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ABSTRACT

In this concluding part of the series of three papers dedicated to the Swift BAT hard X-ray survey (BXS), we focus
on the X-ray spectral analysis and statistical properties of the source sample. Using a dedicated method to extract
time-averaged spectra of BAT sources, we show that Galactic sources have, generally, softer spectra than extragalactic
objects and that Seyfert 2 galaxies are harder than Seyfert 1s. The averaged spectrum of all Seyfert galaxies is
consistent with a power-law with a photon index of 2.00 4+ 0.07. The cumulative flux-number relation for the extra-
galactic sources in the 14—170 keV band is best described by a power-law with a slope o = 1.55 4 0.20 and a normal-
ization of 9.6 & 1.9 x 107> AGNs deg ™2 (or 396 + 80 AGNss all-sky) above a flux level of 2 x 10~!! ergs cm =2 s~/
(~0.85 mcrab). The integration of the cumulative flux per unit area indicates that BAT resolves 1%—2% of the X-ray
background emission in the 14—170 keV band. A subsample of 24 extragalactic sources above the 4.5 ¢ detection
limit is used to study the statistical properties of AGNs. This sample is composed of local Seyfert galaxies (z = 0.026,
median value) and ~10% blazars. We find that 55% of the Seyfert galaxies are absorbed by column densities of
N > 10?2 H atoms cm™2 but that none is genuinely bona fide Compton thick. This study shows the capabilities of
BAT to probe the hard X-ray sky to the millicrab level.

Subject headings: galaxies: active — surveys — X-rays: binaries — X-rays: galaxies

Online material: color figures

1. INTRODUCTION

There is a general consensus that the cosmic X-ray background
(CXB), discovered more than 40 years ago (Giacconi et al. 1962),
is produced by integrated emission of active galactic nuclei
(AGNSs). Population synthesis models have successfully shown,
in the context of the AGN unified theory (Antonucci 1993), that
AGNs with various levels of obscuration and at different red-
shifts account for 80%—100% of the CXB below 4 keV (Comastri
et al. 1995; Gilli et al. 2001; Treister & Urry 2005). Notwith-
standing all the advances in the field, a major question remains:
do Compton-thick sources exist in the numbers that seem to be
required by population synthesis models (e.g., Comastri et al.
1995; Gilli et al. 2001) to reproduce the shape of the CXB emis-
sion? An indication of the existence of such a population comes
from the analysis of the CXB fraction that is resolved into sources;
Worsley et al. (2005) find that this fraction decreases with energy
and that the unresolved component is consistent with being the
emission of a yet undetected population of Compton-thick AGNs.
In summary, much evidence points towards the existence of
Compton-thick AGNs, while only a handful of them are known
and studied.

The >10 keV energy range is the most appropriate band for
studying and selecting an unbiased (with respect to absorption)
sample of AGNSs. This band is also the optimum band for the
detection of Compton-thick objects. These elusive objects could
have been missed because of the difficulties of performing sen-
sitive imaging of the hard X-ray sky. The Burst Alert Telescope
(BAT; Barthelmy et al. 2005), on board the Swift mission (Gehrels
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et al. 2004), represents a major improvement in sensitivity for
X-ray imaging of the hard X-ray sky. We refer readers to Ajello
et al. (2007) for details about the BXS survey.

We applied an innovative image reconstruction algorithm to
8 months of survey BAT data; our survey covers ~7000 deg?,
reaching a limiting sensitivity of <0.9 mcrab. This makes it one
of the most sensitive surveys ever performed in the hard X-ray
domain. We detected 49 hard X-ray sources, of which 37 were
previously unknown as hard X-ray emitters. Correlation with
X-ray catalogs allowed us to identify 15 sources, while pointed
observations by Swift XRT provided identification for another
15 objects. Furthermore, we optically identified 3 new extraga-
lactic sources (Rau et al. 2007). Here we investigate the spectral
and statistical properties of all objects in the complete source
sample.

The paper is organized as follows. In § 2 we present the X-ray
spectral analysis of the BAT sources. The details of the dedicated
spectral extraction method are presented in the Appendix. We
use the source spectra to build an X-ray color-color plot, which
is used to understand the mean properties of the source popu-
lations. In § 3 we apply the V/Vp.x method to test the complete-
ness of the extragalactic sample, which is then used to derive
the number-flux relation. The section ends with a discussion of
the statistical properties of the extragalactic sample. Finally, we
discuss the BAT results in § 4. Throughout this work we use
Hy =70 km s~! Mpc™! (hyo=1), k=0, Qmanerf03 and
Ao = 0.7, and the luminosities are given in ergs s~! 4!

2. SPECTRAL ANALYSIS

We have developed a dedicated spectral extraction method
that allows to derive the time-averaged spectrum of all sources.
The reader interested in the method is referred to the Appendix
for details. Using this method, we derived for all our source can-
didates a six-channel energy spectrum in the range 14—195 keV.
The energy channels used in this analysis are (in keV): 14-22,
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TABLE 1
SPECTRAL PARAMETERS

R.A. Decl. Ny
Name (J2000.0)  (J2000.0) Type T/E[KTT* (10%? atoms cm™2) Model Instrument®

3C 1050 oo 61.9178 3.6517  Seyfert 2 1.66%013 29.4737 wabs*pow B, X
1AXG J042556—5711 ..oovvrrreennnne. 66.6021  —57.1775  Seyfert 1 1.54+(:928 0 pow B, A
3C 120 oo 68.2982 53374  Seyfert 1 1.8070:04/0.27+0:02¢ 0 wabs*pow-+bb B, A
MCG -01-13-025 ... 729205  —3.8240  Seyfert 1.2 167048 <0.02¢ pow B
SWIFT J0505.7—2348.. 76.4674  —23.8666  Seyfert 2 177598 4.8709 wabs*pow B, X
CSV 6150 .............. . 77.7224 16.5265  Seyfert 1.5 1.94+023 . pow B
AU 051340 ... 78.5146  —40.0558 LXB 29.7t12 brem B
QSO BO513—002 .....ccosrrvermrrirnn 79.0096  —0.1332  Seyfert | 1.8370:02./0.2713:52 < 0.01 wabs*pow-+bb B, A
SWIFT J0517.1+1633 .................. 79.2839 16.5605 . 207933 e pow B
ESO 362— G 018 ..o 79.8844  —32.6720  Seyfert 1.5 15709 <0.01 wabs*pow B, X
Pictor A, 79.9460  —45.7557  Seyfert 1 1.8+01 0.12+5:997 wabs*pow B, A
ESO 362—G021.. 80.6581 —36.4233 BL Lac 1750037 0.15001%7 wabs*pow B, A, X
V* TV Col...... 823541  —32.7965 CV—DQ* 24,948 bremss B
VE TW PiCuooniirrieieneiineeienneens 83.6470  —58.0200 CV 13.57106 . bremss B
|51 (G . TR 84.7717 —64.1148 HXB 20154 e pow B
|5/ (G35 G5 PR 84.8917 —69.7210 HXB 235022 . pow B
PSR B0540—69.3 ....covvvvererrennees 84.9878  —69.3230  Pulsar 1.857028 . pow B
PKS 0537-286... 84.9953  —28.7029 BLAZAR 1357008 < 0.01 wabs*pow B, A
PKS 0548-322... 87.7165  —32.2610 BL Lac 1.8+0:932 0.02+0:99¢ wabs*pow B, X
NGC 2110....... . 88.0411  —7.4554  Seyfert 2 1.627001/0.4750:02 4.0 wabs*(pow+ga) + bb B, A, X
LEDA 75476.....covvemereenereineneens 89.5237  —38.3799  Seyfert 1 1.74+0:017/0.25+C:9% 25401 wabs*(pow+ga)+bb B, A
ESO 490— G 26 ..covverrreerrienes 100.0031  —25.8931  Seyfert 1.2 1.9075:99 0277500 wabs*pow B, X
SWIFT J0727.5-2406........oeeee.. 111.8951  —24.1039 . 1537033 . pow B
VH 441 PUD.oooeeeeeeeo 112.1626  —26.0696 CV 1244130 bremss B
V* BG CMi......... 112.8752 9.9214 CV 31.3742 bremss B
SWIFT J0732.5-1331.. 113.1328  —13.5037 CV 33.2739) o bremss B
SWIFT J0739.6—3144.. . 1149127 317496  Seyfert 24 L7703 >2° pow B
SWIFT J0743.0—2543.......covvvveenn. 115.7501  —25.7314 . 1.78758 o pow B
IGR JO7597—3842...0ccccrcccrrrrreen 119.9822  —38.7422  Seyfert 1.2 1.8+008 <0.01 wabs*pow B, X
UGC 4203 121.0552 5.1203  Seyfert 2 1.687599/0.3110:8 12.5439F wabs(pexrav-+ga)+bb B, A, X
SWIFT JO811.5+0937.......occornnnn. 122.8750 9.6214 XBONG! 22721 02 pow B
SWIFT J0823.4—0457.......ovvvveene. 125.8271  —4.9401  Seyfert 2 1.847028 19.37¢8 wabs*pow B, X
Vela PSR......ooucvvevrnenerierecseees 128.8308 —45.1771 PSR 1.88702 . pow B
FRL 1146. 129.6151  —35.9976  Seyfert 1 1.887537 . pow B
3C 206 ..... 129.9556  —12.2467 QSO 1.95%0% 0¢ wabs*pow B
SWFIT J0844.9—3531.. . 1312411 355313 o 1.91754¢ . pow B
SWIFT J0854.7+1502 .....ocnmrrrenenn 133.6828 15.0371  Seyfert 2¢ 14197 >0.5° pow B
SWIFT J0917.2—6221 .....rnrreeene. 139.112  —62.359  Seyfert 1 1.8775:07/0.14 7002 1.337518 bb+wabs*pow B
MIK 0704 .ooooorrrerreveerreeeenennenens 139.6505 16.2987  Seyfert 1.5 1,360, 150153 pefabs*(pow-+ga) B, A, X
AU 091954 ..o 140.0753  —55.2135 LXB 45.1112613 . bremss B
MCG -01-24-012 1402134 —8.0872  Seyfert 2 1.7+:98 6.5708 wabs*pow B, X
NGC 2992...... 146.4060  —14.3007  Seyfert 1.9 1.2475:9¢ 0.17-9%3 wabs*(pow+ga) B, A, X
ESO 434— G 040.. 1469151  —30.9388  Seyfert2  1.7779:9%/0.1579:01L 1550036 wabs*(pow-+ga)+bb B, A, X
3C 227 oo 146.9447 74191  Seyfert 1 211734 3.6113 pexrav+wa*pow ,
NGC 3081 oo 149.8805  —22.8561  Seyfert 2 1.9%0:03/0.58 1013 60731 wabs*(pow-+ga) +bb B, A, S

