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1 Introduction

In recent years there has been a revival of theoretical and empirical literature aimed at understanding the

macroeconomic consequences of implementing diverse monetary rules in the Small Open Economy (SOE).1

In this literature the study of interest rate rules whose interest rate response coefficient to inflation is

greater than one, generally referred to as Taylor rules or active rules, has received particular attention.2 To

some extent the importance given to these rules in the SOE literature is just a consequence of some of the

benefits that the closed economy literature has claimed for them. For instance, Bernanke and Woodford

(1997) and Clarida, Galí and Gertler (2000), among others, have argued that active rules are desirable

because they guarantee a unique Rational Expectations Equilibrium (REE) whereas rules whose interest

rate response coefficient to inflation is less than one, also called passive rules, induce aggregate instability

in the economy by generating multiple equilibria. Despite these arguments supporting active rules in closed

economies, Benhabib, Schmitt-Grohé and Uribe (2001b, 2002a,b) have pointed out that they are based on

results that rely on the type of equilibrium analysis that is adopted. In fact these policy prescriptions are

usually derived from a local determinacy of equilibrium analysis, i.e. identifying conditions for rules that

guarantee equilibrium uniqueness in an arbitrarily small neighborhood of the target steady state. In contrast

by pursuing a global equilibrium analysis in tandem with the observation that nominal interest rates are

bounded below by zero, Benhabib et al. have shown that active rules can induce aggregate instability in

closed economies through endogenous cycles, chaotic dynamics and liquidity traps.3

What motivates our paper is the fact that the open economy literature on interest rate rules has also

restricted its attention to local dynamics and not to global dynamics, often disregarding the zero bound on

the nominal interest rate. By doing this, the literature has gained in tractability but has also overlooked a

possibly wider set of equilibrium dynamics.

To the best of our knowledge, our work is the first attempt in the open economy literature to understand

how interest rate rules may lead to global endogenous fluctuations. We pursue a global and non-linear

equilibrium analysis of a traditional flexible-price SOE model with traded and non-traded goods, whose

government follows an active forward-looking rule by responding to the expected future CPI-inflation. We

show that conditions under which active rules induce aggregate instability by generating cyclical and chaotic

dynamics depend on some specific features of an open economy such as the degree of openness of the economy

(measured as the share of traded goods in consumption) and the degree of exchange rate pass-through into

import prices (implied by the presence of non-traded distribution services). For example, we find that

a forward-looking rule is more prone to induce cyclical equilibria and chaotic dynamics the more open the

1See Ball (1999), Clarida, Galí and Gertler (1998, 2001), Galí and Monacelli (2004), Kollman (2002), Lubik and Schorfheide

(2003), and Svensson (2000), among others.
2 See Taylor (1993).
3 In this context a liquidity trap is understood as a decelerating inflation dynamics where the economy is headed to a situation

of low and possibly negative inflation and low and possibly zero interest rates and in which monetary policy is ineffective to
stop this process.
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economy and the higher the degree of exchange rate pass-through. If consumption and money are Edgeworth

complements in utility these dynamics occur around an extremely low interest rate steady state. On the

other hand if consumption and money are substitutes these dynamics appear around the high interest rate

target set by the monetary authority.4

For a given specification of the rule, we show that the existence of these dynamics and their dependence

on the degree of openness are in general robust to different timings of the rule (forward-looking versus

contemporaneous rules), to the use of alternative measures of inflation in the rule (CPI versus Core inflation),

as well as to changes in the timing of real money balances in liquidity services (“cash-when-I-am-done” timing

versus “cash-in-advance” timing.)

Table 1:

Country Degree of Openness Response Coefficient Type of Interest

(Imports/GDP) to Inflation (ρπ) Rate Rule

France 0.22 1.13† Forward-Looking

Costa Rica 0.42 1.47∗ Forward-Looking

Colombia 0.20 1.31× Forward-Looking

Chile 0.28 2.10◦ Forward-Looking

United Kingdom 0.28 1.84‡ Contemporaneous

Australia 0.19 2.10‡ Contemporaneous

Canada 0.31 2.24‡ Contemporaneous

New Zealand 0.28 2.49‡ Contemporaneous

Note: Data from IFS were used to calculate the Imports/GDP share, while the significant estimates for the

interest rate response coefficient to the CPI-inflation (ρπ) come from : ×Bernal (2003),†Clarida et al. (1998),
∗Corbo (2000), ‡Lubik and Schorfheide (2003), and ◦Restrepo (1999). The degree of openness of the

economy is the annual average of imports to GDP share for the period of time used for the estimation of ρπ.

The relevance of our results stems from the fact that they point out the importance of considering

particular features of the open economy in the design of monetary policy. Clearly both the degree of

openness and the degree of exchange rate pass-through are open economy features that have been neglected

by previous closed economy studies. Furthermore, both are characteristics that vary significantly among

economies that follow (or followed) active interest rate rules. For instance Table 1 shows the diverse degrees

of openness, measured as the share of imports to GDP, for some industrialized and developing economies

that have been claimed to follow interest rate rules. In addition Campa and Goldberg (2004) and Frankel,

4The existence of two stationary equilibria is a consequence of combining active interest rate rules with the zero lower bound

on nominal interest rates as shown by Benhabib et al. (2001b).
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Parsley and Wei (2005), among others, provide empirical evidence suggesting that the degree of exchange

rate pass-through into import prices not only varies across industrialized and developing economies; but it

has also varied over time within these economies.

This paper is different from closed economy contributions such as Benhabib et al. (2002a) in some key

aspects. First, our analysis shows that the assumption of money in the production function used by Benhabib

et al. is not necessary to obtain cyclical and chaotic equilibrium dynamics under rules. We introduce money

in the utility function and show that the existence of these global dynamics depends on whether consumption

and money are Edgeworth complements or substitutes in the utility function. This observation was raised

by Benhabib et al. (2001a) in the local determinacy of equilibrium analysis context but to the best of our

knowledge it has not been raised in the context of a global equilibrium analysis.

Second, we show that if consumption and money are complements then it is possible to have “non-

monotonic liquidity traps” featuring periodic and aperiodic oscillations around an extremely low interest

rate steady state that is different from the target steady state. On the contrary if consumption and money

are substitutes then cyclical and chaotic dynamics occur only around the target steady state. Although

this case is reminiscent of the one in Benhabib et al. (2002a), it also presents a subtle difference. In their

closed economy model period-3 cycles and therefore chaos always occur only for sufficiently low coefficients

of relative risk aversion. Our results show that these dynamics can basically appear for any coefficient of

relative risk aversion greater than one and provided that the economy is sufficiently open. In this sense open

economies are more prone than closed economies to display these cyclical dynamics.

Third, we identify necessary and sufficient conditions for the design of active forward looking rules that do

not generate cyclical and chaotic equilibria. For some given structural parameters, these conditions generally

entail an appropriate choice of the rule’s responsiveness to inflation. Although cyclical dynamics can be ruled

out, liquidity traps and (hyper) inflationary paths remain viable equilibria. Previous works on monetary

economics, however, have proposed solutions on how to deal with these equilibria.5

There are previous works in the SOE literature that have tried to identify conditions under which interest

rate rules may lead to local multiple equilibria.6 For instance, De Fiore and Liu (2003), Linnemann and

Schabert (2002), and Zanna (2003), among others, discuss the importance of the degree of openness of the

economy in the local equilibrium analysis. The last work also points out the key role played by the degree of

the exchange rate pass-through. Although our work is related to these previous studies it is different from

them in the type of equilibrium analysis that is pursued. To the extent that our work considers the zero

lower bound for the interest rate and pursues a global equilibrium analysis, it is able to focus on a wider set

of equilibrium dynamics.

In contrast to the above mentioned works in the SOE literature, this paper does not consider nominal price

5See Alstadheim and Henderson (2004), Benhabib et al. (2002b) or Christiano and Rostagno (2001) for the liquidity traps

case and Obstfelf and Rogoff (1983) for the inflationary paths case.
6For two country models see Batini, Levine and Pearlman (2004) among others.
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rigidities. In this sense it is similar to the closed economy works of Benhabib et al. (2002a,b), Carlstrom and

Fuerst (2001), and Leeper (1991) among others. In Airaudo and Zanna (2005) we introduce price stickiness

and study, through a Hopf bifurcation analysis, how rules can induce cyclical dynamics that never converge

to the target steady state. As in the current paper, the existence of equilibrium cycles depends on some

open economy features.

The remainder of this paper is organized as follows. In Section 2 we present a flexible-price model with

its main assumptions. We define the open economy equilibrium and derive some basic steady state results.

In Section 3 we pursue a local and a global equilibrium analyses for an active forward-looking interest rate

rule. In Section 4 we study active forward-looking rules that can preclude the existence of cyclical equilibria.

In Section 5 we investigate how the degree of exchange rate pass-through can affect the existence of cyclical

dynamics for forward-looking rules. We pursue a sensitivity analysis to gauge the robustness of our main

results in Section 6. Finally Section 7 concludes.

2 A Flexible-Price Model

2.1 The Household-Firm Unit

Consider a Small Open Economy (SOE) populated by a large number of infinitely lived household-firm

units. They are identical. Each unit derives utility from consumption (ct), real money balances (md
t ), and

not working (1− hTt − hNt ) according to

E0

∞X
t=0

βt


h
(ct)

γ ¡md
t

¢1−γi1−σ − 1
1− σ

+ ψ(1− hTt − hNt )

 (1)

ct = (c
T
t )

α(cNt )
(1−α) (2)

where β, γ ∈ (0, 1), and ψ, σ > 0 but σ 6= 1;7 E0 is the expectations operator conditional on the set of

information available at time 0; cTt and cNt denote the consumption of traded and non-traded goods in

period t respectively; md
t =

Md
t

pt
are real money balances (domestic currency money balances deflated by the

Consumer Price Index, CPI, pt, to be defined below); hTt and h
N
t stand for labor supplied to the production

of traded and non-traded goods respectively and α ∈ (0, 1) is the share of traded goods in the consumption
aggregator (2). We interpret this share as a measure of the degree of (trade) openness of the economy. As α

goes to zero, domestic agents do not value internationally traded goods for consumption. Then the economy

is fundamentally closed. Whereas if α goes to one, non-traded goods are negligible in consumption. We refer

7The case of σ = 1 corresponds to the case of separability among consumption and money in the utility function. It implies

no distortionary effects of transaction money demand. It can be easily shown that no equilibrium cycles occur in this case.

Hence, we do not consider it in the analysis.
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to this case as the completely open economy.

Although we use specific functional forms, they are general enough to convey the main message of this

paper. They will allow us to show analytically how cyclical dynamics induced by the interest rate rule

depend on the degree of openness α.8 They also allow us to study how these dynamics are affected by

whether consumption, ct, and money, mt, are either Edgeworth substitutes or complements. By defining

U =
(cγtm

1−γ
t )1−σ−1
1−σ and noticing that the sign of the cross partial derivative Ucm satisfies sign {Ucm} =

sign {(1− σ)} , then we can distinguish between the case of Edgeworth substitutes when Ucm < 0 (σ > 1)

or the case of complements when Ucm > 0 (σ < 1). Moreover, given that γ ∈ (0, 1) and that the coefficient
of relative risk aversion (CRRA) can be expressed as eσ ≡ −Uccc

Uc
= 1− γ (1− σ) , then σ T 1 implies eσ T 1.

As a result of this we will refer to σ as the “risk aversion parameter.”

The representative unit produces traded and non-traded goods by employing labor according to the

technologies

yTt = zTt
¡
hTt
¢θT

and yNt = zNt
¡
hNt
¢θN

, (3)

where θT , θN ∈ (0, 1) and zTt and zNt are productivity shocks following stationary AR(1) stochastic processes.

We assume that these shocks are the sole source of fundamental uncertainty.

