3.0 Reference Point Re-Estimation and Stock Projections through 2009

3.1 Gulf of Maine cod

Catch and Survey Indices

Atlantic cod (Gadus morhua) in the Gulf of Maine region have been commercially exploited since the 17th century, and reliable landings statistics are available since 1893. Historically, the Gulf of Maine fishery can be separated into four periods: (1) an early era from 1893-1915 in which record-high landings ($>17,000 \mathrm{mt}$) in 1895 and 1906 were followed by about 10 years of sharply-reduced catches; (2) a later period from 1916-1940 in which annual landings were relatively stable, fluctuating between 5,000 and $11,500 \mathrm{mt}$, and averaging $8,300 \mathrm{mt}$ per year; (3) a period from 1941-1963 when landings sharply increased (1945: 14,500 mt) and then rapidly decreased, reaching a record-low of 2,600 mt in 1957; and (4) the most recent period from 1964 onward during which Gulf of Maine landings have generally increased but have declined steadily since the early 1990s. Commercial landings doubled between 1964 and 1968, doubled again between 1968 and 1977, and averaged 12,200 mt per year during 1976-1985 (Figure 3.1.1). Gulf of Maine cod landings subsequently increased, reaching $17,800 \mathrm{mt}$ in 1991, the highest level since the early 1900s.

Commercial landings declined sharply in 1992, and have since decreased steadily to $1,636 \mathrm{mt}$ in 1999 before increasing to $3,730 \mathrm{mt}$ in 2000. The sharp decline in landings between 1998 and 1999 and the subsequent increase in 2000 likely reflects the imposition of very low trip limits during 1999 and the subsequent relaxation of these limits in early 2000. The extent of discarding increased sharply in 1999 and remained relatively high in 2000. Landings of Gulf of Maine cod from the recreational sector have also been significant, averaging about 20% of the total (commercial and recreational) landings since 1982.

Fishery-independent spring and autumn bottom trawl surveys conducted by the NEFSC have documented a steady decline in total stock biomass since the 1960s; the largest decreases occurred during the 1980s (Figure 3.1.1). Although the most recent indices suggest a slight increase, overall, the Gulf of Maine cod stock biomass remains low relative to the 1960s and 1970s.

Stock Assessment

The most recent assessment of the Gulf of Maine cod stock was completed in 2001 (Mayo et al. 2002a), and the results were reviewed at the $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop in June, 2001 (NEFSC 2001c). At that time fully recruited fishing mortality in 2000 was estimated to be 0.73 . Spawning stock biomass had increased slightly from $9,900 \mathrm{mt}$ in 1998 to $13,100 \mathrm{mt}$ in 2000 , still well below the maximum of $24,200 \mathrm{mt}$ observed during the 1982-2000 VPA period. Except for the 1998 year class, recruitment had been relatively poor since the appearance of the 1992 year class. Plots of spawning stock biomass (SSB) and recruitment estimates obtained from the 2001 assessment are provided in Figure 3.1.2. Over the range of
spawning stock observed during the VPA period (1982-2000), there appears to be no appreciable trend in recruitment with respect to SSB.

Fishing mortality (fully recruited) and biomass reference points were estimated from a yield and spawning biomass per recruit analysis combined with a stock-recruitment analysis employing a parametric Beverton-Holt model. The following reference points were estimated: $\mathrm{F}_{0.1}=0.15$, $\mathrm{F}_{\mathrm{msy}}=0.23, \mathrm{~F}_{\text {max }}=0.27, \mathrm{~B}_{\text {msy }}=90,300 \mathrm{mt}$, and $\mathrm{SSB}_{\mathrm{msy}}=78,000 \mathrm{mt}$.

Yield and SSB per Recruit Analysis

The yield and spawning stock biomass analysis conducted during the course of the 2001 assessment was revised slightly during the present analysis to achieve consistency with the likely age distribution of fish within the plus group by adjusting the age $11+$ mean weight at age to account for the F likely to rebuild spawning biomass. Partial recruitment and maturation at age were the same as those employed in the 2001 assessment. Estimates of $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\max }$ presented in Table 3.1.2 are virtually identical to those given in the 2001 assessment. The yield and spawning stock biomass per recruit estimated over a range of fishing mortality rates were employed in the estimation of MSY-based reference points as described in the following section.

MSY-based Reference Point Estimation

Empirical Nonparametric Approach

The stock-recruitment data derived from the 2001 VPA do not suggest any appreciable trend in recruitment with respect to spawning stock biomass, the average recruitment from the entire series is used to represent the expected recruitment at Bmsy (Figure 3.1.2). If the estimate of $\mathrm{F} 40 \%$ is taken as a proxy for Fmsy, the fishing mortality threshold is 0.166 . This fishing mortality rate produces 11.412 kg of spawning stock biomass per recruit and 1.7913 kg of yield per recruit. The resulting mean of 7.67 million fish results in an $\mathrm{SSB}_{\text {msy }}$ estimate of $87,580 \mathrm{mt}$ when multiplied by the SSB per recruit, and an MSY estimate of $13,739 \mathrm{mt}$ when multiplied by the yield per recruit.

Although this estimate of $\mathrm{SSB}_{\text {msy }}$ is well above the range of SSB observed during the VPA period, a series of hindcast spawning biomass and recruitment estimates based on autumn NEFSC surveys (Figure 3.1.3) suggests the existence of SSB levels during the1960s which were well above the maximum estimate from the VPA.

Parametric Model Approach

Maximum likelihood fits of the 10 parametric stock-recruitment models to the Gulf of Maine cod data from 1982-2000 are listed below (Table 3.1.1). The model acronyms are:
$\mathrm{BH}=$ Beverton-Holt, $\mathrm{ABH}=$ Beverton-Holt with autoregressive errors, $\mathrm{PBH}=$ Beverton-Holt with steepness prior, $\mathrm{PABH}=$ Beverton-Holt with steepness prior and autoregressive errors, PRBH $=$ Beverton-Holt with recruitment prior, PRABH $=$ Beverton-Holt with recruitment prior and autoregressive errors, $\mathrm{RK}=$ Ricker, $\mathrm{ARK}=$ Ricker with autoregressive errors, $\mathrm{PRK}=$ Ricker
with slope at the origin prior, PARK = Ricker with slope at the origin prior and autoregressive errors. The six hierarchical criteria are applied to each of the models to determine the set of candidate models.

The first criterion is not satisfied by the PRK and PARK models because the estimate of $\mathrm{F}_{\text {MSY }}$ lies on the boundary of its feasible range. The second criterion is not satisfied by the PBH model which has a point estimate of MSY $=21.300 \mathrm{mt}$. This eliminates the PBH as a candidate. The third criterion is satisfied by the remaining models. The fourth criterion is not satisfied by the RK and ARK models, where the $\mathrm{F}_{\text {MSY }}$ estimates of 0.60 greatly exceed the value of $\mathrm{F}_{\text {MAX }}=0.27$ for Gulf of Maine cod. The fifth criterion is not satisfied by the remaining autoregressive models which have dominant frequencies greater than $1 / 2$ of the length of the rather short stockrecruitment time series for Gulf of Maine cod (Figure 3.1.4). Finally, the sixth criterion is considered to be satisfied by the remaining 2 models: BH and PRBH.

Given the two candidate models (BH and PRBH), the AIC criterion assigns a slightly greater probability to the PRBH model. The odds ratio of BH being true to PRBH is roughly 1.1:1. There is limited basis for choosing between these two parametric models, although their point estimates of $\mathrm{S}_{\text {MSY, }} \mathrm{F}_{\text {MSY }}$, and MSY differ. The two model differ only in the inclusion of a prior on recruitment in the PRBH model. However, given the limited range of the stock and recruitment data for Gulf of Maine cod, this may not be the most appropriate choice. As well, the steepness estimated by the BH model (0.91) was within ± 1 standard error of the average for the cod group while the steepness estimated by the PRBH model (0.95) was outside of ± 1 standard error and very close to the boundary (1.0). Therefore, the Beverton-Holt model without priors was considered to best fit the data for this stock.

The results of using the BH model as the best fit parametric model are shown below (Table 3.1.1 and Figures 3.1.5, 3.1.6 and 3.1.7). The standardized residual plot of the fit of the BH model to the stock-recruitment data shows that the standardized residuals generally lie within \pm two standard deviations of zero (Figure 3.1.5), with the exception of the 1988 data point. MSYbased reference points derived from the BH model are: $\mathrm{F}_{\mathrm{msy}}=0.225$ and $\mathrm{SSB}_{\mathrm{msy}}=82,830 \mathrm{mt}$.

In the equilibrium yield plot (Figure 3.1.6), the yield surface is relatively flat in the neighborhood of the point estimate of $\mathrm{F}_{\mathrm{MSY}}=0.225$. The point estimates of $\operatorname{SSB}_{\text {MSY }}(82.8 \mathrm{kt})$ and MSY (16.6 kt) appear consistent with the nonparametric proxy estimate of $\mathrm{SSB}_{\text {MSY }}$ and previous estimates of $\mathrm{F}_{\text {MSY }}$ and $\mathrm{SSB}_{\text {msy }}$ from SAW 33. The stock-recruitment plot (Figure 3.1.7) shows that recruitment values near $\mathrm{SSB}_{\mathrm{MSY}}$ are roughly 9 million fish which is slightly larger than the long-term average of the observed recruitment series but is consistent with the $75^{\text {th }}$ percentile of the observed recruitment series (9.5 million fish).

Parameter uncertainty plots show histograms of 5000 MCMC sample estimates of MSY, $\mathrm{S}_{\mathrm{MSY}}$, and $\mathrm{F}_{\mathrm{MSY}}$ drawn from the posterior distribution of the MLE based on an uninformative prior. Both MSY and $\mathrm{S}_{\text {MSY }}$ had distributions with high positive skewness. For MSY, the 80 percent credibility interval was $(14.1,34.6)$ with a median of 19.3 kt (Figure 3.1.8). For $\mathrm{S}_{\mathrm{MSY}}$, the 80 percent credibility interval was $(66.3,193.6)$ with a median of 99.1 kt (Figure 3.1.8). For $\mathrm{F}_{\text {MSY }}$, the 80 percent credibility interval was $(0.195,0.240)$ with a median of 0.215 (Figure 3.1.8).

