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Abstract 

Empirical models are important tools for relating field-measured biophysical variables to remote sensing data. Regression analysis has 
been a popular empirical method of linking these two types of data to provide continuous estimates for variables such as biomass, percent 
woody canopy cover, and leaf area index (LAI). Traditional methods of regression are not sufficient when resulting biophysical surfaces 
derived from remote sensing are subsequently used to drive ecosystem process models. Most regression analyses in remote sensing rely on a 
single spectral vegetation index (SVI) based on red and near-infrared reflectance from a single date of imagery. There are compelling reasons 
for utilizing greater spectral dimensionality, and for including SVIs from multiple dates in a regression analysis. Moreover, when including 
multiple SVIs and/or dates, it is useful to integrate these into a single index for regression modeling. Selection of an appropriate regression 
model, use of multiple SVIs from multiple dates of imagery as predictor variables, and employment of canonical correlation analysis (CCA) 
to integrate these multiple indices into a single index represent a significant strategic improvement over existing uses of regression analysis in 
remote sensing. 

To demonstrate this improved strategy, we compared three different types of regression models to predict LAI for an agro-ecosystem and 
live tree canopy cover for a needleleaf evergreen boreal forest: traditional ( Yon X) ordinary least squares (OLS) regression, inverse (X on Y) 
OLS regression, and an orthogonal regression method called reduced major axis (RMA). Each model incorporated multiple SVIs from 
multiple dates and CCA was used to integrate these. For a given dataset, the three regression-modeling approaches produced identical 
coefficients of determination and intercepts, but different slopes, giving rise to divergent predictive characteristics. The traditional approach 
yielded the lowest root mean square error (RMSE), but the variance in the predictions was lower than the variance in the observed dataset. 
The inverse method had the highest RMSE and the variance was inflated relative to the variance of the observed dataset. RMA provided an 
intermediate set of predictions in terms of the RMSE, and the variance in the observations was preserved in the predictions. These results are 
predictable from regression theory, but that theory has been essentially ignored within the discipline of remote sensing. 
© 2002 Elsevier Science Inc. All rights reserved. 
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1. Introduct ion  

Biogeochemical cycling models are increasingly run in a 
spatially explicit mode, requiring as model drivers moderate 
to high spatial resolution surfaces of  land cover and leaf area 
index (LAI) derived from satellite imagery (Bonan, 1993; 
Reich, Turner, & Bolslad, 1999: Running, Batdocchi, Turner, 
Gower, Bakwin, & Hibbard. 1999). Mapping of  continuous 
variables like LAI from high-resolution imagery such as 
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Landsat TM or ETM+ has largely depended on modeling 
empirical relationships derived from single-date spectral 
vegetation indices (SVIs). The most important of  these are 
the normalized difference vegetation index (NDVI) and its 
counterpart, the simple ratio (SR) (Chen & Cihlar, 1996; 
Fassnacht, Gower, MacKenzie, Nordheim, & Lillesand, 
1997; White, Running, Nemani. Keane, & Ryan, 1997). 
These and other ratio-based indices, although important, 
utilize only a fraction of  the spectral information available 
in many image datasets (Cohen, Spies. & Fiorella, 1995). 
Moreover, with the cost of  ETM+ data substantially reduced 
from that of its predecessor, TM, there are increasing oppor- 
tunities to utilize multiple dates of  imagery in these analyses. 
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Traditional methods for empirical modeling of continu- 
ous variables, such as LAI, from SVIs rely on ordinary least 
squares (OLS) regression (Steel & Tome. 1980), a techni- 
que that has important limitations for such applications 
(Curran & Hay, 1986). In particular, a violation of assump- 
tions about measurement error can have undesirable effects 
on OLS estimates of the biophysical variable. In spite of the 
cogent arguments against the use of OLS regression in 
remote sensing offered by Cun'an and Hay (I 986), we could 
find only one subsequent remote sensing paper that heeded 
their advice (Larsson, 1993). Alternative regression models 
may provide improved estimates of biophysical variables in 
remote sensing. Several such models are discussed in the 
literature, but almost all of that literature is outside of our 
discipline. 

When conducting regression analyses that utilize multi- 
ple SVIs and multi-date data, it would be useful to construct 
a single, integrated index to represent the multiple predictor 
variables. This would facilitate visual assessment of model 
strength and whether the integrated relationship is linear. An 
integrated index could also help in subsequent analyses, or 
for screen viewing and interpretation (similar to the NDVI 
or SR). Additionally, an integrated index would be useful 
for comparisons among possible model fornmlations. Most 
important, however, is that certain regression procedures are 
best conducted in a simple linear context, and thus rely on a 
single predictor variable. These needs can be met using a 
statistical tool known as canonical correlation analysis 
(CCA). ~ 

1.1. Objective 

The goal of this paper is to demonstrate an improved 
strategy for regression modeling of biophysical variables in 
remote sensing. That strategy includes use of multiple SVIs 
from multiple dates of ETM+ imagery, development of a 
CCA-based index that integrates these, and choice of an 
appropriate type of regression model. We test three regres- 
sion-modeling approaches: traditional OLS (RegT), inverse 
OLS (Reg0, and reduced major axis (RMA). The test is 
done for two biophysical variables, one in each of two 
different biomes, to highlight the general applicability of the 
analyses and results. At an agricultural site, we model LAI 
for two separate dates; at a boreal forest site, live tree cover 
is modeled. The objective is to compare and contrast the 
three regression approaches in terms of basic statistical 
characteristics of the predicted variables relative to the 
statistical characteristics of the observed variables. Numer- 
ous examples of such comparisons exist in the general 
literature, and the lessons learned are applied in various 
disciplines. However, the two papers in remote sensing 
literature that address this issue (Curran & Hay, 1986; 
Larsson, 1993) have been essentially ignored. With contin- 
ued use of regression in remote sensing, and an increased 
reliance on Landsat imagery to drive ecosystem process 
models with regression-derived surfaces, it is imperative 

that we consider the weaknesses of our common methods 
and the potential strengths of alternative methods. 

1.2. Background 

1.2.1. Spectral vegetation indices (SVIs) and related linear 
combinations 

The value of SVIs for modeling the relationship between 
vegetation variables and reflectance data is well established. 
In particular, since their inception, the SR (Birth & McVey, 
1968) and the NDVI (Rouse. Haas, Schell, & Deermg, 
1974) have dominated the remote sensing and related 
literature (e.g., Chen & Cihlar. 1996; Huete, Jackson, & 
Post. 1985; Sellers, 1987; Tucke~; 1979; Turner, Cohen. 
Kennedy, Fassnacht, Briggs, 1999). Modifications to these 
indices have been proposed to account for background 
effects associated with incomplete canopy cover (Huete, 
1988), some of which take advantage of shortwave-infrared 
reflectance (Brown, Chen, Leblanc, & Cihlar, 2000; Nem- 
ani. Pierce, Running, & Band, 1993). 

