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Abstract

Aim The purpose of this study was to quantify relationships between conifer species
distributions and climatic and biophysical variables, in order to provide better insight
into the potential for redistribution of species on the landscape in response to climatic
change.

Location Data are from 10,653 georeferenced sites in Washington State, USA, along a
longitudinal gradient from west of the crest of the Cascade Range to the beginnings of
the western slope of the Rocky Mountains, and across two physiographic provinces, the
Northern Cascades, characterized by steep, rugged topography, and the Okanogan
Highlands, presenting moderate slopes and broad rounded summits.

Methods Tree data were drawn from the USDA Forest Service Area Ecology Program
database, collected in mature, undisturbed stands. We compared simple climatic varia-
bles (annual temperature, growing-degree days, annual and seasonal precipitation) to
biophysical variables (soil, hydrologic, and solar radiation) derived from climatic vari-
ables. Climatic and biophysical variables were taken from the output of climatological
and hydrological simulation models and estimated for each plot in the tree database.
Generalized linear models were used, for each of fourteen tree species, at multiple spatial
extents, to estimate the probability of occurrence of that species as a function of climatic
and biophysical predictors. Models were validated by a combination of bootstrapping
and estimating receiver operating characteristic (ROC) curves.

Results For the majority of species, we were able to fit variables representing both
moisture and temperature gradients, and in all but a few cases these models identified a
unimodal response of species occurrence to these gradients. In some cases the ecological/
environmental niche of a species had been clearly captured by the model, whereas in
others a longer gradient in the predictor variable(s) would be needed. Responses of most
species were consistent across three spatial scales.

Main conclusions By identifying the ecological niches of multiple species, we can
forecast their redistribution on the landscape in response to climatic change, evaluate the
predictions of simulation models, and alert managers to particularly sensitive or vul-
nerable ecosystems and landscapes.
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INTRODUCTION

Rapid climatic change is expected for the next century
(Thompson et al., 1998; Houghton et al., 2001), and
vegetation patterns are expected to change in complex ways,
not only in direct response to climate (Neilson, 1995; Neil-
son & Drapek, 1998; Bachelet et al., 2001; Walther et al.,
2002) but also as a function of patterns of land use and
changing disturbance regimes (Baker, 1995; McKenzie et al.,
1996; Keane et al., 1999; Dale et al., 2001; He et al., 2002).
In anticipating redistributions of species on the landscape
over time in response to climatic change, direct responses to
climate and the biophysical environment are a key piece of
the puzzle, onto which constraints imposed by land use,
disturbance, and competitive influences of other species can
be overlaid. The effects of climatic change may be partic-
ularly strong in mountains, because warmer temperatures
affect the depth and duration of snowpacks (Cayan, 1996),
which are key limiting factors for tree growth (Davis &
Botkin, 1985; Peterson, 1998; Peterson & Peterson, 2001).

Climatic influences are difficult to assess in mountainous
areas, because complex topography produces steep gradients
in the biophysical environment, and climate-monitoring sta-
tions are sparsely distributed. In lieu of accurate climatic data
at appropriately small spatial scales, geographic variables
(latitude/longitude) and topographic variables (elevation,
slope, aspect) are commonly used as surrogate predictors
(Franklin, 1995; Ohmann & Spies, 1998; McKenzie &
Halpern, 1999; Iverson & Prasad, 2001). However, with the
increasing availability of climatic data at spatial resolution
finer than 4-km (e.g., Daly et al., 1994; Thornton et al.,
1997) and the development of topographically sensitive
hydrological models (Nemani et al., 1993; Liang et al., 1994;
Wigmosta et al., 1994), it is becoming possible to develop
quantitative models relating species distributions directly to
climatic and biophysical variables (Franklin, 1998; Bolliger
et al., 2000b; Guisan & Zimmermann, 2000; Pearce &
Ferrier, 2000b).

Describing species’ environmental niches has long been a
central task of ecology and biogeography, but has received
renewed attention in attempts to understand the effects of
climatic variability and change on species distributions and
losses of biodiversity (Brockway, 1998; Austin, 1999; Bol-
liger et al., 2000a; Dale et al., 2001). Vegetation theory,
along with a substantial volume of literature, suggests that
the response of species to environmental gradients is uni-
modal, with presence/absence or abundance being greatest at
the center of a species range along each gradient (Gauch
et al., 1974; Austin, 1987; ter Braak, 1987; ter Braak &
Prentice, 1988; Austin & Gaywood, 1994). Although some
disagreement exists over the exact shape of response curves
(Austin et al., 1994; Austin, 2002; Oksanen & Minchin,
2002), a multidimensional ‘environmental niche space’ of
predictor variables can be estimated for a species if a non-
linear (unimodal) statistical model can be fit (Guisan et al.,
20003 ). If the predictor variables are spatially explicit climatic
(precipitation, temperature) or biophysical variables, then
changes in the geographical niches of species in response to

climatic change scenarios can be quantified from the models,
i.e., ‘predictive vegetation mapping’, sensu Franklin (1995).

Empirical/statistical models of species distributions can be
quite sensitive to the spatial extent and resolution of the data
used for their estimation. For example, McKenzie & Hal-
pern (1999) found that the estimated environmental niches
of shrub species changed substantially with changes in spa-
tial extent of the study area. If models are to be extrapolated
to new climatic conditions, they need to be robust across
scales (i.e. parameter estimates and the shapes of response
curves should be similar). Additionally, parameter estimates
should be different in separate geographical areas in which
the mechanisms of climate–species interactions are different
– for example, as a result of genetic variation in a wide-
ranging species such as Douglas-fir (Pseudotsuga menziesii –
Hermann & Lavender, 1990) or subalpine fir (Abies lasio-
carpa – Alexander et al., 1984). Thus, modelling at multiple
spatial extents identifies both the robustness of parameter
estimates and the geographic extent over which climate–
species interactions are homogeneous.

In this paper, we quantify associations between climatic
and biophysical variables and individual conifer species
distributions in mountain forests across the state of Wash-
ington, USA, using generalized linear models (McCullagh &
Nelder, 1989). Our objectives are to identify the key pre-
dictors of species presence/absence and how these predictors
and the form of species response functions change across
scales and along an east–west gradient. Predicting species
abundance (cover, biomass, basal area) requires different
modelling techniques, because the response variables are
continuous rather than binary. One must also address the
relative value of predicting mean vs. maximum responses
(Scharf et al., 1998; Cade et al., 1999; McKenzie et al.,
2000a). Good predictors for abundance may be different
from those for distribution (presence/absence); hence, we
restrict this study to the latter.