# Photon index and/or plasma temperature for the model, specified in model column, to fit the data.
® Instruments used for spectral analysis are: B=BAT, X=Swift XRT, A=ASCA, C=Chandra, and S=BeppoSAX.

¢ Gallo et al. (2006).
4 Proposed identification in Rau et al. (2007).
¢ Lower limit on absorption estimated through the nondetection by ROSAT.

T UGC 4203 exhibits transition between reflection- and transmission-dominated spectrum. The absorption is estimated in the latter case using XRT data (see text for details).
€ Order of magnitude of the absorption estimated imposing that the extrapolated source flux match the ROSAT PSPC count rates.

22-30, 3047, 47-71, 71-121, and 121-195. The energy bins
were optimally chosen to produce similar error bars (in the dif-
ferent energy bins) for sources with power-law spectra. We found
that 21 sources had at least soft X-ray observations by Swift XRT
or ASCA. For these sources, we jointly fit XRT/4SCA and BAT
data. When fitting a source spectrum, we have preferred the sim-
plest model yielding a good description of the data. The normal-
ization of the ASCA spectra was allowed to vary (with respect to
the BAT ones) to cope with the different epochs of the obser-

vations. This was not required when fitting XRT and BAT data.
In general, the BAT spectrum of Galactic sources is well fit by a
thermal bremsstrahlung model. In contrast, AGNs are usually
better described by a single power-law model. However, when
<10 keV data were available, the fit required additional com-
ponents (i.e., a blackbody component for soft excess and/or a
Gaussian model for the iron line). The detailed analysis is re-
ported in Appendix A4, while the spectral parameters are sum-
marized in Table 1.
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-0.2! ‘ | = TABLE 2
= r=1.0 ] SPECTRAL PARAMETERS FOR SEYFERT 1, SEYFERT 2, INTERMEDIATE,
0.3 B AND ALL SEYFERT AGNs
-0.4— =
E B CLASS Photon Index XZ/NDF
-05— -
C ) 7 Seyfert 1..... 223 £ 0.11 5.4/4
-0.6— “"Log (N)=25 Seyfert 2............. 1.86 £ 0.10 1.2/4
HR]0 r o Sy 7 Seyfert 1.2-1.5... 1.95 + 0.11 4.9/4
. ; o sy2 E Seyfert all.......ccccvvvvccnnncccnee 2.00 £+ 0.07 2.1/4
-0.8— sy12ns5
= = Unidentified [ . .
0.9 + Galactic 1 at 30 keV followed by a steep decline, the larger the reflection
e . + BL Lac/Blazarl] component, the softer the spectrum. We tested this scenario using
*(‘) T (‘)6‘ ‘ (‘)4‘ B E for Seyfert 1s (Seyfert 2s are successfully fit by a simple power

-0.2HR, -0 0.2 0.4 0.

Fic. 1.—Plot of HR1 and HR2 hardness ratios. The solid line is the locus for
sources with unabsorbed power-law spectra with photon indices from 1.0 to 3.0,
while the long-dashed line shows the location of Compton-thick AGNs with the
same range of photon indices. The dashed line shows the location of objects with
a thermal bremsstrahlung spectrum with temperatures in the range 5-50 keV.
In the top left corner the typical 1 o error for a 5 o source is shown. [See the
electronic edition of the Journal for a color version of this figure.]

The properties of the source sample can be studied using
hardness ratios. We have thus defined HR; and HR, as

medium — hard

HR, = medium + hard’

soft — medium
)=, (1)

soft + medium
where the soft, medium, and hard bands (in keV) are, respec-
tively, 14-30,30—71, and 71-195. The hardness ratios, shown in
Figure 1, are normalized to the range —1 to +1. Different sym-
bols indicate different source classes. We also indicate the loci
occupied by sources with a power-law index in the range 1.0-3.0,
or a bremsstrahlung spectrum with a temperature of 10—50 keV.
A few things can be derived by the study of the hardness ratios.
Galactic sources, usually characterized by soft X-ray spectra,
have HR; values <—0.3 and HR; < —0.5, which is the typical
region for sources with a steep photon index. Indeed, the five
cataclysmic variables (CVs) present in the sample are all well fit
by a relativistic bremsstrahlung model with a mean plasma tem-
perature of 23 keV.

Similarly, we note that Seyfert 2 galaxies seem to have (given
the large uncertainties) harder X-ray spectra than Seyfert 1s
(larger values of HR;). The fact that type 2 AGNs have system-
atically harder spectra than type 1 AGNs could be an evidence
of the intrinsic difference between these two classes of objects.
In order to study this issue in more detail, we performed a stacked
spectral analysis* grouping the Seyfert galaxies detected by
BAT into three classes: Seyfert 1, Seyfert 2, and intermediate
Seyfert. The results, which are summarized in Table 2, show that
the mean photon index of Seyfert 1s and Seyfert 2s are differ-
ent at more than the 2 o level. The same trend was previously
noted in Seyfert galaxies detected by OSSE (Zdziarski et al.
2000) and by INTEGRAL (Beckmann et al. 2006). Zdziarski
etal. (2000) find that the difference in spectral index could be due
to the different viewing angle between Seyfert 1s and 2s. Indeed,
the strength of Compton reflection decreases with the increasing
viewing angle. Since the spectrum from Compton reflection peaks

4 All stacked spectral analysis are performed doing a weighted average of the
spectra.

law) the pexrav (Magdziarz & Zdziarski 1995) model in XSPEC.
Indeed, we get a good fit (x*> = 1.2/3) with a (minimum) reflec-
tion strength R > 1.1 (upper limit is unconstrained by the fit),
which is in good agreement with findings by Zdziarski et al.
(2000) and Deluit & Courvoisier (2003). Thus, the BAT data seem
to confirm the larger reflection component present in Seyfert 1
galaxies (with respect to Seyfert 2s), in agreement with the AGN
unified model. Even though the reflection component improves
the fit, it does not affect the photon index of Seyfert 1s, which
remains 2.30 £ 0.12.

