtsev (2004)	3-20	$0.88\substack{+0.18\\-0.20}$	$2.24_{-0.18}^{+0.22}$	$43.58\substack{+0.32 \\ -0.30}$	$43.83\substack{+0.32 \\ -0.30}$

Notes.—Luminosities have been converted to 14–195 keV values assuming a low energy slope of 1.7 breaking to 2.0 at 10 keV. Uncertainties do not take into account the uncertainty in the conversion. La Franca et al. quote a range of solutions; a representative one is used here. The normalization of the BAT AGN luminosity function A is $1.8^{+2.7}_{-1.1} \times 10^{-5}$ erg s⁻¹ Mpc⁻³ at log $L(\text{erg s}^{-1}) = 44$.

bias to previously known sources in the data set Beckmann et al. use. The Crab spectrum used by the Sazanov et al. group for INTEGRAL calibration is $10E^{-2.1}$ (see Churazov et al. [2007] for a detailed discussion of the use of the Crab Nebula as a calibrator). The BAT team uses $10E^{-2.15}$. In the 20–60 keV band the INTEGRAL normalization gives a Crab flux which is 1.15 higher. This would account for a normalization of the $\log N - \log S$ law higher by a factor 1.23, consistent within the uncertainties. The closeness of the BAT sample introduces some uncertainty in the distance measurement due to the random velocities of galaxies $(\sim 500 \text{ km s}^{-1})$. To evaluate the effect of this uncertainty we have performed a Monte Carlo simulation of the luminosity function, including the uncertainty in luminosity and in distance due to the velocity error. This analysis indicates that the effect on the fitted parameters is $<1 \sigma$. The break log luminosity could be 0.2 dex higher due to this error compared with an noise error of 0.4. The largest effect was on the high-luminosity slope which could be 0.3 larger due to systematics (error 0.35). These systematic errors do not substantially effect the Swift BAT luminosity function at its current statistical accuracy. Thus the $\log N - \log S$ law in the 14–195 keV band is now established to \sim 25% accuracy; we know the number of sources quite accurately, but we do not know their flux to better than 15%.

4.2. Luminosity Function

The high identification completeness of our survey and the good understanding of the sky coverage are important in finding the luminosity function. We use the standard broken power law form

$$\frac{d\Phi(L_{\rm X})}{d\log L_{\rm X}} = \frac{A}{(L_{\rm X}/L_{*})^{a} + (L_{\rm X}/L_{*})^{b}},$$
(1)

This provides an excellent description of the data with the parameters given in Table 2. For comparison of other observations with ours we have converted luminosities quoted in other energy bands assuming a spectrum breaking from a slope of 1.7 to a slope of 2.0 at 10 keV. The BAT luminosity function shown in Figure 11 agrees well with those obtained by Beckman et al. (2006b) and by Sazonov et al. (2007) using data from *INTEGRAL* both in terms of the slopes and the break luminosities, although their errors are generally somewhat larger. However, we find a significantly lower break luminosity than found by Barger et al. (2005) and by La Franca et al. (2005) from observations at lower energies. The rather large difference cannot be caused by spectral conversion factors that neglect absorption in the 2–10 keV band, since this would make the observed 2–10 keV luminosity even lower compared to the 14–195 keV value, exacerbating the problem. We thus believe that the disagreement between the luminosity functions is due to a deficit of objects at log $L(\text{erg s}^{-1}) < 44.11$ in the 2–10 keV band. Considering that the bulk of the objects and their emitted luminosity lie near the break luminosity, this could imply a substantial modification to the present-day evolution models (e.g., Gilli et al. 2007).

As we show in the next section, the probability of an object being absorbed is a function of 14–195 keV luminosity. Hence there is a strong selection against detecting low-luminosity AGNs in softer X-ray surveys (see the discussion in Sazonov et al. 2007).

