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Abstract

Procedures to analyze half-diallel mating designs using the
SAS statistical package are presented. The procedure requires
two runs of PROC VARCOMP and results in estimates of
additive and non-additive genetic variation. The procedures
described can be modified to work on most statistical software
packages which can compute variance component estimates.
The procedure is relatively simple and provides unbiased
estimates for balanced designs and gives good approximations
for unbalanced data.

Key words: diallel matings, variance estimates, GCA, SCA.

FDC: 165.3; 165.41; 174.7 Pinus radiata; (931).

Introduction

Diallel mating designs are widely used in the genetic
improvement programs of many tree species (YEH and HEAMAN,
1987; SNYDER and NAMKOONG, 1978; TALBERT, 1979). Besides
their practicality as a dual function mating design that
provides both a pedigreed breeding population for selection and
a progeny test of parents, they are also highly useful designs
for estimating genetic parameters. Estimates of genetic vari-

ances and other population parameters provide essential
information for the development of breeding strategies. The
diallel mating design is of interest, in that the analysis of vari-
ance uses the concepts of general combining ability (GCA) and
specific combining ability (SCA) to distinguish between the
average performance of parents in crosses (GCA) and the
deviation of individual crosses from the average of the parents
(SCA). In the population improvement strategy using recurrent
selection for general combining ability (GCA), we would
naturally wish to know the relative amount of the genetic
variation caused by additive gene effects (GCA) and whether
non-additive gene action is important. 

A drawback to the diallel mating design is that it is relative-
ly complex to analyze. Because the genetic effects are not
readily separated, they cannot easily be analyzed in a single
execution of a linear model procedure in standard statistical
packages. The computation of the appropriate sum-of-squares
and expected mean squares have been derived in the literature
for balanced (GRIFFING, 1956) and unbalanced data (e.g.,
GARRETSEN and KEULS, 1977: KEULS and GARRETSEN, 1978:
BARADAT and DESPREZ-LOUSTAU, 1997). Estimation of the GCA
and SCA effects are demonstrated by HUBER et al. 1992.
Because standard statistical packages cannot handle diallel
analyses, the breeder must either program the procedures or
use special packages, such as the DIALL program of SCHAFFER

and USANIS (1969). These specialty programs lack the
convenience and ease associated with large data handling
packages and can limit one’s options in data analysis. Limita-
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tions involve the amount of data the package can handle (i.e.
number of sites and/or replications), the ability to designate
effects as fixed or random, and the choice of methods used to
estimate the variance components.

In this paper we show a simple and practical method of
estimating variance components using standard statistical
packages, demonstrating the procedure with SAS (SAS
Institute, 1990) and illustrating its use with data from a
progeny test of imbalanced disconnected diallels from a series
of trials of the New Zealand Radiata Pine Breeding Coopera-
tive. The methodology gives unbiased estimates when the data
are balanced and reasonable approximations with unbalanced
data. A complete report on the results of this series of trials is
reported in a following manuscript (KING et al., 1998).

Description of Procedure

The genetic model used for this analysis is:

P = GA + GD + E …[1]

Where P is the phenotype, GA is the additive genetic effect, GD
is the dominance genetic effect, and E is environmental effect.
All epistatic effects are ignored in this simplified model.

The data we use to illustrate the procedure is a 7-year height
and diameter measurement taken from progeny of a group of
95 selected radiata pine (Pinus radiata D. DON) which were
mated in a modified disconnected 5-parent half-diallel design
involving a total of 15 diallels. The measurements we report
here are from one site planted as a randomized complete block
design of 46 replicates as single-tree plots. Details of the
development of the ”875“ series are described in SHELBOURNE

et al. (1986) and further details are presented in KING et al.,
1998.

The statistical analysis uses individual tree measurements
and follows the model:

Yijk = µ + Ri + Gj + Gk + Sjk + Eijk …[2]

where Yijk is the individual tree observation, µ is the overall
mean and; Ri=effect of the ith replication; Gj and Gk are the
general combining ability (GCA) effects of the jth and kth
parents; Sjk is the specific combining ability (SCA) effect of the
jth and kth parents; and Eijk is the error associated with the
ijkth tree. All effects were considered random (Model II,

GRIFFING, 1956). The expected mean squares and genetic inter-
pretations of a half-diallel design, excluding selfs, where
parents are randomly assigned to diallels and the data is
balanced (complete) are shown in Table 1. Calculation of the
additive and dominance genetic variance is straightforward
after determining the GCA variance (σ2

GCA) and SCA variance
(σ2

SCA). The relationships are as follows:

σ2
a = 4σ2

GCA

σ2
d = 4σ2

SCA

The difficulty in analyzing diallels is that the main genetic
treatment, the full-sib cross, is not readily dividable into its
component parts; those being the contribution of each parent
(parental GCAs) and the deviation of the full-sib value from the
mid-parent mean (SCA).