As standard in the literature, we assume that the Law of One Price holds for traded goods and normalize

the foreign price of the traded good to one.9 Hence PT
t = Et, where PT

t is the domestic currency price of

traded goods and Et is the nominal exchange rate. This simplification together with (2) can be used to derive
the Consumer Price Index (CPI)

pt ≡
(Et)α

¡
PN
t

¢1−α
αα(1− α)1−α

. (4)

Using equation (4) and defining the gross nominal devaluation rate as �t ≡ Et/Et−1 and the gross non-traded
goods inflation rate as πNt ≡ PN

t /PN
t−1, we derive the gross CPI-inflation rate

πt = �αt (π
N
t )

(1−α) (5)

where πt ≡ pt
pt−1

. It is just a weighted average of different goods inflations whose weights are related to

the degree of openness, α. The real exchange rate (et) is defined as the ratio of the price of traded goods

(nominal exchange rate) and the price of non-traded goods

et ≡ Et/PN
t . (6)

8We could consider a CES function for aggregate consumption (2) to emphasize the fact that the intratemporal elasticity of

substitution between the two types of consumption can be different from one. However, this would not affect our conclusions

on the role of openness, but simply prevent us from obtaining analytical results.
9 In Section 5 we will relax the assumption of the Law of One Price” at the consumption level by introducing non-traded

distribution costs. This will allow us to model an imperfect degree of exchange rate pass-through into import prices.
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Then the gross real exchange rate depreciation, et
et−1

, can be written as

et
et−1

=
�t
πNt

. (7)

As has become very common in the open economy literature such as Clarida et al. (2001) and Galí and

Monacelli (2004) among others, we assume that the household-firm units have access to a complete set of

internationally traded claims. In each period t ≥ 0 the agents can purchase two types of financial assets:
fiat money Md

t and nominal state contingent claims, Dt+1. The latter pay one unit of (foreign) currency for

a specific realization of the fundamental shocks in t + 1. Although the existence of complete markets is a

very strong assumption, it is well known that they can be approximated by a set of non-state contingent

instruments featuring a wide range of maturities and indexations.10 In this paper the assumption of complete

markets serves the sole purpose of ruling out the unit root problem of the small open economy, allowing us to

pursue a meaningful local determinacy of equilibrium analysis. In this way, we can compare the results from

the global equilibrium analysis to the ones from the local equilibrium analysis.11 Nevertheless our global

results on the existence of cyclical and chaotic equilibrium dynamics will still hold if instead we assume

incomplete markets, as we will show in Section 6.

Under complete markets the representative agent’s flow constraint for each period can be written as

Md
t +EtQt,t+1Dt+1 ≤Wt + EtyTt + PN

t yNt − Etτ t − EtcTt − PN
t cNt (8)

where EtQt,t+1Dt+1 denotes the cost of all contingent claims bought at the beginning of period t and Qt,t+1

refers to the period-t price of a claim to one unit of currency delivered in a particular state of period t+ 1,

divided by the probability of occurrence of that state and conditional of information available in period t.

Constraint (8) says that the total end-of-period nominal value of the financial assets can be worth no more

than the value of the financial wealth brought into the period, Wt, plus non-financial income during the

period net of the value of taxes, Etτ t , and the value of consumption spending.
To derive the period-by-period budget constraint, we use the definition of the total beginning-of-period

wealth, in the following period, Wt+1 =Md
t +Dt+1 and the fact that the period-t price of a claim that pays

one unit of currency in every state in period t+1 is equal to the inverse of the risk-free gross nominal interest

rate; that is EtQt,t+1 =
1
Rt
. From this, the definition of Wt+1 and (8) we obtain

EtQt,t+1Wt+1 ≤Wt + EtyTt + PN
t yNt − Etτ t −

Rt − 1
Rt

Md
t − EtcTt − PN

t cNt . (9)

10See Angeletos (2002).
11 See Schmitt-Grohé and Uribe (2003).
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The representative unit is also subject to a Non-Ponzi game condition

lim
j→∞

Etqt+jWt+j ≥ 0 (10)

at all dates and under all contingencies where qt represents the period-zero price of one unit of currency to

be delivered in a particular state of period t divided by the probability of occurrence of that state and given

information available at time 0. It satisfies qt = Q1Q2.....Qt with q0 ≡ 1.
The problem of the representative household-firm unit reduces to choosing the sequences {cTt , cNt , hTt ,

hNt , M
d
t , Wt+1}∞t=0 in order to maximize (1) subject to (2), (3), (9) and (10), given W0 and the time paths

of Rt, Et, PN
t , Qt+1 and τ t. Note that since the utility function specified in (1) implies that the preferences

of the agent display non-satiation then both constraints (9) and (10) hold with equality.

The first order conditions correspond to (9) and (10) with equality and

αγ
¡
cTt
¢αγ(1−σ)−1 ¡

cNt
¢(1−α)γ(1−σ) ¡

md
t

¢(1−γ)(1−σ)
= λt (11)

αcNt
(1− α)cTt

= et (12)

λt
et
θN
¡
hNt
¢(θN−1)

= ψ = λtθT
¡
hTt
¢(θT−1) (13)

md
t =

µ
1− γ

γ

¶µ
1− α

α

¶1−αµ
Rt

Rt − 1
¶
cTt e

1−α
t (14)

λt
EtQt,t+1 = β

λt+1
Et+1 (15)

where λt/Et is the Lagrange multiplier of the flow budget constraint.
The interpretation of the first order conditions is straightforward. Equation (11) is the usual intertemporal

envelope condition that makes the marginal utility of consumption of traded goods equal to the marginal

utility of wealth measure in terms of traded goods (λt). Condition (12) implies that the marginal rate of

substitution between traded and non-traded goods must be equal to the real exchange rate. Condition (13)

equalizes the value of the marginal products of labor in both sectors. Equation (14) represents the demand

for real money balances. And finally condition (15) describes a standard pricing equation for one-step-ahead

nominal contingent claims for each period t and for each possible state of nature.

2.2 The Government

The government issues two nominal liabilities: money,Ms
t , and a one period risk-free domestic bond, B

s
t ,

that pays a gross risk-free nominal interest rate Rt. We assume that it cannot issue or hold state contingent

claims. It also levies taxes, τ t, pays interest on its debt, (Rt− 1)Bs
t , and receives revenues from seigniorage.
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Then the government’s budget constraint can be written as Lst = Rt−1Lst−1 − (Rt−1 − 1)Ms
t−1 − Etτ t, where

Lst =Ms
t +Bs

t .

We proceed to describe the fiscal and monetary policies. The former corresponds to a generic Ricardian

policy: the government picks the path of the lump-sum transfers, τ t, in order to satisfy the intertemporal

version of its budget constraint in conjunction with the transversality condition lim
t→∞

Lst/Et
t

k=0

Rk
�k+1

= 0. The latter

is described as an interest rate feedback rule whereby the government sets the nominal interest rate, Rt, as a

continuous and increasing function of the deviation of the expected future CPI-inflation rate, Et (πt+1), from

a target, π∗.12 For analytical and computational purposes, as in Benhabib et al. (2002a) and Christiano and

Rostagno (2001), we use the following specific non-linear rule13

Rt = ρ(Etπt+1) ≡ 1 + (R∗ − 1)
µ
Etπt+1
π∗

¶ A
R∗−1

(16)

where R∗ = π∗/β and R∗ corresponds to the target interest rate. (16) always satisfies the zero bound on

the nominal interest rate, i.e. Rt = ρ(Etπt+1) > 1. In addition we assume that the government responds

aggressively to inflation. This means that at the inflation target, the rule’s elasticity to inflation ξ ≡
ρ0(π∗)π∗

ρ(π∗) = A
R∗ is strictly bigger than 1. Following Leeper (1991) we call rules with this property active rules.

Assumption 0: ξ = A
R∗ > 1. That is, the rule is active.

2.3 International Capital Markets

Besides complete markets there is free international capital mobility. Then the no-arbitrage condition

Qw
t,t+1 = Qt,t+1

Et+1
Et holds, where Qw

t,t+1 refers to the period-t foreign currency price of a claim to one unit

of foreign currency delivered in a particular state of period t+ 1 divided by the probability of occurrence of

that state and conditional of information available in period t.

Furthermore under the assumption of complete markets a condition similar to (15) must hold from the

maximization problem of the representative agent in the Rest of The World (ROW). That is, λwt
PTw
t

Qw
t,t+1 =

λwt+1
PTw
t+1

βw where λwt represents the marginal utility of nominal wealth in the ROW, β
w denotes the subjective

discount rate of the ROW and PTw
t is the foreign price of traded goods. Since we normalize this price to

one (PTw
t = 1) then assuming that βw = β leads to λwt Q

w
t,t+1 = λwt+1β.

Combining this last equation, with condition (15) and the fact that PT
t = Et yields λt+1

λt
=

λwt+1
λwt

, which

holds at all dates and under all contingencies. This condition implies that the domestic marginal utility

of wealth is proportional to its foreign counterpart: λt = Λλ
w
t where Λ refers to a constant parameter that

determines the wealth difference between the SOE and the ROW. From the perspective of a SOE, λwt can be

taken as an exogenous variable. For simplicity we assume that λwt is constant and equal to λ
w. As a result

12 In the sensitivity analysis presented in Section 6 we also study contemporaneous and backward-looking rules.
13Cycles and chaos would also occur if the interest rate rule was a linear function of inflation.
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of this λt becomes a constant. Then

λt = λ = Λλw. (17)

This allows us to write condition (15) as Qt,t+1 =
Et
Et+1β =

β
�t+1

that together with EtQt,t+1 =
1
Rt
yields

Rt = β−1
·
Et

1

�t+1

¸−1
(18)

which is similar to an uncovered interest parity condition.

2.4 The Definition of Equilibrium

In this paper we will focus on perfect foresight equilibria. In other words, we assume the all the agents

in the economy, including the government, forecast correctly all the anticipated variables. Hence for any

variable xt we have that Etxt+j = xt+j with j ≥ 0 implying that we can drop the expectation operator in
the previous equations. For instance, under perfect foresight, condition (18) becomes

Rt = β−1�t+1 (19)

that corresponds to the typical uncovered interest parity condition as long as β−1 represents the foreign

international interest rate.14

In order to provide a definition of the equilibrium dynamics subject of our study, we find a reduced

non-linear form of the model. To do so we use the definitions (5) and (7) together with conditions (11)-(14),

(17), (19), and the market clearing conditions for money and the non-traded good, Md
t = Ms

t = Mt and

yNt =
¡
hNt
¢θN = cNt , to obtain

πt+1

µ
Rt+1

Rt+1 − 1
¶χ

=

µ
Rt

Rt − 1
¶χ

βRt (20)

where

χ =
(σ − 1)(1− α)(1− γ)(1− θN )

σ[θN + α(1− θN )] + (1− α) (1− θN )
. (21)

Combining (16) and (20) and dropping the expectation operator yields

µ
Rt+1

Rt+1 − 1
¶χ

=
Rt

R∗

µ
R∗ − 1
Rt − 1

¶R∗−1
A
µ

Rt

Rt − 1
¶χ

(22)

which corresponds to the reduced non-linear form of the model that can be used to pursue the local and

global determinacy of equilibrium analyses.15 We use this equation in order to provide a definition of a

14This holds by the previous analysis since EtQw
t,t+1 =

1
Rwt

= β.
15This equation abstracts from possible effects that fiscal policies can have on the equilibrium dynamics of the economy. The

reason is that we have assumed a Ricardian fiscal policy under which the intertemporal version of the government’s budget

constraint and its transversality condition will be always satisfied.
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Perfect Foresight Equilibrium (PFE).

Definition 1 Given the target R∗ and the initial condition R0, a Perfect Foresight Equilibrium (PFE) is a

deterministic process {Rt}∞t=0, with Rt > 1 for any t, that satisfies equation (22) if the interest rate rule is

forward-looking.

Although Definition 1 is stated exclusively in terms of the nominal interest rate (Rt), it must be clear

that multiple perfect foresight equilibrium solutions to (22) imply real local and/or global indeterminacy

of all the endogenous variables.16 In other words the indeterminacy of the nominal interest rate implies

real indeterminacy in our model because of the non-separability in the utility function between money and

consumption.17

In order to pursue the equilibrium analysis we need to identify the steady state(s) of the economy. From

(5), (7) and (20) we obtain that at the steady-state(s), πNss = �ss = πss, and Rss = πss/β. Using these and

the rule (16) we have that

(R∗ − 1)R
∗−1
A Rss = R∗ (Rss − 1)R

∗−1
A . (23)

Clearly Rss = R∗ > 1 is a solution to (23), and therefore a feasible steady state. But if the rule is active at

R∗, that is if ξ = A
R∗ > 1, then another lower steady state R

L ∈ (1, R∗) exists and it is unique. At this low
steady state the elasticity of the rule to inflation satisfies ξ = A

RL < 1. The following proposition formalizes

the existence of the low steady state RL.

Proposition 1 If A
R∗ > 1 (an active rule) and Rss > 1 (the zero lower bound) then there exists a solution

Rss = RL ∈ (1, R∗) solving (23) besides the trivial solution Rss = R∗.

Proof. See the Appendix.

The existence of two steady states plays a crucial role in the derivation of our results as in the closed

economy model of Benhabib et al. (2002a). As a matter of fact, the steady state equation (23) of our SOE is

identical to theirs. It is independent of the non-policy structural parameters. Hence no fold bifurcation (i.e.

appearance/disappearance of steady states) occurs because of changes in these parameters. What distin-

guishes our model from theirs are the equilibrium dynamics off the two steady states. This is a consequence

of the following two features of our model. First, by introducing traded and non-traded goods we present an

economy with two sectors that although homogeneous in terms of price setting behavior (both feature flexible

prices), are fundamentally different in terms of the degree of openness to international trade. As we will see

16By indeterminacy we refer to a situation where one or more real variables are not pinned down by the model. We use
the terms indeterminacy and multiple equlibria interchangeably. The same comment applies to determinacy and a unique
equilibrium.
17 In fact, for any given Rt, by simply manipulating equations (5), (7), (11)- (14), (17), (19), and the market clearing conditions

for money and the non-traded good, we can obtain all the remaining real endogenous variables. For instance the labor allocated
for the production of the non-traded good and the real exchange rate can be expressed as functions of the gross interest rate
only, hNt = hN (Rt) and et = e (Rt), respectively, whereas from the market clearing condition, cNt = hNt

θN , we obtain
cNt = cN (Rt) .
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below this degree, measured by α, will influence the equilibrium dynamics. Second, by considering money

in the non-separable utility function we are able to study how the existence of cyclical dynamics depend on

whether money and consumption are either Edgeworth complements (σ < 1) or substitutes (σ > 1).

