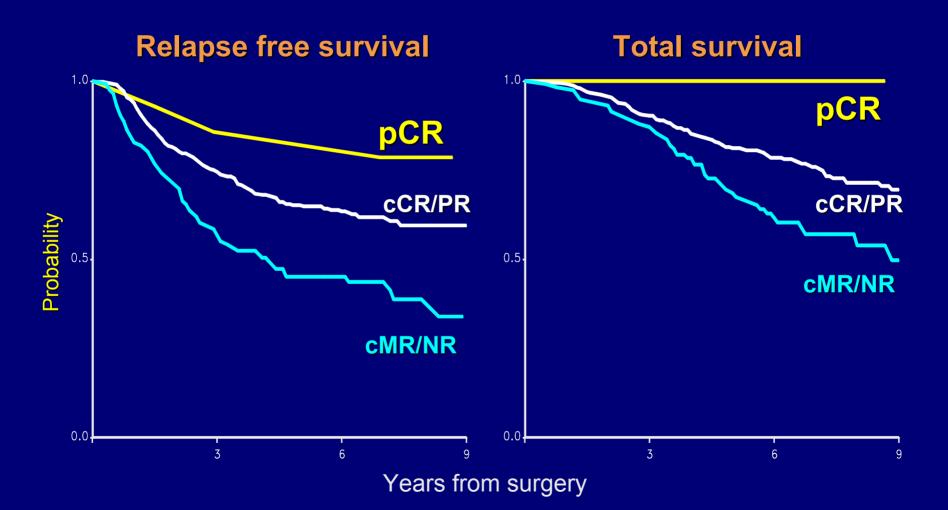
PREOPERATIVE THERAPY IN INVASIVE BREAST CANCER

Reviewing the State of the Science and Exploring New Research Directions

Some relevant points of the European Experience



Luca Gianni

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Primary Chemotherapy in Resectable Breast Cancer

Experience at the Istituto Nazionale Tumori of Milan

First Generation of Randomized Trials 1985 -1999

1st Author	# patients	Median FU (yr)
Mauriac	272	10
Fisher	1,523	9
Scholl	390	9
Jakesz	423	5
Powles	293	~5
Van der Hage	698	~5
Semiglazov	271	~5

Rate of Initial Breast Conservation

1st Author	Adjuvant (%)	PC (%)
Mauriac	0*	63
Fisher	60	68
Scholl	78	82
Jakesz	59	67
Powles	78	90
Van der Hage	22	35
Semiglazov	0*	0*

*BC not planned per protocol

First Generation of Randomized Trials 1985 -1999

Primary chemotherapy

- is at least as effective as classical adjuvant chemotherapy
- downstages tumors and allows for high rate of conservative loco-regional treatment (lumpectomy/quadrantectomy)
- pathologic complete response (pCR) independently predicts for efficacy outcomes

Focus on pCR in New Generation Neoadjuvant Chemotherapy Studies

QUESTION

• How can pCR rate be improved?

- Does Improved pCR improve efficacy?
- Can pCR be predicted?

TEST

- ⇒ New drugs (taxanes; gemcitabine; trastuzumab)
- ⇒ New regimens (dose-dense; sequential)
- ⇒ First v. second generation regimens
- ⇒ Classical variables (hormone receptors; T and N; etc.)
- \Rightarrow Pharmacogenomics

• Is pCR prediction useful?

 \Rightarrow Prospective validation

Focus on pCR in New Generation Neoadjuvant Chemotherapy Studies

QUESTION

• How can pCR rate be improved?

- Does Improved pCR improve efficacy?
- Can pCR be predicted?