Conifers are the dominant tree life form in the Pacific
Northwest, and deciduous species are only sparsely repre-
sented in our database, thus we limited this study to conifers.
We compare the predictive ability of simple climatic varia-
bles (annual temperature, growing-degree days, annual and
seasonal precipitation) to that of variables (soil, hydrologic,
and solar radiation) derived from climatic variables and
output of spatially explicit simulations – hereafter referred to
as ‘biophysical’ variables. Biophysical variables might have
more predictive power than simple climate variables because
they are more closely linked to resource needs/limiting fac-
tors. Conversely, climatic variables might have better pre-
dictive power than biophysical variables because climatic
variables are effective surrogates for resource needs/limiting
factors and because it is difficult to link biophysical variables
to species at broad scales.

We also compare models from multiple spatial scales.
Broad-scale (regional) models might have better predictive
power than subregional models because species responses
to climatic and biophysical environments are generally
homogeneous and regional analyses incorporate broader
ranges of predictor variables (or environmental gradients).
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Conversely, subregional models might have better predictive
power than regional models because of heterogeneity in
limiting environmental factors within larger regions.

METHODS

Study area

Data are from 10,653 sites roughly along a longitudinal
gradient from west of the crest of the Cascade Range to the
beginnings of the western slope of the Rocky Mountains
(Fig. 1), across two physiographic provinces (Franklin &
Dyrness, 1988), the Northern Cascades and the Okanogan
Highlands. In the Northern Cascades, topography is
extremely rugged, with deep and steep-sided valleys with
eastward- and westward-flowing streams (Franklin & Dyr-
ness, 1988). Further east, the Okanogan Highlands present
moderate slopes and broad rounded summits (Franklin &
Dyrness, 1988). A variety of soil types appear in both pro-
vinces, reflecting the influence of Pleistocene glaciers, with
glacial soils predominant on valley bottoms and residual
soils on hillslopes and ridgetops.

Climate in our study area is intermediate between the
maritime climate west of the Cascade Crest and the con-
tinental climate east of the Rocky Mountains, and is a result
of the interaction of three air masses: (1) moist marine air
from the west, (2) continental air from the east and south,
and (3) dry arctic air from the north (Ferguson, 1997).
Summer drought, caused by a seasonal northward shift in
the jet stream in conjunction with high pressure over coastal
Oregon and Washington, is common, even in areas with
high annual precipitation. A small anomaly exists, however,

over the central Okanogan Highlands, such that a greater
percentage of total precipitation falls in the summer than in
areas immediately east or west (Daly et al., 1994).

Field data collection

Vegetation data were obtained from the Area Ecology pro-
gram, USDA Forest Service, for the Wenatchee, Okanogan
(now combined into Okanogan-Wenatchee NF), and Col-
ville National Forests in eastern Washington, USA, and for
the Grizzly Bear Habitat Study (Gaines et al., 1990). The
Grizzly Bear study sampled vegetation over a wide area
encompassing parts of the Wenatchee and Okanogan
National Forests, high-elevation sites in the Mt Baker/
Snoqualmie National Forest, and a few plots in North
Cascades National Park. Our study sites occupy a longi-
tudinal gradient from the crest of the Cascade Range to the
western slope of the Rocky Mountains (Fig. 1).

The Area Ecology program has a wide range of objectives
(see Williams & Lillybridge, 1983; Williams et al., 1990;
Lillybridge et al., 1995); here we describe only aspects of
data collection relevant to the objectives of this paper. Cir-
cular, 0.2-ha plots were established in stands encompassing a
range of elevations, aspects, and slopes that met the fol-
lowing criteria: (1) more than 75 years old, (2) relatively
undisturbed, and (3) relatively uniform in vegetation com-
position. Partly because of these criteria, and partly because
of time and financial constraints, sampled stands in the Area
Ecology Program were not spatially random. The clustered
patterns in both these and plots from the Grizzly Bear
Habitat Study reflect the severe physiographic constraints on
locations of mature, undisturbed forests.

Figure 1 Vegetation plots from the Area

Ecology Program and Grizzly Bear Habitat

Study used in the analysis.
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Elevation, aspect, and slope were recorded at each plot,
and ocular estimates of cover were made for all species,
including herbs, shrubs, regenerating trees (<3.5 m tall), and
mature trees (>3.5 m tall). Field plots were geo-referenced
to UTM coordinates. Using these, we created point cov-
erages in ARC-INFO [Environmental Systems Research
Institute (ESRI), 2000] for each of the four study areas
(hereafter ‘forests’).

Generation of climatic and biophysical variables

Climatic and physical variables
The DAYMET model (Thornton et al., 1997) was used to
estimate daily meteorological variables (36 total) for the
period 1980–97 over the coterminous United States. DAY-
MET combines interpolation algorithms that operate on raw
data from weather stations with a set of adjustments for
elevational lapse rates and topography (Hungerford et al.,
1989). The daily outputs, computed at 1-km resolution,
were combined into monthly and annual summaries (mean
and standard deviations) and transformed to raster cover-
ages (Thornton et al., 1997). For the current study we
selected annual and monthly summary coverages of clima-
tological variables and net solar radiation. Net solar radi-
ation at the earth’s surface was calculated by assuming
attenuation from cloud cover as a function of diurnal tem-
perature range (Bristow & Campbell, 1984). We imported
the coverages into ARC-INFO (ESRI, 2000) as grids, and
clipped the grids to the geographical range of the vegetation
plots (Table 1). Vegetation plots were overlaid on the grids
and values for each of the climatic and physical variables
were extracted for each plot.

Soil and hydrological variables
Biophysical variables were generated using the Variable
Infiltration Capacity (VIC) hydrologic model (Liang et al.,
1994) and the mountain climate simulation (MT-CLIM)
model (Hungerford et al., 1989). Climate forcing data for
the models consisted of a gridded network (1/8th degree
resolution) of 51-year time series of daily temperature
(maximum and minimum), precipitation, and wind speed
developed from historic climate station data for the Land
Data Assimilation System (LDAS) – North America project
(Maurer et al., 2002). Vegetation sampling points were
paired with the corresponding climate time series based on
the recorded latitude and longitude at the sample point.