Although these "ratio-based" indices have the advantage 
of being simple to understand and apply, an alternative set 
of indices, called "n-space indices" (Jackson, 1983), is 
designed to more fully exploit the spectral domain of 
reflectance data. Numerous such indices exist, including 
the Perpendicular Vegetation Index (Richardson & Wie- 
gand, 1977) and the widely used Tasseled Cap, which 
consists of the brightness, greenness (Kauth & "thomas. 
1976), and wetness (Crist & Cicone, 1984) indices. The 
Tasseled Cap indices, in particular, provide standardized 
coefficients for all spectral bands of Landsat MSS and TM 
data. One study, across a forested scene containing bare 
ground, brush, and broadleaf and needleleaf forests of 
varying ages, demonstrated that brightness, greenness, and 
wetness accounted for 85% of the total spectral variability 
contained in a single date of TM reflectance data (Cohen et 
al., t995); this, in comparison to only 52% in the red and 
near-infrared bands. 

The temporal domain of spectral data can greatly en- 
hance our ability to map vegetation (Helmer, Brown, & 
Cohen, 2000; Lefsky, Cohen, & Spies, 2001; Loveland et 
al., 2000; Oetter, Cohen. Berterretche, Maiersperger, & 
Kennedy. 2001). Incorporating a temporal series of data 
into SVIs directly, however, has been given minimal atten- 
tion. Malila (1980) described the change magnitude and 
angle calculations, which are indices of a sort, required for 
change vector analysis (CVA). Whereas CVA was designed 
for two spectral dimensions and two dates of imagery, it has 
been crudely extended to three spectral dimensions (Virag & 
Colwetl, 1987), and the magnitude calculation has been 
generalized to n-dimensions by Lambin and Strahler (1994). 
The concept for generalizing CVA angles and magnitudes 
for n spectral and/or temporal dimensions was described 
by Cohen and Fiorella (1998), but they stopped short 
of implementing the procedure. Collins and Woodcock 
(1996) developed a two-date Tasseled Cap transformation 
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fur use in change detection, but an n-date transformation 
was not attempted. 

Principal components analysis (PCA) is an attractive 
means of  incorporating spectral data from numerous dates 
into a small set of  axes that contain most of  the spectral 
infornaation contained in the full multispectral, multitempo- 
ral dataset (Eastman & Fulk. 1993: Richards, 1984). 
Although not vegetation indices per se, the value of PCA 
for reducing the size of  the spectral-temporal dataset is 
great. However, there are two important problems using 
PCA for spectral-temporal analyses. First, the resulting 
axes are dataset-dependent. Although this means that it is 
difficult to generalize the interpretation of  PCA axes to other 
datasets, this is not unique to PCA, as the same problem is 
common to all correlation-based, empirical analyses. The 
second and more meaningful problem is that the coefficients 
for PCA axes are normally obtained without regard for the 
axes' relationships with the variable we are interested in 
predicting (e.g., LAI). 

1.2.2. Regression and related analysis 

In the simple linear case, OLS regression analysis is an 
empirical approach for modeling the relationship between 
two observed variables, X and Y. The form of the OLS 
regression model is 

Y = [~o + f l~x  + ~, ( l )  

where Yis the variable to be predicted, Xis the variable Yis 
predicted from, //0 is the intercept, ~ is the slope of the 
relationship between X and Y, and e is error. Data for the 
analysis are supplied by paired observations of  the two 
variables. Commonly, one variable is difficult or costly to 
measure (e.g., vegetation attributes from field sampling), 
and the other is relatively easy or inexpensive to observe 
(e.g., SVIs from remote sensing). Although often the intent 
of  OLS regression is to determine the feasibility of estimat- 
ing or predicting the expensive variable from observations 
of  the inexpensive one, sometimes the analysis is used 
simply to determine the form and strength of  the relation- 
ship between the two variables. If the objective is the latter, 
it is not particularly important which variable is Xand which 
is Y, and common in the remote sensing literature are both X 
and Y representing the vegetation variable and the SVI 
(Butera, 1986: Chen & Cihlar, 1996; Cohen, 1991: While 
el al., 1997). If we are interested in actually using the 
regression model to predict one variable from the other, 
however, the distinction between X and Y becomes very 
important. This is because of  specifications and assumptions 
associated with OLS regression. 

One specification is that Y is the dependent variable and 
X is the independent variable (.Steel & Tome, 1980). 
Although it can be argued that spectral response is depend- 
ent on vegetation state and not the other way around, much 
of  the remote sensing literature reports the vegetation 
attribute being modeled as the dependent variable. Cun'an 
and l tay (1986) discuss this as the "specification problem". 

Specification in this manner is important because of  an 
assumption associated with OLS regression: that the inde- 
pendent variaNe, X(e.g., an SVI), is measured without error 
(Steel & Ton'ie, 1980). As the coefficients for the regression 
equation are calculated by minimizing the sums of  squares 
of  error in Y (e.g., LAI), illustrated graphically by CreTan 
and Hay (1986), the result is an attenuation (or compression) 
of  the variance of  LAI predictions. In other words, values 
above the mean of  Y tend to be underpredicted and values 
below .the mean tend to be overpredicted (e.g., Cohen,  
Maiersperger. Spies. & Oetter. 2001 ; Hudak, Lef~ky, Cohen, 
& Berterretche, 2002). 

An alternative form of  OLS regression is inverse 
estimation (Brown, 1979), also known as inverse regres- 
sion (Cohen, 1991) and'calibration (Scheff~. 1973). Curran 
and Hay (1986.1 refer to this as X on Y regression and 
illustrate the concept graphically. With inverse estimation, 
the specification problem is addressed in that the depend- 
ent and independent variables are properly assigned, or 
"specified" (e.g., X is the vegetation variable and Y is the 
SVI). In practice then, to predict the vegetation variable, 
the coefficients for the OLS regression model are derived 
using Eq. (1) and then the equation must be inverted to 
solve for X, such that X=( Y -  [Jo)/fll. The error term in Eq. 
(1), e., is expressed as prediction residuals for each obser- 
vation. 

Although for remote sensing, inverse estimation elimi- 
nates the specification problem, it does not address the more 
important problem that Xis assumed to be measured without 
error. Ctm'an and Hay (1986) provide an in-depth discussion 
of  sources of  error for both X and Y in remote sensing. The 
impact of  measurement error in X when using inverse 
estimation is known to be the opposite to that of  its effect 
using the Yon X form of OLS regression, i.e., amplification 
of the variance of  predicted biophysical values such that 
values above the mean of  X are overestimated and those 
below the mean are underestimated. 