Overall, the point estimates of MSY and $\mathrm{S}_{\mathrm{MSY}}$ were lower than the medians of the MCMC samples.

Reference Point Advice

Reference points derived from the Beverton-Holt model are: $\mathrm{F}_{\text {msy }}=0.225, \mathrm{MSY}=16,600 \mathrm{mt}$ and $\mathrm{SSB}_{\text {msy }}=82,830 \mathrm{mt}$. The estimate of MSY represents total catch, including commercial and recreational landings, and commercial discards.

The revised SSBmsy estimate for Gulf of Maine cod $(82,800 \mathrm{mt})$ is slightly higher than the value estimated during SAW $33(78,000 \mathrm{mt})$ (NEFSC 2001c). The change is a result of a slight increase in the stock mean weights at age applied to the yield per recruit calculations in the age structured production model resulting in higher biomass per recruit ratios. The increase in the mean weights at age is due a change in the time period used in the averaging from long term (1982-1998) in the SAW 33 to a more recent period (1996-1998) in the present analysis.

Projections

Stochastic age-based projections (Brodziak and Rago MS 2002) were performed over a 10-year time horizon beginning in 2001 to evaluate relative trajectories of stock biomass and catch under various fishing mortality scenarios. Recruitment was derived from the Beverton-Holt spawning stock-recruitment relationship employed in the age structured production model. Stock and catch mean weights at age, the maturity at age schedule, and the partial recruitment at age vector are the same as those employed in the yield and SSB per recruit analyses presented above. The 2001 survivors derived from 600 bootstrap iterations of the final VPA formulation were employed as the initial population vector. The projection was performed at two fishing mortality rates: $\mathrm{F}_{\mathrm{msy}}(0.225)$ and F calculated to rebuild spawning biomass to $\mathrm{SSB}_{\text {msy }}$ by 2009. Fully recruited fishing mortality in 2001 was derived from iterative calculations based on the estimated total 2001 catch ($7,994 \mathrm{mt}$), including commercial landings and discards and recreational landings. Fishing mortality in 2002 was fixed at the Amendment $7 \operatorname{target}\left(\mathrm{~F}_{\max }=0.26\right)$, the present management target.

The medium-term projections (Figures 3.1.9, 3.1.10, and 3.1.11) suggest that fishing at $\mathrm{F}_{\text {msy }}$ (0.225) between 2003 and 2009 will result in only a 22% probability of rebuilding spawning biomass to $\mathrm{SSB}_{\text {msy }}(82,830 \mathrm{mt}$) by 2009 (Figure 3.1.9). To achieve a 50% probability of rebuilding spawning biomass to $\mathrm{SSB}_{\text {msy }}$ by 2009, F must be reduced to 0.165 during 2003-2009 (Figures 3.1.9 and 3.1.10). The total annual catch, including commercial landings and discard and recreational landings, is expected to increase from $3,850 \mathrm{mt}$ in 2003 to $11,530 \mathrm{mt}$ in 2009 (Figure 3.1.11).

Table 3.1.1. Stock-recruitment model comparisons for Gulf of Maine cod - age 11+ formulation.

Gulf of Maine Cod 11-Age Class Model Comparison										
SMAX =	Prior									
	0.5000	0	0	0	0.5000	0	0	0	0	0
	BH	ABH	PBH	PABH	PRBH	PRABH	RK	ARK	PRK	PARK
Posterior Probability	0.52	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.00
Odds Ratio for Most Likely Model	1.00				1.06					
Normalized Likelihood	0.52	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.00
Model AIC Ratio	1.06449				1					
	BH	ABH	PBH	PABH	PRBH	PRABH	RK	ARK	PRK	PARK
Number_of_data_points	18	18	18	18	18	18	18	18	18	18
Number_of_parameters	3	4	3	4	3	4	3	4	3	4
Negative_loglikelihood	172.151	171.265	170.666	169.886	180.249	179.296	172.104	171.195	186.623	177.639
Bias-corrected_AIC	352.016	353.607	352.171	353.933	352.141	353.609	351.922	353.467	373.269	363.252
Diagnostic Comments	Most Likely Model	Power spectrum dominant frequency exceeds $1 / 2$ time series length	MSY outside range of observed landings	Power spectrum dominant frequency exceeds $1 / 2$ time series length		Power spectrum dominant frequency exceeds 1/2 time series length	FMSY substantially exceeds FMAX	FMSY substantially exceeds FMAX	FMSY at boundary of feasible range	FMSY at boundary of feasible range
Parameter Point Estimates										

MSY	16636.6	14090.3	21293.5	20252.6	13931.9	13787.8	10912.8	10829.7	18113.3	13385.9
FMSY	0.225	0.24	0.21	0.21	0.24	0.245	0.595	0.595	2	2
SMSY	82829.7	66237.8	112815	107300	65493.6	63648.3	25607.3	25412.1	23494.3	17362.5
alpha	9854.36	7998.51	13240.5	12522	7910.29	7780.58	0.0107473	0.00556144	0.904107	1.03259
expected_alpha	11313.5	9176.81	15219.2	14371.3	9090.31	8928.95	0.0123317	0.00637066	1.23523	1.14695
beta	7516.1	3275.83	15537.3	14087.2	3253.36	2809.65	-5.34E-05	-5.36E-05	-6.26E-05	-9.21E-05
RMAX	8983.15	7674.13	11029.3	10596	7591.6	7508.37	1252.84	1226.64	1494.91	172.625
expected_RMAX	10313.3	8804.65	12677.6	12160.8	8724.08	8616.56	1437.54	1405.12	2042.4	191.743
Prior_mean			0.84	0.84	7674	7674			1.37	1.37
Prior_se			0.08	0.08	1226	1226			0.15	0.15
Z_Myers	0.91	0.95	0.86	0.87	0.95	0.95				
sigma	0.52552	0.524261	0.528	0.525	0.527	0.525	0.524	0.521	0.790	0.458
phi		0.31		0.28		0.31		0.30		0.38
sigmaw		0.499		0.50		0.50		0.50		0.42
last log-residual R		-0.088		0.024		-0.094		-0.086		-0.684
expected lognormal error term	1.148	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.37	1.11

Table 3.1.2. Yield and biomass per recruit for Gulf of Maine cod.

Summary of Yield per Recruit Analysis for:
GULF OF MAINE COD (5Y) - 2001 UPDATED AVE WTS, FPAT AND MAT VECTORS

Slope of the Yield/Recruit Curve at $\mathrm{F}=0.00$: --> 29.4040 F level at slope=1/10 of the above slope (F0.1): -----> .151 Yield/Recruit corresponding to F0.1: -----> 1.7547 F level to produce Maximum Yield/Recruit (Fmax): -----> Yield/Recruit corresponding to Fmax: -----> 1.8744 F level at 40 \% of Max Spawning Potential (F40): -----> SSB/Recruit corresponding to F40: ---------> 11.4116								
Listing of Yield per Recruit Results for: GULF OF MAINE COD (5Y) - 2001 UPDATED AV								
FMORT		TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
$\begin{aligned} & \text { F0. } 1 \\ & \text { F40\% } \end{aligned}$.000 .050 .100 .150	$\begin{aligned} & .00000 \\ & .11707 \\ & .19537 \\ & .25150 \end{aligned}$	$\begin{array}{r} .00000 \\ 1.03050 \\ 1.52129 \\ 1.75096 \end{array}$	$\begin{aligned} & 5.5167 \\ & 4.9337 \\ & 4.5446 \\ & 4.2662 \end{aligned}$	$\begin{aligned} & 30.3366 \\ & 22.1467 \\ & 17.0849 \\ & 13.7410 \end{aligned}$	$\begin{aligned} & 3.8396 \\ & 3.2550 \\ & 2.8642 \\ & 2.5841 \end{aligned}$	$\begin{aligned} & 28.5329 \\ & 20.4493 \\ & 15.4734 \\ & 12.1992 \end{aligned}$	$\begin{array}{r} 100.00 \\ 71.67 \\ 54.23 \\ 42.75 \end{array}$
	. 151	. 25271	1.75465	4.2602	13.6723	2.5781	12.1320	42.52
	. 166	. 26582	1.79128	4.1953	12.9345	2.5127	11.4116	39.99
	. 200	. 29377	1.84734	4.0571	11.4231	2.3734	9.9383	34.83
	. 250	. 32681	1.87408	3.8941	9.7562	2.2088	8.3179	29.15
Fmax	. 258	. 33155	1.87438	3.8708	9.5287	2.1852	8.0972	28.38
	. 300	. 35338	1.86457	3.7634	8.5212	2.0765	7.1212	24.96
	. 350	. 37523	1.83693	3.6562	7.5835	1.9677	6.2151	21.78
	. 400	. 39356	1.80113	3.5666	6.8563	1.8766	5.5141	19.33
	. 450	. 40917	1.76268	3.4906	6.2820	1.7990	4.9615	17.39
	. 500	. 42264	1.72460	3.4252	5.8209	1.7321	4.5185	15.84
	. 550	. 43440	1.68842	3.3683	5.4454	1.6737	4.1580	14.57
	. 600	. 44477	1.65490	3.3184	5.1354	1.6223	3.8607	13.53
	. 650	. 45399	1.62429	3.2741	4.8766	1.5766	3.6124	12.66
	. 700	. 46225	1.59660	3.2345	4.6580	1.5356	3.4026	11.93
	. 750	. 46971	1.57170	3.1990	4.4715	1.4987	3.2235	11.30
	. 800	. 47648	1.54936	3.1668	4.3110	1.4651	3.0692	10.76
	. 850	. 48266	1.52937	3.1376	4.1716	1.4345	2.9350	10.29
	. 900	. 48833	1.51148	3.1109	4.0496	1.4065	2.8173	9.87
	. 950	. 49355	1.49547	3.0863	3.9420	1.3806	2.7133	9.51
	1.000	. 49839	1.48112	3.0637	3.8464	1.3567	2.6207	9.18

Gulf of Maine Cod

Figure 3.1.1. Landings and research vessel survey abundance indices for Gulf of Maine cod.