The MT-CLIM model was used to adjust climate time
series for topographical effects on air temperature and to
estimate daily solar radiation fluxes for use by the hydrology
model. The LDAS climate forcing data were assumed to be
for a flat grid cell with elevation equal to that of the mean
elevation within the grid cell. MT-CLIM was used to cal-
culate daily solar radiation fluxes based on diurnal tem-
perature ranges (Bristow & Campbell, 1984), with
adjustments made for slope angle and orientation and to-
pographic shading. Maximum and minimum temperatures
were adjusted to account for elevation differences between
the grid cell and the sample site (lapse rate of 6 �C per

1000 m) and for topographical effects on solar radiation.
The daily climate time series output from MT-CLIM, com-
bined with the LDAS wind speed data, were used as climate
forcings for the VIC hydrologic model.

Biophysical variables (see Table 1) for each vegetation
sample site were created from VIC model output summar-
ized over a 50-year period (water years of 1950–99). Climate
data from water year 1949 were included in the model runs
only to establish initial soil water conditions (output was
discarded). At each site, we assumed a reference vegetation
cover of evergreen coniferous forest with leaf area index of
3.0. Soils were assumed to be sandy loams with a maximum
tree rooting depth of 1.5 m.

Data analysis

Abundance measures for overstory conifers in the vegetation
database were transformed to presence/absence and com-
piled into a model database with the climatic, physical, and
biophysical predictors. We used generalized linear models
(GLMs) of the binomial family (McCullagh & Nelder, 1989)
to estimate the probability of occurrence for each species at
each plot as a function of the predictor variables. Analyses
were conducted with Splus 2000 for Windows (Insightful,
2000).

For this study, we eschewed a variety of other approaches
(Guisan & Zimmermann, 2000; Moisen & Frescino, 2002;
Yee & MacKenzie, 2002) such as classification and regres-
sion trees (CART – Breiman et al., 1984), generalized
additive models (GAM – Hastie & Tibshirani, 1990; Yee &
Mitchell, 1991), or artificial neural networks (ANN – Rip-
ley, 1994). These latter can be more flexible than GLMs but
they are more complex and more difficult to interpret with
respect to new observations. For example, predicted
responses for new observations in CART are limited by its
hierarchical structure to those already estimated by the ori-
ginal model (Clark & Pregibon, 1992).

Climatic and biophysical predictor variables were classi-
fied into two categories, or proxy sets (Booth et al., 1994):
those representing moisture (precipitation, most hydrologi-
cal variables, and soil water index) and temperature [tem-
perature, growing degree days, frost days, soil degree days,
and evapotranspiration, actual (AET) and potential (PET)].
AET and PET were allowed to ‘float’, however, because they
can represent a combination of both temperature and
moisture (Stephenson, 1990, 1998). As we expected, col-
linearity of predictors within each category was high, sug-
gesting that only one variable from each category should be
used in a given model. We therefore applied an exhaustive
procedure in which, for each species, each predictor within
the ‘moisture’ category was paired with each predictor from
the ‘temperature’ category. Thus, when the two ‘physical’
variables, solar radiation and aspect, were included, the
maximum number of distinct predictor variables for a model
was four. We explored quadratic terms in the models for
predictors in the moisture and temperature categories, under
the assumption that species will show a unimodal response
to environmental gradients (see above – ter Braak, 1987).
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Orthogonal polynomials were created to avoid collinearity in
the predictors, and a quadratic term was accepted only if, in
addition to the criteria applied to all predictors, it had a
negative coefficient. (A positive quadratic term produces a
concave-up response, which is not biologically meaningful
except in rare cases where minima are at one extreme of the
range of the predictor. We did not encounter any of these).
When back-transformed via the logit link function, these
quadratic terms produce a Gaussian (bell-shaped) response
curve.

For each species, we applied four criteria to isolate an
optimal model:

• Percentage deviance explained (PDE) for the model,
penalized by the number of predictors, was the maximum
of all models tested. PDE, roughly equivalent to R2 in a
regression model, is calculated as 1 ) (residual deviance/
null deviance). Thus, we used the equivalent of adjusted
R2. A likelihood ratio test was also applied to quadratic
terms for predictors at a significance level of 0.05.

• A strict criterion was applied to minimize collinearity in
the predictors, because collinearity leads to large variances
for parameter estimates. Therefore, no individual variance
inflation factor (VIF) could be >3. In cases where VIF was
>3, backward elimination (Neter et al., 1990) was used to
drop the predictor that reduced residual deviance the least.

• A model had to explain at least 10% of the deviance in the
response variable to be retained; models that did not are
not reported, although significance tests might have shown
an association between response and predictors. In the
context of this study, we considered such models to be too
weak for meaningful interpretation.

• No models were attempted for species that were present
on fewer than 5% of plots on a given forest. Because of the
nature of GLMs, estimated probabilities of presence are

likely to be biased when a preponderance of observations
of the response variable are either 0 or 1. We made one
exception: whitebark pine (Pinus albicaulis), a rare sub-
alpine species of considerable management interest and
thought to be sensitive to climatic change (Tomback et al.,
2001).

A key objective of this study was to identify how robust
the interpretations of models were to changes in spatial
extent. Thus, for species that were present in multiple for-
ests, we built models at multiple spatial extents: (1) indi-
vidual forests; (2) either the two westernmost forests, Grizzly
Bear and Wenatchee, or the three easternmost forests, We-
natchee, Okanogan, and Colville; and (3) all four forests.

Model evaluation
A variety of methods have been developed to evaluate pre-
dictive models with binary responses (Hosmer & Lemeshow,
1989). To properly evaluate such models of species dis-
tributions, one must quantify not only the success of pre-
dictions via some criterion for goodness-of-fit, but also their
ability to discriminate between occupied and unoccupied
sites (Guisan & Zimmermann, 2000). For the former we
used the residual deviance (first criterion, above), and for the
latter we used a combination of bootstrapping (Efron &
Tibshirani, 1993) and receiver operating characteristic
(ROC) curves (Fielding & Bell, 1997; Pearce & Ferrier,
2000a). ROC curves permit evaluation of a model’s accu-
racy of discrimination between occupied and unoccupied
sites for any threshold probability of occurrence (between 0
and 1), and are created in the following way.

