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1. Introduction

Ever since the seminal paper of Sims (1980), the analysis of impulse response func-
tions in a vector autoregression (VAR) has been a major topic in empirical macro-
economics. There are many techniques in use for constructing confidence intervals
for the impulse response function in a VAR. These include the delta method (Liitke-
pohl (1990)), the bootstrap (Runkle (1987)), the bias-adjusted bootstrap (Kilian
(1998a)) and the Bayesian Monte-Carlo integration method, interpreted as a classical
confidence interval (Doan (1990) and Sims and Zha (1999)). A great many papers
have simulated the coverage of these confidence intervals and have found that all of
them can have coverage that is substantially below the nominal level, in the sam-
ple sizes that are relevant to macroeconomic researchers (see, for example, Griffiths
and Liitkepohl (1993), Fachin and Bravetti (1996), Kilian (1998a, 1999), Liitkepohl
(1996), Benkwitz, Liitkepohl and Neumann (2000) and the simulations below). The
bias-adjusted bootstrap and Bayesian methods often do better in terms of coverage
than the delta method or the simple bootstrap, but can still have coverage that is far
below the nominal level. Problems with coverage arise when the vector autoregression
is close to being nonstationary, but are by no means limited to this situation (see, for
example, Benkwitz, Liitkepohl and Neumann).

This paper proposes a new approach to inference for impulse response functions

in VARs. The idea is to perform a size-adjustment of the standard delta method



such that the coverage of the confidence interval is at or above the nominal level,
uniformly in a plausible region of the parameter space. More precisely, I propose
forming Sp, an exact confidence set for the vector of VAR parameters, and then
simulating the minimum size adjustment of a delta method confidence interval for
the impulse response function that is required to ensure that the coverage is at least
equal to the nominal level for all VAR parameter vectors in Sp. 1 appeal to the
Bonferroni inequality to argue that this parametric bootstrap algorithm must give
coverage that is greater than or equal to some specified level. A related algorithm
was proposed in Wright (2000), which relied on specifying that the model contained
roots local to unity. This other algorithm works well in a univariate autoregression,
but its extension to a general VAR requires the researcher to make assumptions about
the number and location of large roots. The algorithm proposed in this paper does
not rely on any special asymptotic nesting and does not require the researcher to
make any assumptions beyond Gaussianity and the lag order.

The plan of the remainder of this paper is as follows. In section 2, I describe
the model and outline the existing approaches to inference for impulse responses. In
section 3, I describe the approach proposed in this paper. In section 4, the cover-
age and mean width of the proposed confidence intervals and of the leading existing
alternatives are examined in a Monte-Carlo simulation of a simple bivariate VAR.

Section 5 concludes. Throughout the paper, I focus on confidence intervals for im-



pulse responses, but all the same algorithms can of course be used to form confidence
intervals for any function of the VAR model parameters, such as variance decom-
positions. Also, throughout the paper, as in virtually all of the related literature
(e.g. Runkle 1987; Liitkepohl 1990; Kilian 1998a), I construct pointwise confidence

intervals, i.e. confidence intervals for the impulse response at a single lead time.

2. The Model and the Existing Methods
Consider the Gaussian VAR
A(L)y: = &

where A(L) = I — 30_,AxL*, L denotes the lag operator, ¢; is iidN(0,12), y; and
g are mx1 vectors and the sample size is 1. The observed time series, y;, could be
augmented by a constant, or by a constant and a trend. The lag order p is assumed to
be finite and known. Let 6 = (64, 0y,)" denote the vector of model parameters, where
04 = (vec(Ay),vec(Ag), ..vec(A,)) and Og = vech(Q)'. The VAR may be written
in companion form as &, = A¢, | + (,, where &, = (y;,y,_1, ...y;_p)', ¢, = (g,0,..00)
and
A Ay A,

]m(p—l) Om(p—l)xm

!Throughout this paper, vec(.) denotes the column stacking operator and vech(.) denotes the
column stacking operator that omits all elements above the main diagonal.
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Let u; = P, be an mx1 iidN(0,L,,) vector of structural shocks?, where P denotes
the lower triangular Cholesky factor of €2, so that € = PP’. Let hl;(f) denote the
effect of a unit increase in the ¢th element of u; on the jth element of y;,;, or the
1 — j impulse response at lead time [. This is simply the jith element of B;P where
B(L) = I + X2 ByLF = A(L)™%; By is the matrix given by the first m rows and
columns of A*. No stationarity assumption is being made in this general model;
accordingly the model is initialized by the condition y; = 0 for ¢ < 0.