This procedure requires two runs of PROC VARCOMP (SAS
Institute, 1990) to complete the analysis. For a single diallel, in
the first run, the model includes the categorical variables for
replications (REP) and crosses (CROSS). (If row plots or non-
contiguous multi-tree plots are used, the replication-by-cross
interaction would be included in the model). The SAS code for
our single-tree-plot data was:

PROC VARCOMP METHOD = TYPE1;
CLASS REP CROSS;
MODEL HEIGHT = REP CROSS;

RUN;

For this example the TYPE1 method was used so that
results would be comparable with the DIALL package which
uses ANOVA-based estimators of variance components (SAS
also provides maximum-likelihood procedures). The CROSS
variable is a unique identifier for each full-sib cross and can be
derived from parental variables (MA and PA) to ignore
reciprocal effects when parental variables are ordered for the
number of parents in the diallel (e.g. for 5-parent diallels MA
and PA are 1 to 5) by:

IF PA < MA THEN CROSS = 10*PA + MA;
IF MA < PA THEN CROSS = 10*MA + PA;

In this example the error term for CROSS is the error mean
square (same as REP-by-CROSS mean square). If the CROSS
mean square is found to be insignificant then the analysis

Table 1. – Expected mean squares and genetic interpretations of a half diallel (from
GRIFFING, 1956).

where: r and n refer to number of replications and parents per diallel respectively.
Genetic interpretations
σ2

gca = Covariance of half-sib families = 1/4 σ2
a

σ2
a = additive genetic variance

σ2
sca = Covariance of full-sib families – (2 * (Covariance of half-sib families) = 1/4 σ2

d

σ2
d = dominance genetic variance

σ2
e = error variance

σ2
CROSS = [1/2 – 1/(n + 1)] σ2

a + 1/4 σ2
d
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would be complete since genetic variation would not have been
observed. 

The VARCOMP procedure produces an unbiased estimate of
the CROSS variance component (σ2

Cross). The expectation of
σ2

Cross is the covariance of individuals within a full-sib family
minus the covariance of individuals from different full-sib fami-
lies. For our simplified model, the covariance of individuals
within a full-sib family is one-half the additive variance plus
one-quarter the dominance variance (1/2σ2

a + 1/4σ2
d). The

covariance of individuals from different full-sib families is zero
if all the full-sib families are unrelated.  In a diallel, however,
many full-sib families are related to one another. For a five-
parent half-diallel, any full-sib family is related to six out of
the nine (2/3) remaining families as half-sibs. Therefore, the
value of covariance of individuals from different full-sib fami-
lies for the five-parent-half-diallel is 2/3 (1/4σ2

a) = 1/6 σ2
a. Thus

σ2
Cross = 1/3σ2

a + 1/4σ2
d for our example. This value changes as

the number of parents/crosses in the diallel changes. The value
for covariance of individuals from different full-sib families for
3, 4, 5, and 6-parent half-diallels are 1/4, 1/5, 1/6, and 1/7 σ2

a
respectively. Note that this covariance = 1/(number of parents
+1) σ2

a. When the data are unbalanced, the following equation
can be used to determine the covariance among individuals
from different full-sib families for an unbalanced half-diallel
without selfs displayed in the upper right diagonal of the
crossing matrix:

where xij represents the number of progeny for the family of
parent i crossed with parent j.

Imbalance affects the covariance of individuals from differ-
ent full-sib families; hence, when the data are not balanced,
biased estimates will result if one uses the simple approach,
i.e. covariance = 1/(number of parents +1) σ2

a. However, it
requires a considerable amount of imbalance to change this to
a great degree. For example, if one cross is missing from a
diallel with more than three parents there is no effect at all.
The effect of imbalance is demonstrated later with the sample
data.