We note, however, that most of the Seyfert 1s (six out of nine)
have a low value of HR|, denoting a steep spectrum. We thus
tried to fit the stacked spectrum with a cutoff power-law model
of the form E~Te-(E/E), Since the power-law index and the
e-folding energy E. are highly correlated, we fixed the photon
index to 2.0 (see below). The best-fit e-folding energy is
1 IO.nggzg keV (90% CL), with a reduced x? that is substantially
better than the one of the power-law model (0.9 vs. 1.4, with an
F-test probability of 0.08). The presence of a cutoff at ~100 keV
in the X-ray spectra of Seyfert 1s seems also to be confirmed by
the analysis of Deluit & Courvoisier (2003).

Finally, we performed the stacked spectral analysis of all the
Seyfert galaxies to investigate the averaged spectrum of the local
AGNs detected by BAT. The stacked spectrum, shown in Fig-
ure 2, is consistent (in the 15-200 keV range) with a power-law
model with a photon index of 2.00 &+ 0.07 (90% CL).

3. THE HARD X-RAY EXTRAGALACTIC SAMPLE

The extragalactic sample, shown in Table 3, was derived from
the catalog reported in Table 2 of Ajello et al. (2007), considering

py

_5 N
0 EN

ph cm? s

10?
10 keV

Fig. 2.—Stacked spectrum of all AGNs reported in Table 3 excluding the
blazars. The dashed line is the best power-law fit to the data (photon index of
2.0 £0.07).
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TABLE 3
EXTRAGALACTIC SAMPLE

Radio Fx Lx Fepw® Ny
Name Type z Loudness (107! ergs cm™2 s7!) (10 ergs s™') L jorevilow® (eV) (10%2atoms cm~2) References

3C 105.0 coovoeeree Seyfert 2 0.089 28421 46703 445417 5815+ 692  nr 29.4 1
1AXG J042556—5711 ...... Seyfert 1 0.104 0.78° 192103 55.053° e nr 0 1
3C 120 oo Seyfert 1 0.0330 3762 10.179% 25.4722 148.8 + 406 523 0 1
MCG -01-13-025 ............. Seyfert 1.2 0.015894  1.15° 2.52%1 1.579¢ <0.02 2
SWIFT J0505.7—2348...... Seyfert2  0.0350 7.13¢ 5.0107 14,1792 3452+ 822 or 63 1
QSO B0513-002 .. Seyfert1  0.0327 0.254 4.92%9% 123421 90.8 0.02 3
ESO 362— G 018..ccon.....e. Seyfert 1.5 0.0126 0.58° 5.0107 17403 363 £3.7 nr <0.01 1
Pictor A...ovceerereererreeeercnes Seyfert 1 0.035 14045 1.8%93 51713 113.4 + 14.5 nr 0.12 1
ESO 362—G021................ BL Lac 0.05534 2409 27403 18.873¢ 1284.1 £ 2703  nr 0.1 1
PKS 0537—286......ccnn. BLAZAR 3.1 22000 2.4399 12504 % 10° . nr <0.01 1
PKS 0548322 . BL Lac 0.0690 383.33 31198 37.01%% . nr 0.0257 1
NGC 2110..... Seyfert2 ~ 0.007789  26.92 27.0100 3.5701 11158 &£ 101.4 118 4.0 1
LEDA 75476. .. Seyfert 1 0.0338 2.87° 3.270% 8724 393.7 +59.6 144 25 1
UGC 4203 Seyfert2  0.01349 7.67 428104 17703 2142 £ 714 747 125 1
SWIFT JO811.5+0937....... XBONG 0282 268° 155412, 384100 . e ~0!

SWIFT J0823.4—0457...... Seyfert2  0.023 0.61° 2.785}9 3.359 1791 £ 71.6 ... 16.2 1
3C 206 .oooooeoeereeee QSO 0.1976 1194 2.62107 30015 . - 0 1
SWIFT J0854.7+1502 ...... Seyfert2  0.0696 o 173412 19.7+13 o o >0.5¢ 1
Mrk 0704 Seyfert 1 0.0292 0.82° 221755 43721 1149 £27.1 160 14.6 1
MCG -01-24-012. . Seyfert2  0.01964 2.86° 4.6707 3770 29144 £1092.9 nr 6.8 1
NGC 2992 Seyfert 1.9 0.00771 2.03 3.6119 0.47+¢.13 0.8 £ 0.1 520 0.17 1
ESO 434— G 040............. Seyfert 2 0.00848 0.6 19.179¢ 27101 912.9 £21.1 855 1.5 1
3C 227 oo Seyfert 1 0.0858 5462 2.2370¢ 400719 1934710 o 3.6 1
NGC 3081 ..o Seyfert 2 0.00798 0.1° 6.870% 0.96+51, 310+ 1.7 241 60 1

# The O m luminosities have been derived in Rau et al. (2007).

® Iron line equivalent width. A value of “nr” means that the iron line is statistically not required by the fit.
© The radio flux at other wavelengths has been extrapolated to 6 cm assuming f;, oc v~
4 Limit on the absorption obtained extrapolating the BAT spectrum to the ROSAT band.

REerereNces.— (1) this work; (2) Gallo et al. 2006; (3) Lutz et al. 2004.

only objects at |b] > 15° that are not spatially associated with the
Large Magellanic Cloud. Here we describe the main properties of
the sample.

3.1. Completeness of the Sample

In order to compute the AGN number-flux relation, it is nec-
essary to have a complete and unbiased sample. Since different
regions of the sky have different exposure times, we applied in
Ajello et al. (2007) a significance limit rather than a flux limit
to define our sample. Now we want to test our extragalactic sam-
ple for completeness (i.e., derive the significance limit that is
guaranteed to include all objects above a given flux limit), and
we use the V/Via method (Schmidt 1968).5 This method, which
is applied to samples complete to a well-defined significance limit,
can also be used to test the completeness level of a sample as a
function of significance. For a significance limit below the true
completeness level limit of the sample, the V/V .« returns a value
less than (V/Viax) > Which would be the true test result for a
complete sample. Above the completeness limit the (V/V )
values should be distributed around (V/Vax) (e Within the sta-
tistical uncertainties.

V/Vmax is computed for each source as [F/(0stOF )]73 2
where F is the flux, 6F is the 1 o statistical uncertainty, o is the
significance level tested for completeness (and thus the term
OestOF 1s the limiting flux of the sky region where we detected
the source), and the exponent —3/2 comes from assuming no evo-
lution and a uniform distribution in the local universe. (¥/Vax)

true

5 In this test V" stands for the volume where the object has been detected and
V max 18 the accessible volume in which the object, due to the flux limit of the sur-
vey, could have been found. In case of no evolution (V/V ) = 0.5 is expected.

is computed as an average of all sources detected with S/N >
Oest- For a given mean value m = (V/Vy.) and n sources, the
error on (V/Viax) can be computed as (Avni & Bahcall 1980):

aumy = |22 @

The results of the test are shown in Figure 3. We find a constant
value for significances >4.5 ¢. The deviation from the expected
0.5 value is insignificant, being less than 1 ¢.°

We also remark that for completeness we refer to the threshold
above which all sources above the corresponding flux limit are
included in the sample. Furthermore, given the small redshift of
the sample (see § 3.3), the hypothesis of no evolution is justified.