In the analysis to follow we will study how α and σ affect the local and global equilibrium dynamics in our

SOE model while keeping constant the other structural parameters (β, γ and θN ) and the policy parameters

(A and R∗). This will allow us to compare economies that implement the same monetary rule but differ

in the degree of openness α and the risk aversion parameter σ. To accomplish this goal we will proceed in

two steps. First we will analyze how these dynamics are affected by the composite parameter χ defined in

(21). Second by taking into account the dependence of χ on both α and σ we will unveil the effect of the

degree of openness and the risk aversion parameter on the existence of local and global dynamics (cycles and

chaos). In this sense we will regard χ as a function of α and σ.18 That is χ(α, σ). For the second step we will

use and refer to (21), and to Lemmata 4 and 5 in the Appendix. In turn, these Lemmata and subsequent

propositions will use the following definitions

χmax ≡
(1− γ)(1− θN )

θN
∈ (0,+∞) χmin ≡ −(1− γ) ∈ (−1, 0) (24)

µ(σ) =
(σ − 1)(1− γ)(1− θN )

σθN + (1− θN )
(25)

where χmax and χmin are considered scalars and µ(σ) is considered a function of σ.

Definition 2 Using (24) and (25) define the scalars σi ≡ 1− Υi

χmin

1− Υi

χmax

and the functions αi(σ) ≡ 1− Υi

µ(σ)

1− Υi

χmin

for

i = w, k, f, d where Υw ≡ RL
³
1− R∗−1

A

´
− 1 < 0, Υk ≡

³
1− R∗

A

´
(R∗ − 1) > 0, Υf ≡ Υw

2 and Υd ≡ Υk

2 ;

and the functions αi(σ) are characterized in Lemma 4 when σ > 1 and in Lemma 5 when σ ∈ (0, 1).

3 Equilibrium Dynamics under Forward-Looking Rules

Our study of forward-looking rules is motivated by the evidence provided by Clarida et al. (1998) for

industrialized economies and by Corbo (2000) for developing economies. Both works suggest that these

economies have followed forward-looking rules.

In order to derive analytical results for both the local and the global equilibrium analyses we will assume

that the constant parameters γ, θN , A and R∗ satisfy the following assumptions.19 ,20

18χ also depends on γ and θN . However we will not pursue any bifurcation analysis with respect to these parameters.
19Assumption 1 is necessary and sufficient for the existence of ranges of α and σ where local indeterminacy occurs, as well as

for the existence of a flip bifurcation frontier in the case of σ > 1. Assumption 2 allows monotonic liquidity traps for low values

of σ. It could therefore be dropped without affecting the possibility of cycles around the passive steady state. Assumption 3 -

which basically requires enough separation between the two steady states - is useful in proving the existence of a flip bifurcation

frontier in the case of σ < 1. Extensive algebra (not reported here for reasons of space) shows that Assumption 3 holds if, for a

given target R∗, the rule is sufficiently active.
20The calibration exercise that we present below suggests that these assumptions are not unrealistic. For given monetary
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Assumption 1: χmax >
1
2(R

∗ − 1)
³
1− R∗

A

´
.

Assumption 2: χmin <
1−R∗
A .

Assumption 3: R∗ − 1 > A
¡
RL − 1¢ .

3.1 The Local Determinacy of Equilibrium Analysis

The local determinacy of equilibrium analysis for forward-looking rules is pursued by log-linearizing

equation (22) around the target steady state R∗, yielding

R̂t+1 =

"
1 +

R∗
A − 1

χ
R∗−1

#
R̂t. (26)

Since Rt is a non-predetermined variable, studying local determinacy is equivalent to finding conditions that

make the linear difference equation (26) explosive. The next Lemma shows how local equilibrium determinacy

depends on χ.

Lemma 1 Define Υd ≡ 1
2(R

∗ − 1)
³
1− R∗

A

´
> 0 and consider χ ∈ R. Suppose the government follows an

active forward-looking rule then: 1) the equilibrium is locally unique if χ < Υd; 2) there exist locally multiple

equilibria if χ > Υd.

Proof. See the Appendix.

These simple determinacy of equilibrium conditions for χ can be reinterpreted in terms of the degree of

openness α and the risk aversion parameter σ in the following Proposition.

Proposition 2 Consider σd and αd(σ) in Definition 2 where σd > 1 and αd : (1,+∞)→ (−∞, 1). Suppose

that the government follows an active forward-looking rule.

1. There exists a locally unique equilibrium

(a) if consumption and money are Edgeworth complements, i.e. σ ∈ (0, 1) , and for any degree of
openness, i.e. α ∈ (0, 1);

(b) if consumption and money are Edgeworth substitutes, i.e. σ > 1, and the economy is sufficiently

open satisfying α > αdmin; where αdmin ≡ max
©
0, αd(σ)

ª
is positive and strictly increasing for

σ > σd, but constant and equal to zero for any σ ∈ ¡1, σd¤ .
2. There exist locally multiple equilibria if consumption and money are Edgeworth substitutes satisfying

σ > σd, and the economy is sufficiently closed satisfying α ∈ (0, αd(σ)).
policy parameters and for given θ, both Assumptions 1 and 2 imply a minimum share of real balances in utility. We can in fact

rewrite Assumption 1 as (1− γ) > 1
2

θN
(1−θN )

R∗−1
A

(A−R∗) . For the calibration used in Table 2, the right hand side of this
inequality is about 0.006, while we set 1− γ = 0.03 consistently with the literature. Similarly, Assumption 2 can be written as

1− γ > R∗−1
A

, with the right hand side equal to 0.007 in our calibration.

12



Proof. See the Appendix.

The results of this proposition show the importance of α and σ in the local characterization of the

equilibrium. In a nutshell, active forward-looking rules guarantee local uniqueness in the following cases:

when regardless of the degree of openness the risk aversion parameter σ is sufficiently low; and when the

economy is sufficiently open for high values of σ.21 It is in this sense that an active rule might be viewed as

stabilizing. Local equilibrium determinacy, however, does not guarantee global equilibrium determinacy. To

see this we pursue a global characterization of the equilibrium dynamics in the following subsection.

3.2 The Global Determinacy of Equilibrium Analysis

To pursue the global equilibrium analysis we rewrite equation (22) as the forward mapping Rt+1 = f (Rt)

where

f (Rt) ≡ 1

1− J (Rt)
1
χ

(27)

and

J (Rt) ≡ R∗

[R∗ − 1]R
∗−1
A

[Rt − 1]χ+
R∗−1
A

R1+χt

. (28)

Then the global analysis corresponds to studying the global PFE dynamics that satisfy Rt+1 = f (Rt) given

an initial condition R0 > 1 and subject to the zero-lower-bound condition fn (R0) > 1 for any n ≥ 1.

The types of cyclical and chaotic dynamics we will be referring to are those conforming to the following

definitions.

Definition 3 Period-n cycle. A value “R” is a point of a period-n cycle if it is a fixed point of the n-th

iterate of the mapping f(.), i.e. R = fn (R) , but not a fixed point of an iterate of any lower order. If “R”

is such, we call the sequence
©
R, f (R) , f2 (R) , ..., fn−1 (R)

ª
a period-n cycle.

Definition 4 Topological chaos. The mapping f(.) is topologically chaotic if there exists a set “S” of

uncountable many initial points, belonging to its domain, such that no orbit that starts in “S” will converge

to one another or to any existing period orbit.

The global analysis requires a full characterization of f(.) in (27) not only around its stationary solutions,

like in the local analysis, but over its entire domain. In this characterization it is useful to take into account

that a necessary condition for the existence of cyclical dynamics in continuously differentiable maps is that

the mapping f (.) slopes negatively at either one of the two steady states.22 Lemma 6 in the Appendix

investigates the properties of the mapping f(.) showing that they depend critically on χ. Here we only

21 In fact this result is more general since a quick inspection of Proposition 2 suggests that if the the economy is very open,

an active rule leads to a unique equilibrium regardless of the values of the other structural parameters.
22 See Lorenz (1993).
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Rt 1 

Rt+1 

RL R* RJ 

f(Rt) 

1    Rl       RL   RJ           R*  Ru     Rt 

Rt+1 

1 1

f(Rt) 

χ > 0 χ < 0 

Figure 1: This Figure shows the mapping Rt+1 = f(Rt) for χ > 0, and χ < 0 but χ + R∗−1
A > 0. Rt

denotes the nominal interest rate. A formal characterization of this mapping is provided in Lemma 6 in the
Appendix.

provide a big picture of the analysis. First of all, the Lemma specifies conditions under which f (.) satisfies

the zero-lower-bound requirement. Second, it makes use of the following conditions

sign {f 0 (Rt)} = sign

½
J 0 (Rt)

χ

¾
and sign {J 0 (Rt)} = sign

(
1 + χ

1− R∗−1
A

−Rt

)
(29)

which imply that for χ 6= 0 then RJ ≡ 1+χ

1−R∗−1
A

is a critical point of f (.) as long as RJ > 1. With these

conditions the Lemma shows that the mapping Rt+1 = f (Rt) is always single-peaked for χ > 0 whereas for

χ < 0 it is single-troughed only if χ+ R∗−1
A > 0.

Figure 1 displays a graphical representation of the cases where the equilibrium mapping Rt+1 = f (Rt) has

a critical point between the two steady states. The right panel considers the case of χ < 0 and χ+ R∗−1
A > 0,

while the left panel the case of χ > 0. In the left one, f (.) always satisfies the equilibrium conditions for

any Rt ∈ (1,+∞) and crosses the 45 degree line twice at RL > 1 and R∗ > RL (the two steady states).

Furthermore, lim
Rt→1

f (Rt) = lim
Rt→+∞

f (Rt) = 0 and there is a maximum at RJ ∈ ¡RL, R∗
¢
. In the right

panel, all equilibrium conditions are satisfied only within a subset
¡
Rl, Ru

¢ ⊂ (1,+∞) defined in Lemma
6. Within that set, f (.) crosses the 45 degree line at RL > 1 and R∗ > RL, as in the previous case, but

now RJ ∈ ¡RL, R∗
¢
is a minimum and lim

Rt→Rl+
f (Rt) = lim

Rt→Ru−
f (Rt) = +∞. These are clearly the cases in

which we are interested, as they imply a negative derivative of f(.) at either one of the two steady states.

Figure 1 together with Lemma 6 suggest that depending on the sign of χ, cycles may appear around either

the active steady state or the passive steady state. Hence we proceed to look for flip bifurcation thresholds

for χ i.e. critical values of χ that determine a change in the stability properties of the steady state where
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the map f (.) is negatively sloped. If the steady state is stable, any equilibrium orbit, that starts in a map

invariant set centered around this state, will asymptotically converge to the steady state itself, monotonically

or spirally. Thus equilibrium cycles are impossible. On the contrary if the steady state is unstable, such

orbit will keep oscillating within the map invariant set and either it converge to a stable n-period cycle, or

not converge at all displaying aperiodic but bounded dynamics (chaotic equilibrium paths). We first consider

the case of χ ∈
³
RL

³
1− R∗−1

A

´
− 1, 0

´
and show that endogenous cyclical dynamics of period 2 can occur

around the passive steady state.

Lemma 2 Let Υw ≡ RL
³
1− R∗−1

A

´
−1, and define the points R ≡ f

¡
RJ
¢
, i.e. the image of RJ (the critical

point of f (.)), and eR ≡ f−1 (R∗) , i.e. the inverse image of the high steady state. Consider χ ∈ (Υw, 0) and
assume that fmin ≡ f

¡
RJ
¢ ≥ eR.23 Then:

1. RL ∈ ¡R,RJ
¢
and RL > eR;

2. the set [R,R∗] is invariant under the mapping f (.) and attractive for any Rt ∈
h eR,Ri where eR < R;

3. period-2 cycles within [R,R∗] and centered around the passive steady state occur when χ ∈ ¡Υw2 , 0
¢
.

Proof. See Appendix.

For the case of χ ∈
³
0,
³
1− R∗

A

´
(R∗ − 1)

´
endogenous cyclical dynamics of period 2 exist around the

active steady state, instead.