4.3. Nature of the Identifications

There are 151 sources in Table 1 which we have identified with AGNs. Of these, 102 are at high latitude ($|b| > 15^{\circ}$) and

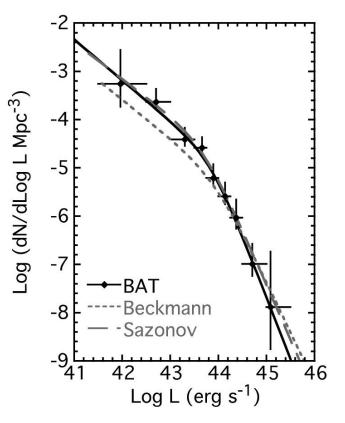


FIG. 11.—Comparison of the 14–195 keV luminosity function derived from the BAT observations with those found by Beckmann et al. (2006b) and by Sazonov et al. (2007) using *INTEGRAL*. The *INTEGRAL* luminosities have been converted to the BAT band assuming a power law with a photon index of 2.0.

above 4.8 σ and form our complete sample. The remainder are at low latitude (42) and/or have lower significance in the final analysis (44). In the complete sample 14 out of 102 are beamed sources—BL Lac objects and blazars—(17 out of 152 overall) and the remainder are Seyferts and galaxies which show indications of activity. In addition, we have detected 32 Galactic sources and two galaxy clusters which meet the latitude and significance criteria for the complete sample. At low latitudes we also detect at >4.8 σ 103 Galactic sources, three galaxy clusters, and 13 unidentified sources. Although they are included in Table 1, we have not used sources identified as blazars or BL Lac objects, nor any source with z > 0.5, in the distribution functions.

We use the *J*-band magnitudes from the 2MASS survey to categorize the objects since that is the largest homogeneous database which covers the largest fraction of the *Swift* BAT sources. It is noticeable that the faintest optical counterparts are the blazars and the Galactic sources. The optically determined AGNs tend to be in fairly bright galaxies. One of the reasons that there are so few blazar identifications at low Galactic latitudes is the relative faintness of the likely optical counterparts combined with the lack of available redshifts and the effect of Galactic reddening.

Nine of the objects have not previously been optically classified as AGNs. An excellent example of this is the object NGC 4138 (Ho 1999; Moustakas & Kennicutt 2006) which shows little or no [O III] emission and in which only very high signal-to-noise ratio (SNR) spectra revealed a very faint broad H α line. Other objects, such as NGC 4102 (Moustakas & Kennicutt 2006), show no optical evidence of AGN activity.

For those objects which are optically classified as AGNs, 33 are Seyfert 1s, 14 are Seyfert 1.5s, and 35 are Seyfert 2s. There is reasonable but not perfect correlation between the optical classification and the presence of X-ray absorption (see below). Only two of 33 Seyfert 1s have a column density greater than 10^{22} cm⁻², whereas 4 of 14 Seyfert 1.5s and 33 of 35 Seyfert 2s are absorbed (two do not have X-ray column densities).

The median redshift of the nonblazars is ~ 0.017 . However, the blazar redshift distribution is very different with a long tail to high redshift and a median redshift of 0.24 (mean of 0.76). Thus we have been careful in determining the overall luminosity function to separate the blazars from the nonblazars since this will significantly change the slope of the high-luminosity end of the luminosity function.

4.4. X-Ray Spectral Analysis

The X-ray spectra of many of the sources have been published (see the references in Table 1). In these cases we have used the previously reported values of the column densities of the sources, while noting that the SNR of the observations varies greatly, as does the sophistication of the analysis and the type of models used to classify the spectra. Many of the spectra are rather complex (Winter et al. 2008), making assignment of errors to the column density difficult and highly model dependent. Where the column densities in Table 1 were obtained with *Swift* XRT follow-up observations, for homogeneity we report the results of simple absorbed power law fits. As shown in Figure 7, a large fraction of the BAT sources are not detected by the *ROSAT* all-sky survey, despite its factor of 100 better sensitivity for unabsorbed sources. This graphically illustrates the importance of obscuration in the selection of X-ray samples.

A detailed analysis of the archival *XMM*, *ASCA*, *BeppoSAX*, and *Chandra* data as well as the *Swift* XRT data is presented in another paper (Winter et al. 2008).

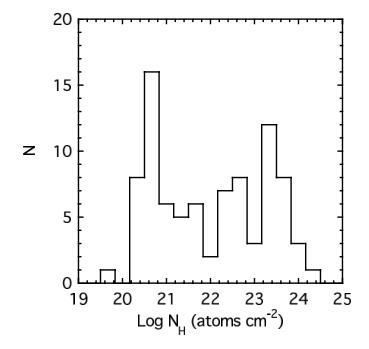


FIG. 12.—Distribution of column densities for the BAT-selected AGNs. Note the peak at low column densities and the relatively flat distribution above it. The Galactic column density has not been subtracted.