3.2. Extragalactic Source Counts

The cumulative source number density can be computed as
Ng 1 5

N> S) = — (deg™ 3

>8)=2 g, (d7). (3)

where Ny is the total number of detected sources in the field with
fluxes greater than S and €2; is the sky coverage associated to the
flux of the ith source (shown in Fig. 9 of Ajello et al. 2007). The
cumulative distribution is reported in Figure 4. We performed a
maximum likelihood fit to the cumulative counts, assuming a

® Ttis not uncommon for coded mask detectors to produce a test value slightly
above 0.5 (e.g., Beckmann et al. 2006). This is likely caused by systematic errors
which tend to increase the (V/V max) value.
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FiG. 3.—V/Vinax as a function of detection threshold for the sample of ex-
tragalactic sources. The dashed line is the expected value (0.5) for a complete
sample in an homogeneous distribution. The solid line shows the mean test value
for S/N > 4.5 0.

simple power-law model of the form N(> S) = 4S~*. Here 4 is
the normalization at 2 x 10~!! ergs cm ™2 s~! and « is the slope.
As is conventional, we used the maximum likelihood es-
timator (e.g., Crawford et al. 1970) to determine the best-fit
values. The normalization is not a parameter of the fit but is
obtained assuming that the number of expected sources from the
best-fit model is equal to the total observed number. The Poissonian
error on the total number of sources provides a reliable estimate
of its error.

In the 14—170 keV band the best-fit parameter is « = 1.55 +
0.20 (with normalization 9.6 & 1.9 x 103 deg~?). The source
count distribution is thus consistent with a pure Euclidean function
(a = 3/2). From our data we expect that the number of all-sky
AGNs brighter than 2 x 107! ergs cm 257! is 396 4 80. This cor-
responds to an integrated flux of ~5 x 10~'? ergscm 2 s~ deg 2,
or ~1.5% of the intensity of the X-ray background in the 14—
170 keV energy band as measured by HEAO-1 (Gruber et al. 1999).
We can compare the surface density of extragalactic objects found
by BAT with previous measurements by converting the BAT fluxes
to other energy bands, assuming a power-law spectrum with a
photon index of 2.0 (see § 2) and evaluating the surface density
above 10~!! ergs cm™2 s~

The results of such comparisons are shown in Table 4. The
BAT surface density is in agreement with the reported meas-
urements, except for the case of the 0.5-2 and 2—-10 keV surveys.
Indeed, such surveys, at limiting fluxes of 10! ergs cm=2 57!,
are biased against the detection of absorbed sources.” It is also
worth noting that the recent XMM-Newton measurement of the
5-10keV source counts distribution (Cappelluti et al. 2007) is in
perfect agreement with our estimate.

3.3. Statistical Properties

Above the 4.5 o the extragalactic sample, shown in Table 3,
contains 24 AGNs. Nineteen objects are classified as Seyfert gal-
axies, 3 as blazars, 1 as an X-ray bright optically normal galaxy
(XBONG), and 1 as a quasar. The identification completeness of
such sample is thus 100%.

Excluding the blazars, the median redshift of the sample is
z = 0.026 (the mean is z = 0.046), giving a median luminosity
of 10433 ergs s~! (the mean is 10438 ergs s ') in the 14—170 keV

7 The bias decreases in deep fields and thus at lower fluxes (and higher
redshifts) because the photoelectric cutoff is redshifted at lower energies.
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band. Assuming a hydrogen column density of 10?? atoms cm ™2

as the threshold between absorbed and unabsorbed objects, we
find that intrinsic absorption is present in ~55% of the sample.
This fraction is lower than the 75% expected by the standard
unified model, which is derived by the opening angle of ioniza-
tions cones (e.g., Evans et al. 1991). However, this unexpectedly
low fraction of absorbed AGNs in the local universe does not
seem to pose any particular problem for the understanding and
the synthesis of the CXB (e.g., Sazonov et al. 2007).

In Figure 5 we show the intrinsic column density of the sources
as a function of unabsorbed luminosity in the BAT band. Ex-
cluding the lower limits on the absorption, we do not find evidence
of an anticorrelation between luminosity and absorption. We also
note the presence of a rare very luminous (Ly ~ 10% ergs cm™2)
highly absorbed (My ~ 102 atoms cm~2) type 2 QSO. If the
lower limits on the absorption are confirmed, the total fraction of
such objects might be in the range 5%—-15%.

None of the sources in Table 3 with a 2—-10 keV measurement
is a Compton-thick AGN. Our claim is supported by several
indications:

1. As shown by Matt et al. (1997) for NGC 1068, the spectra
of Compton-thick AGNs might be reflection dominated (i.e., the
reflection component is larger than the transmitted one). We thus
tried to fit to each source a pure reflection model (pexrav in
XSPEC). For all the sources, except Mrk 704, the fit is statisti-
cally unacceptable. However, Mrk 704 is not a Compton-thick
source, as Landi et al. (2007) have recently shown.

2. Compton-thick sources generally show iron lines with equiv-
alent widths of ~1keV (e.g., Guainazzi et al. 2005). The spectral
analysis (see also values in Table 3) shows that all sources have
iron line equivalent widths smaller than 1 keV.

3. The thickness parameter T, defined as Ly 19 kev/Lou (see
also Bassani et al. 1999), can be used to identify Compton-thick
sources (characterized by 7 < 1). We computed the thickness
parameter for all sources with O m flux measurements (Rau et al.
2007) and 2—10 keV observations (see Table 3). All sources ex-
cept NGC 2992 (which, however, is unabsorbed) have thickness
parameter values consistent with the values expected for Compton-
thin AGNS.

We evaluated the radio loudness of AGNs using the R-index
defined in Laor (2000) as R = f,(5GHz)/f; (4400 A); the distri-
bution of R-values has been shown to be bimodal, with a mini-
mum at R = 10, commonly used to define radio-loud (above 10)
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TABLE 4
COMPARISON WITH PREVIOUS RESULTS

Energy AGN Density® BAT Density (this work)®

Instrument References (keV) (1072 deg™?) (1072 deg™?)
INTEGRAL 1SGRI. ........... 1 20-40 0.48 £+ 0.08 0.41 £+ 0.08
INTEGRAL 1SGRI............ 2 100-150 0.18 £ 0.006 0.17 + 0.034
HEAO-1 A2 ... 3 2-10 1.2 +£02 1.6 £ 0.32
RXTE PCA....... 4 8-20 0.56 £ 0.06 0.65 + 0.13
XMM-Newton ... 5 0.5-2 0.1 + 0.01 1.3 +0.26
XMM-Newton ... 5 2-10 0.95 £+ 0.06 1.6 + 0.32
XMM-Newton................... 5 5-10 0.63 + 0.4 0.4 + 0.08

2 AGN densities from different surveys above 10~!! ergs cm™2 s~! (in the respective bands).

® The BAT AGN density was converted to the native energy band of the measurement we are comparing it with.
REereErReNCES.—(1) Beckmann et al. 2006; (2) Bazzano et al. 2006; (3) Piccinotti et al. 1982; (4) Revnivtsev et al.
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2004; (5) Cappelluti et al. 2007.

versus radio-quiet objects. Interestingly, we note that a relevant
fraction (~40%) of the BAT AGNss is radio-loud and that these
objects show a systematically harder X-ray spectra than Seyfert
galaxies (mean of 1.66 vs. 2.00). There is large consensus that
radio-loud quasars host more massive black holes than radio-quiet
ones (e.g., Metcalf & Magliocchetti 2006; McLure & Jarvis 2004).
However, there is no simple explanation for this radio-loudness
dichotomy. Recently, Sikora et al. (2007) showed that the radio-
loudness parameter inversely correlates with the Eddington ratio
(fraction of bolometric to Eddington luminosity) for both spiral/
disk and elliptical galaxies. The fact that spiral-hosted AGNs are
radio-quiet at high accretion luminosities supports the idea that
black hole spin plays a major role in the jet production (Sikora
etal. 2007).8 As confirmation, we find a good correlation of in-
trinsic X-ray luminosity and radio loudness (Spearman rank test
of 0.57 with a probability of 0.003). Such a correlation is ex-
pected if there is a fundamental connection between accretion
and jet activity (Merloni et al. 2003).

4. DISCUSSION

We have used the BAT X-ray survey to study key properties of
the local (z < 0.1) AGN population. Our survey is based on the
14-170 keV fluxes and is sensitive to AGNs with column den-
sitiesup to Ny ~ 5 x 10?* atoms cm™2. Indeed, for a typical source

8 In fact, by merging processes, black holes in elliptical galaxies are expected
to have larger spins than those in spiral/disk galaxies.
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FiG. 5.— Luminosity, in the 14—170 keV band vs. intrinsic column density for
the extragalactic sample. The blazars are highlighted with a triangle.

with a photon index of 2, the decrease in flux for column den-
sities of Ny ~ 102* atoms cm 2 is only ~7% and ~55%° for
column densities of Ny ~ 3 x 10%* atoms cm 2 . Thus, we can
affirm that this survey is relatively unbiased with respect to photo-
electric absorption.

