Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: GENOMICS AND ENGINEERING OF STRESS-TOLERANT MICROBES FOR LOWER COST PRODUCTION OF BIOFUELS AND BIOPRODUCTS

Location: Crop Bioprotection Research

Title: THE ROLE OF THE PENTOSE PHOSPHATE PATHWAY IN FERMENTATION INHIBITOR TOLERANCE

Authors

Submitted to: Biotechnology for Fuels and Chemicals Symposium Proceedings
Publication Type: Abstract
Publication Acceptance Date: May 4, 2005
Publication Date: May 6, 2005
Citation: Gorsich, S.W., Liu, Z., Slininger, P.J. 2005. The role of the pentose phosphate pathway in fermentation inhibitor tolerance. Biotechnology for Fuels and Chemicals Symposium Proceedings. Abstract No. 5-33.

Technical Abstract: Acid hydrolysis pretreatment of lignocellulose biomass releases sugars (glucose, xylose, etc.) for industrial ethanol fermentation. During fermentation, degradation products of xylose and glucose can form inhibitory products, furfural and 5-hydroxymethylfurfural (HMF), respectively. At high concentrations these inhibitors inhibit cell growth and reduce ethanol yield. Engineering yeast to be more tolerant of these inhibitors will lead to a more efficient lignocellulose to ethanol bioconversion. Recently, the pentose phosphate pathway (PPP) was implicated in furfural, HMF, and ethanol tolerance. The PPP contains nine genes, ZWF1, GND1, GND2, RPE1, RKI1, TKL1, TKL2, TAL1, and YGR043C (TAL2). Strains lacking ZWF1, GND1, RPE1, or TKL1 have severe growth defects in the presence of furfural. In the presence of HMF or ethanol, these mutants have noticeable growth defects but less severe compared to furfural. These mutants are further characterized in regards to their effects on cellular physiology. In addition, the individual effect of overexpression of all nine PPP genes is also characterized in regards to growth, inhibitor tolerance, and ethanol yield using both standard lab medium and lignocellulosic derived medium.

   

 
Project Team
Slininger, Patricia - Pat
Liu, Zonglin
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   GENOMIC MECHANISMS OF IN SITU DETOXIFICATION OF BIOMASS CONVERSION INHIBITORS FOR ETHANOLOGENIC YEAST SACCHAROMYCES CEREVISIAE
   GENOMIC MECHANISMS OF IN SITU DETOXIFICATION OF BIOMASS CONVERSION INHIBITORS FOR ETHANOLOGENIC YEAST SACCHAROMYCES CEREVISIAE
 
 
Last Modified: 05/13/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House