On either side of any predicted threshold probability of
occurrence, there will be observations that are predicted
correctly and incorrectly. For example, for a threshold
probability of 0.5, there will be sites with predicted values

Table 1 Variables used to predict species distributions

Biophysical

Climate Physical Hydrology Soil

Precipitation (cm) Aspect (cosine transformed) Baseflow [annual export

of water via subsurface flow (mm)]

SoilDD (number of degree

days over a threshold of 5 �C)

Annual (PPTANN)

Summer (PPTSUM)
Winter (PPTWIN) SRAD [daily total

short-wave radiation (Wm)2)]

Runoff [annual surface runoff (mm)]

Annual mean daily
temperature (C)

(TDAYANN)

Outflow
(annual total export ¼ baseflow þ runoff)

SoilW (number of days
soil moisture is <5% available)*

Annual GDD above 0 �C PET (mm)

Annual frost days AET (mm)
MaxSNOW (cm)

SWE on April 15 (mm)

*Soil water indices were computed at three depths in the soil layer: 0–10, 10–40 and 40–100 cm.
GDD, growing degree days; SRAD, solar radiation; PET, potential evaporative water loss; AET, actual evaporative water loss; MaxSNOW,

maximum winter snowpack accumulation; SWE, spring snowpack water equivalent; SoilDD, soil degree days; SoilW, soil water index.

Summer ¼ June, July, August, September. Winter ¼ December, January, February. ‘Degree days’ ¼ the sum of degrees over a threshold for all

days whose (mean) temperature exceeds that threshold.
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above it where the species is present (true positives) and
absent (false positives). Similarly, there will be sites with
predicted values below 0.5 that are occupied (false negatives)
and unoccupied (true negatives). For a given state (present or
absent), the number of correct predictions plus the number
of incorrect predictions equals the total number of obser-
vations in that state. For a specified threshold probability,
the ‘true positive fraction’ is the proportion of correctly
predicted presences, the ‘false negative fraction’ the pro-
portion of incorrectly predicted absences, the ‘true negative
fraction’ the proportion of correctly predicted absences, and
‘false positive fraction’ the proportion of incorrectly pre-
dicted presences. These fractions are in the range (0,1), true
positive fraction þ false negative fraction ¼ 1, and true
negative fraction þ false positive fraction ¼ 1 (Murphy &
Winkler, 1987; Pearce & Ferrier, 2000a).

A model’s ability to discriminate (i.e. identify correctly
sites that are occupied) is expected to differ for different
values of the ‘decision threshold’. ROC curves allow mul-
tiple thresholds to be examined simultaneously. For a range
of decision thresholds within the predicted values of a
model, one can calculate any of the four fractions (above).
Typically, the false positive and true positive values are used,
and plotted on the X axis (range 0,1), and the Y axis (range
0,1), respectively (Pearce & Ferrier, 2000a). The smooth
curve defined by these points is the ROC curve. The area
under this curve corresponds to the ability of the model to
discriminate between presences and absences. With no
ability to discriminate, the expected true positive fraction
would equal the expected false positive fraction, and the area
under the ROC curve would be the area under the 45� line
(¼ 0.5). With perfect discrimination, the area would be 1.0.

It can be shown (Bambar, 1975; Hanley & McNeil, 1982)
that the area under an ROC curve is approximated by the
Mann–Whitney statistic (from a non-parametric test of the
difference between two samples), when this statistic is
standardized by dividing by the product of the two samples
sizes (Sokal & Rohlf, 1995). The result of the standardiza-
tion lies between 0.5 (no discrimination) and 1.0 (perfect
discrimination). Values below 0.7 show ‘poor’ discrimin-
ating ability, values between 0.7 and 0.9 show ‘reasonable’
ability, and values above 0.9 show ‘excellent’ ability (Swets,
1988; Pearce & Ferrier, 2000a).

Because of the large number of models and computer-
intensive nature of bootstrapping with thousands of data
points, we selected fourteen models at random (two from
each forest and each combination of forests – Wenatchee/
Grizzly, Wenatchee/Okanogan/Colville, and all four forests),
with the constraint that no more than two were from the
same species. We calculated the area under ROC curves for
these models via the standardized Mann–Whitney statistic,
and then applied the models to obtain fitted values (proba-
bilities) for 1000 bootstrap samples of the response variable.
Standard bootstrap estimates of prediction error for linear
models produce a statistic, ‘error optimism’, which reflects
the percentage increase in residual deviance expected if the
model were extrapolated to other data from a similar pop-
ulation (Efron & Tibshirani, 1993). We used the areas under

bootstrapped ROC curves (developing ROC curves from the
bootstrap samples and predicted values), rather than residual
deviance, to estimate error optimism as the mean percentage
decrease in area under the ROC curves from the bootstrap
predictions relative to predictions on the original data set:

Eopt ¼ ðAdata � AlbootÞ=Adata

where Eopt ¼ error optimism, Adata ¼ area under ROC
curve computed from the model, and Alboot ¼ the mean
area under ROC curves computed from bootstrap resamples.

Using the models selected for evaluation, GAMs were
estimated, to compare the quadratic term, corresponding to
a Gaussian response, to other non-linear terms (e.g. higher-
order polynomials). We replaced the quadratic terms with a
stiff loess smoother (Hastie & Tibshirani, 1990) and
examined the shape of response curves. Substantial depar-
ture from a bell-shaped curve in the non-parametric terms in
GAMs, specifically skewness or bimodality, would suggest
the need for more complex models to accurately estimate the
relationship to explanatory variables (Austin & Gaywood,
1994). Finally, we plotted empirical variograms of model
residuals, to check graphically for spatial auto-correlation in
error terms. Monotone-increasing variograms would suggest
that sites were more similar, on average, to their neighbours
than to distant sites, and that incorporation of a spatial
component would improve the models.