Most of the population synthesis models (Ueda et al. 2003;
Treister & Urry 2005; Gilli et al. 2007) predict that Compton-
thick AGNs (log Ny > 24) provide a significant contribution to
the bulk of the CXB emission at 30 keV (Marshall et al. 1980).
Although studies of the local universe (e.g., Risaliti et al., 1999)
have shown that Compton-thick objects should be as numerous
as moderately obscured AGNs (log Ny < 24), and thus comprise
roughly one-third of the total AGN population, only a handful of
these sources are known (Comastri 2004). Gilli et al. (2007) esti-
mate that the expected fraction of Compton-thick objects at limiting
fluxes probed by BAT and INTEGRAL (~10~'" ergs cm ™2 s 1) is
in the 15%—-20% range. However, the measured fraction of de-
tected Compton-thick objects by these instruments so far is close
to or less than 10% (Markwardt et al. 2005; Beckmann et al.
2006).

The BAT extragalactic sample contains only one source,
SWIFT J0823.4-0457, which, given its colors (see Fig. 1), might
be Compton thick. However, the joint XRT and BAT spectra
show that the absorption is below the Compton-thick level (Vg ~
10?3 atoms cm~2). We must therefore conclude that no Compton-
thick AGNs are present in our extragalactic sample. The prob-
ability of not detecting Compton-thick objects in a sample of
24 AGNs when the expected fraction is 20% (15%) is ~0.007
(~0.03), while it is 0.1 if the expected fraction is 10%. These
probabilities increase (0.03, 0.09, and 0.2 for the 20%, 15%, and
10% cases) if we assume that the only source that lacks a <10 keV
measurement (J0854.7+1502) is Compton thick. Thus, the BAT
data discard at the >2 o level the hypothesis that Compton-
thick AGNs may represent a fraction of ~20% of the total AGN
population.

We find that Seyfert 2s have harder spectra than Seyfert 1s, in
agreement with what has been deduced from OSSE, BeppoSAX,
and INTEGRAL data ( Zdziarski et al. 2000; Deluit & Courvoisier
2003; Beckmann et al. 2006, respectively). We tested whether this
difference could be accounted for by Compton reflection and/or
by a high-energy cutoff. We find that the reflection component
improves the fit to the Seyfert 1 averaged spectrum (the F-test
shows that the reflection is significant at more than the 92% level),
but it leaves unaltered the photon index. Thus, the difference in

® Photoelectric absorption as well as Compton scattering has been taken into
account in this estimate.
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photon indices among Seyfert 1s and 2s cannot be ascribed
solely to orientation effects (a stronger reflection is expected for
face-on objects). The spectra of Seyfert 1s show hints of a spec-
tral cutoff at ~100 keV, in agreement with Deluit & Courvoisier
(2003). According to thermal Compton models, the absence of a
cutoff in Seyfert 2s might indicate a higher temperature of the
Comptonizing medium (with respect to Seyfert 1s) or that non-
thermal Compton scattering plays an important role. Neverthe-
less, given the low signal-to-noise ratio (S/N) of our sources, our
evidence for the cutoff in the Seyfert 1 spectra is weak.

The best power-law fit to the extragalactic source-counts dis-
tribution yields a slope of & = 1.55 £ 0.20, which is consistent
with a Euclidean distribution. From the best fit, we derive a sur-
face density of AGNs of 9.6 + 1.9 x 10~ deg 2 above the flux
limit of 2 x 10~!" ergs cm™2 s~!; this estimate is in very good
agreement, when converted to the 2040 keV band, with the re-
cently derived source counts distribution based on INTEGRAL
data (Beckmann et al. 2006). Beckmann et al. (2006) find a slope
of 1.66 4+ 0.11, which is also consistent with our measurement
but steeper than the 1.5 Euclidean value. Even though this could
be due to an imperfectly computed sky coverage, the authors
suggest that the distribution of AGNs in the local universe may
not be isotropic because of the local clustering of sources (e.g.,
the local group of galaxies).

The BAT source-count distribution resolves only 1%—2% of
the CXB into extragalactic sources; nevertheless, as it is unbi-
ased with respect to absorption, it gives important information
relative to the fraction of obscured sources that are missed by
deep <10 keV surveys because of absorption. The extrapolation
of the BAT source-count distribution to the 2—-10 keV band, as-
suming an unabsorbed spectrum with a photon index of 2, yields
a surface density of AGNs of 1.6 + 0.32 x 1072 deg™2 above
107" ergs cm~2 s~!; in contrast, the surface density as extrap-
olated to brighter fluxes by XMM-Newton (Cappelluti et al.
2007) and as predicted by the Gilli et al. (2007) model is 0.9 x
1072 deg 2. The factor of ~2 more sources seen by BAT can be
explained in term of absorption. Indeed, if we take into account
the absorption distribution derived for BAT AGNs by Markwardt
et al. (2005) (thus assuming that 66% of all AGNs are absorbed
with a mean column density of 10?3 atoms cm™2), we get a sur-
face density of 0.86 & 0.17 x 10~2 deg~2, which is consistent
with the XMM-Newton extrapolation and the model prediction.

The extragalactic sample is composed of ~90% emission-line
galaxies and ~10% blazars. We find that 55% of the emission-
line galaxies are obscured by absorbing columns larger than
10?2 H atoms cm~2. This fraction is in agreement with the
INTEGRAL measurements (e.g., Sazonov et al. 2007) but is less
than the value suggested (~75%) by the unified AGN model.
However, Sazonov et al. (2007) successfully showed that low-
luminosity (mostly absorbed) AGNs account for as much as ~90%
of the luminosity density of the local universe. This finding is
also confirmed by the Gilli et al. (2007) model, which shows that
the required fraction of obscured sources varies with intrinsic
luminosity, at 3.7 and 1.0 below and above 104 ergs s™!. A
relevant fraction (~40%) of the BAT-detected AGNs are radio-
loud. These objects show a systematically harder X-ray spectra
than Seyfert galaxies (1.66 vs. 2.00). The hard photon index and
the correlation of radio-loudness with X-ray luminosity suggest
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that a jet is presently at work in all these objects. Our sample also
comprises one (and possibly up to three, considering the ROSAT
lower limits on the absorption) highly luminous highly absorbed
QSOs.

5. SUMMARY

We use the Swift BAT instrument to study the properties of the
local (z < 1) AGNs in connection with the synthesis of the X-ray
background emission. The results of this study can be summa-
rized as follows:

1. Despite the consensus that Compton-thick objects may rep-
resent a substantial fraction of the local AGN population (e.g.,
Risaliti et al. 1999; Gilli et al. 2007), we do not detect any such
object. The probability associated to this nondetection is 0.007,
0.03, and 0.1, when assuming that their fraction should be 20%,
15%, and 10% of the total AGNs. BAT discards at >2 o the
hypothesis that the fraction of Compton-thick objects is 20%.

2. Seyfert 2 galaxies have harder X-ray spectra than Seyfert Is.
We find that this difference cannot be ascribed solely to the dif-
ferent viewing angle and thus to the different amount of Compton
reflection expected. The Seyfert 1 galaxies included in our sample
show weak evidence for a spectral cutoff in the ~100 keV range.
This might highlight an intrinsic difference among the two classes.
Indeed, the absence of a cutoff in the spectra of Seyfert 2s might
indicate a different (higher) temperature of the Comptonizing
medium or that nonthermal Compton scattering play an impor-
tant role.

3. The best power-law fit to the extragalactic source counts is
consistent with a Euclidean function with a slope of 1.55 £+ 0.20.
At the current limiting fluxes (2 x 107! ergs cm™2 s~1), BAT
resolves only 1%—2% of the CXB emission in the 14—170 keV
band.

The fraction of emission-line AGNSs that is absorbed by Ny >
10?? atoms cm ™2 is ~55%. This is lower than the 75% expected
by the standard AGN unified model.