The distribution of absorption for the nonblazars (Fig. 12) is almost flat for log $n_{\rm H}$ (cm⁻²) in the range 21–24, with a strong peak at low column density due primarily to the effects of Galactic obscuration. The relative paucity of Compton-thick objects (log $n_{\rm H}$ [cm⁻²] \geq 24.5) is interesting. Unfortunately at such high columns the flux, even in the BAT energy band, is severely reduced so our level of completeness is uncertain. In addition we are only able to fit simplified models for many of these objects. Thus quantification of the lack of Compton-thick objects awaits more observations with high-sensitivity X-ray spectrometers (e.g., *XMM*, *Suzaku*).

As shown in Figure 13, the fraction of strongly absorbed AGNs drops with increasing luminosity. This is consistent with the previous claims of a drop in the absorbed fraction at higher luminosities, but it is not yet of sufficient statistical significance to confirm this dependence. While this has been seen in several X-ray-selected surveys (Ueda et al. 2003; La Franca et al. 2005; Shinozaki et al. 2006), the fact that the selection of BAT sources is independent of the line-of-sight column density confirms and extends these results.

4.5. BAT Spectral Analysis

At the present stage of analysis we only have four channel spectra available (this is a limitation of the present analysis software and is not intrinsic to the experiment). We have thus fit only simple power law models to the data.

The fact that the BAT hardness ratio shows no correlation with SNR (Fig. 5) indicates that there is no selection bias due to spectral parameters. The median spectral index is $\Gamma = 1.98$, in agreement with the *INTEGRAL* results from Beckmann et al. (2006b), with an rms spread 0.27. For a sample of 74 sources which have archival X-ray spectrum spectra at lower energies (e.g., Markowitz & Edelson 2004), the BAT slope is on average ~0.23 steeper than in the X-ray band (Fig. 14). A viable explanation for this (Nandra et al. 1999) is that the BAT data are detecting the "true" X-ray

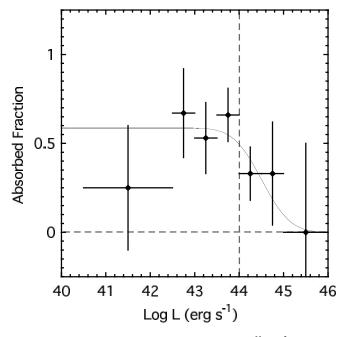


FIG. 13.—Fraction of BAT-selected AGNs with $n_{\rm H} > 10^{22}$ cm⁻² as a function of 14–195 keV luminosity. The position of the break in the luminosity function slope is indicated. The smooth curve is simply one form which is consistent with the data. As elsewhere, only AGNs with $|b| > 15^{\circ}$ and significance greater than 4.8 σ have been included. We note that if AGNs with $|b| < 15^{\circ}$ are included the drop at high luminosity is less pronounced, but it is still significant at the >2 σ level.

spectral slope of 2, while the X-ray data are strongly influenced by the effects of reflection. Malizia et al. (2003) found using *BeppoSAX* hard X-ray data that Seyfert 2s are systematically harder than Seyfert 1s. A similar result is reported by Beckmann et al. (2006a). Comparison of the spectral index distributions of Seyfert 1s and Seyfert 2s (Fig. 15) confirms this finding;

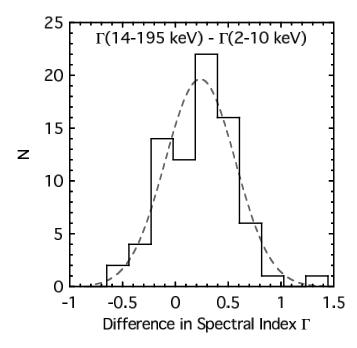


FIG. 14.—Histogram of the X-ray spectral index in the BAT band minus the X-ray spectral index. The X-ray indices are mostly from *ASCA* and XRT with some from various other missions. The mean difference is 0.26 with a standard deviation of 0.36.

