Statistical Considerations in Preoperative Clinical Trials

Donald A. Berry dberry@mdanderson.org

THE UNIVERSITY OF TEXAS MDANDERSON CANCER CENTER Dispense with sample size issue when pCR is primary endpoint:

Essentially same as for metastatic BC with tumor response as primary endpoint, and "interest in" PFS and OS

OUTLINE

• Are adjuvant trials still viable? Efficiency of neoadjuvant trials • pCR as correlate or surrogate? Modeling pCR:DFS:OS Fine tuning pCR

CALGB node+ adjuvant trials

• CALGB 7581: N = 888 • CALGB 8082: N = 933 **Today!** • CALGB 8541: N = 1550 • CALGB 9344: N = 3120 Targeted # DFS events: 180/ Interim analyses: 450, 900, 1350

Survival in Node+ Trials

ATAC: N=9366

p=0.0013 for A vs T

Potential for more sensitive —and earlier! comparisons in neoadjuvant trials: An example

Neoadjuvant Trastuzumab in HER2+ Breast Cancer*

*Buzdar et al, JCO (2005)

Data Monitoring Committee

Annual monitoring by DMC

Interim results after 34 patients:

Trastuzumab	12/18 = 67%
Control	4/16 = 25%

 Bayesian probability that outcome will still be significant after 164 patients: 95%
ASCO —> JCO

Trastuzumab chronology

MetastaticBuzdarAdjuvant1000s of pts34 pts1000s of pts

Neat link, though small

What about pCR?

 Great statistically because: Fixed time of assessment Early Enables adaptive designs Should be fine tuned But is it a surrogate for anything of clinical relevance?

"Surrogate endpoint" (Prentice 1989)

- "a response variable for which a test of the null hypothesis of no relation to the treatment groups under comparison is also a valid test of the corresponding null hypothesis based on the true endpoint."
- High hurdle: pCR doesn't qualify
- But pCR is useful nonetheless!

Using neoadjuvant therapy in drug development: An adaptive example

Seamless phases II/III

- Primary breast cancer
- pCR may predict DFS, depending on treatment (not a "surrogate")
- Primary endpoint: DFS
- Model pCR/DFS relationships
- Observe relationships—and "validate" within treatment group

Seamless phases

- Phase II: A few centers; 15 pts/mo, randomize equally to E vs C
- If predictive probs "look good," expand (Phase III): Many centers; 60 pts/mo; initial centers continue accruing
- Max N = 1800

[Single trial: All data used in final analysis]

Early stopping Use pred probs of stat signif Frequent analyses (total of 18) using predictive probs to: Switch to Phase III Stop accrual for Futility Superiority

Comparisons

Conventional Phase III designs: Conv4 & Conv18, max N = 1800 (same significance level & power as adaptive Bayesian design)

Average N under H₀

Average N under H₁

Advantages

- Duration of drug development shortened:
 - Fewer patients in trial
 - No hiatus for setting up phase III
 - All patients used for
 - Phase III endpoint
 - Relation between pCR & DFS
- N is seldom near 1800; when it is, it's necessary!

Two reasons for advantages

 Exploiting pCR and its potential predictability

 Bayesian approach and frequent assessments of predictive probabilities Further improvements possible in neoadjuvant settings (e.g., I-SPY2)

- Biomarkers
- Imaging

Several drugs & combinations

Adaptive randomization

OUTLINE

• Are adjuvant trials still viable? Efficiency of neoadjuvant trials • pCR as correlate or surrogate? Modeling pCR:DFS:OS Fine tuning pCR