This work shows the capabilities of BAT to produce an unbi-
ased sample of AGNs, which is important for the understanding
of the synthesis of the CXB emission in the hard X-ray band.
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(HEASARC) provided by NASA’s Goddard Space Flight Center,
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Digital Sky Survey (SDSS) managed by the Astrophysical Re-
search Consortium (ARC) for the Participating Institutions, and
of the ROSAT All Sky Survey mantained by the Max-Planck-
Institut fiir extraterrestrische Physik.

APPENDIX

SPECTRAL EXTRACTION METHOD

We have developed a method to extract the averaged long-term spectrum of a source.
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than the on-axis count rate. The solid line is a polynomial fit to the rates.

In this method the spectrum is obtained as a weighted average of the source spectra of all observations in which the source is in the
field of view (FOV). In particular, the averaged source count rates in the ith energy channel, R;, and their error o;, are given by the
following equations:
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where 7; is the source count rate in the jth observation, w; is the weight used, and the sums extend over all observations that contain the
source. Using the inverse of the count rate variance V; as a weight, the previous equations simplify to
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However, the spectra entering in equation (A2) must be corrected for off-axis count rate variation and for residual background
contamination. We explain below the way these corrections are implemented.

Al. RATE VARIATION AS A FUNCTION OF OFF-AXIS ANGLE

The detected count rates strongly vary with the position of the source in the FOV; a source at the far edge of the partially coded FOV
(PCFOV) can experience a decrease in rate of a factor of 2 (depending also on energy) compared to its on-axis rate.

The standard Swift BAT imaging software corrects for geometrical off-axis effects like cosine and partial coding (vignetting) effects; it
is only when the response matrix is generated (with the tool batdrmgen) that other effects such as detector thickness and effective area
variation are taken into account. Since in equation (A2) we are averaging over spectra at different positions in the FOV, we need to take
into account the variations in the rates produced by the detector response. In order to do so, we have analyzed a series of more than 1000
Crab Nebula observations. For each of our six energy channels we made a polynomial fit to the Crab rate as a function of the off-axis
angle and derived a set of corrective coefficients. These coefficients are then used to correct the rates of each source spectrum in order to
transform them to the equivalent on-axis rates. The variation of the Crab rates as a function of position in the FOV is reported in Figure 6.

A2. RESIDUAL BACKGROUND CONTAMINATION

In order to extract a source spectrum from survey data (in form of detector plane histograms [DPHs]) the user must first produce a
mask of weights (tool batmaskwt img) for the source position and then use this mask to extract the detected counts from the array (tool
batbinevt). The weights are chosen such that the resulting spectrum is already background subtracted. This is an implementation of
the standard mask-weighting technique called balanced correlation (Fenimore & Cannon 1978). The automatic background subtraction
works as long as the noise in the array is flat and not correlated with the mask pattern. These conditions are not always satisfied and a
small background contamination can arise.

The total background contamination for the case of the Crab Nebula is <2% when compared to the Crab on-axis rate in the 14—195 keV
band. Thus, this contamination does not pose problems for bright sources. However, it becomes relevant for the spectral analysis of faint
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MCG-01-13-025, SWIFT J0505.7—2348, and CSV 6150. [See the electronic edition of the Journal for a color version of this figure.]

objects with intensities of ~millicrab. To correct for this residual background contamination, we fit the batclean background model to
each energy channel in order to create a background prediction for each of them. Convolving these background predictions with the
mask of weights generated for the source under analysis yields the residual background term which the mask-weighting technique did
not manage to suppress.

The final source rates in the ith energy channel are computed as

A3. SPECTRAL FITTING
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FiG. 8.—Same as Fig. 7, but for 4U 0513-40, QSO B0513-002, SWIFT J0517.1+1633, ESO 362-G 018, Pictor A, and ESO 362-G 021. [See the electronic edition of the
Journal for a color version of this figure.]

where b; is the residual background term, K(E, ) is the parametrized instrumental response as function of the energy channel and the
off-axis angle, and V; is the rate variance. The weighted averaged spectrum is then input, together with a BAT response matrix, to
XSPEC 11.3.2 (Arnaud 1996) for spectral fitting.

Finally, we check that the averaged Crab Nebula spectrum obtained with the above method is consistent with the standard (BAT)
Crab spectrum as detected in each observation (photon index of 2.15 and normalization of 10.15 photons cm™2 s~! at 1 keV in the
15-200 keV energy range).

A4. NOTES ON INDIVIDUAL SOURCES

We report a brief description of the source spectra for all new or interesting sources found in this analysis. All quoted errors are
90%. The spectra of all the sources are reported in Figures 7, 8, 9, 10, 11, 12, 13, and 14.
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Fic. 9.—Same as Fig. 7, but for TV Col, TW Pic, LMC X-3, LMC X-1, PSR B0540-69.3, and PKS 0537—286. [See the electronic edition of the Journal for a color
version of this figure.]

3C 105.01s a Seyfert 2 galaxy. The BAT and XRT data can be fit by an absorbed power-law model with a photon index of 1.65 + 0.13
and a hydrogen column density of 29.415‘:; x 10?? atoms cm 2. Given its absorption and its luminosity (4.45 x 10* ergs s~'), 3C 105.0
is a highly absorbed highly luminous QSO.

1 AXG J042556—5711 (also known as 1H 0419—577,LB 1727, 1ES 0425—573, and IRAS F04250—5718) is aradio-quiet Seyfert gal-
axy which has been observed over recent years by 4SCA, ROSAT, BeppoSAX, and recently also by RXTE (Revnivtsev et al. 2006). The
ASCA and BAT data are well fit by an unabsorbed cutoff power-law model with a photon index of 1.54 + 0.028 and cutoffat 737352 keV.

3C 120 is a Seyfert 1 galaxy. This source was observed by ASCA. The best fit to ASCA and BAT data is an absorbed power-law
model with absorption consistent with the Galactic one, a photon index of 1.80f8182, and a blackbody component with a temperature
of 0.277:9%8 keV.

MCG-01-13-025 is a Seyfert 1.2 (in NED, but Seyfert 1 in SIMBAD) galaxy detected in soft X-rays by ROSAT (Voges et al. 1999).

The BAT spectrum is consistent with a power law with a photon index of 1.6f8:2§ and it extends up to 200 keV.
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Fic. 10.—Same as Fig. 7, but for PKS 0548—322, NGC 2110, LEDA 75476, ESO 490-G26, J0727.5—2406, and V441 Pup. [See the electronic edition of the Journal
for a color version of this figure.]

SWIFT J0505.7—2348, also know as XSS J05054—2348 (Revnivtsev et al. 2006), is a Seyfert 2 galaxy. When combining both
XRT %%(81 BAT data for this source we get an intrinsic, rest-frame absorption of 4.8f8:2 % 10%2 atoms cm~2 and a photon index of
1.775005.

CSI(;(ZI 50, also known as IRAS 05078+1626, is cataloged as Seyfert 1 in SIMBAD and as Seyfert 1.5 in NED. The BAT spectrum
can be fit with a power law with a photon index of 1.947073. The source flux in the 14-170 keV band is 6.379:) x 107! ergs cm 2571,
while the luminosity is 4.4fg:g x 10% ergs s~

4U 0513-40 is a low-mass X-ray binary detected in X-rays by EXOSAT (Giommi et al. 1991). The BAT spectrum can be fit by a
bremsstrahlung model with temperature of 29.773 keV.

0OSO B0513—002 is a Seyfert 1 galaxy. The BAT and ASCA spectra can be fit by an absorbed power-law model and a blackbody
component. The required absorption is in agreement with the Galactic one. The photon index and the plasma temperature are,
respectively, 1.8370:02. and 0.2770:92 keV. We also detect an iron line whose equivalent width is 90.875%-2 eV.
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Fig. 11.—Same as Fig. 7, but for BG CMi, J0732.5—1331, J0739.6—3144, J0743.0—2543, IGR K07597—3842, and UGC 4203. [See the electronic edition of the
Journal for a color version of this figure.]

SWIFT J0517.1+1633 is a new hard X-ray source (Ajello et al. 2007). The BAT spectrum is best fit by a power-law model with a
photon index of 2.0‘:8:%.