The CROSS sum-of-squares can be further partitioned into
general combining ability (GCA) and specific combining ability
(SCA) sum-of-squares using a modification of the procedure
outlined by SANDERS (1987). Dummy variables, representing
the GCA effect of each parent, must be produced for each
observation which, when used in the regression model,
produces the GCA regression sum-of-squares. For our 5-parent
half-diallel example, five dummy variables were formed to
represent parents within diallels. Parents within diallels were
designated parent 1 through parent 5 (P1 to P5). In any cross
where parent 1 was used the P1 value was set to 1, otherwise it
was given the value 0. This was done for each parent, so that
each cross had two dummy variables which were 1 and three
which were 0. The dummy variables whose value was 1
represented the two parents of the cross (SAS code is shown in
Appendix 1). PROC VARCOMP was run a second time with P1
through P4 and placed in the model before CROSS. The
variable P5 was not necessary since the first four variables are
of full rank (only 4 degrees of freedom for parents in a 5-parent
diallel). The SAS code to obtain the proper sum-of-squares for a
single five-parent half-diallel is as follows:

PROC VARCOMP METHOD=TYPE1;
CLASS REP CROSS P1 P2 P3 P4;
MODEL HEIGHT = REP P1 P2 P3 P4 CROSS;

RUN;

The sum of the Type I sum-of-squares for the variables P1
through P4 represent the GCA sum-of-squares. The CROSS
sum-of-squares in this analysis is what remains of the first
CROSS sum-of-squares after the GCA sum-of-squares has been
removed and represents the SCA sum-of-squares. The cross
variance component (σ2

Cross) is an unbiased estimate of σ2
sca.

Dominance genetic variation can be estimated as σ2
d = 4 σ2

Cross.
Unfortunately there is no clean estimate of σ2

gca in the SAS
output since the GCA line in the ANOVA is represented by
multiple lines in the SAS output, i.e. the GCA effect is the sum
of the effects of the four parents. As a result, SAS does not
compute an appropriate expected mean square for the GCA
mean square or give an accurate estimate of σ2

gca.

An alternative to calculating σ2
gca through the expected

mean squares, and the approach we used, is to solve for σ2
gca

using information which is available from the two runs of the
VARCOMP procedure. In our example, the σ2

Cross estimate from
the first VARCOMP procedure estimates of 1/3σ2

a + 1/4σ2
d, and

the σ2
sca estimate from the second VARCOMP procedure

estimates 1/4σ2
d. The additive variance (σ2

a) can be estimated
from the available information since we have two equations
and two unknowns.

σ2
Cross = 1/3σ2

a + 1/4σ2
d …σ2

Cross from the first VARCOMP

σ2
sca = 1/4σ2

d …σ2
Cross from the second VARCOMP

therefore:

σ2
Cross – σ2

sca = 1/3σ2
a + 1/4σ2

d – 1/4σ2
d =

1/3σ2
a.

σ2
a = 3 · (σ2

Cross – σ2
sca) …[3]

Alternatively, the information from the second run of
VARCOMP can also be used to generate the mean square for
the GCA effect and this used to estimate σ2

gca by equating
mean squares to their expected mean squares. This requires
additional, and sometimes more complicated steps. For
balanced data the GCA expected mean square (EMS)
coefficients can be estimated using the formulae from
KEMTHORNE and CURNOW (1961) for partial diallels:

GCA EMS = σ2 + r σ2
sca + [rs(n-2)/(n–1)] σ2

gca …[4]

Where r, n, and s refer to the number of replications,
parents, and crosses per parent respectively. To obtain σ2

gca
estimates in those few cases where the data are balanced
(complete) one can use equation [4] to obtain the appropriate
coefficient for the σ2

gca component and estimate σ2
gca as:

σ2
gca = (MSgca – MSsca) / [rs(n–2)/(n–1)] …[5]

Estimation of σ2
gca using expected mean squares for

unbalanced data is more complex for two reasons. First, the
coefficients for σ2

sca is usually not the same for the GCA and
SCA lines of the ANOVA, thus simply subtracting the SCA
mean square from the GCA mean square does not isolate σ2

gca.
However, this can be accomplished through some relatively
simply matrix algebra (see BARADAT and DESPREZ-LOUSTAU,
1997, for an example). The second complication is that the
coefficients for both σ2

sca and σ2
gca are no longer simple

formulas. KEULS and GARRETSEN (1977) provide calculations for
expected mean squares for an unbalanced diallel, but the
calculations do not take into account incomplete replications.
While the coefficient for σ2

gca is a formulae; the σ2
sca compo-

nents require computing the trace of a matrix used in the
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formation of the sum-of-squares. The programming for the
proper coefficients can be found in SCHAFFER and USANIS

(1969). SEARLE (1971) provides an excellent general discussion
on variance component estimation with unbalanced data.