Lemma 3 Let Υk ≡
³
1− R∗

A

´
(R∗ − 1) , and define the points R ≡ f

¡
RJ
¢
, i.e. the image of RJ (the critical

point of f (.)) and eR ≡ f−1 (R∗) , i.e. the inverse image of the high steady state. Consider χ ∈ ¡0,Υk¢ and
assume fmax ≡ f

¡
RJ
¢ ≤ eR. Then:

1. R∗ ∈ ¡RJ , R
¢
and eR > RL;

2. the set
£
RL, R

¤
is invariant under the mapping f(.) and attractive for any Rt ∈ (R, eR] where R < eR;

3. period-2 cycles within
£
RL, R

¤
and centered around the active steady state occur when χ ∈ ¡0, 12Υk¢ .

Proof. See Appendix.

Similarly to the local determinacy analysis, the conditions for endogenous cycles derived in terms of χ

can be easily translated into conditions described in terms of the degree of openness α and the risk aversion

parameter σ. The next Proposition accomplishes this goal.

23This assumption rules out explosive paths for initial conditions between the two steady states. It is similar in flavor to the

one used by Boldrin et al. (2001) and Matsuyama (1991). If fmin = f RJ < R there would not be a non-trivial mapping-

invariant set. This case displays a different type of multiplicity. It can be shown that there exists a set of points within the

set [R,R∗] that leave such a set after a finite number of iterations, and settle to an exploding path diverging from the active

steady state (see Matsuyama, 1991).
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Proposition 3 Suppose that the government follows an active forward-looking rule.

1. Consider σf and αf (σ) in Definition 2 where σf ∈ (0, 1) and αf : (0, 1) → (−∞, 1) and assume that

consumption and money are Edgeworth complements, i.e. σ ∈ (0, 1) . Then period-2 equilibrium cycles

exist around the passive steady state if the economy is sufficiently open satisfying α > αfmin, where

αfmin ≡ max
©
0, αf (σ)

ª
is positive and strictly decreasing for σ ∈ ¡0, σf¢ , but constant and equal to

zero for any σ ∈ £σf , 1¢ .
2. Consider σd and αd(σ) in Definition 2 where σd > 1 and αd : (1,+∞) → (−∞, 1) and assume

that consumption and money are Edgeworth substitutes, i.e. σ > 1. Then period-2 equilibrium cycles

exist around the active steady state if the economy is sufficiently open satisfying α > αdmin, where

αdmin ≡ max
©
0, αd(σ)

ª
is positive and strictly increasing for σ > σd, but constant and equal to zero for

any σ ∈ ¡1, σd¤ .
Proof. See the Appendix.

Proposition 3 is one of the main contributions of our paper. It states that at either sufficiently low or

sufficiently high risk aversion coefficients (σ), forward looking rules are more prone to induce endogenous

cyclical dynamics the more open the economy; while for σ sufficiently close to 1, but different from it, forward

looking rules will lead to those dynamics regardless of the degree of openness.24

The second point of this Proposition is also useful to make the following interesting argument. The

sufficient condition for the existence of period-2 cycles when σ > 1 and the local determinacy condition

stated in Point 1b) of Proposition 2 are exactly the same. This is a clear example of why local analysis can

be misleading. By log-linearizing around the steady state, local analysis implicitly assumes that any path

starting arbitrarily close to it and diverging cannot be part of an equilibrium since it will eventually explode

and thus violate some transversality condition. This is not the case here as the global analysis proves that

the true non-linear map features a bounded map-invariant and attractive set around the active steady state.

It is then possible to have equilibrium paths that starting arbitrarily close to the target steady state will

converge to a stable deterministic cycle.

Given the functional form of f (.) in (27) it is very difficult to derive analytical conditions for α and σ

under which forward-looking rules induce either cycles of period higher than 2 or chaotic dynamics. Therefore

in order to shed some light on the role of both α and σ in delivering these dynamics, as well as to find some

empirical confirmation of our analytical results, we pursue a simple calibration-simulation exercise.

24As mentioned before, the discountinuity of the model with respect to σ = 1 corresponds to a utility function that is separable

in money and consumption. In this case it is possible to show that no cyclical dynamics can occur.
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Table 2: Parametrization

θN β π∗ R∗ 1− γ A
R∗

0.56 0.99 1.031
1
4 1.072

1
4 0.03 2.24

We set the time unit to be a quarter and use Canada as the representative economy. From Mendoza

(1995) we borrow the labor income shares for the non-traded sector and set θN = 0.56. The steady-state

inflation, π∗, and the steady state nominal interest rate, R∗, are calculated as the average of the CPI-inflation

and the Central Bank discount rate between 1983-2002. This yields π∗ = 1.031
1
4 and R∗ = 1.072

1
4 . Then the

subjective discount rate is determined by β = π∗/R∗. We use the estimate of Lubik and Schorfheide (2003)

for the Canadian interest rate response coefficient to inflation which corresponds to A
R∗ = 2.24. Estimates

for the share of expenditures on real money balances, 1 − γ, for Canada are not available. For the US,

estimates of this parameter vary from 0.0146 to 0.039 depending on the specification of the utility function

and method of estimation. We set 1−γ equal to 0.03 that is in line with the estimates provided by previous

works.25 Table 2 gathers the parametrization.

As in the analytical study, in the simulation exercise we vary α and σ keeping the remaining parameters

as in Table 2. Nevertheless, an estimate of α for Canada can be obtained from the average imports to GDP

share during 1983-2002, yielding α = 0.31. In contrast, obtaining an estimate of σ is more difficult. As

explained before, σ is related to the CRRA coefficient eσ through eσ = 1− γ (1− σ) which spans over a wide

range. The RBC literature usually sets eσ = 2. This value and 1 − γ = 0.03 imply σ = 2.03. Since the

value of σ determines whether consumption and real money balances are either Edgeworth substitutes or

complements we will use different values for the CRRA eσ. For instance, we let eσ ∈ {0.8, 1.5, 2, 2.5} which in
tandem with 1− γ = 0.03 leads to σ ∈ {0.79, 1.51, 2.03, 2.55} respectively.
Given σ ∈ {0.79, 2.03} which corresponds to CRRA of σ̃ ∈ {0.8, 2} we construct Figure 2. It presents the

bifurcation (or orbit) diagrams for the degree of openness α. The left panel considers the case when money

and consumption are complements by setting σ̃ = 0.8. The right panel corresponds to the case when they

are substitutes as σ̃ = 2. With α ∈ (0, 1) on the horizontal axis and Rt > 1 on the vertical axis, the solid

lines in the diagram correspond to stable solutions of period n. The left and right panels of the figure show

how by increasing α an active forward-looking rule can drive the economy into period-2 cycles, period-4

cycles,...period-n cycles and eventually chaotic dynamics. Starting from α = 0, both panels show that for

low degrees of openness the economy, that is described by the mapping Rt+1 = f(Rt) in (27), always settles

on a stable steady state equilibrium after a long enough series of iterations. It settles on the passive steady

state, RL, for σ̃ = 0.8 and on the active steady state, R∗, for σ̃ = 2. Once α reaches some threshold a

25See Holman (1998) among others.

17



Figure 2: Orbit-bifurcation diagrams for the degree of openness, α. Rt denotes the nominal interest rate.
The diagrams show the set of limit points as a function of α, under two different coefficients of risk aversion
(CRRA) σ̃ = 0.8 and σ̃ = 2, and under an active forward-looking rule. Depending on α, an active forward-
looking rule may drive the economy into period-2 cycles, period-4 cycles,...period-n cycles and even chaotic
dynamics.

stable period-2 cycle appears, as indicated by the first split into two branches in both panels. As we increase

α further in both panels, both branches split again yielding a period-4 stable cycle. A cascade of further

period doubling occurs as we keep increasing α, yielding cycles of period-8, period-16 and so on. Finally for

sufficiently high α values, the rule produces aperiodic chaotic dynamics, i.e. the attractor of the map (27)

changes from a finite to an infinite set of points.

From Figure 2 we also see that when consumption and money are complements then cyclical and chaotic

dynamics occur around the passive steady state; whereas if they are substitutes then these dynamics appear

around the target active steady state. Nevertheless for both cases, forward-looking rules are more prone to

induce cycles and chaos the more open the economy.

In order to summarize and compare the results of the local and global determinacy of equilibrium analyses

we construct Figure 3. It shows the combinations of the degree of openness and the risk aversion parameter,

α and σ, for which there is local and/or global (in)determinacy. For σ ≥ 0 and α ∈ [0, 1] we plot two
threshold frontiers: the flip bifurcation frontier for period-2 cycles around the passive steady state, αf (σ)

and the frontier αd(σ) for both local determinacy and period-2 cycles around the active steady state. Regions

featuring a locally unique equilibrium are labeled with a “U”, while those featuring locally multiple equilibria

are labeled with an “M”. Clearly, “U” appears everywhere but below the curve αd(σ) implying that local

18



 

   

0

 

α 

σd

Flip 
Bifurcation 
Frontier αf(σ) 
 

U 

U 

σ 

1

1

U 

    
     

M

Flip 
Bifurcation and 
Local 
Indeterminacy  
Frontier αd(σ) 

σf 

Cycles and Chaos 
Around the Active SS 

Cycles and Chaos 
Around the 
Passive SS 

Figure 3: Equilibrium analysis for an active forward-looking interest rate rule. This figure shows a comparison
between the local equilibrium analysis and the global equilibrium analysis as the degree of openness α and
the coefficient of risk aversion σ vary. “M” stands for local multiple equilibria and “U” stands for a local
unique equilibrium.

determinacy occurs for a wide range of (α, σ) combinations. In fact note how local determinacy coexists

with global indeterminacy.

It is also interesting to compare our results with the ones in Benhabib et al. (2002a). There are some

important differences. First our results derived in a money-in-the-utility-function set-up point out that it

is not necessary to assume a productive role for money to obtain cyclical and chaotic equilibria. Second

if consumption and money are complements then it is possible to have liquidity traps as in Benhabib et

al. (2002a). But some of them may be “non-monotonic” and converge to a cycle around an extremely low

interest rate steady state. On the contrary if consumption and money are substitutes then cyclical and

chaotic dynamics occur only around the active steady state. Although this case is reminiscent of the one in

Benhabib et al. (2002a), it also presents a subtle difference. In their closed economy model period-3 cycles

always occur only for sufficiently low σ, while our results show that they can basically appear for any σ > 1

provided that there is enough degree of openness in the economy. In this sense and with respect to closed

economies, open economies are more prone to display these cyclical dynamics.

4 Stabilizing Endogenous Fluctuations

The rule’s elasticity to inflation was treated as given in the previous analysis, since the objective was to

compare the performance of a particular rule across economies differing in trade openness and risk aversion.

But this parameter is actually a policy choice. Recognizing this poses the following question. Given all
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the non-policy structural parameters, in particular, given the degree of openness α and the risk aversion

parameter σ, what elasticity to inflation will eliminate cyclical and chaotic dynamics? To answer this

question we can do the following simple exercise.26

The bifurcation thresholds that determine the existence of cyclical dynamics can be implicitly represented

by χ = Υ where χ depends on α, σ, γ, and θN and Υ depends on R∗ and A
R∗ . Then we can keep R∗ fixed

as well as α, σ, γ, and θN (that determine χ) and use χ = Υ to solve for the bifurcation thresholds in terms

of the elasticity ξ ≡ A
R∗ , subject to ξ > 1. This will help us to find values of ξ that preclude the existence of

cycles.

It is simple to show that, for the case of χ < 0, there cannot exist cycles when27

χ ≤ RL

µ
1− R∗ − 1

A

¶
− 1 (30)

and for the case of χ > 0 when

χ ≥
µ
1− R∗

A

¶
(R∗ − 1) (31)

Let’s consider the case of χ > 0. We notice that if the interest rate target is set such that R∗ < 1 + χ,

then inequality (31) always holds for any active interest rate rule. If instead, R∗ > 1 + χ, then inequality

(31) is equivalent to ξ ≤ 1
1− χ

R∗−1
, which means that cycles are ruled out if the interest rate rule is not too

active. To illustrate this we use the calibration in Table 2 and set α = 0.4 and CRRA = 2 (or equivalently

σ = 2.03). Under this parametrization χ > 0 and the right panel of Figure 2 suggests that there are period-2

cycles around the active steady state. In order to rule out them the elasticity to inflation should be below

1.35.

In the case of χ < 0, inequality (30) can be written as RL ≥ 1+χ
1−Υ , for Υ ≡ R∗−1

A = R∗−1
R∗ξ . First of

all we notice that, since in equilibrium RL > 1, then the last inequality always holds when 1+χ
1−Υ ≤ 1, i.e.

χ +Υ ≤ 0. Given the definition of elasticity, the latter can also be written as ξ ≥ ξH where ξH ≡ R∗−1
R∗(−χ) .