TEST

- ⇒ New drugs (taxanes; gemcitabine; trastuzumab)
- ⇒ New regimens (dose-dense; sequential)
- ⇒ First v. second generation regimens
- Classical variables (hormone receptors; T and N; etc.)
- Pharmacogenomics

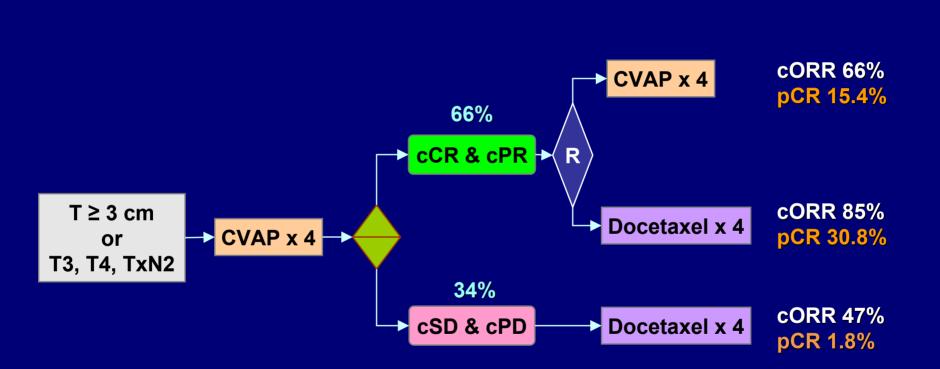
• Is pCR prediction useful?

Prospective validation

New Drugs/Regimens and pCR

1st Author	N°pts	N°pts Regimen	
Evans TR	363	AC x 6	24
	303	AD x 6	21
Gianni L	451	$AT x 4 \rightarrow CMF x 4$	23
	200	AT x 4	16
Diéras V	200	AC x 4	10
Amat S	88	D x 6	20
Estévez L	56	Dw6/8 x 2	16
Estévez L	63	AC x 4 \rightarrow Dw6/8 x 2	16
Bellet M	34	XD x 4	20
Schneeweiss A	63	GED x 6	25

Dose Dense Schedules and pCR

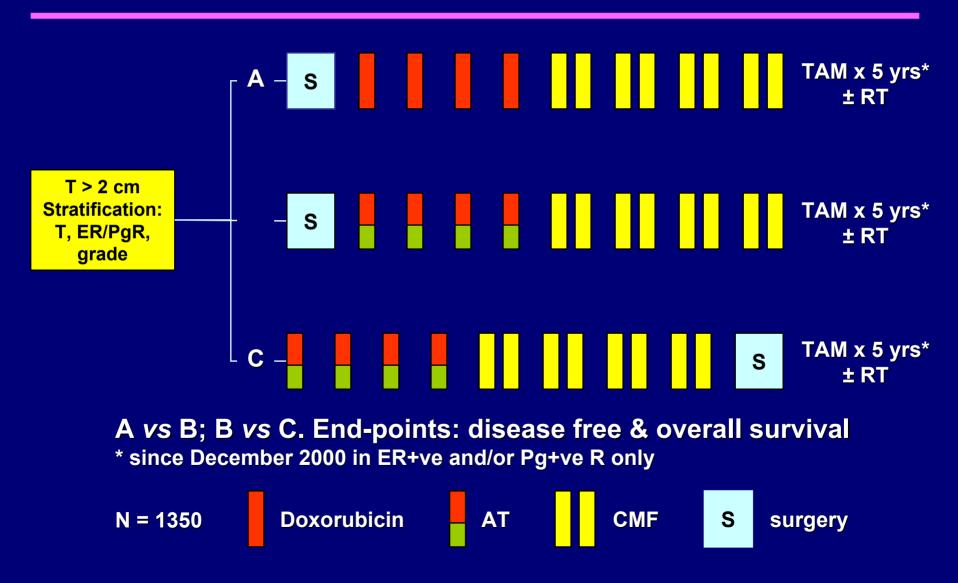

1st Author	N°pts	Regimen	pCR
von Minckwitz G	912	ddAD x 4	11
	912	AC x 4 \rightarrow D x 4	22
Untch M	631	$ddE x 3 \rightarrow ddT x 3$	18
	031	ET x 4	10
Romieu G	43	$ddD \ x \ 4 \rightarrow FEC100 \ x \ 3$	50
García-Mata J	54	$ddD x 4 \rightarrow ddAC x 4$	12
Cramer EM	81	$ddEC \ x \ 4 \rightarrow ddD \ x \ 4$	25
Schneeweiss A	37	$ddGE x 5 \rightarrow ddD x 4$	24
Levy E	62	$[ddGDx2 \rightarrow ddEVx2] x 2$	27