RESULTS

Climate and biophysical variables differ noticeably in their
ranges among forests (Table 2), with wider ranges, suggesting
steeper environmental gradients, generally found within the
Grizzly Bear and Wenatchee forests. Conifer species vary in
their constancy within forests and their distributions among
forests. Eight species are found in all four forests (Table 3),
although two of these, mountain hemlock and western hem-
lock, have very low constancy in one and two forests,
respectively. None of the species is restricted to one forest,
although whitebark pine has low constancy in the two forests
in which it was found (Table 3). Douglas-fir is the most com-
mon species on all four forests, occurring on more than 50% of
plots in the Wenatchee, Okanogan, and Colville forests.

Model results
Percentage deviance explained was >10% in fifty-three of
sixty-one total attempts to fit models at the three spatial
scales. All of the eight failures involved the same four spe-
cies: Alaska yellow cedar, western larch, lodgepole pine and
Engelmann spruce. PDE for the fifty-three models ranged
from 10.7% to 51.4%, with a mean of 29.6%. PDE was
highest, on average, for the models for the Grizzly bear and
Wenatchee, and for these two forests combined; it was
lowest on the Colville (the easternmost forest), and surpris-
ingly, at larger spatial scales on the combinations of the three
eastern forests and all four forests.

Of the predictors, the climate variables were most fre-
quently used, with at least one (and frequently two)
appearing in 79% of the models (Table 4). The other classes
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of predictors occurred with nearly equal frequency: physical
variables (49%), soil variables (42%), and hydrological
variables (40%). In two forests, Okanogan and Colville,

climatic variables were included in models for every species
and the physical variables for every species but one, whereas
the soil and hydrological variables were very sparsely

Table 2 Mean values and ranges of climatic and biophysical variables on the four forests. See Table 1 for units

Variable Wenatchee Okanogan Colville Grizzly Bear

Annual precipitation 133.78 83.96 91.32 161.48
41.67–326.23 39.18–186.05 35.99–160.68 22.70–344.01

Summer precipitation 14.48 14.80 23.11 21.55

5.46–41.30 6.60–23.98 11.09–37.84 3.67–51.06

Winter precipitation 57.66 32.37 26.77 64.83
18.04–128.65 11.63–74.36 9.37–48.56 9.04–133.96

Mean annual temperature 4.72 3.21 4.56 3.52

)1.66–8.94 )2.41–8.44 0.34–8.44 )2.14–11.08
Growing degree days 2237.14 2046.72 2326.22 2031.09

1096.89–3496.51 1022.69–3436.81 1364.39–3403.80 980.81–4255.78

Frost days 200.77 231.51 199.12 216.05

136.72–312.16 154.93–313.18 106.83–263.44 59.09–312.31
Baseflow 636.20 268.20 276.01 873.00

23.00–1552.00 16.00–1221.00 15.00–697.00 12.00–2183.00

Runoff 221.49 129.99 87.07 440.16

15.00–986.00 12.00–836.00 12.00–391.00 5.00–1573.00
Outflow 857.70 398.19 363.07 1313.16

39.00–2328.00 28.00–1863.00 28.00–1021.00 17.00–3581.00

PET 585.14 615.95 641.71 525.40
343.00–963.00 328.00–884.00 401.00–873.00 283.00–1186.00

AET 439.24 420.90 503.08 421.79

296.00–575.00 295.00–560.00 350.00–630.00 189.00–670.00

Maximum winter snowpack 448.36 360.91 256.34 760.18
50.00–1620.00 22.00–1431.00 23.00–763.00 12.00–5276.00

Snow-water equivalent 320.59 259.27 141.20 664.45

0.00–1572.00 0.00–1397.00 0.00–696.00 0.00–5217.00

Soil degree days 1077.18 1046.48 1172.46 848.77
213.00–2703.00 205.00–2188.00 332.00–2173.00 96.00–2884.00

Soil drought days (0–10 cm) 105.99 120.01 100.05 77.64

17.00–202.00 26.00–186.00 46.00–179.00 4.00–244.00

Soil drought days (10–40 cm) 108.21 131.92 110.47 76.24
7.00–216.00 18.00–215.00 41.00–210.00 1.00–270.00

Solar radiation 13.01 13.21 12.73 12.55

10.97–14.40 10.83–14.22 6.31–13.85 6.41–14.30

Table 3 Percentage of plots present for each species on each forest. Numbers in parentheses are the total number of plots on the forest

Species
Grizzly
Bear (1416)

Wenatchee NF
(4105)

Okanogan NF
(1975)

Colville
NF (3157)

Douglas-fir (PSME) Pseudotsuga menziesii (Mirb.) Franco 24.2 65.2 66.4 69.5

Ponderosa pine (PIPO) Pinus ponderosa Dougl. ex Laws. 9.0 27.0 28.1 16.8

Subalpine fir (ABLA2) Abies lasiocarpa 21.5 28.6 30.6 30.9
Pacific silver fir (ABAM) Abies amabilis Dougl. ex Forbes 18.9 29.0 3.7 –

Western redcedar (THPL) Thuja plicata Donn ex D. Don 9.8 12.3 2.1 32.9

Western hemlock (TSHE) Tsuga heterophylla (Raf.) Sarg. 12.8 22.3 1.0 18.7
Mountain hemlock (TSME) Tsuga mertensiana (Bong.) Carriere 17.2 17.6 1.7 0.1

Western larch (LAOC) Larix occidentalis Nutt. – 13.6 20.6 52.4

Lodgepole pine (PICO) Pinus contorta Dougl. Ex Loud. 8.1 16.1 32.0 35.5

Whitebark pine (PIAL) Pinus albicaulis Engelm. 4.1 5.5 – –
Engelmann spruce (PIEN) Picea engelmannii var. glabra Goodman 10.7 17.1 37.0 26.7

Grand fir (ABGR) Abies grandis (Dougl. ex D. Don) Lindl – 34.6 – 26.0

Western white pine (PIMO) Pinus monticola var. minima Lemmon – – – 7.0

Alaska yellow cedar (CHNO) Chamaecyparis nootkatensis (D. Don) Spach 5.2 5.1 – –
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Table 4 Generalized linear model results. Signs of coefficients are in parentheses. See Table 3 for species names

Forest Species Climate (DAYMET) Physical Soil (VIC) Hydrology (VIC) PDE ROC

Grizzly bear ABAM GDD* – – Baseflow* 26.5 0.835
Mean PDE ¼ 33.8 ABLA2 GDD* – – – 19.2 0.786