Hence a sufficiently active rule satisfying ξ > ξH does not allow for equilibrium cycles. Nevertheless, even

if we had ξ < R∗−1
R∗(−χ) , still R

L ≥ 1+χ
1−Υ could hold. From the implicit definition of RL in equation (23) and

the related proof in Proposition 1, the last inequality is equivalent to 1
1−Υ

h
R∗−1
1−Υ (χ+Υ)

iΥ
≥ R∗

1+χ , which

depends solely on χ, R∗ and ξ. This inequality defines implicitly a threshold ξL below which cycles are ruled

out. Summarizing when χ < 0 then rules with elasticities ξ > 1 that satisfy either ξ > ξH or ξ < ξL will

preclude the existence of cyclical dynamics. For instance, using the calibration in Table 2 and setting α = 0.4

and CRRA= 0.8 (or equivalently σ = 0.79), we know that the left panel of Figure 2 suggests that there

are chaotic dynamics around the passive steady state. But for this parametrization we obtain ξH = 8.75

and ξL = 1.22. Thus these complex dynamics can be ruled out as long as the elasticity to inflation is either

26Assumptions 0-3 will not be violated by the following analysis.
27The formal derivation is available upon request.
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ξ < 1.22 or ξ > 8.75.

According to these results, the Taylor principle ξ ≡ A
R∗ > 1 can be still a viable policy recommendation

for equilibrium determinacy, even from a global equilibrium dynamics perspective. But there is an additional

requirement: an upper bound on the rule’s elasticity to inflation.28

5 Distribution Costs and Imperfect Exchange Rate Pass-Through

The previous results were derived assuming that the Law of One Price held at the consumption level

for traded goods and normalizing their foreign price to one. This in turn implied that there was a perfect

exchange rate pass-through into import prices. In this Section we relax this assumption by introducing

non-traded distribution costs which in turn implies imperfect exchange rate pass-through into import prices.

Our goal is to understand how this can affect the previous global results of Section 3.

We follow Burnstein, Neves and Rebelo (2003) by assuming that the traded good needs to be combined

with some non-traded distribution services before it is consumed. In order to consume one unit of the traded

good it is required η units of the non-traded good. Let P̃T
t and PT

t be the prices in the domestic currency of

the small open economy that producers of traded goods receive and that consumers pay, respectively. Hence

the consumer price of the traded good can be written as

PT
t = P̃T

t + ηPN
t . (32)

To simplify the analysis we assume that the Law of One Price holds for traded goods at the production level

and normalize the foreign price of the traded good to one (P̃Tw
t = 1). Thus P̃T

t = EtP̃Tw
t = Et.

The presence of distribution services leads to imperfect exchange rate pass-through into import prices.

To see this we combine (32), P̃T
t = Et and et = Et/PN

t to obtain

πTt =

µ
et−1

et−1 + η

¶
�t +

µ
η

et−1 + η

¶
πNt

where πTt ≡ PT
t

PT
t−1

, �t ≡ Et
Et−1 and πNt ≡ PN

t

PN
t−1

correspond to the (gross) inflation of import prices, the (gross)

nominal depreciation rate and the (gross) non-traded inflation respectively. Clearly if η = 0 then there is

perfect pass-through of the nominal depreciation rate into the inflation of import prices and it is measured

by dπTt
d�t

= 1. This is the case that we already studied. But if η > 0 then we obtain imperfect exchange rate

pass-through measured by dπTt
d�t

=
³

et−1
et−1+η

´
∈ (0, 1). As the parameter of distribution costs, η, increases then

the degree of exchange rate pass-through decreases.

In order to pursue a determinacy of equilibrium analysis we proceed as before. We obtain a reduced non-

28Note that although it is possible to rule out cyclical and chaotic dynamics, liquidity traps are still feasible. To eliminate

them it is necessary to implement some of the fiscal-monetary regimes proposed by Benhabib et al. (2002a).
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Figure 4: Orbit-bifurcation diagrams for the distribution costs parameter (η). Rt denotes the nominal
interest rate. The diagrams show the set of limit points as a function of η, under two different sets of values
of the degree of openness and the CRRA, (σ̃, α) = (0.8, 0.4) and (σ̃, α) = (2, 0.4), and under an active
forward-looking rule. Depending on η, which is related to the degree of exchange rate pass-through, an
active forward-looking rule may lead the economy into cyclical and chaotic dynamics.

linear form of the model that describes the dynamics of this economy. Nevertheless in contrast to the case

of perfect exchange rate pass-through it is not possible to derive explicitly a difference equation similar to

(22) that depends exclusively on the nominal interest rate Rt. Under imperfect exchange rate pass-through

the dynamics of the economy are determined by the system

µ
et+1 + η

et + η

¶αµ
et
et+1

¶
=

µ
R∗

Rt

¶µ
Rt − 1
R∗ − 1

¶R∗−1
A

µ
et + η

et+1 + η

¶[α(1−σ)+σ]µ
(1− α)et+1 + η

(1− α)et + η

¶σ µ
et+1
et

¶ 1+
σθN
1−θN

=

·µ
Rt+1 − 1
Rt+1

¶µ
Rt

Rt − 1
¶¸(1−γ)(1−σ)

.

Since it is not possible to derive analytical results we rely on numerical simulations. The objective of the

simulations is to assess the impact of varying the distribution costs parameter η (and therefore the degree of

exchange rate pass-through) on the previous results about cyclical and chaotic dynamics. To do so we use

the parametrization of Table 2 and construct Figure 4.

We use two pairs of values for the degree of openness and the CRRA (that depends on σ). The first

pair sets α = 0.4 and CRRA=0.8. According to the left panel of Figure 2 for theses values there are chaotic

dynamics around the passive steady state. The second pair sets α = 0.4 and CRRA=2. For these values the
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right panel of Figure 2 suggests that there are period-2 cycles around the active steady state. In the context

of the present discussion these results associated with the selected pairs correspond to perfect exchange rate

pass-through or η = 0. Increasing η, or in other words decreasing the degree of exchange rate pass-through,

has a non-trivial impact on these results as can be confirmed by Figure 4. Consider the left panel first,

where α = 0.4 and CRRA=0.8. Starting from η = 0 as η increases (as the degree of exchange rate pass-

through declines) then the economy moves from displaying chaotic dynamics into displaying periodic cyclical

dynamics. As η continues increasing the period of cycles decrease. Beyond η ≈ 0.6 cycles disappear and the
only fixed point that subsists corresponds to the passive steady state. On the other hand, the right panel

of Figure 4 shows the results for α = 0.4 and CRRA=2. For η = 0 the economy presents period-2 cycles

around the active steady state as mentioned before. However as η increases (as the degree of exchange rate

pass-through declines) cycles also disappear and the only attractor that subsists is the active steady state.

The results of this analysis can be summarized in the following Proposition.

Proposition 4 Forward-looking rules are more prone to induce cyclical and chaotic dynamics the higher the

degree of exchange rate pass-through.

6 Sensitivity Analysis

Throughout the whole paper, the analysis was pursued under the following assumptions: 1) international

complete financial markets, 2) the measure of inflation in the rule was the CPI-inflation, 3) a forward-looking

rule and 4) real money balances entered into utility via what Carlstrom and Fuerst (2001) call a “cash-when-

I’m-done” timing. In this section, we study the consequences of relaxing these assumptions. To simplify the

analysis we still assume perfect exchange rate pass-through. We will show that our previous global findings

of Section 3 hold even if we consider incomplete financial markets or if we introduce a forward-looking rule

that responds to a different measure of inflation such as the non-traded inflation. That is, the degree of

openness still plays an important role for the existence of cyclical and chaotic dynamics.

We also argue that cyclical and chaotic dynamics are less likely to occur under backward-looking rules

while they can still appear under contemporaneous rules depending on the degrees of trade openness and risk

aversion. And finally we prove that the alternative timing for real money balances, known as the “Cash-in-

Advance” timing, affects the previously derived bifurcation thresholds, but does not preclude the existence

of cyclical and chaotic dynamics.

6.1 Incomplete Markets

The assumption about complete markets is not essential for the results derived in Section 3 about cyclical

and chaotic dynamics. Assuming incomplete markets leads to the same global dynamics results. To see this

assume that the agent is blessed with perfect foresight and has access to an international bond bwt and a
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domestic bond Bt issued by the government. The former pays a constant international interest rate, Rw, and

the latter pays an interest rate, Rt. Using this and the assumptions in the Subsection 2.1 we can rewrite the

agent’s budget constraint as

Bt + Etbwt +Mt = RwEtbwt−1 +Mt−1 +Rt−1Bt−1 + EtyTt + PN
t yNt − Etτ t − EtcTt − PN

t cNt

The agent chooses the sequences {cTt , cNt , hTt , hNt , Md
t , b

w
t , Bt}∞t=0 in order to maximize (1) subject to

(2) and (3), the previously mentioned budget constraint and corresponding transversality conditions, given

Md−1, bw−1, and B−1 and the time paths of Rt, Et, PN
t , Rw and τ t. The first order conditions of this problem

for bwt and Bt correspond to

λt = βRwλt+1 (33)

λt =
βRtλt+1

�t
(34)

whereas the conditions for {cTt , cNt , hTt , hNt ,Md
t } can be written as (11)-(14).

As is common in the small open economy literature, we assume βRw = 1, which implies by (33) that

λt = λt+1. This in turn means that there is a unit root in the system of equations that describe the dynamics

of the economy. This prevents us from using (log)linearization techniques in order to pursue a meaningful

local determinacy of equilibrium analysis. Hence we cannot derive local results similar to the ones in the

Subsection 3.1.

But this does not change the previous results from the global determinacy of equilibrium analysis, since

the global dynamics are still governed by (22). To see this use λt = λt+1 and (34) to obtain �t = βRt which is

identical to (19). This condition together with λt = λt+1, (5), (7), (11)-(14), and market clearing conditions

can be used to derive an identical equation to (20) which in tandem with a forward-looking rule allows us to

find an identical difference equation to (22). Then the cyclical and chaotic dynamics results that we derived

before still hold under incomplete markets.

Nevertheless, introducing incomplete markets has an interesting consequence for the behavior of the

current account. To explore this, recall that indeterminacy of the nominal interest rate in our model implies

real indeterminacy because of the non-separability in the utility function between consumption and money.

That is, one can obtain all the remaining real endogenous variables as a functions of Rt. In particular

hNt = hN (Rt), cTt =
α
1−α

ψ
λθN

hNt and hTt = hT . Using these and the definition of the current account

bwt − bwt−1 = (R
w − 1)bwt−1 +

¡
hTt
¢θT − cTt

we can deduce that cycles of the nominal interest rate may cause cycles of the accumulation of foreign bonds

and therefore cycles of the current account.
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6.2 Choosing A Different Measure of Inflation: The Core Inflation

In the specification of the rule, the government can react to a measure of inflation different from the

CPI-inflation. For instance it can respond to the core-inflation which can be defined as either the inflation

of the traded goods or the inflation of the non-traded goods. These two cases can be considered as extreme

cases of cases of a rule that reacts to the full-inflation πft ≡ �ωt
¡
πNt
¢1−ω

when the government picks the

weight ω ∈ [0, 1] .29 In the former case it picks ω = 1, whereas in the latter case it chooses ω = 0.
To analyze these cases we derive a difference equation similar to (22) where the only difference is that

the parameter χ is substituted by

χf ≡ (σ − 1)(1− ω)(1− γ)(1− θN )

σ[θN + α(1− θN )] + (1− α) (1− θN )
.

Using this difference equation and setting sequentially ω = 1 and ω = 0 in χf we obtain the following.

Cyclical and chaotic dynamics are not present under a rule that reacts to the future traded inflation, �t+1

(ω = 1); only liquidity traps are possible in this case. Nevertheless by reacting to the future non-traded

inflation πNt+1, forward-looking rules can still induce cycles and their existence can depend on the degree of

openness of the economy.

To illustrate this point we rely on simulations and using the parametrization in Table 2 we construct

Figure 5. It presents the orbit-diagram for a forward-looking rule that reacts exclusively to the non-traded

inflation where the relative risk aversion coefficient CRRA is σ̃ = 1.5 (or equivalently σ = 1.51). From this

figure it is clear that for low degrees of openness (α), the previously mentioned rule leads the economy to

the active steady state. But as the degree of openness increases the same rule can induce period-2 cycles in

the economy. Hence the appearance of these cycles depend on the degree of openness.

6.3 Contemporaneous and Backward-Looking Rules

In this subsection we consider varying the timing of the rule. We will study contemporaneous and

backward-looking rules that still respond to the CPI inflation.