Sequential regimens and pCR

1st Author	N°pts	Regimen	pCR
		$\textbf{CVAP x 4 [R]} \rightarrow \textbf{CVAP x 4}$	15
Smith I	162	$CVAP \mathtt{x} \mathtt{4} \mathtt{[R]} \to D \mathtt{x} \mathtt{4}$	31
		$CVAP \ x \ 4 \ [NR] \to D \ x \ 4$	2
		TAC x 2 [R] \rightarrow TAC x 4	21
von Minckwitz G	2106	TAC x 2 [R] \rightarrow TAC x 6	24
		TAC x 2 [NR] \rightarrow TAC x 4	5
		TAC x 2 [NR] \rightarrow NX x 4	6

[R] clinically responsive after CT [NR] clinically not responsive after CT

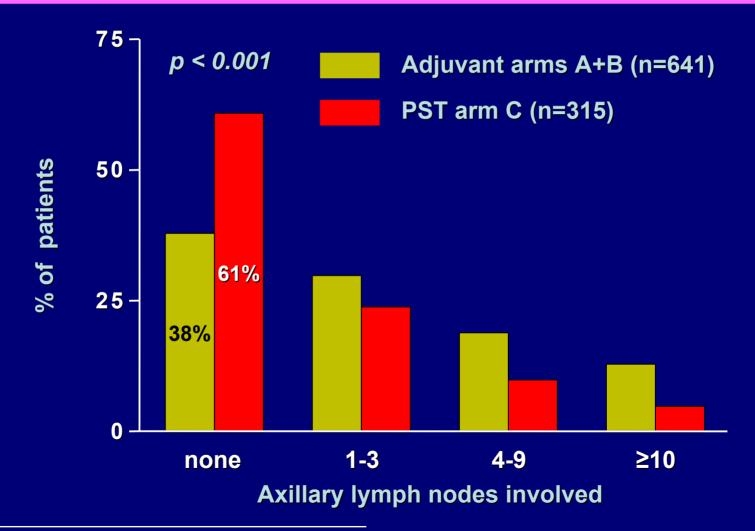
Sequence or duration ? The Aberdeen study


Smith IC et al., J Clin Oncol 2002

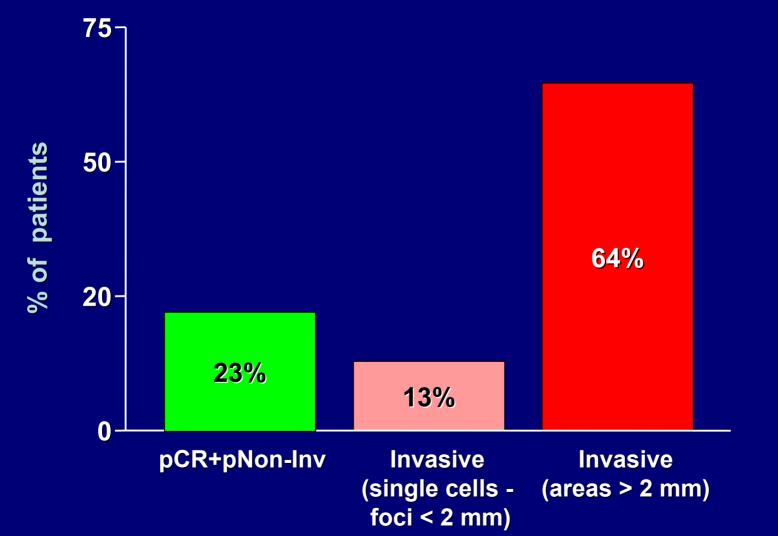
Sequence, not duration DFS and OS at 3-years of follow-up