Recognizing that there are errors in both Xand Y, Cun'an 
and Hay (1986) tested three alternative methods to predict 
grassland LAI from the SR: Wald's grouping method, RMA, 
and an alternative least squares procedure that incorporates a 
priori knowledge of  relative errors in X and g They 
recommended using Wald's method or RMA if no estimates 
of  measurement error are available, and the alternative least 
squares procedure if such estimates are available. From a 
practical perspective, it will be rare for analysts to have 
precise estimates of  error from all the various sources 
associated with measurements of  vegetation and spectral 
variables. As such, it is perhaps more prudent to make no 
assumptions regarding the relative amounts of  measurement 
error and use RMA or Wald's method. In spite of  the 
convincing arguments made by Curran and Hay (1986), 
we could find only one subsequent remote sensing article 
that used one of  these methods (Larsson, 1993), where 
RMA was used to predict woodland canopy cover from 
single-date NDVI measurements. 
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RMA is one of  a class of  similar models known as 
orthogonal regression, total least squares regression, or 
errors-in-variables modeling, depending on the discipline 
inwhich the specific technique was developed (Van Huffel, 
1997). Orthogonal regression minimizes the sum of squared 
orthogonal distances from measurement points to the model 
function. The RMA version of  orthogonal regression is 
graphically depicted in Curran and Hay (1986). Van Hufl~'l 
(1997) contains examples of  orthogonal regression's usage 
in astronomy, meteorology, 3-D motion estimation, biomed- 
ical signal processing, and multivariate calibration. RMA, 
specifically, is quite commonly applied in allometry (Con- 
rad & Gutmann, 1996; Gower, Kucharik, & Norman, 1999; 
Nicol & Mackauer, 1999; Niklas & Buckman, 1994). 
Besides making no assumptions about errors in X and Y,, 
RMA likewise makes no assumptions about dependency. 
C;onrad and Gutmann (1996) refer to RMA as geometric 
mean regression, in that the slope (/30 is defined as the ratio 
of  sample standard deviation for Yover the sample standard 
deviation for AT, thus preserving in the model the relative 
variance structure of the sample dataset. The effect of  this is 
to minimize or eliminate any attenuation or amplification of 
predictions. For RMA, flo is defined as the sample mean of 
Y minus the quantity fl~ times the sample mean of  X. One 
important component of the slope term (rio is that it must be 
given the sign ( + / -  ) of  the correlation between X and Y 
(Conrad & Gutmann. 1996), which is not given by Curran 
and Hay (11986) or Larsson (1993). The form of  the 
regression model is identical to Eq. (1), but the calculations 
of  rio and fl~ are different. Mathematical similarities in the 
formulations of  the two OLS and the RMA regression 
models mean that the model intercepts are all equivalent, 
as are the coefficients of  determination. What differ among 
these models are the root mean square errors (RMSEs) and 
the slopes of  the relationships. 

1.2.3. Canonical correlation analysis (CCA) 
OLS regression has both simple (single X) and multiple 

(several X) forms (Steel & Tome, 1980). The use of OLS 
regression in its multiple form, Yon multiple X, is familiar to 
most remote sensing analysts conducting regression model- 
ing. Although much less familiar, there is also a formulation 
for nmltiple X inverse calibration (Brown. 1979). A simple 
application of RMA requires one X and one Y Thus, to 
incorporate n-space indices and/or temporal datasets into an 
RMA, the multiple Xdataset must be linearly combined into 
a single X variable. In essence, we must develop a new, 
integrated index that is a linear combination of  the multiple 
X indices (or bands) from a single date or multiple dates. As 
discussed earlier, this need is directly facilitated by CCA. 

CCA is a generalized form of multiple regression that 
permits the examination of  interrelationships between two 
sets of  variables (multiple X's and multiple Y's) (Tabachnick 
& Fidell, 1989). CCA maximizes the correlation between a 
composite of  variables from one set with a composite of 
variables from another set. When there is only one X (i.e., 

vegetation variable, such as LAI), CCA provides a set of  
coefficients for the Y's that aligns them with the variation in 
the X variable. When those coefficients are applied to the Y 
variables, the result is a CCA score for each observation. 
CCA scores are indexed values in the same way that 
brightness, greenness, or wetness (or NDVI) values are 
indexed values. However, with CCA, the alignment is 
dataset-specific, whereas with the Tasseled Cap or NDVI, 
the formulations are generalized and fixed. 

2. Methods 

This work was conducted in a temperate broadleaf agro- 
ecosystem, consisting of  corn and soybeans, and a boreal 
needleleaf evergreen forest. The biophysical variable of  
interest within the agro-ecosystem was LAI, which was 
modeled for two separate measurement dates. The dominant 
tree species in the boreal forest is black spruce, and the 
variable we modeled was percent tree cover. This work was 
done in the context of the BigFoot project, which was 
designed to provide local validation of global estimates of  
biophysical variables and processes using MODIS data 
(Cohen & Justice, 1999). 

2.1. Study sites, sampling design, and field measurements 

The study sites and sampling design were described in 
Campbell, Bun'ows, Gower, and Cohen (1999). The agri- 
cultural site (AGRO) was a 5 × 5 km area located just south 
of  Champaign, IL. The boreal forest site was a similarly 
sized area surrounding the northern old black spruce 
(NOBS) site of  the Boreal Ecosystem Atmosphere Study 
(Sellers et al., 1997), approximately 40 km west of  Thomp- 
son, Manitoba, Canada. The sample design was a nested 
spatial series (Burrows et al., in press) that permits explicit 
examination of spatial covariation among field-measured 
ecosystem properties using variograms and cross-vario- 
grams (Cressie, 1991). At each site, there were approxi- 
mately 100 25 × 25 m plots where land cover, LAI, 
absorbed radiation, and net primary production were meas- 
ured/observed at five to nine subplots per plot. Subplot 
measurements were averaged to provide a single value for 
each measured variable at each plot. Plot locations were 
determined using a real-time differential GPS. The accuracy 
of the system was < 0.5 m in both the x and y dimensions. 

At the AGRO site, LAI was measured at five subplots per 
plot using standard, direct harvest methods described by 
Gower et al. (1999). Measurements were made at several 
time periods during the growing season in 2000. We used 
data from July and August. At NOBS, percent tree cover 
was measured at nine systematically spaced subplots using 
an upward-looking digital camera. The imaged canopy 
projection area was dependent on tree height and the field 
of view of the camera, which was 30 °. At approximately 10- 
m height, this means that among the nine subplots, nearly 
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I00% of the canopy area in each plot was imaged. In the 
lab, each of the nine photos per plot was sampled using a 
grid of 99 points to derive the percent live tree canopy cover 
at each plot (Berterretche, 2002). 