Gulf of Maine Cod
(a)

(b)

Gulf of Maine Cod

		F0.1	F40\% MSP
F reference point		0.151	0.166
ssb per recruit at F		12.132	11.412
n	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
mean	18	18	18
min	7.67	93.10	87.58
max	3.02	36.64	34.46
10th \%'tile	25.20	305.70	287.55
25th \%'tile	3.37	40.86	38.43
50th \%'tile	4.35	52.79	49.65
75th \%'tile	6.70	81.30	76.47
90th \%'tile	9.49	115.18	108.34
Std Dev	11.09	134.50	126.51
CV	5.20	63.10	59.35
For Top 5 values of SSB	0.68	0.68	0.68
Mean			
Median	7.09	85.96	80.86
	6.99	84.83	79.79

Figure 3.1.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Gulf of Maine cod. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \% \mathrm{MSP}$, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.1.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.

Figure 3.1.3. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Gulf of Maine cod. Data are hindcast back to 1963 and are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F0.1 and F40\% MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.1.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$, for the spawning biomass plot, the lowess smoother tension $=0.3$.

Figure 3.1.4. Gulf of Maine cod 11+ periodicity of environmental forcing for Autoregressive stock-recruitment models.

Figure 3.1.5. Gulf of Maine cod $11+$ standardized residuals for the most likely stock-recruitment model

Figure 3.1.6. Gulf of Maine cod 11+ equilibrium yield vs. F for the most-likely Stock-recruitment model.

Figure 3.1.7. Stock recruitment relationship for best fit parametric model for Gulf of Maine cod. Stock-recruitment data points are overplotted, along with the predicted S-R line and replacement lines for $\mathrm{F}=100 \% \mathrm{msp}=0.00$ and $\mathrm{F} 40 \% \mathrm{msp}=0.17$.

Figure 3.1.8. Gulf of Maine cod 11+ posterior distribution of MSY, BMSY and FMSY for most likely model fit.

Gulf of Maine Cod

Figure 3.1.9. Probability that Gulf of Maine cod spawning biomass will exceed Bmsy ($82,800 \mathrm{mt}$) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.

Gulf of Maine Cod

Figure 3.1.10. Median and 80% confidence interval of predicted spawning biomass for Gulf of Maine cod under F-rebuild fishing mortality rates.

Figure 3.1.11. Median and 80% confidence interval of predicted catch for Gulf of Maine cod under F-rebuild fishing mortality rates.

3.2 Georges Bank cod

Catch and Survey Indices

Atlantic cod on Georges Bank have been exploited since 1758 (Serchuk and Wigley 1992) and landings data are available since the late 1800s (Fig. 3.2.1). Record high landings occurred in $1966(53,100 \mathrm{mt})$ and $1982(57,200)$ and then landings subsequently declined, except for a peak in $1990(42,500 \mathrm{mt})$. In 1995, landings reached a record low ($7,900 \mathrm{mt}$) and have remained relatively constant since that time. Both spring and autumn bottom trawl survey indices also indicate a declining trend in biomass starting in the early 1970s and the stock has remained at a relatively stable but low biomass during the 1990s. Although strict management regulations implemented in 1994 reduced the fishing mortality on Georges Bank cod for both the US and Canada, the stock does not appear to be responding positively.

Stock Assessment

The most current assessment of Georges Bank cod (O'Brien and Munroe 2001) was peer reviewed by the Transboundary Resources Assessment Committee (TRAC) in 2001 (NEFSC 2001d). The assessment included US and Canadian commercial landings catch at age (10+) data from 1978-2000. US recreational landings and discard estimates were reported but not included in the total catch at age. The NMFS and Department of Fisheries and Oceans (DFO) spring bottom trawl survey data for ages 1-8 and NMFS autumn bottom trawl survey data for ages 1-6 were used to calibrate the Virtual Population Analysis (VPA). Estimates of both spawning stock biomass and recruitment at age 1 indicate a declining trend over the time series (Fig. 3.2.2a, Fig. 3.3.2b). The most recent estimates of recruitment are subject to change in subsequent assessments as more catch is taken from each of the cohorts.

Yield and SSB per Recruit Analysis

A yield and spawning stock biomass (SSB) per recruit analyses conducted using recent assessment data (O'Brien and Munroe 2001) resulted in changes in the previously estimated biological reference points (Table 3.2.2). Input data for catch weights (ages 1-10+) and stock weights (ages 1-9) were derived from the long term average weight during 1978-2000 (O'Brien and Munroe 2001). Stock mean weights for ages 10+ were derived from an expanded age structure out to age 18 (oldest age observed in survey) at $\mathrm{F}=\mathrm{F} 40 \%=0.167$ and $\mathrm{M}=0.2$. The mean weights for ages 10 to 18 were estimated from the length- weight equation (O 'Brien and Munroe 2001) : \ln Weight $(\mathrm{kg}$, live $)=-11.7231+3.0521 \ln$ Length (cm). The mean length at ages 10-18 were derived from the linear regression of length vs \ln (age) using the 1978-1997 commercial length sample data. The partial recruitment (PR) is based on a normalized geometric mean of 1996-1999 fishing mortality and the maturity ogive is from the most recent assessment.

The newly estimated YPR biological reference points for $\mathrm{F}_{0.1}=0.169, \mathrm{~F}_{\max }=0.331$ and $\mathrm{F}_{40 \%}=$ 0.167 are slightly lower than those reported in O'Brien and Munroe (2001).

MSY-based Reference Point Estimation

Empirical Nonparametric Approach

The stock-recruit relationship for Georges Bank cod indicates a general increasing trend of recruitment of age 1 fish with increased spawning stock biomass (Figure 3.2.2c). The recruitment expected at $\mathrm{B}_{\text {msy }}$ can be considered to be the mean or median recruitment associated with the upper quartile of SSB. Using $\mathrm{F}_{40 \%}=0.167$ as a proxy for $\mathrm{F}_{\mathrm{MSY}}$, the $\mathrm{SSB} / \mathrm{R}$ at $\mathrm{F}_{40 \%}=$ 10.769, and the mean recruitment of 23.25 million fish results in a $\mathrm{SSB}_{\text {msy }}$ of $250,000 \mathrm{mt}$. Similarly, multiplying the yield per recruit of 1.6714 by mean recruitment results in a MSY estimate of $38,900 \mathrm{mt}$.

The estimate of MSY is within the range of observed landings, although SSB is higher than the maximum ($93,000 \mathrm{mt}$) observed in the VPA time series. Hindcasting of autumn research survey indices suggest that higher levels of SSB, ranging from $72,000 \mathrm{mt}$ to $233,000 \mathrm{mt}$, occurred during the 1970s (Brodziak et al. 2001).

Parametric Model Approach

Maximum likelihood fits of the 10 parametric stock-recruitment models to the Georges Bank cod data from 1978-2000 are listed below (Table 3.2.1). The model acronyms ($\mathrm{BH}=$ Beverton-Holt, etc.) are described in Section 2.1.2 and Table 2.1.2. The six hierarchical criteria described in Section 2.1.2 are applied to each of the models to determine the set of candidate models.

The first criterion is not satisfied by the PRK and PARK models because the estimate of $\mathrm{F}_{\text {MSY }}$ lies on the boundary of its feasible range. The second criterion is satisfied by all remaining models except models BH and ABH, where the point estimate of MSY exceed 1000 kt . This eliminates the BH and ABH models from being candidates. The third criterion is not satisfied by the PBH and PABH models because the point estimate of $\mathrm{S}_{\mathrm{MSY}}$ is substantially greater than the nonparametric proxy. The fourth criterion is not satisfied by the RK and ARK models, where the $\mathrm{F}_{\text {MSY }}$ estimates of 0.67 and 0.67 greatly exceed the value of $\mathrm{F}_{\mathrm{MAX}}=0.33$ for Georges Bank cod. The fifth criterion is satisfied by the remaining autoregressive model PRABH. Last, the sixth criterion is considered be satisfied by the remaining 2 models: PRBH and PRABH.

Given the two candidate models (PRBH and PRABH), the AIC criterion assigns the greatest probability to the PRBH model. The odds ratio of PRBH being true to PRABH being true is over $4: 1$. Thus, there is clear basis for choosing between these two parametric models, even though both give virtually identical point estimates of $\mathrm{S}_{\mathrm{MSY}}, \mathrm{F}_{\mathrm{MSY}}$, and MSY.

The results of using the PRBH model as the best fit parametric model are shown below (Table 3.2.1 and Figures 3.2.3-3.2.6). The standardized residual plot of the fit of the PRBH model to the stock-recruitment data shows that the standardized residuals generally lie within \pm two standard deviations of zero (Figure 3.2.4), with the exception of the 1985 and 2000 data points.

In the equilibrium yield plot (Figure 3.2.5), the yield surface is relatively flat in the neighborhood of the point estimate of $\mathrm{F}_{\mathrm{MSY}}=0.175$. The point estimates of $\mathrm{S}_{\mathrm{MSY}}(217 \mathrm{kt})$ and MSY (35 kt) appear consistent with the nonparametric proxy estimate of $\mathrm{S}_{\mathrm{MSY}}$ and previous estimates of MSY. The stock-recruitment plot (Figure 3.2.6) shows that recruitment values near $\mathrm{S}_{\mathrm{MSY}}$ are roughly 23 million fish which is consistent with the long-term average of the observed recruitment series when spawning biomass was high, lying within its upper quartile of values.