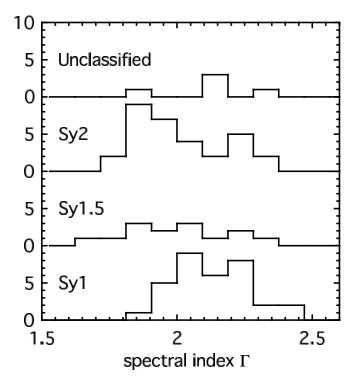


FIG. 15.—Distribution of power-law indices in the 14–195 keV band for BAT-selected sources sorted into Seyfert 1, Seyfert 1.5, Seyfert 2, and unclassified objects.

according to a Kolmogorov-Smirnov test the two distributions have a probability of less than 0.1% of arising from the same parent distribution function.

5. DISCUSSION

5.1. Luminosity Function

As shown above the low-luminosity slope of the luminosity function of hard X-ray selected AGNs is steeper than that of the 2-8 keV function of Barger et al. (2005). We believe that this is due to the high fraction of heavily absorbed objects at low BAT luminosities. Thus the contribution of low-luminosity objects to the 10-100 keV background is larger than originally calculated. This is confirmed by the agreement of the slope of our luminosity function with the absorption-corrected low-luminosity slope of La Franca et al. (2005), which unlike Barger et al. (2005) assumes an absorption that depends on luminosity. The break in the luminosity function is quite robust and thus is an intrinsic feature of the luminosity function and is not due to a spectral selection effect. Integration of our luminosity function gives a local volume density of $n(L_X > 10^{41} \text{ erg s}^{-1}) = 2.4 \times 10^{-3} \text{ Mpc}^{-3}$, compared to a density of 0.02 Mpc⁻³ galaxies brighter than $M_* = -19.75$ (Cross et al. 2001), and a local emissivity of 2.3×10^{39} erg s⁻¹ Mpc^{-3} . The choice of M_* defines the location of the knee in the luminosity function and is the typical absolute magnitude for a galaxy. It is a simple way of estimating the galaxy density. The typical J-band absolute magnitude at the knee is M = -21.73(Cole et al. 2001). The median BAT J-band absolute magnitude is M = -23.8 and only three BAT AGNs have M > -22. Hence $\gtrsim 10\%$ of luminous galaxies in the local universe are AGNs with a hard X-ray luminosity $\gtrsim 10^{41}$ erg s⁻¹. Because of the low median redshift of the sample, the BAT data are not sensitive to evolution in the luminosity function and $V/V_{\rm max} \sim 0.5$ is as expected.

5.2. log *N*-log *S*

There have been numerous predictions of the hard X-ray $\log N - \log S$ (Treister et al. 2006; Gandhi & Fabian 2003) and our data allow a direct comparison of these models. Converting the observed BAT $\log N - \log S$ to the band predicted by these authors, we find that we have good agreement with the predictions of Gandhi et al. (2004), but lie a factor of 2 lower than the predictions of Treister et al. (2006). Since each of these models makes different assumptions, our hard X-ray survey should be able to determine which are valid.

5.3. The Distribution of $n_{\rm H}$

In Figures 13 and 15 the distribution of column densities over all objects is almost flat and appears to depend on hard X-ray luminosity. Similar results based on the RXTE slew survey were obtained by Sazonov & Revnivtsev (2004). The standard unified model predicts that the ratio of absorbed to unabsorbed objects should be 4:1, as opposed to our observed value of 1:1. This difference is probably due to the neglect of the luminosity dependence of absorption in the simple unified model. The BAT results are roughly consistent with dependence of absorption on luminosity seen previously (Ueda et al. 2003; Steffen et al. 2003; Gilli et al. 2007). We note that the distribution of column densities in Tozzi et al. (2006) from the Chandra deep fields is rather different from the BAT sample in that the Tozzi et al. sample seems to be missing the low $n_{\rm H}$ half of the distribution. This has been confirmed by Wang et al. (2007) and by Gilli et al. (2007). Direct comparison of the $n_{\rm H}$ distribution from the BAT sample and Tozzi et al. shows apparent differences, especially at low $n_{\rm H}$. Taken at face value, this would indicate an evolution of the $n_{\rm H}$ distribution between the low median redshift of the BAT sample (0.03) and the redshift of the Tozzi sample (\sim 0.7). This is similar to the results reported by La Franca et al. (2005); however, Hasinger et al. (2007) find no such dependence.