ESO 362-G018 is a Seyfert 1 galaxy detected at hard X-ray by BAT (Tueller et al. 2005). The BAT and XRT data are best fit by an
absorbed power-law model with a photon index of 1.507( )5 and absorption consistent with the Galactic value.

Pictor A is aradio-loud Seyfert 1 galaxy initially detected in X-ray by the Einstein observatory (Elvis etal. 1992). The best fit to ASCA
and BAT data is an absorbed power-law model with a photon index of 1.87003 and intrinsic absorption of 1.1470} x 10?! atoms cm ™2
slightly in excess of the Galactic one ( 4 x 10%° atoms cm™2).

ESO 362-G021 is a BL Lac object. ASCA and XRT data are available for this source. The best fit to ASCA, BAT, and XRT data is an
absorbed power law with a photon index of 1.72%0:04 and an intrinsic column density of 0.1470:03 x 10?? atoms cm 2.

TV Col is a DQ Her-type cataclysmic variable already detected at soft and hard X-rays. A power-law fit to the BAT spectrum does

not yield acceptable results; instead a bremsstrahlung model with a plasma temperature of 28.21“;3 keV fits the data well.
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FiG. 12.—Same as Fig. 7, but for JO811.5+0937, J0823.4—0457, VELA PSR, FRL 1146, 3C 206, and J0844.9—3531. [See the electronic edition of the Journal for a
color version of this figure.]

TW PIC is a cataclysmic variable of the DQ Her type (Norton et al. 2000). The BAT spectrum is best fit by a bremsstrahlung model
with a plasma temperature of 13.5*_';%6 keV. The flux of 5.5 x 107!2 ergs cm 2 s~ ! in the 20—40 keV band is a factor 2 lower than the
one reported in a recent INTEGRAL measurement (Go6tz et al. 2006), suggesting variability.

LMC X-3 is a high-mass X-ray binary (HXB). The BAT spectrum is consistent with a power law whose photon index is 2.0f8:§'.

LMC X-1 is a well-known black hole candidate. It is detected up to 200 keV with a steep photon index of 2.3*_'8:%. The flux is a
factor 2 lower than the one measured by INTEGRAL (G6tz et al. 2006), suggesting variability.

PSR B0540—69.3 is a young rotation-powered pulsar recently detected up to 60 keV also by INTEGRAL (G6tz et al. 2006;
Slowikowska et al. 2006). The pulsar is detected in BAT up to 200 keV and its spectrum can be modeled as a power law with a photon
index of 1.857028.

PKS 0537—286 at z = 3.1 is one of the most luminous high-redshift quasars. Recognized first as a radio source (Bolton & Butler
1975), it was discovered in X-rays by the Einstein observatory (Zamorani et al. 1981) and then studied by ROSAT, ASCA, and lately by
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FiG. 13.—Same as Fig. 7, but for J0854.7+1502,J0917.2—6221, Mrk 704, 4U 0919-54, MCG -01-24-012, and NGC 2992. [See the electronic edition of the Journal for
a color version of this figure.]

XMM-Newton. The BAT detection in hard X-rays is the first to date; however, a claim has been made that PKS 0537—286 is the MeV
counterpart of the EGRET source 3EG J0531—2940 (Sowards-Emmerd et al. 2004). A joint spectral fit to XRT and BAT data reveals
an exceptionally hard spectral slope of 1.3570:0¢.

PKS 0548—322 is a well-known blazar already detected in hard X-rays (see, for example, Donato et al. 2005). A joint spectrum
of XRT and BAT data with an absorbed power-law model yields a photon index of 1.8f8:8§ and an intrinsic absorption of
2.5770¢ % 10%° atoms cm ™2,

NGC 2110 is a well-known Seyfert 2 galaxy. The BAT, ASCA, and XRT data can be fit by an absorbed power-law model (photon
index of 1.6270:! and an intrinsic hydrogen column density of 4.075:)3 x 10?2 atoms cm~2) with a soft excess which could be described
as blackbody component with temperature of 0.47)03. We also detected an unresolved Fe Ka of equivalent width of 11874 eV.

LEDA 75476, also known as 3A 0557-383, EXO 055620-3820.2, and CTS B31.01, is a Seyfert 1 galaxy. The BAT spectrum is

consistent with a power-law model with a photon index of 2.0 £ 0.4. The ASCA and BAT data are well fit by an absorbed power-law
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FiG. 14.—Folded spectra and best-fit models as described in the text. From left to right and up to bottom the spectra are for: ESO 434—G040, 3C 227, and NGC 3081.
[See the electronic edition of the Journal for a color version of this figure.]

model with a photon index of 1.7470:03 and an intrinsic absorbing column density of 2.2} x 10?? atoms cm~2. A clear excess below

2 keV is detected in the ASCA data, and this can be modeled as a blackbody component with a temperature of 0.28f8:8§ keV. A Fe Ko
line is also required by the fit (with an F-test yielding a probability of the line being spurious of 10~%), and its equivalent width is
0.132 keV. The reduced x? of the overall fitis 1.1.

ESO 490-G26 is a Seyfert 1.2 galaxy. The joint XRT-BAT spectrum can be described as a power law with a photon index of 1 .90f8:8‘5‘
and an intrinsic, in addition to Galactic, absorption of 2.7J_r8:8§ x 10?! atoms cm~2. The flux and the luminosity in the 14—170 keV band are
3.6113 x 107 ergs em™2 s ! and 4.7+1-2 x 10% ergs s~

SWIFT J0727.5—2406 has a spectrum consistent with a power-law model with a photon index of 1.53 & 0.54. As already noted by
Rau et al. (2007), this BXS source is likely associated with the nearby ROSAT source 1RXS J072720.8—240629 and with the radio
object NVSS J072721—-240632.

V441 Pup is a high-mass X-ray binary for which the companion was optically identified as a Be star. The BAT spectrum is very steep
and it 1(;)216n either be fit by a power law with a photon index of 4.5 &+ 1.5 or by a bremsstrahlung model with a plasma temperature of
12,4710 keV.

BGSCQA‘(lli 2is a well-known intermediate polar. The BAT spectrum is consistent with a bremsstrahlung model with a plasma temperature
of 31.371,5 keV.

SWIFT J0732.5—1331 was detected for the first time by BAT in hard X-rays (Ajello et al. 2006). It was then identified as a new
intermediate polar (Wheatley et al. 2006 and references therein). The BAT spectrum is consistent with a bremsstrahlung model with a
plasma temperature of 33.273% keV.

SWIFT J0739.6—3144 is a newly discovered hard X-ray source (Ajello et al. 2007), recently identified as a Seyfert 2 galaxy (Rau
et al. 2007). A simple power-law fit to the BAT spectrum yields a photon index of 1.77f8:i% . We also estimated the lower limit on the
absorbing column density considering the nondetection by ROSAT; this limit is ~2 x 1022 atoms cm™~2. The flux and the luminosity in
the 14-170 keV band are 2.37] -4 x 107! ergs cm 2 s~! and 3.27]§ x 10* ergs s~ ..

SWIFT J0743.0—2543 is anewly discovered hard X-ray source (Ajello et al. 2007). The BAT spectrum is consistent with a power-law
model with a photon index of 1.78f8:§2. As noted in Rau et al. (2007) this BXS source is likely to be associated with the ROSAT source
IRXS J074315.6—254545 and the galaxy LEDA 86073.

IGR J07597—3842 is a source first detected by INTEGRAL in the VELA region (den Hartog et al. 2004). It was identified as being a
Seyfert 1.2 (Masetti et al. 2006b). This source was also observed by XRT and when jointly fitting XRT and BAT data we find that the best

fit is an absorbed power law with a photon index of 1.870:93 and a column density of 5.8703 x 102! atoms cm ™2, consistent with the
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Galactic foreground absorption. The source is thus unabsorbed. The flux and the luminosity in the 14-170 keV band are 4.275§ x
107" ergs cm™2 s~ ! and 15.97]7, x 10%3 ergs s~ L.