CVAP x 8		$\frac{\text{CVAP x 4}}{\text{Docetaxel x 4}}$	
DFS = 71%	P=0.03	DFS = 90%	
OS = 84%	P=0.05	OS = 97%	

Hutcheon AW et al., Breast Cancer Res Treat 2002

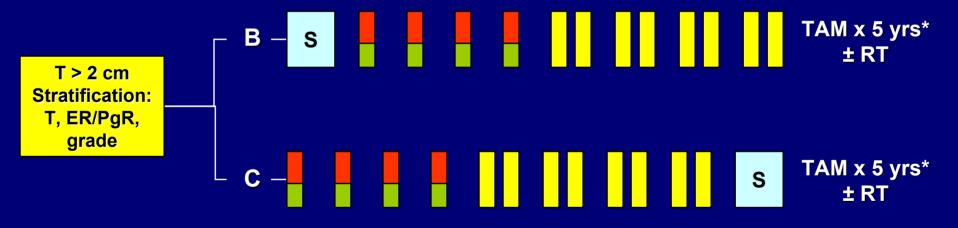

ECTO Study Design

ECTO: Clinical response after AT and after CMF


			Respo	nse afte	er CMF	
Response	after AT	CR	PR	Minor	NR	PRO
CR	72	72				-
PR	85	43	41			1
Minor	56	15	26	14		1
NR	49	7	9	14	19	-
PRO	1					1
Overall res to AT→CN	-	137 (52%)	76 (29%)	28 (11%)	19 (7%)	3 (1%)
		81	%			

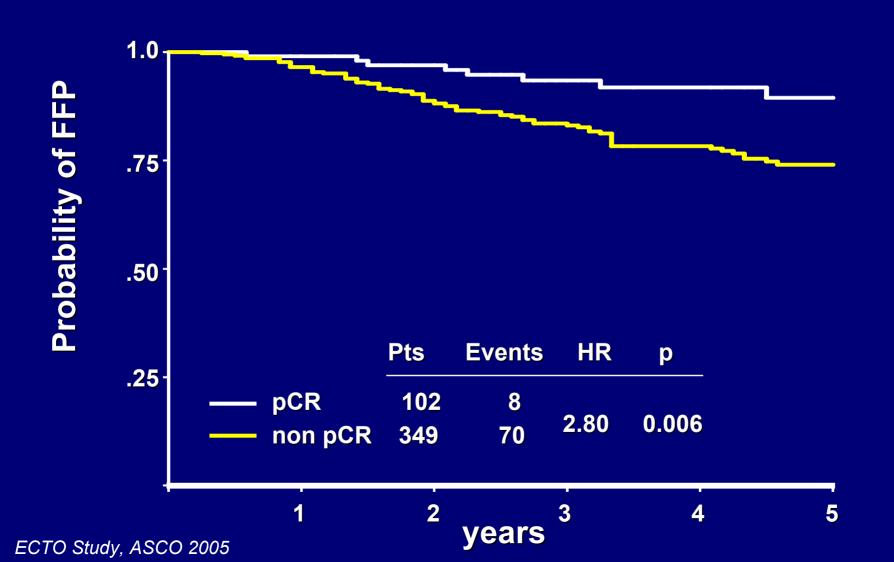
Axillary nodes in Adjuvant arms vs. Preoperative arm*

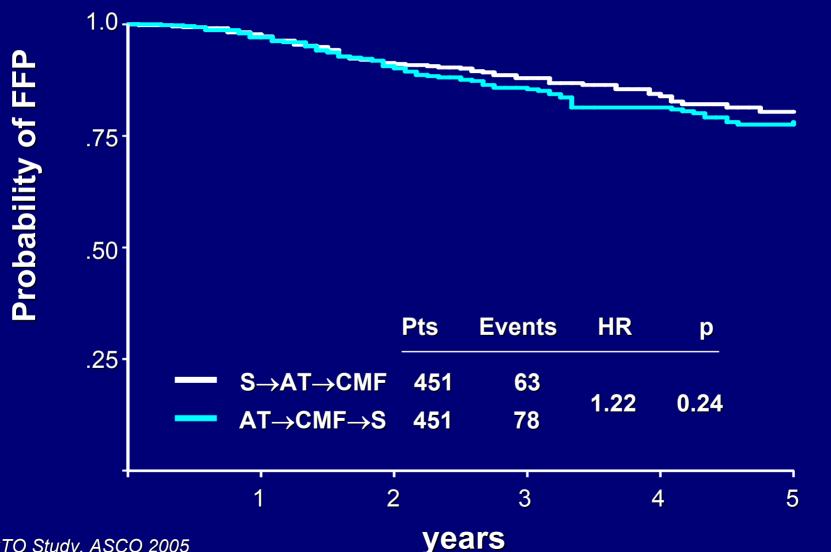
*full axillary dissection in > 80% of all patients