Parameter uncertainty plots show histograms of 5000 MCMC sample estimates of MSY, $\mathrm{S}_{\mathrm{MSY}}$, and $\mathrm{F}_{\text {MSY }}$ drawn from the posterior distribution of the MLE based on an uninformative prior. For MSY, the 80 percent credibility interval was $(29.4,38.0)$ with a median of 33.6 kt (Figure 3.2.7, upper panel). For $\mathrm{S}_{\mathrm{MSY}}$, the 80 percent credibility interval was (169.6, 234.1) with a median of 201.7 kt (Figure 3.2.7, middle panel). For $\mathrm{F}_{\mathrm{MSY}}$, the 80 percent credibility interval was (0.165 , 0.200) with a median of 0.18 (Figure 3.2.7, lower panel). Overall, the point estimates of MSY and $\mathrm{S}_{\mathrm{MSY}}$ were slightly larger than the medians of the MCMC samples.

Reference Points

Reference points derived from the Beverton-Holt stock recruit relationship with an assumed prior for the unfished recruitment from the VPA data are : $\mathrm{F}_{\mathrm{MSY}}=0.175$, $\mathrm{MSY}=35,200 \mathrm{mt}$ and $\mathrm{SSB}_{\text {MSY }}=217,000 \mathrm{mt}$. The MSY includes commercial landings only and does not include recreational landings or discards.

Projections

Stochastic age-based projections (Brodziak and Rago 2002) were performed to forecast the probability of attaining $\operatorname{SSB}_{\text {MSY }}$ within 10 years under an $\mathrm{F}_{\text {MSY }}(0.175)$ and an $\mathrm{F}_{\text {rebuilding }}(0.0)$ strategy. Recruitment was derived from the Beverton-Holt stock recruit relationship using parameter values from the PRBH model (Table 3.2.1). Stock and catch mean weight, maturity at age, and partial recruitment input data are the same as described above for the yield and SSB per recruit analysis. The 2001 starting year population vector was derived from 1000 bootstrap iterations of the final VPA formulation (O'Brien and Munroe 2001). Fishing mortality in 2001 was derived based on estimated landings of $12,765 \mathrm{mt}$ (US:10,631 mt + CAN:2,134 mt) and F in 2002 was set equivalent to the Amendment 7 target $\left(\mathrm{F}_{0.1}=0.169\right)$, the current management target.

The projections (Figures 3.2.8-3.2.10) indicate that there is only a 0.2% probability of reaching SSB $_{\text {MSY }}(217,000 \mathrm{mt})$ by 2009 under an $\mathrm{F}_{\text {MSY }}$ strategy. A 50% probability of achieving SSB $_{\text {MSY }}$ by 2009 is not possible under any F strategy (Figure 3.2.8). Under a rebuilding $\mathrm{F}=0.0$, there is only a 34% probability of achieving $\mathrm{SSB}_{\text {MSY }}$ by 2009 (Figure 3.2.8-3.2.9). The landings would decline to zero in 2003 under F rebuilding (Figure 3.2.10).

Table 3.2.1. Stock-recruitment model comparisons for Georges Bank cod.

Table 3.2.2. Yield and biomass per recruit of Georges Bank cod.

Figure 3.2.1. Landings and research vessel survey abundance indices for Georges Bank cod.

Georges Bank Cod
(a)

(b)

Georges Bank Cod
(c)

		F0.1	F40\% MSP
F reference point		0.169	0.167
ssb per recruit at F		10.6776	10.7691
n	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
mean	23	23	23
min	14.53	1.71	185.16
max	42.75	456.48	156.49
10th \%'tile	4.44	47.45	18.42
25th \%'tile	6.96	74.33	460.39
50th \%'tile	9.62	102.67	47.86
75th \%'tile	18.99	202.74	74.97
90th \%'tile	26.61	284.18	103.54
Std Dev	11.20	119.62	204.48
CV	0.77	0.77	286.61
For Top Quartile of SSB			120.65
Mean	23.25	248.23	0.77
Median	21.81	232.88	
			250.36
		234.88	

Figure 3.2.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Georges Bank cod. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F0.1 and F40\% MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.2.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.

Figure 3.2.3. Georges Bank cod periodicity of environmental forcing for autoregressive stock-recruitment models

Figure 3.2.4. Georges Bank cod standardized residuals for the most likely stock-recruitment model

Figure 3.2.5. Georges Bank cod equilibrium yield vs. F for the most likely stock-recruitment model.

Georges Bank Cod

Spawning Stock Biomass (k metric tons)
Figure 3.2.6. Stock recruitment relationship for best fit parametric model Georges Bank cod. Stock-recruitment data points are overplotted, along with the predicted S-R line and replacement lines for $\mathrm{F}=100 \% \mathrm{msp}=0.00$ and $\mathrm{F} 40 \% \mathrm{msp}=0.17$.

Figure 3.2.7. Georges Bank cod posterior distribution of MSY, BMSY and FMSY for most likely model fit.

Georges Bank Cod

Figure 3.2.8. Probability that Georges Bank cod spawning biomass will exceed Bmsy ($216,800 \mathrm{mt}$) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.

Figure 3.2.9. Median and 80% confidence interval of predicted spawning biomass for Georges Bank cod under F-rebuild fishing mortality rates.

Figure 3.2.10. Median and 80% confidence interval of predicted catch for Georges Bank cod under F-rebuild fishing mortality rates.

3.3 Georges Bank haddock

Catch and Survey Indices

The Georges Bank haddock (Melanogrammus aeglefinus) stock has been commercially exploited since the $19^{\text {th }}$ century with reliable landings statistics available beginning in 1904 (Clark et al. 1982). The fishery for Georges Bank haddock can be separated into six periods (Figure 3.3.1): (1) the stable early period from 1904-1923 when annual landings averaged 17,400 mt ; (2) the rapid fishery expansion during 1924-1930 when landings averaged 73,200 mt; (3) the thirty-year period of relative stability during 1931-1960 when landings averaged $46,300 \mathrm{mt}$; (4) the rapid fishery expansion by foreign distant water fleets during 1961-1968 when landings averaged $73,000 \mathrm{mt}$; (5) the fishery decline during 1969-1984 when landings averaged 13,400 mt ; and (6) the recent period of fishery depletion from 1985-2000 when annual landings have averaged only $5,500 \mathrm{mt}$. Landings have increased moderately in recent years as stock biomass has begun to rebuild under restrictive management measures for the Georges Bank region. In 2000, the fishery yield ($8,800 \mathrm{mt}$) was roughly four times larger than the lowest recorded landings observed in 1995.

Fishery-independent research survey data provide relative abundance indices for the Georges Bank haddock stock from the 1960s to the present (Figure 3.3.1). These indices show the longterm decline in stock biomass that has occurred since the 1960s. The NEFSC fall survey index series averaged $53.3 \mathrm{~kg} /$ tow during 1963-1968, declined to $14.5 \mathrm{~kg} /$ tow during 1969-1984, and declined further to $6.3 \mathrm{~kg} /$ tow during 1985-2000. Similarly, the NEFSC spring survey index series averaged $19.3 \mathrm{~kg} /$ tow during 1968-1984 and then declined by more than $1 / 2$ to an average of $8.2 \mathrm{~kg} /$ tow during 1985-2000. Survey indices have increased in recent years as stock biomass has begun to rebuild. In 2000, the fall survey index was $15.4 \mathrm{~kg} /$ tow while the spring index was $17.9 \mathrm{~kg} /$ tow.

Stock Assessment

The most recent assessment of the Georges Bank haddock stock was conducted in 2001, and the results were reviewed at the $4^{\text {th }}$ meeting of the Transboundary Resource Assessment Committee in April 2001 (NEFSC 2001d). At that time, fully recruited fishing mortality in 2000 was estimated to be 0.19 . Spawning stock biomass had continued to increase from the low ($<15,000$ mt) of the early 1990s to $64,100 \mathrm{mt}$ in 2000. Recruitment has improved in recent years, as the 1996 and 1998 year classes are among the strongest since the 1978 year class appeared.

The time series of spawning stock biomass (SSB) and recruitment for the Georges Bank haddock stock extends from the 1930s to present. Plots of the SSB and recruitment obtained from the most recent assessment are provided in Figure 3.3.2. There appears to be a significant positive relationship between SSB and the likelihood of obtaining good recruitment.

Yield and Spawning Biomass Per Recruit

A revised yield and spawning biomass analysis for Georges Bank haddock was conducted to ensure that the distribution of fish within the plus-group was consistent with what would be expected in a rebuilt stock. This was accomplished by recomputing the $9+$ mean weight to match with the equilibrium survivorship under an F likely to rebuild spawning biomass $\left(\mathrm{F}_{40 \%}=0.26\right)$. Fishery selectivity, growth, and fraction mature at age were the same as used in the most recent management projections and MSY-reference point calculations described below. The resulting estimates of $\mathrm{F}_{40 \%}$ and $\mathrm{F}_{0.1}$ were equal to 0.26 (Table 3.3.2); these values are similar to the estimates in the most recent assessment.

A sensitivity analysis was conducted to evaluate whether the use of growth and maturity patterns from 1931 would have changed the calculated reference points based on historic data (Clark et al. 1982). The results of the sensitivity analysis (Table 3.3.3) indicated that spawning biomass per recruit values based on the historic data were very similar to those using the current data. Similarly, reference points were robust to the use of historic growth and maturity data with estimates of $\mathrm{F}_{40 \%}=0.28$ and $\mathrm{F}_{0.1}=0.25$. Yield per recruit values using the historic data were lower, however, primarily due to the lower weights at age observed in the 1930s.

