U.S. Dairy Forage Research Center Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Annual Research Reports
Current Research Information System
Red Clover Transformation
 

Research Project: DESIGNING FORAGE PLANTS WITH ENHANCED VALUE FOR DAIRY PRODUCTION, PROFITABILITY, AND SUSTAINABILITY

Location: U.S. Dairy Forage Research Center

Title: In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

Authors
item Grabber, John
item Mertens, David
item Funk, C. - UNIV. OF HAMBURG GERMANY
item Ralph, John

Submitted to: American Society of Agronomy Abstracts
Publication Type: Abstract
Publication Acceptance Date: April 30, 2007
Publication Date: November 4, 2007
Citation: Grabber, J.H., Mertens, D.R., Funk, C., Ralph, J. 2007. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking [abstract]. In: American Society of Agronomy Abstracts. American Society of Agronomy Annual Meeting, November 4-8, 2007, New Orleans, Louisiana. 2007 CDROM.

Technical Abstract: We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alcohols) and with monolignols plus unusual lignin precursors identified in some types of normal, mutant, and transgenic plants. Cell walls with normal or reduced feruloylation were also lignified with normal monolignols plus varying levels of sinapyl p-coumarate, the presumed precursor of p-coumaroylated lignins in grasses. Lignified cell walls were incubated in vitro with rumen microflora and then nondegraded structural carbohydrates were determined by acid-solubolization and colorimetric analysis. Shifts in normal monolignol composition or incorporation of 5-hydroxyconiferyl alcohol, coniferaldehyde, gamma-acetylated sinapyl alcohol, dihydroconiferyl alcohol, or sinapyl p-coumarate into lignin did not influence structural carbohydrate degradability. Degradability was, however, enhanced by reductions in ferulate-lignin cross-linking. In ongoing work, the kinetics of cell wall degradation will be determined by measuring gas production during in vitro fermentation with rumen microflora.

   

 
Project Team
Casler, Michael
Martin, Neal
Riday, Heathcliffe
Hatfield, Ronald
Brink, Geoffrey
Grabber, John
Sullivan, Michael
 
Publications
   Publications
 
Related National Programs
  Rangeland, Pasture, and Forages (205)
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House