Let 0 = (@IA, 9;2)’ denote the usual least squares estimator of 6. The standard
estimator of the impulse response h.;(6) is simply hﬁ](é) This point estimate is of
little value without a reliable measure of sampling error. There are several widely
used approaches to forming confidence intervals for hl;(6).

The first approach is the delta method (Runkle (1987) and Liitkepohl (1990)).

If y, is stationary and I' = E(£,¢,) is of full rank®, then

VT (0 —6) —4 N0, W(6)),

2More generally, u; could be defined as a vector of independent standard normal structural shocks,
such that u; = R™'e;, where R is a matrix such that RR’ = . This does not uniquely define R;
some other identifying assumptions are required. In this paper, I use the most common identification
scheme (a causal ordering), by setting R = P, but all the methods discussed in this paper would
work with any other choice of R. The Cholesky factor P is unique only up to postmultiplication
by any diagonal matrix with elements 1 and -1 on the diagonal. The extra identifying assumptions
that are required to circumvent this lack of uniqueness are not contentious, as they only restrict the
sign of the impulse responses.

3Note that T is a closed-form function of 6, as vec(T') = (I — A ® A)"lvec(X;) where $¢ =
' Q0
E(Ctgt)_<0 0>



and so, if 2us0) d9’ 7&0

VT (h;(0) — h5(8)) —a N(O, == W (0) =),

where

e o
W(0) = :
0 2(D,,Dm) D, (2 ® Q) Dy (D, Dyy)
and D,, is the duplication matrix, defined such that vec(F) = D,,vech(F') for any

symmetric mxm matrix F. Accordingly, a 95% confidence interval for the impulse

response héj(ﬁ) is simply given by

do’

Liitkepohl provides a rather complicated explicit expression for d—}tifef—a). This confi-
dence interval may not have the correct coverage asymptotically if y; is not stationary*
or if " is singular® (see Benkwitz, Liitkepohl and Neumann (2000)).

The second approach is the bootstrap (Runkle (1987)). Let {&;}1; denote the
residuals corresponding to 0. Resampling from these residuals with replacement,

bootstrap samples may be constructed, and héj(«9) may be estimated from these boot-

strap samples. The percentiles of the distribution of the estimated impulse response

4The delta method is asymptotically correct under nonstationarity in most VARs, but not in a
VAR(1) (see Phillips (1998)).

5A univariate AR(1), where the true value of the AR coefficient is zero, is an example of a
situation in which I" will be singular.



across the bootstrap replications may be used to construct a confidence interval for
hﬁ.j(Q)G.

The third approach is the bias-adjusted bootstrap of Kilian (1998a), which
can generate substantial improvements in effective coverage. This involves using the
bootstrap to estimate the bias in 0, and then anchoring the bootstrap at a bias-
adjusted estimate of 64, rather than at 0,4.

The final commonly used existing method for forming impulse response confi-
dence intervals is the Bayesian Monte-Carlo integration method (Doan (1990) and
Sims and Zha (1999)). This involves constructing error bands based on the posterior
mean and posterior standard deviation of hﬁj(H), using a diffuse prior. These error
bands can then be interpreted as a classical confidence interval. They can easily be
obtained by simulation, since the posterior of ¢ is normal-inverse Wishart.

In this paper, I assume that the VAR innovations are Gaussian. This assump-
tion is not necessary for any of the above procedures, except for the Bayesian proce-
dure. However, I adopt the assumption because it is necessary for the approach to
inference that I propose in this paper. In most of the literature that has found that

the effective coverage of confidence intervals for impulse responses is often too low

In the terminology of Hall (1992), this is the “other percentile” bootstrap confidence interval.
Kilian (1999) argues that this bootstrap confidence interval works best in empirically relevant sample
sizes, despite the higher order asymptotic refinements that are available if the “symmetric percentile-
t” confidence interval is used instead.



in Monte-Carlo simulations, the focus has been on Gaussian VARs. Kilian (1998b)

discusses the impact of nonnormality on inference for impulse responses.