6. CONCLUSION

We have presented the results of an AGN survey using data from the BAT instrument on *Swift*. The use of a hard X-ray bandpass means that the survey is immune to the effects of X-ray absorption that have traditionally plagued similar studies in optical and soft X-ray bandpasses, raising serious questions concerning completeness. Utilizing the standard AGN broken power law prescription to characterize the differential luminosity distribution function, we find that the data can be very well described taking a break luminosity log $L_*(\text{erg s}^{-1}) = 43.85 \pm 0.26$, a low-luminosity power law slope $a = 0.84^{+0.16}_{-0.22}$, and a high-luminosity power law slope $b = 2.55^{+0.43}_{-0.30}$, in agreement with other studies based on hard X-ray survey data such as that of Sazonov et al. (2007) using *INTEGRAL*. We find a median spectral index 1.98, in accord with the Beckmann et al. (2006b) study using *INTEGRAL*. By integrating our inferred luminosity function above 10^{41} erg s⁻¹, we arrive at a local volume density of 2.4×10^{-3} Mpc⁻³, roughly 10% of the local density of luminous galaxies.

The BAT survey has detected 31 AGNs at >4.8 σ that were not previously detected in hard X-rays, of which nine were not previously identified as AGNs by other techniques. In addition, there are 14 BAT AGNs that were also detected contemporaneously in hard X-rays by INTEGRAL, of which five had not been previously identified as AGNs. For sources that were detected by both instruments, there is a good correlation between the BAT and INTEGRAL flux, with the exception of a few sources that are almost certainly variable. There are 42 INTEGRAL AGNs with SNR > 4.8 that were not detected by BAT. Only 11 of these have a flux (scaled to the BAT energy band assuming E^{-2} spectrum) that is greater than 3×10^{-11} erg cm⁻² s⁻¹, where a BAT detection is likely. Most of these high-flux, undetected sources are within 30° of the Galactic center, where the BAT survey has significantly reduced sensitivity due to lower exposure and increased systematic errors. Of the BAT detected sources, 13% were not previously known to be AGNs.

With increased exposure, both the BAT and INTEGRAL survey sensitivities will improve, and we expect most of the new unidentified hard X-ray sources to be in the interesting class of very heavily absorbed AGNs. INTEGRAL detected 111 AGNs at >4.8 σ in ~4 yr. Due to its larger FOV and random observing strategy, BAT detected 126 AGNs in 0.75 yr, a rate 6 times faster than INTEGRAL. We expect both missions to continue accumulating new AGNs at the same rates, in which case BAT AGNs will become an increasing fraction of the new detections. At 3 yr after the Swift launch, we predict 450 BAT-detected AGNs and more than 60 that not have been previously identified as AGNs. The hard X-ray measurements are unique in another sense. We believe they yield an accurate measurement of the average luminosity of these sources. We have shown (L. M. Winter et al. 2008a and 2008b, in preparation) that the luminosity and powerlaw index for absorbed sources cannot be accurately derived from 2-10 keV X-ray measurements alone, even with XMM or Chandra. For the $\sim 1/2$ of all AGNs that are absorbed, the BAT and INTEGRAL surveys provide unique new measurements of the luminosity and underlying power law.

This is the second paper in a series. In future papers we will present the X-ray spectral properties of these objects, the longterm BAT light curves, detailed spectral analysis of the BAT data, and the optical properties of the hosts of the BAT sources, and extend the sample by a factor of 2 in size.

We gratefully acknowledge the help of Stephane Paltani, whose careful checking of our preprint uncovered an error in our plotting of *INTEGRAL* data.

REFERENCES

- Akylas, A., Georgantopoulos, I., Griffiths, R. G., Papadakis, I. E., Mastichiadis, A.,
- Warwick, R. S., Nandra, K., & Smith, D. A. 2002, MNRAS, 332, L23

Alexander, D. M., et al. 2003, AJ, 126, 539

Alonso-Herrero, A., et al. 2006, ApJ, 640, 167

Ballantyne, D. R. 2005, MNRAS, 362, 1183

- Barger, A. J., Cowie, L. L., Mushotzky, R. F., & Richards, E. A. 2001, AJ, 121, 662
- Barger, A. J., Cowie, L. L., Mushotzky, R. F., Yang, Y., Wang, W.-H., Steffen,
- A. T., & Capak, P. 2005, AJ, 129, 578 Barger, A. J., et al. 2003, AJ, 126, 632