Pathological findings after AT→CMF

Clin cancer Res 2005

ECTO: Main planned analysis


Is AT→CMF before surgery better than adjuvant ?



ECTO Study, ASCO 2005

Freedom From Progression: pCR v. non pCR in the ECTO study

Freedom From Progression: Adjuvant v. Primary Chemotherapy

ECTO Study, ASCO 2005

Focus on pCR in New Generation Neoadjuvant Chemotherapy Studies

QUESTION

• How can pCR rate be improved?

- Does Improved pCR improve efficacy?
- Can pCR be predicted?

- TEST
- ⇒ New drugs (taxanes; gemcitabine; trastuzumab)
- ⇒ New regimens (dose-dense; sequential)
- ⇒ First v. second generation regimens
- ⇒ Classical variables (hormone receptors; T and N; etc.)
- \Rightarrow Pharmacogenomics

• Is pCR prediction useful?

 \Rightarrow Prospective validation

ECTO: AT \rightarrow CMF and likelihood of pCR+pNon-Inv: Univariate analysis

Variable		Ν	pCR + pNon-Inv	Other	р
Age	< 50 yr	139	23%	77%	NS
	≥ 50 yr	176	22%	78%	
T size	≤ 4 cm	226	23%	77%	NS
	> 4 cm	89	21%	79%	
Clinical	N0	179	25%	75%	NS
	N1-2	130	19%	81%	
Tumor grade	Low-Int.	199	19%	81%	0.10
	High	106	27%	73%	
ER status	ER+ve	114	10%	90%	0.001
	ER-ve	197	45%	55%	
PgR status	PgR+ve	134	13%	87%	0.001
	PgR-ve	176	36%	64%	

$AT \rightarrow CMF$ and likelihood of pCR+pNon-Inv: Univariate analysis

Variable		Ν	pCR + pNon-Inv	Other	р
Age	< 50 yr ≥ 50 yr	139 176	23% 22%	77% 78%	NS
T size	≤ 4 cm > 4 cm	226 89	23% 21%	77% 79%	NS
Clinical	N0 N1-2	179 130	25% 19%	75% 81%	NS
Tumor grade	Low-Int. High	199 106	19% 27%	81% 73%	0.10
ER status	ER+ve ER-ve	114 197	10% 45%	90% 55%	0.001
PgR status	PgR+ve PgR-ve	134 176	13% 36%	87% 64%	0.001

AT→CMF and likelihood of pCR + pNon-Inv Multivariate Analysis

Category	Odds ratio (95%CI)	р
ER status		
neg vs pos	5.8 (3.5-9.5)	0.0001

Clin cancer Res 2005

Hormone Receptor Status and pCR

Study	Ν	Regimen	% HR neg	% pCR in HR-neg	% pCR in HR-pos
MD Anderson pooled	1018	Pooled	NA	21	5.6
Geparduo	913	dd AC/AD→T	26.3	23	6.2
ECTO	438	ĂŦ→cmf	38.2	45	10
NSABP-B27	2411	AC v. AC →TXT	32	17	8.3
Gepartrio	286	DAC/DAC →NX	31.9	37	10
EIO pooled	117	Pooled	18	23	7

Modified from Kaufmann M et al., JCO 2006, 24:1940-49

Multivariate Analysis of Freedom From Progression (FFP): Primary Chemotherapy Arm