3. The Proposed Approach to Inference

The methods for constructing confidence intervals for hl;(6) discussed in section 2
have been evaluated in numerous Monte-Carlo simulations. Despite their asymptotic
justifications, they can all have coverage that is well below the nominal level in em-
pirically relevant sample sizes, as discussed above. This motivates consideration of
an alternative algorithm for constructing impulse response confidence intervals. The
basic idea is to form Sy, an exact confidence set for #, and to simulate the size ad-
justment of a delta method confidence interval for the impulse response function that
is required to ensure that the coverage is at least equal to the nominal level for all 6
in Sy. I appeal to the Bonferroni inequality to argue that this parametric bootstrap
algorithm must give coverage that is greater than or equal to some specified level.
Suppose that f is the true parameter value and let F'(6y) denote the F statistic

testing the hypothesis that 8 = 6, i.e.

~ ~

F(60) = T(6 — 60) W (6)™1(8 — 6o).

Since the model is completely specified when the parameter vector is known, it is
possible to simulate the distribution of F'(6y), to an arbitrary degree of accuracy, and
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so to solve for the critical values Ar (6o, ) such that P[F(6y) > Ar(6o,01)] = 4.
An exact test of the hypothesis that § = 6y can thus be conducted by comparing
F with the correct critical value. Let Sp(cy) denote the 100(1-a1)% confidence set
for 6 obtained by inverting the acceptance region of this test, i.e. Sp(aq) = {6 :
F(0) < M(6,01)}. This confidence set for # is essentially a multivariate extension of
the grid bootstrap confidence set proposed by Hansen (1999), except that the critical
values are simulated from the actual parametric model rather than from any residual-
based bootstrap. It can also be thought of as a multivariate extension of the exact
confidence set for the coefficient of a univariate Gaussian AR(1) model, proposed by
Andrews (1993). While F(6) may have an asymptotic x? distribution, the confidence
set Sp(cv) is valid whether this is true or not and has the correct coverage not just
asymptotically, but also in small samples.

Continue to suppose that 6, is the true parameter value. Since the model is
completely specified when the parameter vector is known, it is possible to solve for

critical values kr(i, 7,1, 0o, ag) such that

A i7.0l.00.00) | dRL (8 A\ dhl (0)
P{bly () — Ertisbtnon [0y G WO 1 g <
P ror(3.7.1.00 dhl(0) ~\ dhl (0
ty(0) — g Dy ) 20,

by simulation, to an arbitrary degree of accuracy. A different simulation is required

for each impulse response and for each 6y. Of course, the true value of the parameter



vector is unknown, but Sp(«1) is an exact confidence set for it. So, by the Bonferroni

inequality, the confidence interval

hij(é) + ’fifr(iajyl,@l,om)\l dhéj(é)Wdhéj(é)/

3.1
VT do' e’ (3:1)

has coverage of at least 100(1-c; — a2)%, where
H;(iajal:al,QQ) = sup HT(iajalaeaOé2) = sup HT(iajal797a2)‘ (32)

0eSo(a1) 0:F(0)<A(0,a1)

This statement is true in small samples, and requires no assumptions that 0 is root-T
consistent or asymptotically normal. The critical values x7.(i, j, [, & 2) can be ob-
tained by standard numerical optimization methods, although this is computationally
intensive, since simulation methods must be used to obtain the function evaluations’.
The confidence intervals in equation 3.1 are those proposed in this paper®. Loosely
speaking, they consist of using a parametric bootstrap to size-adjust the delta method
confidence intervals. In the same way, it would be possible to size-adjust the other ap-

proaches to inference for confidence intervals (the regular bootstrap, the bias-adjusted

"In the optimisation in equation 3.2, the parameter space for 64 is unrestricted, while the para-
meter space for fg is restricted only by the requirement that € must be positive definite.

8 Another possible conservative confidence interval for the ¢ — j impulse response at lead time [ is
(infocsy(ay) héj(e),supgsso(al) hi;(0)), which has coverage of at least 100(1-c1)%. But simulations
indicate that this confidence interval is far wider than the conservative confidence intervals proposed
here.



bootstrap or the Bayesian method). But this would be still more computationally
intensive.