2.2. Image data and processing 

For AGRO, ETM+ data from four dates were used to 
capture the growing season from April through September 
(1-able I). At NOBS, two images were used, one from 
March and one from June. The images were georeferenced, 
radi.ometrically calibrated, and translated into Tasseled Cap 
brightness, greenness, and wetness. All images were ac- 
quired at level 1G processing, with a cell size of  30 m, and 
UTM (WGS84) projection. At AGRO, positional accuracy 
of  the native map projection of  the June image was judged 
by direct comparison with USGS digital orthophoto quad- 
rangles (DOQs) at a 9 x 9 km area centered on the study 
site. A systematic local shift of  - 37.5 m in the x-direction 
and - 127.5 m in the y-direction was applied to the ETM+ 
image to register it to the DOQs. Subsequently, all other 
image dates were positionally shifted to match the June date. 
At NOBS, a panchromatic IKONOS image was registered to 
the earth's surface with the same projection parameters as at 
AGRO using several GPS points collected in the field. The 
June image was then positionally shifted to match the 
IKONOS image, and the March image was shifted to match 
the June image. 

The COST absolute radiometric correction model of  
C, havez (1996) was applied to each image to convert digital 
counts to reflectance. Radiometrically "dark" objects were 
assumed to have 2% reflectance across all bands. For 
AGRO, the June image was selected as a reference image 
and all other dates of imagery were relatively normalized to 
it, as a fine-tuning for multidate, inter-image calibration. 
The method used was similar to that of  Oetter et al. (2001) 
and of the Ridge Method of  Kennedy and Cohen referred to 
by Song, Woodcock, Seto. Pax I.enney. and Macomber 
(2001), which are an adaptation of  standard band-by-band 
relative normalization procedures based on co-located bright 
and dark targets. As the COST model is not appropriate for 
low sun angle situations, the March image from NOBS was 
converted to reflectance using a more basic dark-object- 
subtraction model. Further, no relative normalization was 
performed for the NOBS dataset due to major spectral 
property differences between the two dates, given the back- 

Table 1 
ETM+ images used in this study 

Site Path/row Date 

AGRO 22/32 April 26, 2000 
22/32 June 29, 2000 
22/32 July 15, 2000 
22/32 September 1, 2000 

NOBS 34/21 March 13, 2000 
33/21 June 6, 2000 

drop of  ice and snow for the March image and of  vegetation 
and water for the June image. 

No published transformation exists to convert atmos- 
pherically-corrected ETM+ spectral data to Tasseled Cap 
indices. However, Crist (1985) derived coefficients for 
brightness, greenness, and wetness from ground-based 
spectral data that can be applied to atmospherically cor- 
rected Lands~it data. Slight differences in spectral band 
width and position, as well as calibration, exist between 
Landsat TM and ETM+ (Teillel el al., 2001; ~bgelmann et 
al., 2001), but they are similar enough to assume that the 
differences in Tasseled Cap indices derived for data from the 
two different sensors are small. We tested this assumption 
using TM and ETM+ images acquired within a few days of  
each other (Path 46/Row 29) over western Oregon in 1999. 
First, we converted atmospherically corrected TM DN data 
to the Tasseled Cap indices using the coefficients in Crist 
and Cicone (I 984). We then converted the atmospherically 
corrected TM DN data to reflectance using published 
coefficients and formulae, before using the Crist (1985) 
coefficients to convert the reflectance data to Tasseled Cap 
indices. Finally, we atmospherically corrected the ETM+ 
data and then converted the reflectance data to the Tasseled 
Cap indices using the Crist (1985) coefficients. A compar- 
ison of  the brightness, greenness, and wetness images from 
the three methods showed that they were highly intereorre- 
lated at a level of  roughly 95%. 

2.3. Variable selection and model development, execution, 
and comparison 

With both OLS and RMA regression done in a multiple- 
Y (i.e., multiple SVIs) context, there is the issue of  variable 
selection. Not all Yvariables are needed or are significant in 
the presence of  other Yvariables, and some may need to be 
culled from the dataset. For this we used forward stepwise 
regression. In each case, brightness, greenness, and wetness 
from all dates of  available imagery were used as potential 
variables for a model. To avoid overfitting a given model, 
we imposed the rule that the number of variables to enter the 
model be less than one-third the number of  observations. 
Prior to conducting stepwise regression, bivariate plots of  all 
potential Y variables against LAI or canopy cover were 
evaluated to determine if transformations were required to 
linearize relationships. Where necessary, standard log and 
square root transformations were used. 

Once the variables for a given dataset were selected, 
RegT, Regl, and RMA regression models were developed. 
For all three modeling approaches, tl~e CCA axis derived 
from the same Y-variable set was used. To compare the three 
modeling approaches, predicted versus observed plots were 
developed and overall bias and variance ratios were calcu- 
lated. Bias was calculated as the mean of  the predicted 
values minus the mean of  the observed values, such that a 
positive bias equated to a mean overprediction and vice 
versa. Variance ratio was calculated as the standard devia- 
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Fig. 1. Tasseled Cap greenness as a function o f  July LAI at AGRO. 

estimator of  prediction error (Efron & Gong. 1983). This 
required, for each dataset and regression variant, that (where 
n = 100) 100 separate models be developed, each time with 
data from 99 observations. Then, each model was used to 
predict the observation that was left out, thus providing the 
predictions for all 100 plot observations that were needed to 
compare against the observed values. This provided an error 
characterization equivalent to the PRESS statistic (SAS, 
1990). 

3. Agricultural example - -LAl  at AGRO 

A scatterplot of  corn and soybean greenness from the 
July measurement date (Fig. 1) revealed that these two crops 
represented different populations and were best modeled 
separately. This was done for both July and August dates, 
yielding four separate modeling sets (Table 2). For all four 
model sets, the three regression approaches had equivalent 

tion of  the predicted values divided by the standard devia- 
tion of  the observed values. As such, a ratio of  greater than 
one meant that the prediction variance was greater than the 
observed variance. 