	HR	95% CI	Р
Response			
non pCR v. pCR	3.03	1.39-6.54	0.005
Axillary Lymph n	odes		
positive v. negative	2.79	1.71-4.57	< 0.001
Hormone Recept	tors		
Negative v. positive	2.97	1.81-4.88	0.01

ECTO Study, ASCO 2005

Multivariate Analysis of Freedom From Progression (FFP): Primary Chemotherapy Arm

	HR	95% CI	Р
Response			
non pCR v. pCR	3.03	1.39-6.54	0.005
Axillary Lymph n	odes		
positive v. negative	2.79	1.71-4.57	< 0.001
Hormone Recep	tors		
Negative v. positive	2.97	1.81-4.88	0.01

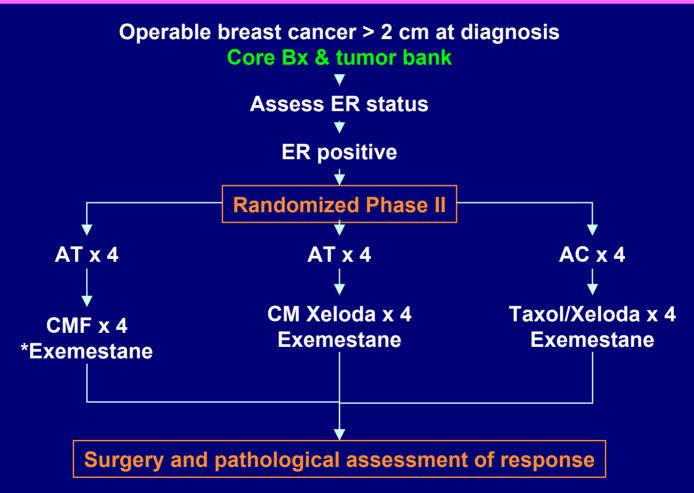
ECTO Study, ASCO 2005

Is there any reliable factor predicting for the likelihood of response to PC ?

ER-poor tumors Increased pCR (4-6 fold)

High tumor/ nuclear grade

Increased pCR


High proliferation index

Increased clinical response

pCR and Efficacy - the key difference and its implications

- pCR is strongly directly associated with likelihood of improved DFS
- Likelihood of pCR (↑ in ER-) and likelihood of DFS (↑ in ER+) are differently associated with hormone receptor status in multivariate analyses
- Enriching for ER- cases and sorting out ER+ based on probability of pCR would negate a valid therapeutic option to many patients
- Are there ways to improve pCR rate in HR+ tumors?

ECTO-II: Design for ER+

* Exemestane to be started with the first cycle of chemotherapy

AT = doxorubicin plus taxol; AC = doxorubicin + cyclophosphamide; CM = cyclophosphamide, methotrexate; F = fluorouracil

Focus on pCR in New Generation Neoadjuvant Chemotherapy Studies

QUESTION

• How can pCR rate be improved?

- Does Improved pCR improve efficacy?
- Can pCR be predicted?

TEST

- ⇒ New drugs (taxanes; gemcitabine; trastuzumab)
- ⇒ New regimens (dose-dense; sequential)
- ⇒ First v. second generation regimens
- ⇒ Classical variables (hormone receptors; T and N; etc.)
- \Rightarrow Pharmacogenomics