A large part of what makes inference about impulse responses difficult is that
the t-statistics associated with these impulse responses are far from being pivotal in
empirically relevant sample sizes, as discussed in particular by Kilian (1999). This
lack of pivotalness can arise both in nonstationary (or nearly nonstationary) VARs
and in VARs that are clearly stationary. Meanwhile, the bootstrap is often motivated
based on the assumption of asymptotic pivotalness (Hall (1992)). If these t-statistics
were exactly pivotal, then rr(7,7,1,0,as) would not depend on 6 and would equal
ki (i,7,1,0q ca). The confidence intervals in 3.1 would then have an effective cover-
age of exactly 100(1-a2)%. Setting a; = 0 (effectively dispensing with the F'(6) test),
the confidence intervals in equation 3.1 would then be exact. But the t-statistics as-
sociated with the impulse response are typically far from being pivotal. The proposed
confidence intervals can be thought of as circumventing this problem by calculating
an upper bound on their lack of pivotalness.

The proposed confidence intervals must by construction have an effective cov-
erage rate greater than or equal to the nominal level, in all sample sizes. They are

exactly conservative confidence intervals”. While the formal justification of these con-

%In a slight abuse of language, following for example Campbell and Dufour (1997), I refer to these
confidence intervals as “exact” in the title of the paper.
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fidence intervals requires Gaussianity (as the model must be completely specified in
order to simulate \(0y, aq) and k1 (i, §, 1,0, s)), T conjecture that they are also con-
servative in many reasonable nonnormal VARs. The fact that the coverage of these
confidence intervals is typically above the nominal level is not a problem in itself. If a
researcher is concerned that the coverage of a confidence interval is “too high”, then
it is easy to fix this alleged problem by simply specifying that the confidence interval
is empty with some specified probability, thereby raising the probability of making a
Type I error. But conservative confidence intervals can be expected to be relatively
wide. The effective coverage and mean width of the alternative confidence intervals

will be explored by Monte-Carlo simulations in section 4.

4. Monte-Carlo Results

In this section, I report the results of Monte-Carlo simulations, assessing the proper-
ties of the proposed confidence intervals and comparing them with those of the delta
method, bootstrap, bias-adjusted bootstrap and Bayesian confidence intervals. The
simulation design follows Griffiths and Liitkepohl (1993), Fachin and Bravetti (1996)

and Kilian (1998a, 1999). The population model is a bivarate VAR(1) of the form

3 0

Yt Yi—1 + Et,

0.5 0.5
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1 03
where ¢, is iidN(0, ). The model is estimated either with just an inter-

03 1

cept, or with an intercept and a trend. The true values of the intercept/trend are
equal to zero.

The construction of the proposed confidence intervals is considerably more com-
putationally demanding than any of the other algorithms. Most notably, a new set
of simulations is required for each impulse response at each lead time. It takes about
15 minutes with a 800Mhz. processor to construct the proposed confidence interval
for one impulse response at one particular lead time in this simple bivariate VAR.
While this is not a problem for any one replication, the computational burden in
a Monte-Carlo context is very considerable. I therefore restrict myself to evaluat-
ing the confidence intervals for the 1-2 impulse response, h},, with [=5,10,15 and
(£=0.5,0.9,0.97,1, both with and without a time trend. The sample size is 100. These
are parameter configurations which generated some of the most interesting results in
Kilian (1998a)'°. T use 500 replications in all the simulations to approximate (g, )
and kp(i,7,1,0,as). For simulating the properties of the proposed confidence inter-

vals, T conduct 500 replications of each of the Monte-Carlo experiments (total CPU

10These are also similar to the parameter configurations in the results reported by Fachin and
Bravetti (1996), who likewise considered only the 1-2 impulse responses, with {=0,1,2,3 and §=-0.5
and 0.9. However, I think that it is important to consider impulse responses at higher lead times
because they are of interest to applied researchers and because the coverage problems generally get
more serious as the lead time rises.
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time in each of the 24 experiments is about 5 days). This is a small number of replica-
tions, but it reflects the high computational cost. Besides, the differences that I find
between the properties of the alternative methods for forming confidence intervals are
so large that they are clearly significant, even with this small number of replications.