MSY-Based Reference Point Estimation

Empirical Nonparametric Approach

The Georges Bank haddock stock has a much greater chance of producing high recruitment when spawning biomass is above its observed median value (Brodziak et al. 2001). Furthermore, average recruitment strength is roughly 5 times larger when spawning biomass is above its median than when it falls below its median. Based on these observations, average recruitment from the entire time series of stock-recruitment data is not representative of the expected recruitment at $\mathrm{B}_{\text {MSY }}$ because of the severe depletion of spawning biomass since the 1970s. Two cases for determining the expected recruitment at $\mathrm{B}_{\mathrm{MSY}}$ are considered.

In the first case, mean recruitment from the distribution of spawning biomass values $>/=75,000$ mt is used to represent the expected recruitment at $\mathrm{B}_{\mathrm{MSY}}$; this value is 68.87 million age- 1 recruits (the 1963 year class is excluded from the mean because it is considered a significant outlier; Figure 3.3.2). The mean is considered the appropriate measure of central tendency of the recruitment distribution at the upper stanza of spawning biomass ($>75,000 \mathrm{mt}$). If the $\mathrm{F}_{\text {MSY }}$ proxy is $\mathrm{F}_{40 \%}=0.263$, then the expected spawning biomass per recruit is 3.6341 kg of spawning biomass per recruit and the expected yield per recruit is 0.7686 kg of yield per recruit (Table 3.3.2). Multiplying the expected spawning biomass per recruit times the expected recruitment at $\mathrm{B}_{\text {MSY }}$ produces an $\mathrm{B}_{\text {MSY }}$ proxy of $250,300 \mathrm{mt}$ of spawning biomass. Multiplying the expected yield per recruit times the expected recruitment at $\mathrm{B}_{\text {MSY }}$ produces an MSY proxy of $52,900 \mathrm{mt}$ of yield.

In the second case, average recruitment from the 1931-1960 time period is used to represent the expected recruitment at $\mathrm{B}_{\mathrm{MSY}}$; this value is 75.230 million age- 1 recruits (Figure 3.3.2). The
mean is considered to be the appropriate measure of central tendency of the recruitment distribution during 1931-1960 because of the relative stability of both the stock size and the fishery yield during this period. If the $\mathrm{F}_{\mathrm{MSY}}$ proxy is $\mathrm{F}_{40 \%}=0.277$ using the 1931 growth and maturity patterns, then the expected spawning biomass per recruit is 3.0590 kg of spawning biomass per recruit and the expected yield per recruit is 0.5986 kg of yield per recruit (Table 3.3.3). Multiplying the expected spawning biomass per recruit times the expected recruitment at $\mathrm{B}_{\text {MSY }}$ produces an $\mathrm{B}_{\text {MSY }}$ proxy of $230,000 \mathrm{mt}$ of spawning biomass. Multiplying the expected yield per recruit times the expected recruitment at $\mathrm{B}_{\text {MSY }}$ produces an MSY proxy of $45,000 \mathrm{mt}$ of yield. Thus, the calculation of Bmsy in the 230-250,000 mt range is robust to the substantial variation in life history parameters that has occurred for this stock in the past 70 years.

Parametric Model Approach

Maximum likelihood fits of the 10 parametric stock-recruitment models to the Georges Bank haddock data from 1931-2000 are listed below (Table 3.3.1). The model acronyms are: $\mathrm{BH}=$ Beverton-Holt, $\mathrm{ABH}=$ Beverton-Holt with autoregressive errors, $\mathrm{PBH}=$ Beverton-Holt with steepness prior, $\mathrm{PABH}=$ Beverton-Holt with steepness prior and autoregressive errors, PRBH $=$ Beverton-Holt with recruitment prior, $\mathrm{PRABH}=$ Beverton-Holt with recruitment prior and autoregressive errors, RK = Ricker, ARK = Ricker with autoregressive errors, PRK = Ricker with slope at the origin prior, PARK $=$ Ricker with slope at the origin prior and autoregressive errors. The six hierarchical criteria are applied to each of the models to determine the set of candidate models.

The first criterion is satisfied by all models because none of the parameter estimates lie on the boundary of their feasible range. The second criterion is satisfied by all models except models BH and ABH , where the point estimate of MSY exceed 200 kt . This eliminates the BH and ABH models from being candidates. The third criterion is satisfied by all remaining models. The fourth criterion is satisfied for all remaining models because $\mathrm{F}_{\text {MAX }}$ exceeds 1.0 for Georges Bank haddock. The fifth criterion is not satisfied by the remaining autoregressive models, PABH, PRABH, ARK, and PARK, because the dominant period of environmental forcing is outside of the range of $1 / 2$ of the length of the stock recruitment time series (Figure 3.3.4). The fact that the autoregressive parameters (ϕ) exceed $1 / 2$ for the autoregressive models indicates that there must be a multidecadal environmental forcing term operating on the stock-recruitment process for Georges Bank haddock if these models represent the true state of nature. While the existence of multidecadal environmental forcing is not outside the realm of possibility, it is not a testable hypothesis within the available data. Furthermore, the detection of low-frequency oscillations is confounded by the appearance of two stock-recruitment stanzas for the stock: 1931-1960 and 1961-2000. Early in the second stanza, the stock virtually collapsed after intensive harvest by distant water fleets in the 1960s. Thus, the serial correlation in the stock-recruitment time series is coincident and confounded with the significant decreasing trends in both recruitment and spawning biomass data. As a result, the possible effects of strong serial correlation and densitydependence are not separable without a longer (100+ year) time series (see, for example, Manly 1997). Last, the sixth criterion is considered be satisfied by the remaining 4 models: PBH, PRBH, RK, and PRK. In this case, the $\mathrm{R}_{\text {MAX }}$ values may be lower than expected under the RK and PRK models but they do not appear to be anomalously low.

Given the four candidate models (PBH, PRBH, RK, and PRK), the AIC criterion assigns the greatest likelihood to the PRBH model, followed closely by the PBH model. In particular, the odds ratio of PRBH being true to PBH being true is 1.3:1 (Table 3.3.1). Thus, there is limited basis for choosing between these two parametric models, although both models give very similar point estimates of $\mathrm{B}_{\mathrm{MSY}}, \mathrm{F}_{\text {MSY }}$, and MSY. The other two models, RK and PRK, are much less likely than the PRBH model. In particular, the odds ratio of PRBH being true to RK being true is over $50: 1$ while the odds ratio of PRBH being true to PRK being true is over $500: 1$. This indicates that overcompensatory stock-recruitment dynamics are very unlikely in this stock given the available data.

The results of using the PRBH model as the best fit parametric model are shown below (Table 3.3.1 and Figures 3.3.5, 3.3.6, and 3.3.7). The standardized residual plot of the fit of the PRBH model to the stock-recruitment data shows that the standardized residuals generally lie within \pm two standard deviations of zero (Figure 3.3.5), with the exception of the time period immediately following the exceptional 1962-63 year classes and coincident with the highest catches by distant water fleets in the 1960s. The early part of the residual plot shows that residuals were consistently positive. This feature may represent the fact that the stock-recruitment time series likely underestimates the actual recruitment values during the 1931-early 1950s period when there was no mesh size regulation and discarding of undersized haddock was commonplace (Herrington 1932; Herrington 1935; Premetz et al. 1954). If recruitment estimates during the 1931-early 1950s period were increased upwards to account for discards, the model fit would change and likely produce a higher steepness. The latter part of the residual plot shows that residuals were generally negative during the 1980s. This feature may represent the fact that the magnitude and seasonal extent of spawning output was severely reduced after the spawning stock was depleted in the 1970s. In this context, accurately modeling the stock-recruitment dynamics during this time period may require a non-stationary model.

The equilibrium yield plot (Figure 3.3.6) shows that the yield surface is relatively flat from $\mathrm{F}=0.16$ to $\mathrm{F}=0.22$ in the neighborhood of the point estimate of $\mathrm{F}_{\mathrm{MSY}}=0.18$. The point estimates of $\mathrm{B}_{\mathrm{MSY}}=243,000 \mathrm{mt}$ and $\mathrm{MSY}=36,700 \mathrm{mt}$ are consistent with the observed values of maximum observed spawning stock size ($200,000 \mathrm{mt}$) and long-term average yield ($32,300 \mathrm{mt}$ during 19042000), although the MSY value may seem low relative to the observed yields during 1931-1960. Again, the effect of not including discards of undersized haddock during the time period of unregulated mesh size, 1931 to the early-1950s, likely leads to a downward bias in the estimates of recruitment from this period and this reduces the apparent stock productivity. Regardless, the stock-recruitment plot (Figure 3.3.7) shows that recruitment values near $\mathrm{B}_{\mathrm{MSY}}$ are roughly 54 million fish which is consistent with the long-term average (56 million) of the observed recruitment series during 1931-2000 excluding the exceptional 1962 and 1963 year classes.

Parameter uncertainty plots show histograms of 5000 MCMC sample estimates of MSY, $\mathrm{B}_{\text {MSY }}$, and $\mathrm{F}_{\mathrm{MSY}}$ drawn from the posterior distribution of the MLE based on an uninformative prior (Figure 3.3.8). For MSY, the 80 percent credibility interval was ($33,100 \mathrm{mt}, 41,500 \mathrm{mt}$) with a median of $37,300 \mathrm{mt}$. For $\mathrm{B}_{\text {MSY }}$, the 80 percent credibility interval was ($213,700 \mathrm{mt}, 253,000 \mathrm{mt}$) with a median of $233,500 \mathrm{mt}$. For $\mathrm{F}_{\mathrm{MSY}}$, the 80 percent credibility interval was $(0.165,0.225)$
with a median of 0.19 . Overall, the point estimates of MSY, $\mathrm{B}_{\mathrm{MSY}}$, and $\mathrm{F}_{\text {MSY }}$ were similar to the medians of the MCMC samples.