UGC 4203 is a Seyfert 2 galaxy. As already noted in Matt et al. (2003), this source shows transitions between a reflection-dominated
and a transmission-dominated spectrum. The ASCA and BAT data can be successfully fit by a reflection model (pexrav; Magdziarz &
Zdziarski 1995) with a photon index of 1.68 £ 0.1 and areflection normalization of 65.27 ‘2‘%7 and a prominent iron line with equivalent
width of 0.77:¢ keV. A soft excess at energies <1 keV can be modeled as a blackbody component with a temperature of 0.370-08 keV.
XRT data are also available for this source. However, the XRT spectrum has a lower quality than the ASCA one. In the XRT observation,
the source is found in a transmission-dominated state; the best-fit model is an absorbed reflection model (the reflection component is
required by the BAT spectrum) with a hydrogen column density of Ny = 12.5 J_rgjg x 10?2 atoms cm ™2, a photon index of 2.0jg§§ ,and a
reflection normalization of 2.12+23. ‘

SWIFT J0811.5+0937 is anew BXS source detected by Ajello et al. (2007). The BAT spectrum is consistent with a power law with a
photon index of 2.23:;. Rau et al. (2007) identified RX J081132.4+093403 as a possible counterpart. Optical spectroscopy revealed
that this source is a candidate X-ray bright optically normal galaxy (XBONG). If we extrapolate the BAT power law to the ROSAT-PSPC
energy band (0.1-2.4 keV), we get no indication of intrinsic absorption.

SWIFT J0823.4—0457 is a source detected for the first time in hard X-rays by BAT and associated, during an XRT follow-up, with
the galaxy FAIRALL 0272 (Ajello et al. 2007). An optical follow-up showed that the source is a Seyfert 2 (Masetti et al. 2006a).
XRT and BAT data are best fit by a highly absorbed power law. The photon index is 1.84f8:§§ and the absorbing column density is
19.374% % 10?2 atoms cm 2.

Vela PSR has a spectrum consistent with a power law whose photon index is 1.88 4+ 0.2.

FRL 1146 is a Seyfert 1 galaxy detected in hard X-rays by INTEGRAL (Bird et al. 2006). The BAT spectrum is characterized by a
power law with a photon index of 1 .881’8:%? extending up to 200 keV. The 14—170 keV flux and luminosity of 3 .3J_r8:§ x 107" ergsem2s~!
and 7.271¢ x 104 ergs s~! are in agreement with the INTEGRAL measurement. FRL 1146 was also detected in the ROSAT all-sky
survey at 12 count s~'; considering the extrapolation of the BAT power law to the ROSAT band yields ~8 counts~!, it is very likely that
the source is unabsorbed.

3C 206 is a narrow-line, radio-loud QSO detected for the first time in hard X-rays (>20 keV). It was detected by Lawson & Turner
(1997) using Ginga in the 2—10 keV The BAT spectrum is consistent with a pure power-law model with a photon index of 1 .95f8:‘3‘3. 3C
206 was detected by the ROSAT PSPC with 0.37 counts s~ during the all-sky survey (Voges et al. 1999); if we use the BAT power-law
spectrum and extrapolate it to the 0.1-2.4 keV band, we find that no additional absorption (with respect to the Galactic one) is required to
match the observed ROSAT count rate.

SWIFT J0844.9—3531 is a new hard X-ray source detected by Ajello et al. (2007). The BAT spectrum is consistent with a power-law
model with a photon index of 1.917)¢5. The flux in the 14-170 keV band is 1.773f x 107! ergs cm 2 s~!. Rau et al. (2007) noted that
this BXS source might likely be associated with the ROSAT source 1RXS J084521.7—353048.

SWIFT J0854.7+ 1502 is a new hard X-ray source detected by Ajello et al. (2007) and identified in Rau et al. (2007) as a Seyfert 2
galaxy. It has a flat spectrum which can be modeled as a power law with a photon index of 1.41f8:;. A lower limit on the absorbing
column density of 5 x 102! atoms cm~2 can be derived by the nondetection of this source in the ROSAT all-sky survey.

SWIFT J0917.2—6221 is a new hard X-ray source. We analyzed a 7 ks XRT observation of this source. The XRT and BAT data are
well fit by an absorbed power-law model with a photon index of 1 .87f8:81 and an absorbing column density of 1 .33f8: %g x 10?? atoms cm™2.
A clear excess is present at energies < 1 keV, and this can be well described as a blackbody component peaking at 0.14 keV. The flux and the
luminosity in the 14-170 keV band are 2.6705 x 107" ergs cm™2 s~! and 20.07$5 x 10* ergs s!.

Mrk 0704, or SWIFT 0918.5+1618, is another source found thanks to our algorithm (Ajello et al. 2007). During an XRT follow-up,
the galaxy Mrk 704 was found as the BAT counterpart. Mrk 704 was previously detected in soft X-rays by ROSAT (Schwope et al. 2000).
In a recent optical follow-up, the galaxy was found to be a Seyfert 1 (Masetti et al. 2006a). We have analyzed ASCA, XRT, and BAT data
for this source. The best fit to the three data sets is a partial covering model in which the covering fraction is 0.5 and the power-law
photon index is 1.36f8:$2. The source is highly absorbed, with a column density of 1.5f8:g x 10?3 atoms cm 2. We also detected an iron
line whose equivalent width is 160 eV.

4U 0919-54, detected at very high significance, is a LMXB also known to produce X-ray bursts (Jonker et al. 2001). Its spectrum is
characterized by a steep photon index of 2.35 4 0.25; alternatively, a bremsstrahlung model with a plasma temperature of 45.1 13%63 keV
yields a better x2.

MCG-01-24-012 is a Seyfert 2 galaxy already detected in hard X-rays by BeppoSAX (Malizia et al. 2002). When fitting both XRT
and BAT data we find that the spectrum is consistent with an absorbed power law whose photon index is 1.7’:8:8? and intrinsic
absorption is 6.503 x 10?2 atoms cm~2.

NGC 2992 is a Seyfert 1.9. The best fit for combined XRT, ASCA, and BAT data is an absorbed power law with a photon index of
1 .24f8:8§ and an intrinsic hydrogen column density of 0.17-0:03 x 10°? atoms cm 2. We also detected the presence of an unresolved Fe
Ka line whose equivalent width is 0.52:1):(1) keV, in agreement with an old BeppoSAX measurement (Gilli et al. 2001) in which the
reported column density is 1 x 102 atoms cm™2.

ESO 434-G040 is a known Seyfert 2 galaxy recently detected in hard X-rays also by INTEGRAL (Bird et al. 2006). A joint fit to
ASCA, XRT, and BAT data with an absorbed power-law model yields a photon index of 1.77909° and a column density of 1.570926 x
10* atoms cm ™. A clear excess below 2 keV can be modeled as a blackbody component with a temperature of 0.13+0911 " An iron K,
line, with an equivalent width of 85.5f§;, is also detected. The probability of the line being spurious is ~10~'4. '

3C 227 is a Seyfert 1 galaxy and also a radio galaxy. The BAT spectrum is consistent with a power-law model with a photon index of
1.967 048 This source was detected at a level of 0.016 counts s ! in a 11 ks long ROSAT PSPC observation (0.1-2.4 keV; Crawford &
Fabian 1995). In order to match the ROSAT-observed count rates, the extrapolation of the BAT power law to the 0.1-2.4 keV band
requires an absorbing column density of at least 5 x 102! atoms cm~2. A recent Chandra observation confirms that 3C 227 is indeed an

absorbed Seyfert 1. However, the joint Chandra-BAT spectrum is complex. Our best-fit model is the sum of an absorbed power-law
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+0.14

model and of a reflection component (both having the same photon index of 2.117,). The absorbing column density is Ny =
3.6713 x 10?2 atoms cm~2. The reflection component seems to be large, R > 1, which is at odds with the absence of the iron K, line.

This source certainly deserves further investigations.

NGC 3081 is miscataloged in SIMBAD as a Seyfert 1 galaxy. In fact, the available 6dF spectrum shows clearly that this object is a
Seyfert 2 object. We have analyzed BeppoSAX MECS and 4SCA data for this source. The best fit is a sum of a blackbody component,

+0.15

+3.1 +0.0:

peaking at 0.58 )13 keV, an absorbed power law with a column density of 60731 x 10?2 atoms cm~2 and a photon index of 1.9700, and

an iron line with an equivalent width of 241115} eV.
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