6.3.1 Contemporaneous Rules

Motivated by the recent estimations by Lubik and Schorfheide (2003) for the United kingdom, Canada,

Australia and New Zealand, we study the determinacy of equilibrium for rules that respond to current CPI

inflation: Rt = 1 + (R∗ − 1) ¡ πtπ∗ ¢ A
R∗−1 with R∗ = π∗/β and Rt > 1. Under these rules the equilibrium

29CPI inflation is clearly a specific case of full inflation for ω = α.
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Figure 5: Orbit-bifurcation diagram for the degree of openness, α. Rt denotes the nominal interest rate.
The diagram shows the set of limit points as a function of α, when the coefficient of relative risk aversion
(CRRA) σ̃ = 1.5 and when the active forward-looking rule responds exclusively to the non-traded inflation.
Depending on α this rule can induce cyclical dynamics in the economy.

dynamics are described by

·
Rt+1 − 1
Rt+1

¸χ ·
R∗ − 1
Rt+1 − 1

¸R∗−1
A

=

·
Rt − 1
Rt

¸χ
R∗

Rt
(35)

where χ defined in (21) depends on α and σ. An explicit representation for either the forward or the backward

dynamics of (35) is not available in this case. Although it is feasible to derive some analytical results as

before, for reasons of space, we only present some numerical simulations. These are sufficient to make the

point that the degree of openness still affects the appearance of complex dynamics.30

In addition in the subsequent analysis we will focus on characterizing the existence of cycles of period 2

and 3 because of the following reasons. By Sarkovskii (1964)’s Theorem the existence of period-2 cycles is a

necessary (but not a sufficient) condition for the existence of cycles of any higher order, while the existence

of period-3 cycles implies the existence of cycles of every possible period. Furthermore, by Li and Yorke

(1975), if a map possesses a period-3 cycle then it also features topologically chaotic trajectories.31

Using the parametrization of Table 2 we construct Figure 6. This Figure presents some qualitative

properties of the global dynamics of the model for contemporaneous rules for different degrees of openness

while setting σ = 2.55 (when consumption and money are Edgeworth substitutes). Each row of panels in

Figure 6 contains plots of the map Rt+1 = f (Rt) implicitly defined in the difference equation (35), its second

iterate Rt+2 = f2(Rt) and its third iterate Rt+3 = f3(Rt), respectively, for a given degree of openness α.

Going from the bottom to the top row we increase openness by considering α = {0.01, 0.38, 0.90}. In
30The analytical results of this part of the paper are available upon request.
31 See Lorenz (1993) for a precise statement of these two theorems.
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Active Contemporaneous Rules 

Figure 6: This graph shows the first, the second and the third iterates of the implicit mapping Rt+1 = f(Rt)
defined in (35) for different degrees of openness of the economy (α). From the figure it is possible to infer
that depending on α, two-period cycles and three-period cycles around the active and the passive steady
states may arise.
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all the panels the straight line corresponds to the 45o degree line. The first result to notice is that for

α = {0.01, 0.38}, namely an almost closed and moderately open economy respectively, the second and third
iterates, Rt+2 = f2(Rt) and Rt+3 = f3(Rt), have fixed points different from the steady state values R∗ and

RL, implying the existence of cycles of period-2 and 3. Then by the Sarkovskii’s (1964) Theorem and the

Li and Yorke’s (1975) Theorem, f(Rt) features cycles of any order, as well as aperiodic cyclical dynamics

(chaos). But there is an important difference between the dynamics for α = 0.01 and those for α = 0.38.

In the former case, cycles and chaos appear around the active steady state, while in the latter they occur

around the passive steady state. Finally, for very open economies (α = 0.90), no cycles and chaotic dynamics

appear at all. The monotonicity of the map f(Rt) implies that liquidity traps are the only type of global

equilibrium multiplicity in this case.

Given σ = 2.55 (or equivalently eσ = 2.5) it is possible to find the exact numerical values of the α

thresholds triggering a qualitative switch in dynamics. We find that period-2 cycles appear around the

active steady state when α ∈ (0.001, 0.22); and period-3 cycles occur around the active steady state when
α ∈ (0.001, 0.16). Pushing α up, period-2 cycles appear around the passive steady state for α ∈ (0.25, 0.43),
whereas period-3 cycles (and therefore chaos) exist for α ∈ (0.33, 0.38). Finally for α > 0.39 only liquidity

traps exist.

Overall the existence of cyclical and chaotic dynamics is robust to changing the timing of the rule from

forward-looking to contemporaneous. The key difference is that now endogenous global fluctuations can

only occur for the case when consumption and money are Edgeworth substitutes. Nevertheless for this case

conclusions are quite different in the following sense: very open economies seem to be the less prone to

endogenous cycles. Furthermore the qualitative changes induced by a variation in the degree of openness,

for a fixed σ > 1, can be even more dramatic under a contemporaneous rule since they might even trigger a

switch from one steady state to the other as the focus of fluctuations.

The following proposition summarizes these results.

Proposition 5 Suppose the government follows an active contemporaneous rule. Then:

1. if consumption and money are Edgeworth complements, i.e. σ ∈ (0, 1), there cannot be equilibrium
cycles of any periodicity for any degree of openness α ∈ (0, 1) ;

2. if consumption and money are Edgeworth substitutes, i.e. σ > 1,

(a) there cannot be equilibrium cycles of any periodicity if the economy is sufficiently open;

(b) cyclical and chaotic dynamics occur around the passive steady state for intermediate degrees of

openness;

(c) cyclical and chaotic dynamics appear around the active steady state occur if the economy is suffi-

ciently closed.
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6.3.2 Backward-Looking Rules

We conclude the analysis of different timings for the rule by studying backward-looking rules defined as

Rt ≡ 1+ (R∗ − 1)
¡πt−1

π∗
¢ A
R∗−1 with ξ ≡ A

R∗ > 1. This specification in tandem with (20) conform a system of

two first-order difference equations that can be used to pursue the global determinacy of equilibrium analysis.

Since it is very difficult to derive analytical results, we rely on simulations in order to assess whether for

different values of α and σ, the system presents cycles or chaos. The simulation results show that these

types of dynamics are not present regardless of the degree of openness α when σ ∈ {0.79, 1, 51, 2.03, 2.55}
(or equivalently when the CRRA coefficient eσ ∈ {0.8, 1.5, 2, 2.5}). The interest rate converges to either the
active or the passive steady-state.

Nevertheless this is not sufficient evidence to conclude that backward-looking rules will preclude the

existence of cyclical dynamics. In fact in Airaudo and Zanna (2005) we show that these rules may still lead

to these dynamics in open economies that face nominal price rigidities.

6.4 Real money balances timing and cycles

In our set-up the real money balances that provide transaction services, and therefore utility, are those left

after leaving the goods market. This is the traditional timing adopted in money-in-utility-function models.

Carlstrom and Fuerst (2001) call this timing the “Cash-When-I’m-Done” (CWID) timing and argue that

is counterintuitive.32 They suggest an alternative timing: the standard “Cash-In-Advance” (CIA) timing,

where the real money balances entering the agent’s utility are those left after leaving the bond market but

before entering the goods market.

In this Subsection we construct a simple example showing that the results presented in Section 3 for

active forward-looking rules are not driven by the CWID timing. Following Woodford (2003), we introduce

a CIA timing by altering the budget constraint of the representative agent as follows

EtQt,t+1Wt+1 ≤Wt − Etτ t − Rt − 1
Rt

Md
t +

1

Rt

¡EtyTt + PN
t yNt − EtcTt − PN

t cNt
¢

while leaving unchanged all the remaining elements of the model presented in Section 2. By the same analysis

we pursued in that section we obtain the non-linear reduced form

·
Rt+1 − 1
RΨt+1

¸χ
=

R∗

(R∗ − 1)R
∗−1
A

(Rt − 1)
R1+Ψχt

χ+R∗−1
A

(36)

that describes the equilibrium dynamics of the economy under forward-looking rules. The difference between

32A discussion on money-in-utility timing and cycles is already present in the papers of Fukuda (1993, 1995), pointing out

that, under money growth rules, non-separability between consumption and real balances is not a necessary condition for cycles

to exist (as one might have conjectured from the previous works of Matsuyama (1991) and Obstfeld and Rogoff (1983)). Under

CIA timing cycles occur even under full separability.
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(36) and its CWID counterpart (22) is the coefficient Ψ ≡ 1−θN (1−σ)
(1−σ)(1−γ)(1−θN ) , which is positive for σ ∈ (0, 1)

and negative for σ > 1.33 The structural parameter χ is unchanged and still defined by (21). The following

Proposition suggests that under the CIA timing, cycles are still possible and their existence depends on the

degree of openness α. Nevertheless this different timing implies different bifurcation thresholds for α from

the ones derived in Section 3.

Proposition 6 Consider the definition of χ in (21) and define Υcia ≡ 1−R∗−1
A R∗−1
2R∗ . Suppose Υcia > 0

and that the government follows an active forward-looking rule. If consumption and money are Edgeworth

substitutes, i.e. σ > 1, then there exist period-2 cycles when χ < Υcia, a condition that is satisfied for

sufficiently open economies, i.e α > α̂.

Proof. See the Appendix.

7 Conclusions

In this paper we show that active interest rate rules can have perverse effects in a small open economy

by inducing endogenous cyclical and chaotic dynamics. Our main contribution is to show that the existence

of these dynamics depends on some particular features of open economies such as the degree of openness

(measured by the share of tradable goods in consumers’ preferences) and the degree of exchange rate pass-

through (implied by the presence of non-traded distribution services). In our model a forward-looking rule

that responds to CPI-inflation is more prone to lead to cyclical and chaotic dynamics the more open the

economy and the higher the degree of exchange rate pass-through. If consumption and money are Edgeworth

complements these dynamics occur around an extremely low interest rate steady state. On the other hand

if consumption and money are substitutes these dynamics appear around the interest rate target set by the

monetary authority.

We also discuss how the government could design a forward-looking rule in order to rule out complex

dynamics, while still preserving the Taylor principle at the target steady state. The analysis implies a

“modified Taylor principle”: for a given interest rate target, the interest rate rule responsiveness to CPI

inflation should satisfy some lower (upper) bound depending on whether consumption and real balances are

Edgeworth complements or substitutes.

The existence of cyclical and chaotic dynamics and their dependence on the degree of openness are in

general robust to different inflation timings in the rule (forward-looking versus contemporaneous rules), to

the use of alternative measures of inflation (CPI versus Core inflation), as well as to changes in the timing of

real money balances in liquidity services (“Cash-When-I’m-Done” timing versus “Cash-In-Advance” timing).

Clearly the analytical tractability of our model comes from one of its limitations: we are considering

a flexible price and perfectly competitive economy. Without any sort of nominal rigidity, monetary policy
33One could think of the CWID set up as one where Ψ = 1.

30



does not have any role for active stabilization. Nevertheless as we show in Airaudo and Zanna (2005), the

existence of cycles induced by interest rate rules and the important role played by some open economy

features in the characterization of the equilibrium are not precluded by introducing sticky-prices.

This paper leaves open some interesting research questions. First as standard in the literature, we model

the government as an automaton that always follows the same monetary rule. That is, it implements an

active interest rate rule with a given parametrization, independently from the evolution of inflation itself

and other monetary variables. One might consider the possibility of an endogenous monetary policy regime

switching featuring a change in the monetary instrument (from an interest rate rule to money growth and

viceversa) or a change in the responsiveness to inflation triggered by an endogenous variable monitored by

the central bank.

Finally we have implicitly assumed that agents in the economy can coordinate their actions and learn the

particular equilibria that we studied. Relaxing this assumption and introducing learning as in Evans and

Honkapojha (2001) can be another avenue to explore in future research.

A Appendix

This first part of the appendix presents the statements of some Lemmata and their proofs as well as

some of the proofs of the Lemmata stated in the paper. The second part presents the proofs of the main

Propositions of the paper.

A.1 Lemmata and Proofs

A.1.1 Proof of Lemma 1

Proof. Let φf ≡ 1 +
R∗
A −1
χ

R∗−1
be the slope of (26) and define Υd ≡ 1

2(R
∗ − 1)

³
1− R∗

A

´
> 0. Since Rt is

a non-predetermined variable, the equilibrium is locally unique if and only if
¯̄̄
φf
¯̄̄
> 1, i.e. the linearized

mapping (26) is explosive and therefore the target steady state is the unique bounded PFE.

First suppose that χ < 0. This together with Assumption 0 ( AR∗ > 1) and the zero lower bound Rt > 1,

implies that φf > 1. Hence the equilibrium is locally unique. Now suppose that χ > 0. This in tandem with

Assumption 0 and the zero lower bound leads to φf < 1, meaning that in order to have a unique equilibrium

we need φf < −1. Simple algebra shows that χ < Υd implies φf < −1. Then the map is explosive and the
equilibrium is unique.

On the other hand, it is simple to show that if χ > Υd then −1 < φf < 1. Hence the map is non-explosive,

i.e. from any initial condition R0 off the target steady state R∗, Rt will eventually converge to R∗. This
continuity of PFE paths is the source of local multiple equilibria.