• Field data are expensive to collect and process, so using 
them prudently is essential. There is a trade-off between 
using all available observations to develop a regression 
model and having no independent observations to test the 
model, versus excluding a predetermined number of  obser- 
vations to test the model, but having a less robust model 
because it was developed on fewer points. The statistical 
literature provides several alternative, but related ways to 
address this problem: cross-validation, bootstrapping, and 
jackknifing CEfron & Gong, 1983~. We used the cross- 
validation procedure, which provides a nearly unbiased 

Table 2 

Regression model statistics for each model type and dataset 

Model Type Slope Intercept R 2 

Soy, July Regr  0.49 1.54 0.58 
Regt 1.19/0.84 - 1.83/1.54 0.58 
RMA 0.64 1.54 0.58 

Corn, July Regv 0.63 4.41 0.61 
Regl 0.96/1.04 - 4.24/4.41 0.61 
RMA 0.81 4.41 0.61 

Soy, August  Regv 0.49 3.44 0.27 
Regt 0.56/I .79 - 1.91/3.44 0.27 
RMA 0.93 3.44 0.27 

Corn, August  Regr  0.45 4.00 0.64 
Regt 1.44/0.70 - 5.76/4.00 0.64 
RMA 0.56 4.00 0.64 

Canopy cover Regv 15.08 38.89 0.68 
Regl 0.045/22.1 - 1.76/38.89 0.68 
RMA 18.26 38.89 0.68 

For the Reg~ models, the original slope and intercept are given along with 
the back-inverted slope and intercept for comparison with other model 

types. 

Table 3 
Cross-validation results for each model type and dataset 

Model type n 

Regv Regl RMA 

Soy, July 64 
R 0.74 0.74 0.74 
RMSE 0.42 0.59 0.47 
Bias - 0.01 - 0.03 - 0.01 
Variance ratio 0.80 1.40 1.06 

Corn, July 31 
R 0.76 0.76 0.76 
RMSE 0.53 0.68 0.56 
Bias 0.00 0.03 0.01 
Variance ratio 0.76 1.31 1.01 

Combined, July 95 
R 0.95 0.92 0.94 
RMSE 0.46 0.62 0.50 

Bias - 0.01 - 0.01 0.00 
Variance ratio 0.96 1.07 1.00 

Soy, August 64 
R 0.47 0.49 0.49 
RMSE 0.82 1.57 0.95 
Bias - 0.01 - 0.02 - 0.02 
Variance ratio 0.53 1.95 1.02 

Corn, August  31 
R 0.79 0.79 0.79 
RMSE 0.35 0.46 0.37 
Bias 0.00 0.03 0.01 
Variance ratio 0.81 1.33 1.02 

Combined, August  95 
R 0.59 0.54 0.57 
RMSE 0.70 1.32 0.81 
Bias - 0.01 - 0.01 - 0.01 
Variance ratio 0.62 1.81 1.01 

Canopy cover 103 
R 0.82 0.82 0.82 
RMSE 10.41 12.68 10.93 
Bias 0.02 0.03 0.03 
Variance ratio 0.83 1.22 1.01 

For the agricultural site, five plots were not corn or soybeans• For the forest 
site, there were three extra plots. 
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coefficients of determination and model intercepts. The 
differences among approaches were expressed in the slope 
term, with Regm, having the least, Regl having the greatest, 
and RMA being intermediate. As mentioned earlier, these 
are anticipated results that are provided here for demon- 
stration purposes. 

A summary of  cross-validation predictions revealed the 
effect of  the different modeling approaches (Table 3), again, 
fbr demonstration purposes. Presented are results from the 
crop-specific models and from the combined set of  predic- 
tions across the two crop-specific models. For the July date, 
corn. soybeans, and combined, the correlation coefficients 

(R) between predicted LAI and observed LAI were essen- 
tially the same for all three approaches. The only difference, 
which was minimal, was for the combined model. This 
difference is attributable to the cross-validation procedure. 
Bias was near zero in all cases, indicating that the observed 
mean of  the samples was preserved in the predictions. The 
differences among the modeling approaches were related to 
the different slope terms (from Table 2), and were expressed 
in both the RMSE and the variance ratio. RegT, by design, 
had the lowest RMSE in predictions of  Y (LAI). Similarly, 
because Regl also minimized the sums of squares of error in 
Y (this time, SVI), it yielded the greatest RMSE in LAI. As 
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Fig. 2. Predicted (from cross-validation) versus observed July and August LAI at AGRO. RegT is traditional OLS regression. Regl is inverse OLS regression, 
and RMA is reduced major axis regression. Left is July; right is August. 
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expected, RMA was a compromise solution, having inter- 
mediate values of  RMSE. With respect to the variance ratio, 
RMA always exhibited a value close to 1.0, indicating that 
the variance structure of  the observed values was preserved 

> 

O 

o 

*6 :..z3 

12. 

100 

80 

60 

40 

20 

0 

-20 

-40 

-40 

RegT 
l I I I t 

I I ( ] I 

- - - F -  - - i - - - C - - - ~ -  - - ' T i - - ~ l -  - 

- -  - - - ) - - t  - - -  J'l - -  - -  - -  L I  - - ~ I A ~  ~ -  _ 1  . . . .  ' ' 
- - - i -  - - . ,  - - 

' _ 

- - -l- - - ~ 1 ~  r- - - 

Z - - - 7 - - - ,  . . . .  , - - - ' ~  . . . . . .  
, t t I 

] ] I i ] 

-20 0 20 40 60 80 100 

Observed Cover 

in the predicted values. Deviations from unity for the OLS 
methods were greatest when the correlation coefficients 
were lowest. This latter point was particularly evident in 
the results from August, where correlations were lower than 
in July. For all cases, Reg~ had variance ratios greater than 
1.0 and RegT had values less than 1.0, indicating greater and 
lesser variance, respectively, relative to observed values. 

With regression models, it is always possible to have 
individual predictions outside the range of  observed values. 
This mostly occurs when observed "independent" variables 
have values outside the range on which models were 
constructed (an increased possibility with cross-validation), 
or when significant outliers exist in the model dataset. Here, 
this is evident from the predictions of  negative LAI (Fig. 2). 
Of course, this "problem" is amplified with Regl and is 
suppressed with RegT. 
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Fig. 3. Predicted (from cross-validation) versus observed percent live tree 
canopy cover at NOBS. Regv is traditional OLS regression, Regl is inverse 
OLS regression, and RMA is reduced major axis regression. 

The models for tree cover at NOBS exhibited similar 
relative characteristics as those at AGRO (Table 2). The 
coefficients of  determination and the intercepts were all 
identical. The only difference among modeling approaches 
was the slope of the relationships, with Regv having the 
lesser value, Regl having the greater value, and RMA 
having an intermediate value. Likewise, the cross-validation 
results indicated identical correlations between tree cover 
and the CCA axis and essentially no overall bias for any of  
the models. Again, RMSE was lowest for Regv, highest for 
Reg[, and intermediate for RMA. 