Barmby, P., et al. 2006, ApJ, 642, 126

- Barthelmy, S. D., et al. 2005, Space Sci. Rev., 120, 143
- Bassani, L., Dadina, M., Maiolino, R., Salvati, M., Risaliti, G., della Ceca, R.,
- Matt, G., & Zamorani, G. 1999, ApJS, 121, 473

- Beckmann, V., Gehrels, N., Shrader, C. R., & Soldi, S. 2006a, ApJ, 638, 642 Beckmann, V., Soldi, S., Shrader, C. R., Gehrels, N., & Produit, N. 2006b, ApJ, 652, 126
- Bird, A. J., et al. 2007, ApJS, 170, 175
- Brandt, W. N., & Hasinger, G. 2005, ARA&A, 43, 827
- Brinkmann, W., Otani, C., Wagner, S. J., & Siebert, J. 1998, A&A, 330, 67
- Burenin, R., Mescheryakov, A., Revnivtsev, M., Bikmaev, I., & Sunyaev, R. 2006, ATel, 880, 1
- Cappi, M., et al. 2006, A&A, 446, 459
- Churazov, E., et al. 2007, A&A, 467, 529
- Cole, S., et al. 2001, MNRAS, 326, 255
- Cross, N., et al. 2001, MNRAS, 324, 825
- Donzelli, C. J., & Pastoriza, M. G. 2000, AJ, 120, 189

- Evans, D. A., Worrall, D. M., Hardcastle, M. J., Kraft, R. P., & Birkinshaw, M. 2006, ApJ, 642, 96
- Franceschini, A., et al. 2006, A&A, 453, 397
- Gallo, L. C., Lehmann, I., Pietsch, W., Boller, T., Brinkmann, W., Friedrich, P., & Grupe, D. 2006, MNRAS, 365, 688
- Gandhi, P., Crawford, C. S., Fabian, A. C., & Johnstone, R. M. 2004, MNRAS, 348, 529
- Gandhi, P., & Fabian, A. C. 2003, MNRAS, 339, 1095
- Gehrels, N., et al. 2004, ApJ, 611, 1005
- Giacconi, R., et al. 2002, ApJS, 139, 369
- Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79
- Gilli, R., Maiolino, R., Marconi, A., Risaliti, G., Dadina, M., Weaver, K. A., & Colbert, E. J. M. 2000, A&A, 355, 485
- Giommi, P., Piranomonte, S., Perri, M., & Padovani, P. 2005, A&A, 434, 385
- Gondoin, P., Orr, A., Lumb, D., & Siddiqui, H. 2003, A&A, 397, 883
- Gruber, D. E., Matteson, J. L., Peterson, L. E., & Jung, G. V. 1999, ApJ, 520, 124
- Halpern, J. P. 2006, ATel, 847, 1
- Hasinger, G., et al. 2007, ApJS, 172, 29
- Heckman, T. M., Ptak, A., Hornschemeier, A., & Kauffmann, G. 2005, ApJ, 634, 161
- Ho, L. C. 1999, ApJ, 516, 672
- Immler, S., Brandt, W. N., Vignali, C., Bauer, F. E., Crenshaw, D. M., Feldmeier, J. J., & Kraemer, S. B. 2003, AJ, 126, 153
- Kennea, J. A., et al. 2005, ATel, 677, 1
- Kraft, R. P., Hardcastle, M. J., Worrall, D. M., & Murray, S. S. 2005, ApJ, 622, 149 Krivonos, R., Vikhlinin, A., Churazov, E., Lutovinov, A., Molkov, S., & Sunyaev,
- R. 2005, ApJ, 625, 89
- La Franca, F., et al. 2005, ApJ, 635, 864
- Lawson, A. J., & Turner, M. J. L. 1997, MNRAS, 288, 920
- Levine, A. M., et al. 1984, ApJS, 54, 581
- Lewis, K. T., Eracleous, M., & Sambruna, R. M. 2003, ApJ, 593, 115
- Lutz, D., Maiolino, R., Spoon, H. W. W., & Moorwood, A. F. M. 2004, A&A, 418, 465
- Mainieri, V., Bergeron, J., Hasinger, G., Lehmann, L., Rosati, P., Schmidt, M., Szokoly, G., & Della Ceca, R. 2002, A&A, 393, 425
- Mainieri, V., et al. 2005, A&A, 437, 805
- Maiolino, R., Salvati, M., Bassani, L., Dadina, M., della Ceca, R., Matt, G., Risaliti, G., & Zamorani, G. 1998, A&A, 338, 781
- Malizia, A., Bassani, L., Stephen, J. B., Di Cocco, G., Fiore, F., & Dean, A. J. 2003, ApJ, 589, L17
- Markowitz, A., & Edelson, R. 2004, ApJ, 617, 939
- Markwardt, C. B., Tueller, J., Skinner, G. K., Gehrels, N., Barthelmy, S. D., & Mushotzky, R. F. 2005, ApJ, 633, L77
- Masetti, N., et al. 2006a, A&A, 448, 547
- 2006b, A&A, 459, 21
- Matt, G., Fabian, A. C., Guainazzi, M., Iwasawa, K., Bassani, L., & Malaguti, G. 2000, MNRAS, 318, 173