PPTSUM*

Mean ROC ¼ 0.877 PIAL TDAYANN* – – – 32.7 0.915

PICO PPTWIN* – – AET* 28.4 0.847
PIEN PPTWIN* – – – 22.6 0.818

GDD*

PIPO – – SoilDD* – 47.2 0.941
SoilW*

PSME PPTSUM* – SoilDD* – 34.9 0.877

THPL PPTWIN* SRAD* – AET* 42.8 0.918

TSHE – – SoilDD* PET-AET* 47.6 0.937
Baseflow(þ)

TSME PPTWIN* SRAD()) AET* 35.9 0.897

Wenatchee ABAM – – SoilW* SWE()) 45.3 0.916

Mean PDE ¼ 31.3 ABGR Frost days(–) – SoilW* – 28.9 0.841
ABLA2 – – SoilW* – 32.8 0.866

SoilDD(–)

Mean ROC ¼ 0.860 CHNO Frost days* – Baseflow* 19.7 0.838
LAOC GDD* Aspect(þ) – Runoff* 23.8 0.834

PIAL TDAYANN* – – MaxSNOW* 51.4 0.957

PICO PPTWIN* – – 13.2 0.757

TDAYANN*
PIEN PPTANN* – – – 16.2 0.776

TDAYANN*

PIPO PPTSUM* SRAD(þ) – – 39.9 0.898

TDAYANN*
PSME PPTSUM(–) – – – 30.2 0.836

THPL – SRAD(–) SoilDD* AET(þ) 25.7 0.850

TSHE PPTANN* – SoilDD* PET-AET* 37.0 0.890

TSME PPTWIN* – – PET-AET* 43.2 0.917
SoilDD*

Okanogan ABLA2 PPTANN* Aspect(þ) – – 22.2 0.820

TDAYANN*
Mean PDE ¼ 28.2 LAOC PPTWIN* Aspect(þ) – – 44.3 0.896

TDAYANN*

Mean ROC ¼ 0.832 PICO TDAYANN* Aspect(þ) – – 12.6 0.756

PPTWIN*
PIEN PPTSUM* Aspect(þ) – – 18.5 0.785

GDD (–)

PIPO GDD* Aspect(–) – – 39.6 0.896

PPTSUM(–)
PSME GDD* – SoilW* – 32.2 0.836

Colville ABGR PPTWIN* – – – 28.9 0.839

Frost days*
Mean PDE ¼ 22.3 ABLA2 TDAYANN(–) Aspect(þ) – – 27.3 0.833

Mean ROC ¼ 0.805 PPTANN(þ)

PIMO PPTWIN* SRAD(þ) – AET(þ) 12.9 0.757

PIPO TDAYANN(þ) SRAD(þ) 24.5 0.843
PPTSUM(–) Aspect(–)

PSME TDAYANN* Aspect(–) – 11.8 0.710

PPTWIN(–)

THPL PPTANN* SRAD(–) SoilDD* AET* 24.4 0.818
TSHE PPTWIN* Aspect(þ) – – 26.3 0.837

Frost days*

Grizzly & Wenatchee ABAM PPTWIN* – SoilDD* – 41.2 0.903

ABLA2 TDAYANN* – – SWE* 26.2 0.838
Mean PDE ¼ 33.8 PIAL TDAYANN* SRAD(þ) – PET-AET* 36.1 0.908
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represented (Table 4). PDEs for these forests were lower
than for the Wenatchee and Grizzly Bear, in which there was
more representation of the soil and hydrological variables,
and less of the physical variables (Table 4).

Optimal models were not substantially superior, for most
species, to alternatives. In a number of cases, there were
several other models that were close in explanatory power to
the optimal model (PDE within 1% of the optimal model for
the same number of predictors). These sub-optimal models
always involved replacement of one predictor in the tem-
perature or moisture category with another. This is not
surprising because most variables within these categories
were strongly correlated (Pearson’s R-statistic >�0.85).

For the majority of species, we were able to fit variables
from both the moisture and temperature categories of pre-
dictors, and in all but a few cases these models included
negative quadratic terms, indicating a unimodal (concave
down) response of species occurrence to a climatic or bio-
physical variable (Table 4). Models varied in how ‘centered’
this unimodal response was in the space of predictor varia-
bles. Some indicated that the ‘environmental niche’ of a
species, with respect to one predictor, had been clearly
captured by the model, in that the range of non-zero pre-
dicted probabilities is within the range of the predictor
variable (Fig. 2). Others suggested that a longer gradient in
the predictor variable(s) would be needed (Fig. 2).

Conifer species were fairly consistent in their responses
across the four forests and at different spatial scales. For
example, from models at three scales, Douglas-fir is predicted
to be most likely to occur when growing degree days are

between 2500 and 3000, and soil drought days are between
100 and 150 (Fig. 3). Similarly, models at two spatial scales
predict a sharp increase in the occurrence of mountain hem-
lock as winter precipitation approaches 80 cm (Fig. 4). The
models for these two species had relatively high explanatory
power (PDE range ¼ 27.4 ) 43.2%). For species whose
models had low explanatory power, responses across scales
were less consistent. For example, the peak response of
lodgepole pine to winter precipitation is predicted to be at
about 45 cm in the Wenatchee forest, but only about 30 cm
when the Wenatchee and Grizzly bear forests are combined.

Model evaluation
Areas under ROC curves (ROCs) ranged from 0.710 for
Douglas-fir on the Colville forest to 0.941 for ponderosa
pine on the Grizzly Bear forest (Table 4). Spearman’s rank
correlation between PDEs and ROCs for the fifty-three
models was 0.8; thus, discriminating ability was not quite a
monotonic function of goodness-of-fit. Of the fifty-three
ROCs, 79% (forty-two) were in the reasonable category of
discriminating ability, and 21% (eleven) were in the excel-
lent category. Error optimism as predicted by bootstrapped
ROCs was essentially zero for most models, and never above
2.4% (Table 5).