Some predictions outside of  the observed range occurred 
for tree cover, as it had for LAI at AGRO (Fig. 3). Again, this 
was most evident using the Regl approach, which amplified 
the variance of the predictions relative to the observed values. 
For tree cover, there was a slight tendency toward an 
asymptote in the predictions, especially for the Regx model. 

5. D i s c u s s i o n  a n d  s u m m a r y  

This paper presents to a remote sensing audience a 
verification of  existing regression theory. The remote sens- 
ing literature contains little of  regression theory, and even 
less of  the numerous options for its application. With rare 
exception, the remote sensing literature contains rote appli- 
cation of  OLS (ordinary least squares) regression, without 
ever questioning its disadvantages relative to other forms of 
regression. Questioning these disadvantages and demon- 
strating alternative regression approaches were the main 
purposes of  this paper. Numerous examples of  alternative 
regression models exist in many other scientific and tech- 
nical fields, but remote sensing community has largely 
ignored the important work of  Curran and Hay (1986). 

Most of  the regression-based remote sensing literature is 
focused on minimizing error (e.g., RMSE) in the predictions 
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of  biophysical variables. Traditional OLS regression is an 
excellent means for accomplishing that, but there are two big 
problems with OLS. First, it assumes no error in measure- 
ments of vegetation reflectance and/or the biophysical var- 
iable of interest. Second, traditional OLS provides attenuated 
variance in predictions of  that variable. The statistical 
literature strongly suggests that if there are errors in the 
measurements of  both variables (e.g., reflectance and bio- 
physical), then OLS regression is the 'wrong model to use. 
Because it is nearly impossible to defend any claim that 
either reflectance or biophysical variables are measured 
without error, application of OLS regression is inappropriate 
in remote sensing. 

Compression of  variance by OLS becomes critical if the 
regression model is used to build a map of a biophysical 
variable, that in turn drives a functional/mechanistic model. 
If the mechanistic model involves nonlinear functions of  the 
biophysical variable, attenuation of  variance in the biophys- 
ical variable introduces error in the mechanistically modeled 
outputs. Because OLS attenuates the variance, it will intro- 
duce such error. The degree of  attenuation is essentially a 
linear function of  the correlation between the spectral data 
and the biophysical variable, low correlation, much attenu- 
ation, and vice versa. Many of  the relationships between 
reflectance and biophysical variable are poorly correlated, so 
this is not a non-issue. 

The remote sensing literature contains a great number of  
examples of  empirical, regression modeling relating SVIs to 
measures of a myriad of  vegetation variables modeled across 
an assortment of  sites and biomes. Most studies used SVIs 
based on red and near-infrared reflectance. More often than 
not, a single SVI from a single date was used. The spectral 
depth of  ETM+ is essentially three-dimensional (Cohen et 
al.. 1995: Crist & Cicone, 1984) and we have increasing 
numbers of  temporal image series available for greater 
predictive power (I_el%ky el al., 2001 ). As such, we should 
be expanding our use of  multiple regression over simple 
regression techniques. Multiple regression'in an RMA con- 
text requires a single-integrated index of  multiple bands or 
indices. This need is directly facilitated by CCA. Canonical 
correlation analysis has rarely been used in remote sensing. 
However, tbr those contemplating the use of  CCA for 
deriving a dataset-dependent index, there should be a clear 
understanding of  what the procedure does to the dataset. 

A simple test on any appropriate single-Y (in this case, 
e.g., LAI), multiple-X (in this case, SVls) dataset illustrates 
that CCA scores are perfectly correlated to predicted Yvalues 
from traditional OLS multiple regression on that dataset. The 
difference is that one provides predictions of  the Yvariable, 
whereas the other is simply a set of index scores that are 
maximally correlated with the observed Y variable. If one 
then conducts traditional simple OLS regression with the 
CCA scores as X and the LAIs as Y, they will derive exactly 
the same predicted values for LAI as those predicted from 
the original multiple OLS regression. In both cases, RMA 
would be required to balance the variance ratio at a value of 

1.0. Traditional OLS regression provides biophysical pre- 
dictions, but the variance of those predictions is unbalanced 
vis-/l-vis the observed variance in the biophysical variable. 
CCA provides an index that is maximally correlated with the 
biophysical variable of  interest, but it does not provide 
predictions. RMA can either provide predictions from a 
CCA index that have a balanced variance, or it can balance 
(or calibrate) a set of  unbalanced predictions derived pre- 
viously from traditional OLS regression conducted on a 
CCA index or from multiple OLS regression. For the latter 
case, the CCA index would be superfluous. Thus, the only 
important reason for conducting the CCA is if the index itself 
is desired, for which there may be numerous reasons. For this 
study, it was desirable to have a single index for the 
convenience of  comparative analysis among methods to 
derive a single regression slope term for each method. It is 
important to keep in mind that whereas CCA is dataset- 
specific, NDVI or SR, or other SVIs such as brightness, 
greenness, and wetness, are more generalizable in terms of  
their biophysical meaning. 

In this study, we illustrated an improved regression 
modeling strategy that incorporates all the recommended 
steps for deriving mapped estimates that have their errors 
characterized. This strategy includes the collection of  geore- 
ferenced field data, image georeferencing, image radiometric 
calibration, translation of  reflectance into SVIs, testing for 
significance of each SVI in regression models, and using 
cross-validation to provide nearly unbiased testing of  robust 
models. Applying the RMA models to the CCA indices 
provided high-quality maps of  LAI for the agricultural site, 
with means and variances well preserved in each important 
land cover class (corn and soybeans). Additionally, an 
important forest variable was mapped, tree cover, which will 
subsequently be used at the forest site to help derive a land 
cover map using classes that are largely based on percent tree 
cover. Although any given study may weigh these various 
processing components differently, two considerations are 
critical. (1) Is it acceptable for a predicted variable to have a 
different variance structure from that of empirical observa- 
tions? (2) Is there a compelling reason to limit the analysis to 
a single SVI from a single date? If the answer to Question 2 
is "no", then CCA may be an important aid in your analysis. 

Acknowledgements 

This research was funded by NASA's Terrestrial Ecology 
Program. We greatly thank Karin Fassnacht for thoughtful 
and lively discussion and for her review of early drafts, and 
Robert Kennedy for his contributions to the discussion. 

References 

Berterretche, M. (2002). Comparison of regression and geostatistical 
methods to develop LA1 surfaces for NPP modeling. Master of Sci- 
ence thesis in Forest Science, Oregon State University, Corvallis, 
OR, 218 pp. 



570 W.B. Cohen et al. / Remote Sensing of  Environment 84 (2003) 561-571 

Birth, G. S., & McVey, G. R. (1968). Measuring the color of growing turf 
with a reflectance spectrophotometer. Agronomy Journal, 60, 640-643. 