The effective coverage of the various alternative confidence intervals and their
mean width are reported in Tables 1 and 2, respectively. These confidence intervals
all have nominal coverage of 68%. I follow Sims and Zha (1999) in considering confi-
dence intervals of 68% coverage, instead of more conventional 90% or 95% confidence
intervals. The delta method, bootstrap (regular and bias-adjusted) and Bayesian
confidence intervals all have coverage that can be substantially too low. The problem
gets worse as the lead time [ increases and as (3 gets closer to 1. In these simulations,
the bias-adjusted bootstrap generally has the highest coverage, with the Bayesian,
delta method and bootstrap confidence intervals following in that order. The bias-
adjusted bootstrap does well in terms of coverage provided that 3 is 0.97 or lower,
but it too breaks down in the case of an exact unit root. In the model with a time
trend, if 4 = 1, none of these methods achieves an effective coverage above 31%, for
any lead time. On the other hand, the proposed confidence intervals have coverage
that is consistently around 90%. This is not materially affected by 3 or [. The
difference in effective coverage rates across the alternative methods is unambiguous,

notwithstanding the small number of replications.
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The proposed confidence intervals are conservative in all sample sizes, by con-
struction, and so it is not surprising that they have an effective coverage well above
the nominal level. The mean width of the alternative confidence intervals is also of
interest. The proposed confidence intervals are much wider than confidence intervals
constructed by any of the other methods: they are generally between 2 and 6 times
wider than the bias-adjusted bootstrap confidence intervals. This is the price that
we pay for controlling coverage. Considering how poor the coverage of the other
confidence intervals can be, it may be a price worth paying. The conventional fre-
quentist approach to forming confidence intervals specifies lexicographic preferences,
as it minimizes width subject to the constraint that coverage must be controlled. By
this criterion, the proposed confidence intervals must be preferred to all the alterna-
tives, since none of these alternatives controls coverage uniformly in the parameter
space. Even taking a less rigid approach to the tradeoff between coverage and width,
it still seems helpful to have an algorithm for constructing impulse response confi-
dence intervals that is guaranteed to control coverage. It means that the researcher
can separate those situations in which the significance of an impulse response is be-
yond question (provided that the model is correctly specified) from those in which
it may be an artifact of the serious econometric difficulties associated with delta
method, bootstrap (regular or bias-adjusted) or Bayesian confidence intervals. In the

bivariate VAR considered in these simulations, if § = 1, then the true 1-2 impulse
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response at an infinite lead time is 1. Meanwhile, if 5 < 1, then it is 0. When the
true value of (3 is close to 1, it is not possible reliably to infer from a sample whether
(8 =1 or fis slightly below 1. So a confidence interval for the impulse response at a
long lead time should have a width of at least 1: otherwise it cannot hope to control
coverage uniformly in 3. The delta method, bootstrap, bias-adjusted bootstrap and
Bayesian confidence intervals all have mean width in the range 0.25-0.45, while the
proposed confidence intervals have mean width in the range 0.9-4. In the light of this
intuition for what the width of a properly constructed confidence interval should be,
it seems that the width of the proposed confidence intervals is mainly an appropriate

statement of our uncertainty about impulse responses.

5. Conclusion

In this paper, I have proposed a new method for forming confidence intervals for
impulse responses in Gaussian VARs. The method has the advantage that it is ex-
actly conservative; the resulting confidence intervals have coverage that is greater
than or equal to the nominal level in all sample sizes. By contrast, all of the existing
methods for forming confidence intervals for impulse responses can easily have effec-
tive coverage far below the nominal level in empirically relevant models and sample

sizes.
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The proposed confidence intervals are relatively wide. The conventional fre-
quentist approach to forming confidence intervals specifies lexicographic preferences,
as it minimizes width subject to the constraint that coverage must be controlled. By
this criterion, the proposed confidence intervals must be preferred to all the alter-
natives, since none of these alternatives controls coverage. Even taking a less rigid
approach to the tradeoff between coverage and width, it still seems helpful to have an
algorithm for constructing impulse response confidence intervals that is guaranteed
to control coverage. Indeed, I have argued that the width of the proposed confi-
dence intervals is mainly an appropriate statement of our uncertainty about impulse
responses in VARs that are on the stationary-nonstationary borderline.