Substitution of non-parametric terms for the polynomial
terms in the models did not suggest substantial departures
from unimodality, nor did they suggest substantial skewness
when examined visually (not shown). Empirical variograms
of model residuals (not shown) were not monotonic, that is,
residuals nearer to each other in space were no more similar

Table 4 continued

Forest Species Climate (DAYMET) Physical Soil (VIC) Hydrology (VIC) PDE ROC

PICO PPTWIN* – – PET-AET* 15.9 0.777
Mean ROC ¼ 0.870 PIPO – SRAD* SoilW* PET* 42.5 0.904

PSME GDD* – SoilW* – 36.1 0.863

THPL – SRAD* SoilDD* AET* 29.3 0.852

TSHE TDAYANN* SRAD* – Baseflow* 37.1 0.882
AET(þ)

TSME PPTWIN* Aspect(þ) SoilDD* – 39.7 0.907

Wenatchee Okanogan Colville ABLA2 – SRAD* SoilDD(–) – 26.3 0.833
SoilW*

Mean PDE ¼ 24.9 LAOC – Aspect(þ) – PET-AET* 16.7 0.770

Mean ROC ¼ 0.815 Runoff*

PIPO GDD* SRAD(þ) SoilW* – 34.7 0.876
Aspect(–)

PSME GDD* SRAD(þ) SoilW* – 21.9 0.782

All 4 forests ABLA2 – – SoilDD* – 22.2 0.815

SoilW*
Mean PDE ¼ 24.15 PIEN TDAYANN* – – Baseflow* 10.7 0.723

Mean ROC ¼ 0.810 PIPO GDD* SRAD(þ) SoilW* – 36.3 0.888

Aspect(–)
PSME GDD* SRAD(þ) SoilW* – 27.4 0.812

*Negative quadratic term, suggesting unimodal response. See Table 1 for definitions of variables and Table 3 for species

names and botanical authorities.
PDE, percentage deviance explained; ROC, area under ROC curve (see text for details).

Species with PDE <10% are not reported. Further details on the models (e.g. parameter estimates, partial R2, summary

statistics for fitted values) are available from the senior author.
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than widely separated residuals. Thus, we concluded that
spatial autocorrelation was not a significant factor in the
models and that observations could be considered inde-
pendent.

DISCUSSION

We used statistical models to identify and quantify the envi-
ronmental niche space occupied by fourteen conifer species in
the Pacific Northwest. In several cases, one predictor variable
proved to be optimal for a species at multiple scales (e.g.
Fig. 5), and the similarities among response curves in differ-
ent forests or at different scales suggest that the models are
robust and accurately portray the response of that species
across the region. In other cases, optimal predictors for a
species came from different members of proxy sets, but the
strong collinearity within sets and the similarity of response
curves across scales and forests suggest that using a single
predictor from the set would produce near-optimal models
and an equally robust interpretation. For example, every
model for ponderosa pine (present on all forests) includes a
term from the temperature set; either growing degree-days,
annual temperature, or soil degree-days.

We expected the strength and robustness of models to vary
among species for two reasons: (1) adequacy of samples in
representing populations, and (2) more importantly, the
resolution of predictor variables at spatial scales that match
species responses. For example, models for two species,
lodgepole pine and Engelmann spruce, were consistently
poor (Table 4), even in forests in which they were moder-
ately abundant. Lodgepole pine is abundant on sites where
conditions such as shallow, low-fertility soils and frequent
summer frosts exclude the establishment of other conifers
(Steele et al., 19814 ). Neither of these limiting factors is
represented by our climatic and biophysical variables; they

are both likely to be heterogeneous at finer scales than our
data. The habitat of Engelmann spruce is difficult to char-
acterize because, although it is generally associated with cold
environments at high elevations (Alexander & Shepperd,
1990), it is found at middle elevations on cold-air drainages,
alluvial terraces, and wet benches (Daubenmire, 1969; Pfis-
ter et al., 1977). Factors associated with its distribution are,
therefore, like those for lodgepole pine, likely to be hetero-
geneous at scales too fine for our models.

In contrast, models for two other species, mountain
hemlock and ponderosa pine, were consistently strong
(Table 4). The key predictor for mountain hemlock models
was winter precipitation. A detailed study of the response of
mountain hemlock to climatic variability identified snow-
pack in May as a key factor limiting growth (Peterson &
Peterson, 2001). This is likely a function of total precipita-
tion during winter months, so PPTWIN is an effective sur-
rogate (our variable MaxSNOW, maximum snowpack, is
less so). Similarly, the environmental niche space of pon-
derosa pine may be sharply defined on both ends of the
moisture gradient (Kusnierczyk & Ettl, 2002), as suggested
by key predictors PPTSUM and SoilW (Table 4). In the
Pacific Northwest, ponderosa pine dominates lower treeline
east of the Cascade Range, but at higher moister sites it is
out-competed by more shade-tolerant, less drought-tolerant
species (Franklin & Dyrness, 1988).

If we have identified variables that directly influence the
mechanisms of a species’ survival and growth, then we would
expect that statistical associations with species occurrence
would not change substantially with geographic distance,
composition of co-occurring species, or spatial scale. The
robustness of models among forests and across scales implies
that the responses of these species to climate and biophysical
factors are relatively homogeneous across two contrasting
physiographic types (see Study Area) and a number of
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Figure 2 Unimodal/Gaussian responses are

predicted by the models. (a) and (b) ponde-

rosa pine on the Wenatchee NF. (c) and (d)

Douglas-fir on the Wenatchee and Grizzly
Bear forests. Density bands along the X-axis

represent individual values of the predictor

variables.
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vegetation types, or plant associations (Williams et al., 19905 ;
Lillybridge et al., 1995). We have not explained all the
variance in species responses. The remainder of the variation
is probably because of one or more of the following: com-
petitive interactions among species that share environmental
niches can cause one species to be eliminated from a site
where a broad-scale model based on climate would predict it
to be present. Local or small-scale effects, such as noted above
for lodgepole pine and Engelmann spruce, are unlikely to be
captured in models built at 1-km resolution. The inertia of
successional processes may allow mature individuals of a
residual species from a earlier climatic regime to remain on a
site long after a model would predict their absence (e.g.
Dunwiddie, 1986; Campbell & McAndrews, 1993). Finally,
there is intrinsic variability in all ecological processes.
Nevertheless, we believe that our predictive models can be
applied, where appropriate, with a high level of confidence.