- Meléndez, M., et al. 2008, ApJ, in press (arXiv:0804.1147)
- Molina, M., et al. 2006, MNRAS, 371, 821
- Morelli, L., Masetti, N., Bassani, L., Landi, R., Malizia, A., Bird, A. J., Ubertini, P., & Galaz, G. 2006, ATel, 785, 1
- Moretti, A., Campana, S., Lazzati, D., & Tagliaferri, G. 2003, ApJ, 588, 696 Moustakas, J., & Kennicutt, Jr., R. C. 2006, ApJS, 164, 81
- Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yaqoob, T. 1999, ApJ, 523, L17
- Perlman, E. S., et al. 2005, ApJ, 625, 727
- Predehl, P., & Schmitt, J. H. M. M. 1995, A&A, 293, 889
- Reynolds, C. S. 1997, MNRAS, 286, 513
- Risaliti, G., Maiolino, R., & Salvati, M. 1999, ApJ, 522, 157
- Sambruna, R. M., George, I. M., Mushotzky, R. F., Nandra, K., & Turner, T. J. 1998, ApJ, 495, 749
- Sambruna, R. M., et al. 2006, ApJ, 646, 23
- Sargent, W. L. W. 1970, ApJ, 159, 765
- Sazonov, S., Churazov, E., Revnivtsev, M., Vikhlinin, A., & Sunyaev, R. 2005, A&A, 444, L37
- Sazonov, S., & Revnivtsev, M. 2004, A&A, 423, 469
- Sazonov, S., Revnivtsev, M., Krivonos, R., Churazov, E., & Sunyaev, R. 2007, A&A, 462, 57
- Schoenmakers, A. P., Mack, K.-H., Lara, L., Roettgering, H. J. A., de Bruyn, A. G., van der Laan, H., & Giovannini, G. 1998, A&A, 336, 455
- Schwope, A., et al. 2000, Astron. Nachr., 321, 1
- Shinozaki, K., Miyaji, T., Ishisaki, Y., Ueda, Y., & Ogasaka, Y. 2006, AJ, 131, 2843
- Steffen, A. T., Barger, A. J., Cowie, L. L., Mushotzky, R. F., & Yang, Y. 2003, ApJ, 596, L23
- Stern, D., et al. 2005, ApJ, 631, 163
- Szokoly, G. P., et al. 2004, ApJS, 155, 271
- Tozzi, P., et al. 2006, A&A, 451, 457
- Treister, E., et al. 2005, ApJ, 621, 104
- 2006, ApJ, 640, 603
- Ueda, Y., Akiyama, M., Ohta, K., & Miyaji, T. 2003, ApJ, 598, 886
- Ueda, Y., et al. 2007, ApJ, 664, L79
- Véron-Cetty, M.-P., & Véron, P. 2006, A&A, 455, 773
- Voges, W., et al. 1999, A&A, 349, 389
- Wang, J. X., et al. 2007, ApJ, 657, 95
- Watanabe, C., Ohta, K., Akiyama, M., & Ueda, Y. 2004, ApJ, 610, 128
- Weedman, D., et al. 2006, ApJ, 653, 101
- Winter, L. M., et al. 2008, ApJ, 674, 686
- Worsley, M. A., et al. 2005, MNRAS, 357, 1281
- Yang, Y., Mushotzky, R. F., Steffen, A. T., Barger, A. J., & Cowie, L. L. 2004, AJ, 128, 1501
- Zheng, W., et al. 2004, ApJS, 155, 73