The algorithm for constructing these confidence intervals is computationally
intensive, but is still workable in some simple VARs. As computational power in-
creases, the method proposed in this paper will become practical in larger VARs.
Perhaps in future research some other algorithm will be proposed that gives shorter
confidence intervals that still control coverage. The algorithm in this paper can be
thought of as a size-adjustment to the delta method: conceptually exactly the same
size-adjustment could be applied to the bias-adjusted bootstrap. This might give
a shorter confidence interval while still controlling coverage, because of its superior

location, but the computational cost of this is at present entirely prohibitive.
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Table 1: Effective Coverage of Alternative Confidence Intervals for the 1-2 Impulse

Response

(68% Nominal Coverage)

Delta Method Bootstrap B.A. Bootstrap Bayesian Proposed
Model with no time trend
6=05 [1=5 57.8 53.0 65.4 68.2 85.6
=10 57.8 58.0 64.0 89.2 84.2
=15 66.4 71.0 77.6 98.0 85.6
=09 [=5 53.8 38.2 68.4 59.4 85.2
=10 51.2 33.4 65.4 62.6 86.6
=15 48.2 34.0 64.0 65.2 87.6
=097 [=5 43.4 25.0 67.0 50.0 92.0
=10 35.4 10.6 75.0 48.6 88.0
=15 34.6 6.8 76.2 50.8 85.0
B=1 l= 36.0 15.0 53.2 42.2 94.6
=10 20.0 4.0 50.8 30.8 91.8
=15 14.8 2.0 52.2 27.8 88.8
Model with time trend
6=05 1[1=5 58.4 41.6 71.4 67.8 89.6
=10 52.6 47.6 68.6 90.0 87.2
=15 61.6 66.0 78.8 98.6 88.2
=09 [=5 40.0 14.6 74.6 48.8 90.4
=10 34.6 5.0 75.4 46.4 88.6
=15 32.2 5.6 75.6 53.0 91.2
=097 [=5 27.0 5.2 60.4 33.2 93.8
=10 15.8 0.0 64.2 25.2 89.2
=15 13.0 0.0 65.6 26.2 90.4
g=1 =5 14.2 2.2 30.4 19.2 89.8
=10 3.8 0.0 26.2 9.4 88.2
=15 24 0.0 26.8 8.2 85.8

Notes: The different methods of constructing the confidence intervals are described in the
text; B.A. bootstrap refers to the bias-adjusted bootstrap. The sample size in these simu-

lations is 100.



Table 2: Mean Width of Alternative Confidence Intervals for the 1-2 Impulse Response
(68% Nominal Coverage)

Delta Method Bootstrap B.A. Bootstrap Bayesian Proposed
Model with no time trend
=05 1[1=5 0.16 0.14 0.19 0.19 0.33
=10 0.14 0.04 0.03 0.06 0.07
=15 0.01 0.01 0.02 0.03 0.10
6=09 [=5 0.28 0.29 0.35 0.31 0.88
=10 0.30 0.26 0.47 0.37 1.28
=15 0.24 0.18 0.49 0.38 1.29
=097 [=5 0.27 0.30 0.35 0.30 0.93
=10 0.35 0.35 0.56 0.42 1.57
=15 0.36 0.31 0.71 0.50 1.95
g=1 =5 0.26 0.29 0.34 0.28 0.90
=10 0.34 0.38 0.54 0.40 1.56
=15 0.39 0.38 0.71 0.51 2.12
Model with time trend
=05 1[1=5 0.15 0.13 0.20 0.18 0.39
=10 0.03 0.02 0.07 0.06 0.18
=15 0.01 0.00 0.02 0.03 0.16
6=09 [=5 0.27 0.28 0.39 0.30 1.22
=10 0.26 0.20 0.50 0.33 1.90
=15 0.19 0.10 0.52 0.31 2.44
6=097 [=5 0.27 0.30 0.39 0.29 1.25
=10 0.32 0.27 0.59 0.38 2.45
=15 0.29 0.18 0.69 0.42 3.97
B=1 =5 0.26 0.29 0.37 0.28 1.21
=10 0.32 0.28 0.55 0.38 2.46
=15 0.31 0.21 0.64 0.43 4.30

Notes: The different methods of constructing the confidence intervals are described in the
text; B.A. bootstrap refers to the bias-adjusted bootstrap. The sample size in these simu-

lations is 100.