Bonan, G. (1993). Importance of leaf area index and forest type when 
estimating photosynthesis in boreal forests. Remote Sensing of  Environ- 
moTt, 43, 303-314. 

Brown, G. (1979). An optimization criterion for linear inverse estimation. 
TechnomeO'ics, 2, 575-579. 

Brown, L., Chen, J., Leblanc, S., & Cihlar, J. (2000). A shortwave infrared 
modification to the simple ratio for LA1 retrieval in boreal forests: an 
image and model analysis. Remote Sensing of  Environment, 71, 16-25. 

Burrows, S., Gnwer, S., Clayton, M., Mackay, D., Ahl, D., Norman, J., 
Diak, G. Application of geostatistics to characterize LAI from flux 
tower to landscape scales using a cyclic sampling design. Ecosystems 
(in press). 

Butera, M. K. (1986). A correlation and regression analysis of percent 
canopy closure versus TMS spectral response for selected forest site 
in the San Juan National Forest, Colorado. IEEE Transactions on Geo- 
science and Remote Sensing, 24, 122-129. 

Campbell, J. L., Burrows, S., Gower, S. T., & Cohen, W. B. (1999). 
BigFoot: characteri=ing land covet; LAI, and NPP at the landscape 
scale .[br EOS/MODIS validation. Field Manual Version 2.1. Oak 
Ridge, TN: Environmental Sciences Division, Oak Ridge National 
Laboratory (104 pp.). 

Chavez Jr., P. (1996). Image-based atmospheric corrections- revised and 
• improved. Photogrammetric Engineering and Remote Sensing, 62, 

1025-1036. 
Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal 

conifer forests using Landsat TM images. Remote Sensing o[Environ- 
ment, 55, 153-162. 

Cohen, W. 11991). Response of vegetation indices to changes in three 
measures of leaf water stress. Photogrammetric Engineering and Re- 
mote Sensing, 57, 195-202• 

Cohen, W., & Fiorella, M. (1998). Comparison of methods for detecting 
conifer forest change with Thematic Mapper imagery. In R. Lunetta, & 
C. Elvidge (Eds.), Remote Sensing Change Detection. Environmental 
Monitoring Methods and Applications (pp. 89-  1023. Chelsea, MI: 
Sleeping Bear Press. 

Cohen, W., & Justice, C. (1999). Validating MODIS terrestrial ecology 
products: linking in situ and satellite measurements. Remote Sensing 
of  Envh'onment, 70, 1-3. 

Cohen, W., Maiersperger, T., Spies, T., & Oetter, D. (2001). Modelling 
tbrest cover attributes as continuous variables in a regional context with 
Thematic Mapper data. International Journal of  Remote Sensing, 22, 
2279-2310. 

Cohen, W., Spies, T., & Fiorella, M. (1995). Estimating the age and struc- 
ture of forests in a multi-ownership landscape of western Oregon, 
U.S.A. hlternational Journal of  Remote Sensing, 16, 721 746. 

Collins, J. B., & Woodcock, C. E. (1996). An assessment of several 
linear change detection techniques for mapping forest mortality using 
multitemporal Landsat TM data. Remote Sensing of  Environment, 56, 
66-77. 

Conrad, R., & Gutmann, J. (1996). Conversion Equations between Fork 
Length and Total Length Jbr Chinook Salmon (Oncorhynehus tshawyt- 
scha). Northwest Indian Fisheries Commission. Project Report Series 
No. 5. Olympia, WA. 32 pp. 

Cressie, N. (1991). Statistics for Spatial Data. New York: Wiley• 
Crist, E. P. (1985). A TM tasseled cap equivalent transformation for reflec- 

tance factor data. Remote Sensing of  Environment, 17, 301 306• 
Crist, E. P., & Cicone, R. C. (19843. A physically-based transformation of 

thematic mapper data--the TM tasseled cap. IEEE Transactions on 
Geoscience and Remote Sensing, GE-22, 256-263. 

Curran, P. J., & Hay, A. (19863. The importance of measurement error for 
certain procedures in remote sensing at optical wavelengths. Photo- 
grammetric Engineering and Remote Sensing, 52, 229-241. 

Eastman, J. R., & Fulk, M. (1993). Long sequence time series evaluation 
using standardized principal components. Photogrammetric Engineer- 
ing and Remote Sensing, 59, 991-996. 

Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, 
the jackknife, and cross-validation. The American Statistician, 37, 
36-48. 

Fassnacht, K., Gower, S., MacKenzie, M., Nordheim, E., & Lillesand, T. 
(1997). Estimating the leaf area index of north central Wisconsin forests 
using the Landsat Thematic Mapper. Remote Sensing of  Environment, 
61, 229-245. 

Gower, S., Kucharik, C., & Norman, J. (1999). Direct and indirect estima- 
tion of leaf area index, fAPAR, and net primary production of terrestrial 
ecosystems. Remote Sensing of  Envil~onment, 70, 29-51. 

Helmer, E., Brown, S., & Cohen, W. (2000). Mapping montane tropical 
forest successional stage and land use with multi-date Landsat imagery. 
International Journal of  Remote Sensing, 21, 2163- 2183. 

Hudak, A., Lefsky, M., Cohen, W., Berterretche, M., 2002. Integration of 
lidar and Landsat ETM+ data for estimating and mapping forest canopy 
height. Remote Sensing of  Environment 82, 397-4t6.  

Huete, A. R. (19883. A soil-adjusted vegetation index (SAVI). Remote 
Sensing of Environment, 25, 295-309• 

Huete, A. R., Jackson, R. D., & Post, D. F. (1985). Spectral response of a 
plant canopy with different soil backgrounds. Remote Sensing of  Envi- 
ronment, 17, 37 53. 

Jackson, R. D. (19833. Spectral indices in n-space. Remote Sensing of 
Environment, 13, 409-421. 

Kauth, R.J., & Thomas, G.S. (1976, 6 June-2 July). The tasseled cal~-a 
graphic description of the spectral temporal development of agricul- 
tural crops as seen by Landsat. Proc. Second Ann. Symp." Machine 
Processing of  Remotely Sensed Data (pp. 41-51).  West Lafayette, 
IN: Purdue U. Lab. App. Remote Sens. 

Lambin, E. E, & Strahler, A. H. (1994). Change-vector analysis in multi- 
temporal space: a tool to detect and categorize land-cover change pro- 
cesses using high temporal-resolution satellite data. Remote Sensing of  
Environment, 48, 231-244. 

Larsson, H. (1993). Linear regressions for canopy cover estimation in 
Acacia woodlands using Landsat-TM, -MSS, and SPOT HRV XS data. 
International Journal of  Remote Sensing, 14, 2129 2136. 