Accurate forecasting of the response of vegetation to
climatic change depends upon the robustness of models to
departures from the biophysical environment in which they
were developed. One approach to this is to build ‘process-
based’ models, under the assumption that the simulated
mechanisms are so basic as to be invariant to those
departures associated with climatic change (Shugart &
Prentice, 1992; Running & Hunt, 1993; Urban et al.,
1993; Neilson, 1995; Acevedo et al., 1996; Keane et al.,
1996a). A key advantage of process-based simulations is
that they incorporate transient dynamics, which are clearly
important for forecasting the responses of long-lived
species. In contrast, empirical/statistical models like ours
and many others (e.g. Franklin, 1995; Bolliger et al.,
2000b; Pearce & Ferrier, 2000b; Iverson & Prasad, 2001)
take a static, or equilibrium approach. Associations are
modeled at one point in time; their genesis must be
inferred indirectly.

A disadvantage of process-based models is that they have
multiple parameterizations, often based on statistical asso-
ciations though grounded in biological theory (Korzukhin
et al., 1996). Models then need to be calibrated to produce
‘reasonable’ output. In contrast, empirical models are data-
driven and self-calibrating, though still needing careful
validation. Our models are robust across scales and geo-
graphical gradients, and the bootstrap validations suggest no
loss of predictive power when applied to similar popula-
tions. Although there is substantial intrinsic uncertainty in
empirical models (Elith et al., 2002), they can be of con-
siderable value, along with process-based models, in fore-
casting changes in species distributions in response to
climatic change. For example, once a realistic climate-
change scenario has been identified (e.g. Ferguson, 1997),
the DAYMET and VIC GIS coverages could be adjusted
stochastically and the predictive models applied to new
values of the climate and biophysical variables. Sensitiv-
ity analysis would identify which species are sensitive to

Figure 3 The response of Douglas-fir to two

predictor variables is consistent across spatial

scales. Density bands along the X-axis rep-
resent individual values of the predictor vari-

ables.

Figure 4 Response of mountain hemlock to winter precipitation

is consistent at two scales along a geographic gradient. Density
bands along the X-axis represent individual values of the

predictor variables.
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changes in which variables, and in which geographical por-
tion of their ranges they are most sensitive. Because our
models were built at multiple scales, responses to climatic
change could be forecast at multiple scales.

Recent climate is not a perfect surrogate for the climatic
conditions under which now-mature trees established; this
disparity between temporal scales (17–50 years of high-
quality gridded climatic data vs. multi-century life spans of
many conifer species) will always lend uncertainty to sta-
tistical models of the distributions of long-lived species. It is
likely that environmental niches for regeneration are nar-
rower than those for survival of mature trees. However,
models of presence/absence are more likely to approximate
regeneration niches than model of abundance, because
‘presence’ is directly linked to establishment success. It is
reasonable to assume, therefore, that core areas of environ-
mental space (high probability of presence) predicted by our

models are relatively robust to life-history stages of the
organisms being considered.

The application of climate-change scenarios help to iden-
tify where species ranges may expand, shrink, or move. For
example, suppose winter precipitation were to increase by
20 cm year)1, on average, in the Grizzly Bear forest (strad-
dling the North Cascades, at high elevation). Models predict
that the occurrence of whitebark pine and lodgepole pine
would be greatly reduced, whereas mountain hemlock
occurrence would increase (Fig. 5). This, in conjunction with
an introduced pathogen, white pine blister rust Cronartium
ribicola) and fire exclusion, poses a significant threat to the
persistence of whitebark pine (Tomback et al., 2001). The
identification of vulnerable species and development of
possible mitigations are key aspects of forest planning
(Flather et al., 1998; Hann et al., 1998; Hessburg et al.,
1999; Bolliger et al., 2000b; Aber et al., 2001; Hansen et al.,
2001).

A more comprehensive picture of potential response of
conifer species to climatic change involves considering limits
to regeneration, limits to abundance (as opposed to presence/
absence), competitive interactions, and the effects of
disturbance, chiefly fire. Environmental niche space is likely
to change with different stages of life history (seedlings vs.
mature trees). Methodology exists for modelling the effects
of predictor variables on species composition, as a multiva-
riate response, directly (Billheimer et al., 2001; Cumming,
2001), thus implicitly incorporating competitive interac-
tions, and for estimating the limits of species abundance or
growth in response to multiple predictors (Scharf et al.,
1998; Cade et al., 1999; McKenzie et al., 2000a; Peterson &
Peterson, 2001). Characteristics of fire regimes have been
described and quantified at broad scales in the Pacific
Northwest (Morgan et al., 1996; McKenzie et al., 2000b),
and rule-based models, incorporating climate, have been
developed to estimate the effects of fire regimes on physio-
gnomic vegetation types (Lenihan et al., 1998) and succes-
sional pathways (Keane et al., 1996b). Process-based models
simulate fire, succession, and forest composition at small

Forest Species PDE ROC

Bootstrapped

ROC

Error

optimism (%)

Grizzly Bear ABLA 0.192 0.786 0.791 0.0

TSME 0.359 0.897 0.880 2.4

Wenatchee ABAM 0.453 0.916 0.917 0.0

CHNO 0.197 0.838 0.834 0.5
Okanogan LAOC 0.443 0.896 0.911 0.0

PICO 0.126 0.756 0.753 0.4

Colville ABGR 0.289 0.839 0.832 1.0
PSME 0.118 0.710 0.694 2.3

Grizzly and Wenatchee PIPO 0.425 0.904 0.909 0.0

PICO 0.159 0.777 0.774 0.4

Wenatchee/Okanogan/Colville PIPO 0.347 0.876 0.855 2.4
LAOC 0.167 0.770 0.767 0.4

All 4 forests PSME 0.274 0.812 0.805 0.9

PIEN 0.107 0.723 0.728 0.0

Table 5 Bootstrap validation statistics for

selected models. Two species were selected
from each forest with contrasting PDEs (high

and low) and to maximize the diversity of

species

Figure 5 Responses of three species to winter precipitation on the

Grizzly Bear forest. The vertical line is the current mean. Density

bands along the X-axis represent individual values of the predictor

variables.
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scales (e.g. Keane et al., 1996a). A fair amount is known
about the linkages between climate and fire regimes (Swet-
nam & Betancourt, 1990; Swetnam, 1993; Veblen et al.,
2000; Heyerdahl et al., 2001). However, to date no quan-
titative synthesis exists of the linkages among species com-
position and distribution, climate and biophysical factors,
and effects of disturbance. The models presented in this
paper provide a key component of that synthesis.
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