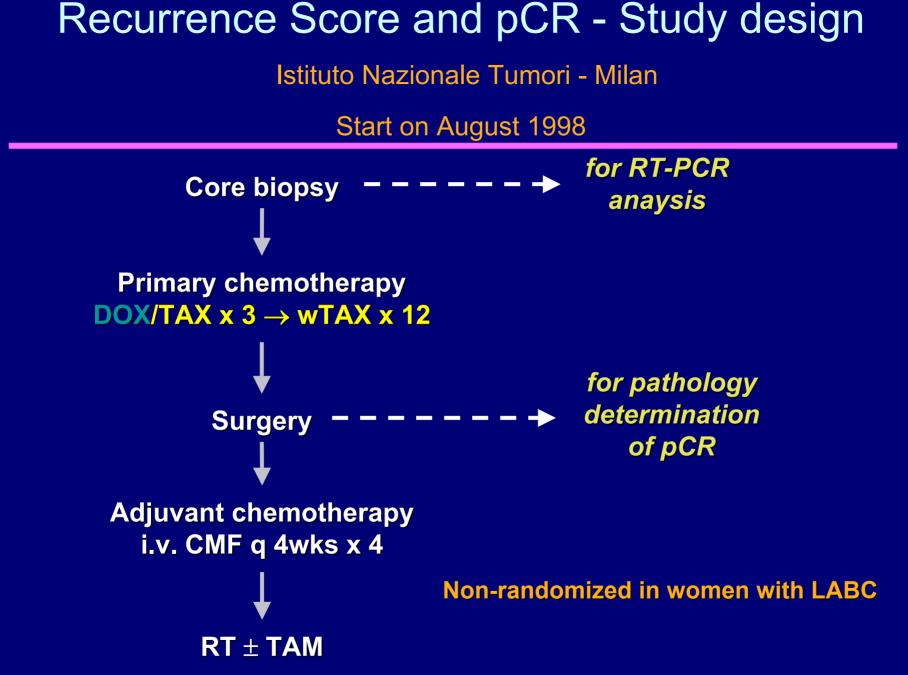
• Is pCR prediction useful?

 \Rightarrow Prospective validation

What relationship between Recurrence Score Assay and pCR?

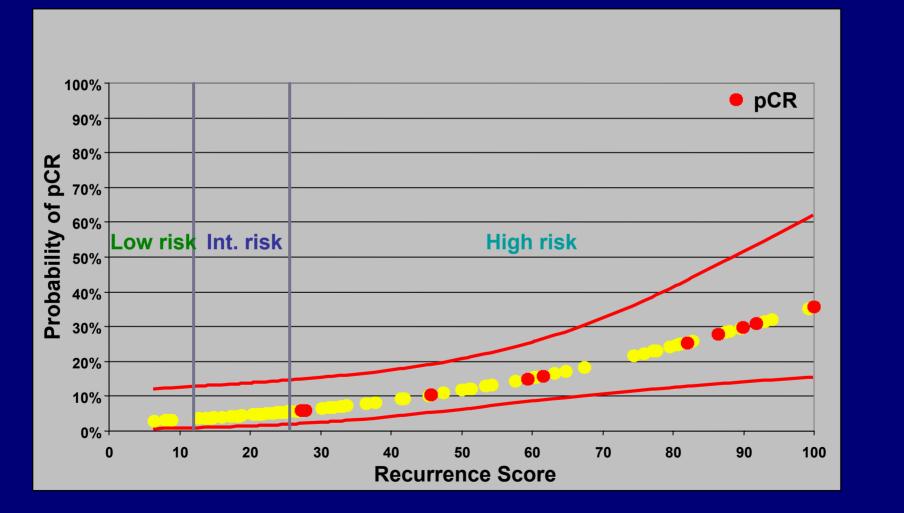
 Recurrence Score assay (based on expression of 21 genes) predicts the likelihood of distant recurrence (Paik S et al, N Engl J Med. 2004;351:2817-26)

RS = 0.47 x GRB7 Group Score



Recurrence Score

High proliferation and low ER → Higher RS


50

Low proliferation and high ER → Lower RS

Gianni L et al., J Clin Oncol 2005; 23:7265-77

Higher Recurrence Score as in TailorRX Associated with Higher Likelihood of pCR

Gianni L et al., J Clin Oncol 2005; 23:7265-77

Is prediction of pCR useful?

- pCR is more frequent in patients classified as "High Risk" according to classical variables (no expression of Hormone Receptors) as well as newer gene-expression classifiers (Oncotype DX)
- Any classifier of pCR should be tested for its ability to predict efficacy with high sensitivity and high specificity in adjuvant setting rather than simply antitumor activity in the neoadjuvant one.