Use of the mean or harmonic mean for r, n or s in equation
[5] was inadequate for our example data set. Estimates of the
GCA variance component coefficient were obtained using the
mean number of crosses per parent and the mean number of
replications per cross. Both arithmetic and harmonic means
were inserted into equation [3]. The estimates were compared
with the correct coefficients which were produced by the
DIALL program (Table 2). The estimates produced with means
were very similar to the correct estimates, but the arithmetic
mean coefficient estimates were always larger than the correct
coefficients (Table 2). The correlation of coefficients estimates
using the simple and harmonic means with the DIALL (correct)
coefficients were 0.9943 and 0.9824 respectively. While the
correlations were high, the difference in the coefficients ranged
from –12% to +15%, a range we considered too wide for our
use. 

Table 2. – Estimates of the coefficient for σ2
gca term in the gca Ems of 15

half diallels from a New Zealand progeny test, comparing the correct
coefficient computed by DIALL and estimates using means, and
harmonic means.

*) DIALL is the correct coefficient obtained from the DIALL program.
Means is the estimate using arithmetic means in the equation [rs(n–
2)/(n–1)] and harmonic means is the estimate using harmonic means
in the equation [rs(n–2)/(n–1)]. Where r, s, and n represent the num-
ber of replications, crosses per parent, and parents.

More Complex Models

In many cases one deals with disconnected half-diallels and
may wish to pool the analysis over half-diallels. In such cases
the model would include parents and crosses nested within
diallels. If one was to analyze disconnected diallels as a single
diallel the GCA component may become inflated. This inflation
would occur if there was a significant difference among the
genetic values of the disconnected diallels due to sampling. The
sampling effect would be confounded with the GCA component.

The SAS program can be further expanded to multiple sites
by expanding the model to include sites, site by cross, and the
site by dummy variable interactions (Table 3). As in the simple
example, two VARCOMP procedures are run; the first to obtain
the cross and site · cross variance components; the second to
obtain the SCA and SCA interaction components. The
equalities for the cross, GCA, and SCA estimates are true for
the interaction components. For our 5-parent example:

σ2
Site x Cross = 1/3σ2

site x additive + 1/4σ2
site x dominance

....σ2
Cross x Site from the first VARCOMP

σ2
Site x sca = 1/4σ2

site x dominance
....σ2

Cross x Site  from the second VARCOMP

Example Runs

In order to examine the impact of unbalanced data on equa-
tion [3], age-7 height and diameter were used to compare the
unbiased results from the DIALL program with the GCA
variance calculated using equation [3]. In order to increase the
number of comparisons each diallel was analyzed with reps 1
to 23 in one analysis and reps 24 to 46 in another to give a total
of 56 comparisons. Differences were recorded as percentage of
the DIALL estimates and are shown in table 4.

Both DIALL and SAS gave the same estimates for σ2
d and

σ2
e. Estimates of σ2

a were very similar and never appreciably
differed even though the diallels averaged 8.1 completed
crosses out of the possible 10 (ranged from 6 to 10 (Table 2)).
Standard deviation estimates of σ2

a variance components
generated by DIALL were always at least one-half the estimate
of σ2

a (sometimes greater than the σ2
a estimate); and the

largest discrepancy between SAS and DIALL estimates of σ2
a

was 5.25%. The average discrepancy was only -0.27% with a
standard deviation of 1.87% (Table 4). When the analysis was
pooled over all diallels and run over all replications the dis-
crepancy between methods was only 0.13%. Thus the
imbalance in the data did not appreciably affect the SAS
variance component estimates.

Discussion

SAS was able do all the necessary data manipulations and
produce the required ANOVA mean squares. The drawback to
SAS was that it could not produce an accurate estimate of the
GCA expected mean square (EMS) since our model did not
have a single entry for GCA, but used dummy variables to pull
out the appropriate sum-of-squares. The standard formulae for
estimating the coefficients of the variance components in the
EMS are not accurate when the data are unbalanced. However,
a close approximation of σ2

a could be obtained without knowing
the coefficient since the two runs of PROC VARCOMP produc-
ed two estimates from which σ2

a could be derived. 

The imbalance in our example data set was a result of
mortality (85% survival) and in not completing diallels (6 to 10
crosses per diallel). The estimates produced using the method
described here were not appreciably different from those
produced by the DIALL program which adjusts for imbalance
when computing ANOVA based variance components.

In severely unbalanced situations, like those regularly found
in forest tree breeding, maximum likelihood estimates provide
superior estimates (SWALLOW and MONAHAN, 1984; SEARLE et
al., 1992). The ANOVA based estimators remain unbiased but
are no longer of minimum variance (READ, 1961). An advantage
to using SAS procedures is that maximum likelihood estima-
tion procedures are available. SAS also offers the flexibility of
altering the model to reflect fixed and random effects.