Reference Point Advice

Based on the conformance of the nonparametric proxy and parametric analyses, the following management parameters (based on the non-parametric approach) were selected by the Working Group as being most appropriate: $\mathrm{Bmsy}=250,300 \mathrm{mt}, \mathrm{Fmsy}=0.263$, MSY $=52,900 \mathrm{mt}$. The median recruitment, stock-recruitment scatterplot, and replacement lines under $\mathrm{F}=0$ and $\mathrm{F}=0.263$ are given in Figure 3.5.9. The non-parametric approach was selected because the best fit parametric model had a nonstationary residual pattern (Figure 3.3.5) which suggested that further research w needed to apply this approach.

Projections

Stochastic age-based projections were performed over a 10-year time horizon for 2001-2010 to compute likely trajectories of spawning biomass and catch under two fishing mortality scenarios: (i) $\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}$ and (ii) F calculated to rebuild the stock to $\mathrm{B}_{\mathrm{MSY}}=250,300 \mathrm{mt}$ in 2009. Recruitment was modeled by resampling from the CDF of the recruitments from $\mathrm{SSBs}>75,000 \mathrm{mt}$, excepting the 1963 year class.

Projections used values of spawning stock weights at age, catch weights at age, maturity fraction at age, fishery selectivity at age, and natural mortality that were equal to those used in the spawning biomass and yield per recruit analyses of the current fishery (Table 3.3.2). A total of 1,000 bootstrap realizations of the initial population size at age vector at the beginning of 2001 were used for the projections. A total of 50 simulations were conducted for each initial population vector giving a total of 50,000 simulated population trajectories. Fully-recruited fishing mortality in 2001 was based on preliminary estimates of total catch in $2001(11,553.6 \mathrm{mt}$ with USA catch $=4841.6 \mathrm{mt}$ and Canadian catch $=6712.0 \mathrm{mt}$); this gave a median $\mathrm{F}_{2001}=0.19$. The fully-recruited fishing mortality in 2002 was taken to be the Amendment 7 fishing mortality target for Georges Bank haddock of $\mathrm{F}_{0.1}=0.26$. Fishing mortality rates in 2003-2009 were set according to the two scenarios: (i) $\mathrm{F}=\mathrm{F}_{\mathrm{MSY}}$ and (ii) F calculated to rebuild the stock to $\mathrm{B}_{\mathrm{MSY}}=250,300 \mathrm{mt}$ in 2009.

The medium term projections under fishing mortality scenario (i) (Figure 3.3.10) show that fishing at $\mathrm{F}_{\text {MSY }}$ during 2003-2009 would give a 35% probability of achieving $\mathrm{B}_{\text {MSY }}$ in 2009.

The medium term projections under fishing mortality scenario (ii) (Figure 3.3.10) show that the F calculated to rebuild the stock to $\mathrm{B}_{\text {MSY }}$ in 2009 with at least a 50% probability would be $\mathrm{F}_{\text {REbuild }}=0.21$. Projections results show that fishing at $\mathrm{F}_{\text {Rebuild }}$ during 2003-2009 would give a 53% probability of achieving $\mathrm{B}_{\text {MSY }}$ in 2009 . Projected median spawning biomass would increase from 80,500 mt in 2001 to $254,000 \mathrm{mt}$ in 2009 (Figure 3.3.11). Projected median catches would increase from 11,500 mt in 2001 to roughly 43,600 mt in 2009 (Figure 3.3.12).

Table 3.3.1. Stock-recruitment model comparisons for Georges Bank haddock

Georges Bank Haddock Model Comparison							Prior	Prior	Prior	Prior
SMAX =	199.5		Prior	Prior	Prior	Prior				
	Prior	Prior								
	0	0	0.25	0	0.25	0	0.25	0	0.25	0
	BH	ABH	PBH	PABH	PRBH	PRABH	RK	ARK	PRK	PARK
Posterior Probability	0.00	0.00	0.43	0.00	0.56	0.00	0.01	0.00	0.00	0.00
Odds Ratio for Most Likely Model			1.31		1.00		50.70		588.75	
Normalized Likelihood	0.00	0.00	$\begin{gathered} 0.43 \\ \hline 450.1136 \end{gathered}$	0.00	$\begin{gathered} 0.56 \\ \hline 588.74903 \\ \hline \end{gathered}$	0.00	0.01	0.00	0.00	0.00
Model AIC Ratio		0.00					11.6115466		1	0.00
	BH	ABH	PBH	PABH	PRBH	PRABH	RK	ARK	PRK	PARK
Number_of_data_points	70	70	70	70	70	70	70	70	70	70
Number_of_parameters	3	4	3	4	3	4	3	4	3	4
Negative_loglikelihood	337.963	328.003	338.497	327.477	341.129	330.825	342.401	329.758	346.749	331.503
Bias-corrected_AIC	682.29	664.622	683.851	665.937	683.314	664.965	691.166	668.131	696.07	672.205
Diagnostic Comments	MSY and SMSY are outside credible range	Power spectrum dominant frequency exceeds 1/2 time series length		Power spectrum dominant frequency exceeds 1/2 time series length	Most Likely Model	Power spectrum dominant frequency exceeds 1/2 time series length		Power spectrum dominant frequency exceeds $1 / 2$ time series length		Power spectrum dominant frequency exceeds 1/2 time series length
Parameter Point Estimates										

MSY	250.308	1990.13	40.8311	28.0879	36.7247	37.1899	35.0312	39.1603	36.9555	47.2048
FMSY	0.145	0.145	0.21	0.29	0.18	0.19	0.53	0.53	0.71	1.04
SMSY	2020.56	16065	235.313	122.094	243.145	234.469	93.4673	104.484	79.4513	78.0314
alpha	824.447	6676.98	94.6193	50.7077	96.3656	95.0454	4.54054E-05	4.54149E-05	0.246943	0.54437
expected_alpha	1961.96	15797.2	229.613	127.855	232.272	227.714	0.000121489	0.00012059	0.709649	1.73527
beta	2068.06	17047.7	154.847	51.8471	187.557	178.74	-9.12E-03	-8.16E-03	-0.011437	-0.012309
RMAX	72.5348	77.2331	53.2713	40.2478	49.6695	50.131	32.3677	39.2096	26.08	29.5075
expected_RMAX	172.613	182.728	129.274	101.481	119.719	120.106	86.6045	104.113	74.947	94.0604
Prior_mean			0.74	0.74	75.229	75.229			0.72	0.72
Prior_se			0.11	0.11	5.646	5.646			0.21	0.21
Z_Myers	0.48	0.47	0.58	0.69	0.54	0.55				
sigma	1.317	1.312	1.332	1.360	1.326	1.322	1.403	1.398	1.453	1.523
phi		0.50		0.53		0.50		0.55		0.61
sigmaw		1.14		1.15		1.14		1.17		1.20
last log-residual R		0.899		0.747		0.878		0.445		0.149
expected lognormal error term	2.38	2.37	2.43	2.52	2.41	2.40	2.68	2.66	2.87	3.19

Table 3.3.2. Yield and biomass per recruit for Georges Bank haddock, using current growth and maturity.

The NEFC Yield and Stock Size per Recruit Program - PDBYPRC
PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-1999
Run Date: 21-2-2002; Time: 09:17:28.80

Gb Haddock using recent weight at age and maturity

Proportion of F before spawning: 0.2500							
Proportion of M before spawning: 0.2500							
Natural Mortality is Constant at: 0.200							
Initial age is: 1; Last age is: 9							
Last age is a PLUS group;							
Original age-specific PRs, Mats, and Mean Wts from file: ==> C:\groundfish $\backslash y p r$ \gbhad_new_ypr.dat							
Age-specific Input data for Yield per Recruit Analysis							
Age	\| Fish Mort	Nat Mort Pattern	Proportion Mature	\|	Average Catch	Weights Stock	
1	0.0030	1.0000	0.0400		0.545	0.388	
2	0.0880	1.0000	0.4900	\|	1.060	0.732	
3	0.4710	1.0000	0.9500	\|	1.533	1.277	
4	0.9200	1.0000	1.0000	।	1.874	1.704	
5	1.0000	1.0000	1.0000	\|	2.247	2.039	
6	1.0000	1.0000	1.0000	।	2.498	2.350	
7	1.0000	1.0000	1.0000	\|	2.970	2.749	
8	1.0000	1.0000	1.0000	\|	3.180	3.204	
9	1.0000	1.0000	1.0000	\\|	3.678	3.678	

Summary of Yield per Recruit Analysis:

Table 3.3.3. Yield and biomass per recruit of Georges Bank haddock using 1931 growth and maturity patterns.