A.1.2 Proof of Lemma 2

Proof. From point 2 of Lemma 6, the assumption χ ∈ (Υw, 0) implies that the mapping f (.) satisfies

the zero-lower-bound condition only for Rt ∈
¡
Rl, Ru

¢ ⊂ (1,+∞) . Moreover within ¡Rl, Ru
¢
the mapping
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f (.) looks like an inverted logistic mapping with a minimum at RJ and f 0(RL) < 0 (see the right panel of

Figure 1). With these properties of f (.) , the proof of Point 1 follows from the fact that f 0 (Rt) < 0 for any

Rt ∈
¡
Rl, RJ

¢
.

To prove Point 2, take any Rt ∈ [R,R∗] whose first iterate is Rt+1 =
h
1− J (Rt)

1
χ(α,σ)

i−1
. If Rt ∈£

R,RJ
¤
, then Rt+1 = f (Rt) > f

¡
RJ
¢ ≡ R since f 0 (Rt) < 0 for any Rt < RJ ; moreover Rt+1 < R∗ if

fmin ≥ eR. Similarly, if Rt ∈ (RJ , R∗] then Rt+1 = f (Rt) < f (R∗) = R∗ since f 0 (Rt) > 0 for Rt > RJ , as well

as Rt+1 = f (Rt) > f
¡
RJ
¢
= R. Hence we have shown that for any Rt ∈ [R,R∗] , Rt+1 = f (Rt) ∈ [R,R∗] .

Then f : [R,R∗] → [R,R∗] . The attractive property of the set is straightforward to show and therefore

omitted.

Point 3 is based on the fact that a sufficient condition for the existence of period-2 cycles is f 0(RL) < −1
which implies an unstable passive steady state. To show this we define an auxiliary function g (Rt) ≡
Rt − f2 (Rt) such that period-2 cycles are the zeros of g(Rt). The assumption fmin ≡ f

¡
RJ
¢ ≥ eR requires a

distinction between the two cases: a) f
¡
RJ
¢
> eR and b) f

¡
RJ
¢
= eR.

In case a), the map-invariant set is [R,R∗] . Clearly g
¡
RL
¢
= g (R∗) = 0 and g (R) ≤ 0.Also, by the chain

rule, g0 (Rss) = 1−[f 0 (Rss)]2 , with Rss being either one of the two steady states. But then f 0 (R∗) = A
R∗ > 1

implies that g0 (R∗) < 0. What is ambiguous is the sign of g
¡
RJ
¢
. If g

¡
RJ
¢
= 0 then the period-2 cycle is

obviously
©
RJ , R

ª
. If g

¡
RJ
¢
< 0, by continuity of f(Rt) on [R,R∗], then there exists a point Rc ∈ ¡RJ , R∗

¢
such that g (Rc) = 0. Since the set [R,R∗] is map invariant the second point of the period-2 cycle belongs
to the same set.34 If instead g

¡
RJ
¢
> 0, nothing guarantees that the function g(.) has zeros other than the

two steady states. A sufficient condition for having another zero is that g0
¡
RL
¢
= 1 − £f 0 ¡RL

¢¤2
< 0, i.e.

f 0
¡
RL
¢
< −1. If this holds, then g (R) = 0 at some point between RL and RJ . From the definition of f(.) it

is simple to show that f 0(RL) < −1 is equivalent to χ > 1
2Υ

w where Υw ≡ RL
³
1− R∗−1

A

´
− 1. Since we are

considering χ > Υw, in case a) period-2 cycles around the passive steady state occur when χ ∈ ¡12Υw, 0¢ .
In case b) all conditions of case a) hold, although in this case g

¡
RJ
¢
< 0 is always true. Therefore by a

similar argument there are always period-2 cycles.

A.1.3 Proof of Lemma 3

Proof. Let Υk ≡
³
1− R∗

A

´
(R∗ − 1) . The restriction χ ∈ ¡0,Υk¢ implies, by Point 1 of Lemma 6, that the

mapping f (.) looks like a logistic map with a maximum at RJ , f 0(RL) > 1 and f 0(R∗) < 0 (see the left

panel of Figure 1).

The proofs of Points 1 and 2 are similar to their counterparts in Lemma 2, so both are omitted.

Point 3 involves searching for a flip bifurcation at the active steady state. Let’s define an auxiliary

function g (Rt) ≡ Rt−f2 (Rt) . Period 2 cycles are then zeros of g (Rt) . The assumption fmax ≡ f
¡
RJ
¢ ≤ eR

requires a distinction between the two cases: f
¡
RJ
¢
= eR and f

¡
RJ
¢
< eR.

If f
¡
RJ
¢
< eR, the set invariant under mapping f(.) is

£
RL, R

¤
. Clearly g

¡
RL
¢
= g (R∗) = 0, and

g0
¡
RL
¢
< 0, but g

¡
RJ
¢
R 0. If g

¡
RJ
¢
= 0, a period-2 cycle is, by construction,

©
RJ , R

ª
. If g

¡
RJ
¢
> 0, by

continuity of the function g (.) there must exist a point Rc ∈ ¡RL, RJ
¢
such that g (Rc) = 0. As Rc belongs

to the map invariant set
£
RL, R

¤
, f2 (Rc) ∈ £RL, R

¤
as well: a period-2 cycle exists. If instead g

¡
RJ
¢
< 0,

by continuity, a sufficient condition for period-2 cycles is that g0 (R∗) = 1− [f 0 (R∗)]2 < 0, i.e. f 0 (R∗) < −1
34We could actually show that this second point belong to the intervak R,RL , meaning that the equilibrium path jumps

deterministically from the left to the right neighborhood of the passive steady state.
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given that over these parametric ranges f 0 (R∗) < 0 always. Using the definition of f (.) in (27) and by

simple differentiation, this is in fact equivalent to χ < Υk

2 .

The case of f
¡
RJ
¢
= eR is trivial. All the properties of the previous case hold, but now g

¡
RJ
¢
=

RJ −RL > 0 always. So by similar arguments, a period-2 cycle always exists.

A.1.4 Lemma 4

Lemma 4 Keep γ and θN constant and let χ (α, σ) , χmax, χmin and µ(σ) be defined as in (21), (24) and

(25). Consider any real number Υi ∈ (0, χmax) and define a function αi(σ) ≡ 1− Υi

µ(σ)

1− Υi

χmin

for σ > 1.

1. Over the domain (1,+∞) , the function αi(σ) satisfies the following properties:

(a) it is continuously differentiable, strictly increasing and strictly concave;

(b) lim
σ→1+

αi(σ) = −∞ and lim
σ→+∞α

i(σ) =
h
1− Υi

χmin

i−1 h
1− Υi

χmax

i
∈ (0, 1)

(c) αi(σ) T 0 for σ T σi where σi ≡ 1− Υi

χmin

1− Υi

χmax

> 1;

2. For any given σ > 1, χ (α, σ) T Υi if and only if α S αi(σ).

3. For α ∈ (0, 1) and σ > 1 we have that χ (α, σ) < Υi if and only if α > max
©
0, αi (σ)

ª
.

Proof. First of all recall the definitions of χ (α, σ) , χmax, χmin and µ(σ) in (21), (24) and (25). Then take
any real number Υi ∈ (0, χmax) and any σ > 1. If we solve explicitly the equation χ (α, σ) = Υi with respect

to α, for a given σ, after some simple algebra, the solution is a function αi(σ) ≡
h
1− Υi

χmin

i−1 h
1− Υi

µ(σ)

i
.

We first prove point 1 for σ ∈ (1,+∞) .
The statement that αi(σ) is continuously differentiable, strictly increasing and strictly concave over the

domain (1,+∞) , follows from its definition, χmax ∈ (0,+∞), χmin ∈ (−1, 0) , Υi ∈ (0, χmax) , and the fact
that for σ > 1, the function µ(σ), defined in (25) satisfies the following. µ : (1,∞) → R, it is continuously
differentiable, strictly increasing and strictly concave with respect to σ and satisfies lim

σ→1+
µ(σ) = 0 and

lim
σ→+∞µ (σ) = χmax ∈ (0,+∞). This proves Point 1(a).
Given that lim

σ→1+
µ(σ) = 0 and lim

σ→+∞µ (σ) = χmax then for Υ
i ∈ (0, χmax) and χmin ∈ (−1, 0) we have

that lim
σ→1+

αi(σ) = −∞ and lim
σ→+∞α

i(σ) =
h
1− Υi

χmin

i−1 h
1− Υi

χmax

i
. The assumption of Υi ∈ (0, χmax)

together with χmin ∈ (−1, 0) guarantees that
h
1− Υi

χmin

i−1 h
1− Υi

χmax

i
∈ (0, 1) . This proves Point 1(b).

Point 1(c) follows from solving µ(σ) = Υi with respect to σ and obtaining σi =
1− Υi

χmin

1− Υi

χmax

. As Υi ∈
(0, χmax) and χmin ∈ (−1, 0) , it must be that σi > 1. Using the definition of σi and the previous two points
1(a) and 1(b) then the rest of 1(c) follows.

Since for σ > 1 and α ∈ (0, 1) , the function χ : (0, 1)× (1,∞)→ R is continuously differentiable, strictly
decreasing with respect to α and satisfies χ (α, σ) > 0 then it follows that χ (α, σ) T Υi if and only if
α S αi(σ). This proves Point 2.

To prove Point 3 we proceed as follows. From point 2 of the present Lemma, we know that χ (α, σ) < Υi

if and only if α > αi(σ). From point 1(c) of the same Lemma we have also that αi(σ) T 0 for σ T σi. Since
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α ∈ (0, 1) then χ (α, σ) < Υi for any α ∈ (0, 1) when σ ≤ σi, as in this case αi(σ) ≤ 0; while χ (α, σ) < Υi
only for α > αi(σ) > 0 if σ > σi. If we write this compactly, we have that χ (α, σ) < Υi if and only if

α > max
©
0, αi (σ)

ª
.

A.1.5 Lemma 5

Lemma 5 Keep γ and θN constant and let χ (α, σ) , χmax, χmin and µ(σ) be defined as in (21), (24) and

(25). Consider any real number Υi ∈ (χmin, 0) and define a function αi(σ) ≡ 1− Υi

µ(σ)

1− Υi

χmin

for σ ∈ (0, 1) .

1. Over the domain (0, 1) , the function αi(σ) satisfies the following properties:

(a) it is continuously differentiable, strictly decreasing and strictly concave;

(b) lim
σ→0

αi(σ) = 1 and lim
σ→1−

αi(σ) = −∞;

(c) αi(σ) T 0 for σ S σi where σi ≡ 1− Υi

χmin

1− Υi

χmax

∈ (0, 1) .

2. For any given σ ∈ (0, 1) , χ (α, σ) R Υi if and only if α T αi(σ).

3. For α ∈ (0, 1) and σ ∈ (0, 1) we have that χ (α, σ) > Υi if and only if α > max
©
0, αi (σ)

ª
.

Proof. The proof is omitted since it is very similar to the proof of Lemma 4.

A.1.6 Lemma 6

Lemma 6 Define the scalars Υp ≡ R∗−1
A > 0, Υk ≡

³
1− R∗

A

´
(R∗ − 1) > 0 and RJ ≡ 1+χ

1−Υp . Recall the
definition of f(Rt) in (27)-(28) for Rt ∈ (1,+∞) .

1. Suppose that χ > 0. Then a) f : (1,+∞) → (1,+∞) and it is continuously differentiable; b) f(.) has
a global maximum at RJ with RJ > RL; c) lim

Rt→1+
f (Rt) = lim

Rt→∞
f (Rt) = 0; d) f 0

¡
RL
¢
> 1 always,

while f 0 (R∗) T 0 depending on χ T Υk.

2. Suppose that χ ∈ (−Υp, 0) . Let Rl and Ru be the solutions to J (Rt) = 1 with Rl ∈ ¡1, RL
¢
and

Ru > R∗. Then a) f :
¡
Rl, Ru

¢ → (1,+∞) and it is continuously differentiable ; b) within ¡Rl, Ru
¢
,

f(.) has a unique minimum at RJ ; c) lim
Rt→Rl+

f (Rt) = lim
Rt→Ru−

f (Rt) = +∞ ; d) f 0 (R∗) > 1 always,

while f 0
¡
RL
¢
T 0 depending on χ S Υw with Υw ≡ RL (1−Υp)− 1 ∈ (−Υp, 0) .

Proof. In order to simplify the notation in the proof and the statements, we define the following scalars:
Υp≡ R∗−1

A , Υw ≡ RL (1−Υp)− 1 and Υk ≡
³
1− R∗

A

´
(R∗ − 1) . From the zero-lower-bound restriction and

the assumption of an active rule, it is clear that Υp > 0 and Υk > 0.