Imbalance can either be in the number of crosses per parent
or the number of individuals per cross. Missing crosses can be
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Table 3. – Expected mean squares of a disconnected half diallel planted on multiple sites

*) The GCA and SCA lines are not obtained in the first run of VARCOMP. The SCA line is the CROSS line in the second VARCOMP
run. The GCA sums of squares is obtained by summing the dummy variable sum-of-squares in the second VARCOMP run.
where: s, d, r, and n refer to the number of sites, diallels, replications, and parents per disconnected diallel respectively.

Table 4. – Percent deviation of SAS variance component estimates from DIALL estimates examined over 56
analyses.

a major problem if it severely reduces the degrees of freedom in
estimating the SCA component. Reducing the degrees of free-
dom will reduce the accuracy of the SCA estimate (or the GCA
estimate) since the variance of the estimate is inversely related
to the degrees of freedom.

The described analysis can be used with other software
packages which have the same capabilities as SAS. Other
programs designed to analyze diallels have usually been limit-
ed to a single statistical package (DEAN and CORRELL, 1988;
LINDA, 1993).

By using standard packages, one has greater ability to
manage the data and can also overcome model restrictions that
are common in special software programs for diallel analysis.
For example, using SAS, pooled estimates are readably
attainable, effects can be either fixed or random (the MIXED
procedure), and different estimation methods are available.
These options may not be an available with some specialty
programs. 
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Appendix 1

Routine to Produce Dummy Variables for Partitioning the Sum-
of-Squares and Produce the Variance Component Estimates

**** OBTAIN A DATA SET WHICH HAS ALL THE PARENTS
IN EACH DIALLEL ****;

DATA ONE; 
SET ORIGINAL;

KEEP FEMALE PARENT DIALLEL;
PARENT = FEMALE;
DROP FEMALE;

RUN;

DATA TWO;
SET ORIGINAL;

KEEP MALE PARENT DIALLEL;
PARENT = MALE;
DROP MALE;

RUN;

DATA ALL;
SET ONE TWO;

RUN;
PROC SORT DATA=ALL;

BY DIALLEL PARENT;

RUN;

DATA ALL;
SET ALL;
BY DIALLEL PARENT;

IF FIRST.PARENT THEN DO;
RANK+1;
OUTPUT;
END;

ELSE DELETE;

RUN;

****  RECODE PARENT NAMES TO STANDARD NAMES
FOR EACH DIALLEL ****;

PROC RANK DATA=ALL OUT=NEWALL;

BY DIALLEL;

VAR PARENT

RANKS NEW_PAR;

RUN;

**** MERGE STANDARD PARENT NAMES ONTO ORIGI-
NAL DATA ****;

PROC SORT DATA=NEWALL;
BY DIALLEL PARENT;

RUN;

DATA NEWALL;
SET NEWALL;

FEMALE = NEWPAR;

RUN;

PROC SORT DATA=ORIGINAL;
BY DIALLEL FEMALE;

RUN;

DATA ORIGINAL;
MERGE ORIGINAL NEWALL;

BY DIALLEL FEMALE;
MA = NEWPAR;
DROP PARENT;

RUN;

DATA NEWALL;
SET NEWALL;

MALE = NEWPAR;
DROP FEMALE;

RUN;

PROC SORT DATA=ORIGINAL;
BY DIALLEL MALE;

RUN;

DATA ORIGINAL;
MERGE ORIGINAL NEWALL;

BY DIALLEL MALE;
PA = NEWPAR;
DROP PARENT;

RUN;

****  CONSTRUCT THE DUMMY VARIABLES ****;

DATA ORIGINAL;
SET ORIGINAL;

IF PA=1 OR MA=1 THEN P1=1; ELSE P1=0;
IF PA=2 OR MA=2 THEN P2=1; ELSE P2=0;
IF PA=3 OR MA=3 THEN P3=1; ELSE P3=0;
IF PA=4 OR MA=4 THEN P4=1; ELSE P4=0;
IF PA=5 OR MA=5 THEN GP=1; ELSE P5=0;

RUN;

*** RUN THE FIRST VARCOMP ***;

PROC VARCOMP METHOD=TYPE1;
CLASS REP CROSS DIALLEL;
MODEL HEIGHT = REP DIALLEL CROSS(DIALLEL);
RUN;

*** RUN THE SECOND VARCOMP ***;

PROC VARCOMP METHOD=TYPE1;
CLASS REP CROSS DIALLEL P1 P2 P3 P4;
MODEL HEIGHT = REP DIALLEL P1(DIALLEL) P2(DIAL-
LEL)  P3(DIALLEL) 

P4(DIALLEL) CROSS(DIALLEL);
RUN;