The NEFC Yield and Stock Size per Recruit Program - PDBYPR PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-199										
Gb Haddock using 1931 weight at age and maturity										
```Proportion of F before spawning: 0.2500 Proportion of M before spawning: 0.2500 Natural Mortality is Constant at: 0.200 Initial age is: 1; Last age is: 9 Last age is a PLUS group; Original age-specific PRs, Mats, and Mean Wts from file: ==> C:\groundfish\ypr\gbhad old ypr.dat```										
Age-specific Input data for Yield per Recruit Analysis										
Age \| Fish Mort Nat Mort	Proportion	Average Weights	Pattern Pattern	Mature	Catch Stock					
2 l										
3 l										
4 l										
$5 \mathrm{\mid ll} 1.0000$ 1.0000 \| 1.0000	1.6501 .650									
$6 \mid 1.0000$ l 1.0000 \| $1.0000 \mid 2.010 \quad 2.010$										
7 \| 1.0000 1.0000	$1.0000 \mid 2.310$ 2.310									
8 1.0000 1.0000 1.0000 2.540 2.540										

Summary of Yield per Recruit Analysis:

Slope of the Yield/Recruit Curve at $\mathrm{F}=0.00$ : --> 6.6163								
$F$ level at slope=1/10 of the above slope (F0.1):								0.246
	Yield/	ecruit cor	rrespondi	ng to F0		0.5		
F level to produce Maximum Yield/R								2.313
	Yield	cruit cor	respond	ng to Fma		0.69	0.277	
	level	$40 \%$	Max Spaw	ning Pot	tial (F)	: ----		
	SSB/Re	uit cor	spondin	to F40		3.059		
Listing of Yield per Recruit Results for:								
FMORT		TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
0.00		0.00000	0.00000	5.5167	9.1092	3.9070	7.6478	$100.00$
	0.10	0.20503	0.39463	4.4964	6.3547	2.8820	4.9214	64.35
	0.20	0.30918	0.54308	3.9803	5.0604	2.3615	3.6462	47.68
F0. 1	0.25	0.34162	0.57951	3.8200	4.6804	2.1993	3.2728	42.79
F40\%	0.28	0.36076	0.59856	3.7257	4.4627	2.1037	3.0590	40.00
	0.30	0.37288	0.60964	3.6660	4.3277	2.0431	2.9265	38.27
	0.40	0.41630	0.64304	3.4529	3.8633	1.8262	2.4712	32.31
	0.50	0.44807	0.66132	3.2978	3.5453	1.6675	2.1594	28.23
	0.60	0.47253	0.67205	3.1790	3.3146	1.5453	1.9330	25.28
	0.70	0.49208	0.67877	3.0846	3.1398	1.4477	1.7611	23.03
	0.80	0.50816	0.68321	3.0073	3.0025	1.3674	1.6258	21.26
	0.90	0.52171	0.68628	2.9425	2.8916	1.2999	1.5161	19.82
	1.00	0.53332	0.68848	2.8872	2.7998	1.2420	1.4252	18.64
	1.10	0.54345	0.69012	2.8393	2.7224	1.1915	1.3482	17.63
	1.20	0.55238	0.69136	2.7971	2.6560	1.1470	1.2820	16.76
	1.30	0.56035	0.69232	2.7596	2.5983	1.1074	1.2243	16.01
	1.40	0.56752	0.69306	2.7260	2.5475	1.0717	1.1733	15.34
	1.50	0.57404	0.69364	2.6956	2.5023	1.0393	1.1279	14.75
	1.60	0.58000	0.69408	2.6679	2.4617	1.0098	1.0871	14.21
	1.70	0.58547	0.69442	2.6425	2.4250	0.9826	1.0501	13.73
	1.80	0.59054	0.69466	2.6190	2.3916	0.9575	1.0163	$13.29$
	1.90	0.59525	0.69482	2.5973	2.3609	0.9343	0.9853	12.88
	2.00	0.59964	0.69492	2.5770	2.3327	0.9126	0.9567	12.51

Georges Bank Haddock


Figure 3.3.1. Landings and research vessel survey abundance indices for Georges Bank haddock.

Georges Bank Haddock
(a)

(b) Georges Bank Haddock


Georges Bank Haddock


		F0.1	F40\% MSP
F reference point		0.263	0.263
ssb per recruit at $F$		3.6374	

Figure 3.3.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Georges Bank haddock. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F0.1 and F40\% MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.3.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$




		F0.1	F40\% MSP
F reference point		0.246	0.277
ssb per recruit at F		3.27	3.06
1931-1960 Year Classes	Recruitment   (millions)	SS Biomass at F0.1	SS Biomass at F40\%
n	30	30	30
mean	75.23	246.00	230.20
min	23.64	77.29	72.33
max	134.23	438.93	410.74
10th \%'tile	46.16	150.93	141.24
25th \%'tile	55.85	182.64	170.91
50th \%'tile	61.30	200.43	187.56
75th \%'tile	103.12	337.20	315.54
90th \%'tile	125.09	409.03	382.76
Std Dev	30.92	101.12	94.62
CV	0.41	0.41	0.41
For Top Quartile of SSB			
Mean	73.27	239.61	
Median	62.02	202.81	224.22
			189.79

Figure 3.3.3. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Georges Bank haddock, 1931-1960. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \%$ MSP, assuming early patterns of growth and maturity at age (Table 3.3.3). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.


Figure 3.3.4. Georges Bank haddock periodicity of environmental forcing for autoregressive stock-recruitment models


Figure 3.3.5. Georges Bank haddock standardized residuals for the most likely stock-recruitment model


Figure 3.3.6. Georges Bank haddock equilibrium yield vs. F for the most likely stock-recruitment model


Figure 3.3.7. Stock recruitment relationship for best fit parametric model Georges Bank haddock. Stock-recruitment data points are overplotted, along with the predicted S-R line and replacement lines for $\mathrm{F}=100 \% \mathrm{msp}=0.00$ and $\mathrm{F} 40 \% \mathrm{msp}=0.26$.


Figure 3.3.8. Georges Bank haddock posterior distribution of MSY, BMSY and FMSY for most likely model fit.

## Georges Bank Haddock



Figure 3.3.9. Stock and recruitment data for Georges Bank haddock. For the empirical non-parametric approach the mean recruitment above $75,000 \mathrm{mt}$ of spawning stock biomass is plotted (excluding the 1963 year class), along with replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 40 \%$ $\mathrm{msp}=0.263$.

Georges Bank Haddock


Figure 3.3.10. Probability that Georges Bank haddock spawning biomass will exceed Bmsy ( $250,300 \mathrm{mt}$ ) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.


Figure 3.3.11. Median and $80 \%$ confidence interval of predicted spawning biomass for Georges Bank haddock under F-rebuild fishing mortality rates.


Figure 3.3.12. Median and $80 \%$ confidence interval of predicted catch for Georges Bank haddock under F-rebuild fishing mortality rates.

### 3.4 Gulf of Maine haddock

## Catch and Survey Indices

Between 1960 and 2000, landings of Gulf of Maine haddock have generally ranged between 2,000 and $6,000 \mathrm{mt}$ per year with occasional periods of higher or lower catches (Figure 3.4.1). Following recruitment of the 1975 and 1978 year classes, landings of haddock in the Gulf of Maine ranged between 6,000 and 8,000 mt from 1980 to 1984. Landings declined steadily between 1982 and the mid 1990s, reaching an historic low of 112 mt in 1994. Haddock landings have increased steadily since 1994 reaching $1,000 \mathrm{mt}$ in 1998 but declined thereafter to about $600-700 \mathrm{mt}$ in 1999 and 2000.

Survey biomass indices (stratified mean weight/tow) are available from the NEFSC spring (1968 to 2000) and autumn (1963 to 2000) surveys. Spring survey biomass indices declined from high levels during the late 1970s to record low levels by 1990 (Figure 3.4.1). During the 1990s, spring survey indices remained at chronic low levels, with the exception of 1997, 1999, and 2000. The 2000 biomass index was the highest observed since 1985.

NEFSC autumn survey biomass indices declined from very high levels in the mid -1960s to low levels in the early 1970s. The indices increased during the late 1970s and early 1980s following recruitment of the 1975 and 1978 year classes, and subsequently declined to historic low levels in 1991. Biomass indices increased gradually during the mid 1990s and more rapidly beginning in 1996. The 1999 autumn survey biomass index was the highest observed since1985, and the 2000 biomass index is approaching levels observed during the mid 1960s.

## Stock Assessment

The Gulf of Maine haddock stock was last assessed in 2000, and the results were reviewed at the $32^{\text {nd }}$ Northeast Regional Stock Assessment Workshop in 2000 (NEFSC 2001b). At that time, exploitation ratios (catch/survey biomass) had declined and were among the lowest on record. Total survey biomass indices had begun to increase from the very low levels of the early 1990s, and survey indices at age reflected an increase in recruitment and some broadening of the age structure. The survey indices for younger ages indicated improved recruitment, especially for the 1998 year class.

## Relative Exploitation Rate Analyses

The replacement level of relative F is estimated to be 0.23 (Table 4.1.1). By either fixing the biomass index associated with MSY or MSY itself, the other quantity can be calculated from MSY/I = relF. During the period 1959-1966 landings of Gulf of Maine haddock averaged 5,100 mt and were stable (Clark et al. 1982). If this value is fixed as MSY, then the recommended Bmsy proxy is $5.1 / 0.23=22.17 \mathrm{~kg} /$ tow. This value is within the observed survey series (Figure 3.4.1) and is similar in relative increase to that proposed for the Georges bank haddock stock. These two stocks are believed to be closely linked (Figure 3.4.3), so the proposed increases in their reference points (different scales but approximately similar proportional increases in proposed BMSY) seem warranted.

## Gulf of Maine Haddock




Figure 3.4.1. Landings and research vessel survey abundance indices for Gulf of Maine haddock.

## GOM Haddock, Fall



Figure 3.4.2. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Gulf of Maine haddock - fall. Dashed lines indicate proposed biomass and fishing mortality rate proxies of Bmsy and Fmsy.

Fall Surveys


Spring Surveys


Figure 3.4.3. Relationships between survey abundance indices for Gulf of Maine and Georges Bank haddock in fall and spring surveys. Data are annual weight per tow indices (kg).

### 3.5 Georges Bank yellowtail

## Catch and Survey Indices

Exploitation of Georges Bank yellowtail flounder began in the mid 1930s with catches peaking in the 1960s and early 1970s followed by a decline in the 1980s and early 1990s and an increasing trend over the most recent four years (Figure 3.5.1). Both research survey abundance indices for Georges Bank yellowtail flounder show an overall decline and rebuilding pattern from the 1960s to present (Figure 3.5.1). It is thought that the large catches of the 1960s and 1970s reduced the population abundance so much that the reduced catches in the 1980s were still associated with high fishing mortality rates. Fishing mortality was not reduced until the mid 1990s when strict management regulations were implemented by both the US and Canada. The stock demonstrated a rapid rebuilding and has still appears to be increasing according to the most recent stock assessment.