Lefsky, M~, Cohen, W., & Spies, T. (2001). An evaluation of alternative 
remote sensing products for forest inventory, monitoring, and mapping 
of Douglas-fir forests in western Oregon. Canadian Journal of  Forest 
Research, 31, 78-87. 

Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., & Mer- 
chant, J. (2000). Development of a global land cover characteristics 
database and IGBP DISCover from AVHRR data. h,ternational Journal 
of  Remote Sensing, 21, 1303-1330. 

Malila, W. A. (1980, 3 - 6  June). Change vector analysis: an approach for 
detecting forest changes with Landsat. In R G. Burroff, & D. B. Morri- 
son (Eds.), Proc. Sixth Ann. Symp. Machine Processing of  Remotely 
Sensed Data. Soil lnJbrmation Systems and Remote Sensing and Soil 
Survey (pp. 326-335). West Lafayette, IN: Purdue U. Lab. App. Re- 
mote Sens. 

Nemani, R. R., Pierce, L., Running, S., & Band, L. (1993). Forest ecosys- 
tem processes at the watershed scale: sensitivity to remotely-sensed leaf 
area index estimates. International Journal of  Remote Sensing, 14, 
2519-2534. 

Nicol, C., & Mackauer, M. (19993. The scaling of body size and mass in a 
host-parasitoid association: influence of host species and stage. Ento- 
mologia Experimentalis et Applicata, 90, 83- 92. 

Niklas, K., & Buchman, S. (1994). The allometry of saguaro height. Amer- 
ican Journal of  Botany, 81, 1161 1168. 

Oetter, D., Cohen, W., Berterretche, M., Maiersperger, T., & Kennedy, 
R. (2001). Land cover mapping in an agricultural setting using multi- 
seasonal Thematic Mapper data. Remote Sensing of  Environment, 76, 
139-155. 

Reich, P., Turner, D., & Bolstad, P. (19993• An approach to spatially dis- 
tributed modeling of net primary production (NPP) at the landscape 
scale and its application in validation of EOS NPP products. Remote 
Sensing of  Environment, 70, 69-81. 

Richards, J. A. (19843. Thematic mapping from multitemporal image data 



I, EB. Cohen et al. /Remote Sensing of  Environment 84 (2003) 561-571 571 

using principal components transformation. Remote Sensing of  Envilvn- 
merit, 16, 35-46. 

Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation 
from soil background information. Photogrammetric Engineering and 
Remote Sensing, 43, 1541 - 1552. 

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974, 10-14 
Dec. 1973). Monitoring vegetation systems in the Great Plains with 
ERTS. In S. C. Freden, E. E Mercanti, & M. A. Becker (Eds.), NASA 
SP-351: Proc. Third Earth Resources Teeh. Satellite-I Syrup. VoL I: 
Technical Presentations See. A (pp. 309-317). Washington, DC: 
NASA Science and Technology Information Office. 

Running, S.. Baldocchi, D., Turner, D., Gower, S., Bakwin, P., & Hibbard, 
K. (1999). A global terrestrial monitoring network integrating tower 
fluxes, flask sampling, ecosystem modeling and EOS data. Remote 
Sensh~g o[" Environment, 70, 108-127. 

[SAS] SAS Institute (1990). SAS/STAT® User's Guide, Version 6, 4th ed., 
vols. t -2 ,  Cary, North Carolina, USA, 943 pp. and 846 pp. 

Scheffe, H. (1973). A statistical theory of calibration. The Annals of  Sta- 
tistics, I, 1-37. 

Sellers, P. J. (1987). Canopy reflectance, photosynthesis, and transpiration 
II. The role of  biophysics in the linearity of their interdependence. 
Remote Sensing of  Environment, 21, 143-183. 

Sellers, E J., Hall, F. G., Kelley, R. D., Black, A., Baldocchi, D., Berry, J., 
& Ryan, M. (1997). BOREAS in 1997: experiment overview, scientific 
results, and future directions. Journal of  Geophysical Research, 102 
(D24), 28731-28769. 

Song, C., Woodcock, C., Seto, K., Pax Lenney, M., & Macomber, S. 
(2001). Classification and change detection using Landsat TM data: 
when and how to correct atmospheric effects? Remote Sensing o['En- 
vilvnment, 75, 230-244. 

Steel, R., & Torrie, J. (1980). Principles and Procedures of Statistics--A 
Biometrical Approach. (2nd ed.). New York: McGraw-Hill. 

Tabachnick, B., & Fidell, L. (1989). Using Multivariate Statistics. (2nd 
ed.). United Kingdom: Harper Collins Publishers. 

Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & 
Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 
ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote 
Sensing of  Environment, 78, 39-54. 

Tucker, C. J. (I 979). Red and photographic infrared linear combinations for 
monitoring vegetation. Remote Sensing of  Environment, 8, 127-150. 

Turner, D., Cohen, W., Kennedy, R., Fassnacht, K., & Briggs, J. (1999). 
Relationships between leaf area index and Landsat TM spectral vege- 
tation indices across three temperate zone sites. Remote Sensing of  
Environment, 70, 52-68. 

Van Huffel, S. (Ed.) (1997). Recent Advances hi Total Least Squares" Tech- 
niques and Errors-In-Variables Modeling. Philadelphia: Society for In- 
dustrial and Applied Mathematics. 

Virag, L. A., & Colwell, J. E. (1987, 26-30 October). An improved pro- 
cedure for analysis of change in Thematic Mapper image-pairs. Pro- 
ceedings, Twenty-First International Symposium on Remote Sensing of  
Environment (pp. 1101 - 1110). Ann Arbor, MI: ERIC. 

Vogelmann, J. E., Helder, D., Morfitt, R., Choate, M. J., Merchant, J. W., & 
Bulley, H. (2001 ). Effects of Landsat 5 Thematic Mapper and Iandsat 7 
Enhanced Thematic Mapper Plus radiometric and geometric calibra- 
tions and corrections on landscape characterization. Remote Sensing 
of  Environment, 78, 55-70. 

White, J., Running, S., Nemani, R., Keane, R., & Ryan, K. (1997). Meas- 
ureraent and remote sensing of LAI in Rocky Mountain montane eco- 
systems. Canadian Journal of  Forest Resealvh, 27, 1714 - 1727. 


	Abstract
	1. Introduction
	1.1. Objective
	1.2. Background

	2. Methods
	2.1. Study sites, sampling design, and field measurements
	2.2. Image data and processing
	2.3. Variable selection and model development, execution, and comparison

	3. Agricultural example--LAl at AGRO
	4. Boreal forest example--tree cover at NOBS
	5. Discussion and summary
	Acknowledgements
	References