Recall the definition of f (Rt) in (27). From (28), J (Rt) is always positive and continuously differentiable

for any Rt ∈ (1,+∞) and any χ ∈ R. Furthermore, since R∗

[R∗−1]R
∗−1
A

> 1 and Υp∈ (0, 1) (as A > R∗ > 1)

then

lim
Rt→+∞

J (Rt) = 0 for any χ ∈ R (37)
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and

lim
Rt→1+

J (Rt) =

(
0 if χ > −Υp
+∞ if χ < −Υp (38)

From (29) we also observe that J 0 (Rt) T 0 if and only if Rt S 1+χ
1−Υp , as well as that

1+χ
1−Υp T 1 if and only

if χ + Υp T 0. As a consequence of these inequalities, when χ + Υp < 0 we have 1+χ
1−Υp < 1, and therefore

J 0 (Rt) < 0 for any Rt > 1.

Next we prove point 1. Suppose that χ > 0. As χ + Υp > 0 then from (29) and (37) we infer that

J (Rt) is single-peaked at RJ ≡ 1+χ
1−Υp > 1, with lim

Rt→1+
J (Rt) = lim

Rt→+∞
J (Rt) = 0. An inspection of (27)

shows that for χ > 0, f (Rt) > 1 and it is continuous over the domain (1,+∞) if and only if J (Rt) ∈ (0, 1) .
But J (Rt) > 0 and with a maximum at RJ when χ > 0. Then since J

¡
RJ
¢
< 1 holds, we have that

J (Rt) ∈ (0, 1) for any Rt ∈ (1,+∞).35 This in turn implies that f : (1,+∞) → (1,+∞) . Furthermore,
f (.) is continuously differentiable since J (.) is continuously differentiable as well. This proves Point 1(a).

Point 1(b) follows from (29) together with χ > 0; while Point 1(c) is obtained from the definition of f (.)

in (27) and (37)-(38). The complete characterization of f (.) for χ > 0 is achieved by noticing that being

continuous and crossing the 45 degree line twice within its domain (see Proposition 1) it must necessarily be

that RJ > RL. But then f (.) must cross the 45 degree line at the low steady state RL with a slope bigger

than 1. That is f 0
¡
RL
¢
> 1.36 Nevertheless the sign of f 0 (R∗) remains ambiguous because sign {f 0 (R∗)} =

sign {J 0 (R∗)} = sign
©
RJ −R∗

ª
and RJ T R∗. Simple algebra shows that this last inequality is equivalent

to χ T Υk. This proves Point 1(d).
Suppose that χ ∈ (−Υp, 0) then the function J (.) has the same properties we derived at the beginning of

the proof for the case of χ > 0. Thus J (.) is single-peaked at RJ > 1, with lim
Rt→1+

J (Rt) = lim
Rt→+∞

J (Rt) = 0.

However the fact that RL < R∗ (see Proposition 1) combined with χ < 0 imply that although RJ ∈ ¡RL, R∗
¢

we now have that J
¡
RL
¢
> J (R∗) > 1. As RJ is a global maximum, J

¡
RJ
¢
> 1 as well. These properties

together with lim
Rt→1+

J (Rt) = lim
Rt→+∞

J (Rt) = 0 imply that there exist two values, Rl and Ru, such that

J
¡
Rl
¢
= J (Ru) = 1 where Rl ∈ ¡1, RL

¢
and Ru > R∗37 Given the definition (27) of f (.) we can see

that it is not well-defined at both Rl and Ru. Moreover, as lim
Rt→Rl−

f (Rt) = lim
Rt→Ru+

f (Rt) = −∞ and

f (Rt) < 0 for any Rt > Ru and any Rt ∈
¡
1, Rl

¢
, then any initial condition R0 /∈ ¡Rl, Ru

¢
would violate

the zero-lower-bound condition and therefore cannot be part of a PFE of our model. The range Rt ∈¡
Rl, Ru

¢
is therefore necessary for an iterated sequence to be supported as an equilibrium. Within the

interval
¡
Rl, Ru

¢
, J (.) satisfies J(Rt) > 1 and is continuously differentiable, implying J (Rt)

1
χ ∈ (0, 1)

for any χ < 0. It follows that f (Rt) > 1 and f (.) is continuously differentiable for any Rt ∈
¡
Rl, Ru

¢
.

This proves Point 2(a). Point 2(b) follows from (29) together with χ < 0, while Point 2(c) is obtained

from the definition of f (.) in (27) and (37)-(38). Since f (.) crosses the 45 degree line at both RL and

R∗ (see Proposition 1) it must be that f 0 (R∗) > 1. Nevertheless the sign of f 0
¡
RL
¢
remains ambiguous

as sign
©
f 0
¡
RL
¢ª
= −sign©J 0 ¡RL

¢ª
= sign

©
RL −RJ

ª
and RL T RJ . Simple algebra shows that this

last inequality is equivalent to χ S RL (1−Υp) − 1. Finally Observe that an active rule implies −Υp <

RL (1−Υp)− 1 = Υw and that, from Assumption 3, R
L−1
RL < RL − 1 < Υp. Then RL (1−Υp)− 1 < 0 such

35Proving that J RJ < 1 involes some algebra. It is available from us upon request.
36 Simple algebra also proves that lim

Rt→1
f 0 (Rt) ∈ (0, 1) .

37This should be clear from drwaing the function J (.) , which is continous, hump-shaped, with maximum bigger than 1 and

limits equal to zero.
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that Υw < Υf < 0. Using this and −Υp < RL (1−Υp) − 1 = Υw we conclude that Υw ∈ (−Υp, 0) . This
completes the proof for Point 2(d).

For χ ≤ −Υp < 0, it can be shown that the mapping f (.) features no critical point and it is strictly

increasing.

A.2 Proofs of the Propositions

A.2.1 Proof of Proposition 1

Proof. Let the left hand side and the right hand side of equation (23) be denoted as LHS(Rss) and

RHS(Rss) respectively. Since R∗ > 1 we have that

lim
Rss→1

LHS(Rss) = (R∗ − 1)R
∗−1
A > 0 and lim

Rss→1
RHS(Rss) = 0.

It is simple to verify that givenR∗ > 1 andRss > 1 then LHS(Rss) is linear inRss with slope (R∗ − 1)R
∗−1
A >

0 and RHS(Rss) slopes upwards as well,

∂RHS(Rss)

∂Rss
= R∗

R∗ − 1
A

(Rss − 1)R
∗−1
A −1 > 0.

Moreover A
R∗ > 1, R

∗ > 1 and Rss > 1 are sufficient conditions for RHS(RSS) to be strictly concave. That

is ∂2RHS(Rss)

∂(Rss)2
= R∗R

∗−1
A (Rss − 1)R

∗−1
A −2 ³R∗−1

A − 1
´
< 0.

Given that LHS(Rss) is continuous and linear and RHS(Rss) is continuous and strictly concave for any

Rss > 1, a sufficient condition for a second solution Rss = RL ∈ (1, R∗) to exist is that the slope of the
RHS(Rss) at R∗ is smaller than the slope of LHS(Rss) at R∗. In other words, R∗R

∗−1
A (R∗ − 1)R

∗−1
A −1 <

(R∗ − 1)R
∗−1
A , or equivalently A

R∗ > 1. Moreover since RHS(Rss) is strictly concave then no other solution

to (23) different from R∗ and RL exists.

A.2.2 Proof of Proposition 2

Proof. Recall the definition of χ (α, σ) in (21). For σ ∈ (0, 1) and α ∈ (0, 1) we have that χ : (0, 1)×
(0, 1)→ R. Then Point 1(a) follows from point 1 of Lemma 1 and the fact that χ (α, σ) < 0 if σ ∈ (0, 1) and
α ∈ (0, 1).
Next we prove point 1(b). For σ ∈ (1,∞) and α ∈ (0, 1) we have that χ : (0, 1)× (1,∞) → R. Define

Υd ≡ 1
2(R

∗−1)
³
1− R∗

A

´
. The proof of point 1(a) of Lemma 1 makes clear that χ = Υd is the threshold value

of χ that differentiates between active rules leading to either a unique equilibrium or multiple equilibria. Since

we are interested in how the pair (α, σ) affects local equilibrium determinacy, we look for values of α that,

for given σ, solve χ (α, σ) = Υd. Simple algebra shows that this solution is αd(σ) =
h
1− Υd

χmin

i−1 h
1− Υd

µ(σ)

i
,

a function relating α to σ. Since Assumption 1 holds, that is Υd ∈ (0, χmax) , then we can use Lemma 4 to
deduce that the function αd(σ) is equivalent to the function αi(σ), defined in that Lemma, for Υi = Υd.

Therefore, αd(σ) inherits all the properties of αi(σ).

From Point 3 of Lemma 4, we can conclude that for any σ > 1 then α > αdmin with α
d
min ≡ max

©
0, αd(σ)

ª
.

This is a necessary and sufficient condition for χ (α, σ) < Υd to hold. Which, by Lemma 1, implies local

equilibrium determinacy.
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To prove point 2 we follow the same steps of proving 1(b) taking into account that from point 2 of Lemma

4 we can deduce that σ > σd and α ∈ (0, αd(σ)) leads to χ (α, σ) > Υd. Which by point 2 of Lemma 1

implies multiple equilibria.

A.2.3 Proof of Proposition 3

Proof. The proof of Point 1 combines the results of Point 3 in Lemma 2 with Lemma 5.
Define Υp ≡ R∗−1

A , Υw ≡ RL (1−Υp)−1 and Υf ≡ 1
2Υ

w. From Point 3 of Lemma 2, the flip bifurcation

threshold is χ = Υf . Since χ is a function of α and σ then this threshold can be expressed in the (α, σ)-space

as the solution to χ (α, σ) = Υf with respect to α, for any arbitrary σ ∈ (0, 1). Simple algebra shows that
the solution is a function αf (σ) ≡

h
1− Υf

χmin

i−1 h
1− Υf

µ(σ)

i
. Observe that an active rule implies −Υp <

RL (1−Υp)−1 = Υw and that, from Assumption 3, RL−1RL < RL−1 < Υp. Then RL (1−Υp)−1 < 0 which
implies that Υw < Υf < 0. Using this and −Υp < RL (1−Υp)− 1 = Υw we conclude that Υw ∈ (−Υp, 0) .
From this and Assumption 2 we can see that Υf ∈ (χmin, 0) satisfying the assumptions in Lemma 5. Hence
αf (σ) shares all the properties of the function αi(σ) for Υi = Υf stated in that Lemma. By Point 3 of

Lemma 5, for an arbitrary σ ∈ (0, 1) , the flip bifurcation condition χ (α, σ) > Υf in Lemma 2 is therefore

equivalent to α > αfmin where α
f
min ≡ max

©
0, αf (σ)

ª
. From an application of Point 1 of Lemma 5 we can

also see that such minimum degree of openness, αfmin, is positive and decreasing in σ, for σ ∈ ¡0, σf¢ , but
constant and equal to zero for σ ∈ £σf , 1¢ .
The proof of Point 2 is omitted since it is very similar to the proof of Point 1. But it uses the fact that

σ > 1 and Point 3 of Lemma 3 together with Lemma 4 instead.

A.2.4 Proof of Proposition 6

Proof. We provide a sketch of the proof. Let K (Rt+1) and J (Rt) be the left and the right hand sides of

(36) respectively. First of all notice that for σ > 1, we have Ψ < 0 and χ > 0. To simplify the notation let

Γ ≡ (1−Ψ)χ.
Then consider the function K (.) . Since Γ > 0, it is simple to show that lim

Rt+1→1+
K (Rt+1) = 0 and

lim
Rt+1→+∞

K (Rt+1) = +∞. Furthermore simple algebra shows that K (.) is strictly increasing over the entire

domain (1,+∞). But then K (.) is also globally invertible such that there exist a well defined function

f (Rt) = K−1 (J (Rt)) describing the forward equilibrium dynamics.

Then consider the function J (Rt) . Since χ+ R∗−1
A > 0 for any α ∈ (0, 1), then lim

Rt→1+
J (Rt) = 0, while:

lim
Rt→+∞

J (Rt) =

 +∞ if Γ >
³
1− R∗−1

A

´
0 if Γ <

³
1− R∗−1

A

´
Using the definition of Γ, let’s consider the case of χ <

1−R∗−1
A

(1−Ψ) such that lim
Rt→+∞

J (Rt) = 0. It is possible

to show that J (.) has a critical point at RJ = 1+Ψχ

(1−R∗−1
A )

> 1. Therefore if χ <
1−R∗−1

A

(1−Ψ) the function J (.)

is single-peaked. This in turn in tandem with the fact that K (.) is strictly increasing over the entire domain

(1,+∞) implies that the equilibrium mapping f (.) looks like a logistic map. Then if cycles exist they have to
be centered around the active steady state. To show this we can use a similar argument to the one developed
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in Lemma 3. That is a sufficient condition for period-2 cycles to exist is f 0 (R∗) < −1. By computing this
derivative at the target steady state and after some algebra this condition is equivalent to χ <

1−R∗−1
A R∗−1
2R∗ .

Given σ > 1 it is possible to show that there exists α̂ ∈ (0, 1) such that χ = 1−R∗−1
A R∗−1
2R∗ and that for

α > α̂, χ <
1−R∗−1

A R∗−1
2R∗ .
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