## Stock Assessment

The most recent assessment for Georges Bank yellowtail flounder was reviewed by the Transboundary Resource Assessment Committee (TRAC) in 2001 (Stone et al. 2001). The stock was analyzed with virtual population analysis (VPA), with supporting analysis provided by surplus production modeling. The VPA assessment used data for years 1973 through 2000 and ages 1 through $6+$ and was felt to be representative of stock dynamics for the time period. Plots of stock and recruitment estimates from the VPA are provided in Figure 3.5.2. Recruitment has increased with increasing spawning stock size overall, with the most recent year class estimate occurring near the mean of top quartile of spawning stock size. However, the most recent year class is the most poorly estimated in the VPA and may increase or decrease as more catch is taken from the cohort.

## Yield and Spawning Stock Biomass per Recruit

The fishing mortality reference points $\mathrm{F}(0.1)$ and $\mathrm{F} 40 \% \mathrm{MSP}$ given in Figure 3.5.2 were calculated for this exercise using ages 1 through $6+$ in order to be consistent with the projections described below, and thus may differ slightly from previously reported values (see Table 3.5.2). From the yield per recruit analysis, $\mathrm{F}(0.1)=0.265$ and $\mathrm{Fmax}=0.8$ (both are fully recruited Fs ). From the spawning stock biomass per recruit analysis, $\mathrm{F} 40 \% \mathrm{MSP}=0.248$ (fully recruited F ) with an associated spawning stock biomass per recruit of 1.0925 kg .

## Empirical Nonparametric Approach

If F40\%MSP is assumed to be an adequate proxy for Fmsy, then the fishing mortality threshold is 0.248 . This fishing mortality rate produces 1.093 kg of spawning stock biomass per recruit and 0.2398 kg of yield per recruit (including discards). The strong correlation between the VPA and hindcast stock and recruitment data led to use of hindcast recruitment from the period 1963-1972 in addition to the VPA recruitment data. With this combined dataset, there appears to be two levels of recruitment split at $5,000 \mathrm{mt}$ of spawning biomass. Thus, the arithmetic average of recruitment for spawning biomasses greater than $5,000 \mathrm{mt}$ was used as a proxy for recruitment at maximum sustainable yield; this recruitment is 53.8 million fish. Multiplying this recruitment
level by the per recruit biomasses associated with F40\%MSP results in a Bmsy proxy of 58,800 mt and an MSY proxy of $12,900 \mathrm{mt}$ assuming that all fish caught are landed.

## Parametric Model Approach

Maximum likelihood fits of the 14 parametric stock-recruitment models to the Georges Bank yellowtail flounder data from 1973-1999 are listed below (Table 3.5.1, see Table 2.2.1 for model acronyms). The six hierarchical criteria are applied to each of the models to determine the set of candidate models.

The priors for the Beverton and Holt steepness parameter and Ricker slope parameter from Myers et al (1999) were thought to be insufficient for the yellowtail stocks as the only data sets used to develop the prior were Georges Bank and Southern New England yellowtail stocks. Thus, models PBH, PABH, P2BH, P2ABH, PRK, and PARK are not considered. Criteria 1-4 and 6 are satisfied by all remaining models. The fifth criteria is not satisfied by any of the remaining autoregressive error models. Models $\mathrm{BH}, \mathrm{PRBH}, \mathrm{RK}$ and PRK provided nearly equal statistical fits to the stock-recruitment data. These four models have maximum recruitment levels below 45 million fish, which is within the $90^{\text {th }}$ percentile of the observed recruitment levels. However, examination of hindcast stock and recruitment showed a strong match between the VPA and hindcast values in the years of overlap, with the hindcast stock and recruitment in the year classes prior to the VPA at higher levels on average than the VPA (Figure 3.5.3). This observation led to the creation of a seventh criteria: expected recruitment at high stock sizes is consistent with hindcast recruitment. The recruitment for year classes 1963-1972 was used to generate the prior for unfished recruitment for the PRHCBH and PRHCABH models. Application of the seventh criteria left the PRHCBH model as the only candidate parametric model for Georges Bank yellowtail flounder.

The results of using the PRHCBH model as the best fit parametric model are shown below (Figures 3.5.4-3.5.7). The standardized residual plot of the fit of the PRHCBH model to the stock-recruitment data shows that the standardized residuals generally lie within $\pm$ two standard deviations of zero (Figure 3.5.4), with the exception of the 1982 year class.

In the equilibrium yield plot (Figure 3.5.5), the yield surface is relatively flat in the neighborhood of the point estimate of Fmsy=0.32. This estimate of Fmsy is greater than the calculated values for $\mathrm{F}(0.1)(0.265)$ and $\mathrm{F} 40 \% \mathrm{MSP}(0.248)$, which are traditional proxies for Fmsy. This difference is most likely due to the high growth rate, strong resiliency, and current partial recruitment pattern for this stock. For comparison, Fmsy generates approximately $34 \%$ of maximum spawning potential. The point estimates of Smsy ( $63,200 \mathrm{mt}$ ) and MSY ( $17,600 \mathrm{mt}$ ) appear consistent with the nonparametric proxy estimate of Smsy, once the hindcast stock and recruitment data are considered, and previous estimates of MSY. The stock-recruitment plot (Figure 3.5.6) shows that expected recruitment values near Smsy are around 68 million fish, which is within the maximum observed range from the VPA data and below the average of the 1963-1972 hindcast recruitments.

Parameter uncertainty plots show histograms of 5000 MCMC sample estimates of MSY, Smsy, and Fmsy drawn from the posterior distribution of the MLE (Figure 3.5.7). For MSY, the 80 percent credibility interval was $(16,400,18,900)$ with a median of $17,600 \mathrm{mt}$. For Smsy, the 80
percent credibility level was $(57,900,67,700)$ with a median of $62,700 \mathrm{mt}$. For Fmsy, the 80 percent credibility level was $(0.285,0.365)$ with a median of 0.325 . Overall, the point estimates of MSY, Smsy, and Fmsy were nearly identical to the medians of the MCMC samples.

## Reference Points

Based on the conformance of the recruitment-biomass per recruit analyses and the parametric stock-recruitment relationship, the following management parameters are considered most appropriate: Bmsy=58,800 mt, Fmsy=0.248 (fully recruited F), and MSY=12,900 mt (including discards). This level of yield is expected by building the stock size through reduced fishing mortality, relative to historical levels that were above 1.0 , increased survivorship of young fish relative to the historical use of much smaller mesh size when peak catches were taken, and an expectation that on average recruitment will stay within the range predicted by the most recent stock assessment The median recruitment, stock-recruitment scatterplot, and replacement lines under $\mathrm{F}=0$ and $\mathrm{F}=0.248$ are given in Figure 3.5.8.

## Projections

Given that the empirical approach was assumed to provide the most appropriate fit for the stock and recruitment data, projections were conducted assuming two empirical cumulative distribution functions: one for spawning biomasses below $5,000 \mathrm{mt}$ and one for spawning biomasses above $5,000 \mathrm{mt}$. Since the last year in the VPA was 2000, catch for 2001 was estimated using the US landings from Jan-Nov ( $7,062 \mathrm{mt}$ ), the proportion of US landings in JanNov in 2000 by gear type, the average US discard:landings ratio for 1995-2000 (9.6\%), and an estimate of Canadian catch in $2001(2,890 \mathrm{mt})$. The 2001 catch estimate is $7,740 \mathrm{mt}$. For 2002, the fishery was assumed to achieve the target rate of $\mathrm{F}(0.1)$, which was calculated as 0.265 (fully recruited F) for these projections. For years 2003 through 2009, the fishery was assumed to fish at a rate of $\mathrm{F} 40 \% \mathrm{MSP}$ ( 0.248 fully recruited F ). Under these assumptions, there is a $40.4 \%$ chance that the spawning biomass in 2009 will be at least as large as Bmsy (Figure 3.5.9). Thus, a rebuilding fishing mortality rate must be calculated. A fishing mortality rate of 0.22 (fully recruited F) gives a $51.4 \%$ probability that the spawning biomass in 2009 will be at least as large as Bmsy (Figure 3.5.9). Based on these projections, the median fishing mortality rate in 2001 was 0.185 which can be increased $19 \%$ to the Frebuild level of 0.22 and still achieve the rebuilding goal of Bmsy. Under these conditions, the median spawning stock biomass in 2009 will be $59,300 \mathrm{mt}$ with an $80 \%$ confidence interval of $42,900 \mathrm{mt}$ to $78,000 \mathrm{mt}$ (Figure 3.5.10). The associated median catch will be $11,600 \mathrm{mt}$ with an $80 \%$ confidence interval of $8,500 \mathrm{mt}$ to $15,200 \mathrm{mt}$ (Figure 3.5.11)

Table 3.5.1. Summary of parametric fits for Georges Bank yellowtail flounder.

## Georges Bank Yellowtail Flounder

												Prior	Prior	Prior
	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	BH	ABH	PBH	PABH	PRBH	PRABH	P2BH	P2ABH	RK	ARK	PRK	PARK	PRHCBH	PRHCABH
Posterior Probability Odds Ratio for Most Likely Model	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	0.00
Normalized Likelihood Model AIC Ratio	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	${ }_{0}^{0.000}$	1.000 1	$\begin{gathered} 0.000 \\ 0 \end{gathered}$
	BH	ABH	PBH	PABH	PRBH	PRABH	P2BH	P2ABH	RK	ARK	PRK	PARK	PRHCBH	PRHCABH
Number_of_data_points	27	27	27	27	27	27	27	27	27	27	27	27	27	27
Number_of_parameters	3	,	3		,	,	3	,	3	,	,	4	3	4
Fit_negloglikelihood	108.162	105.653	108.249	105.994	108.309	105.669	108.413	105.962	108.388	106.105	108.910	106.94	108.788	106.937
Penālty_steepness	0	0	-1.61707	-1.497	0	0	-1.31856	-1.36112	0	0	0	-	,	0
Penalty_slope	0	0	-	,	0	0	,	-	0	0	1.24421	1.05932	0	0
Penalty_unfished_R	,	0	0	0	2.34124	2.32852	2.38292	2.33588	0	0	0	0	2.14173	2.14266
Negative_loglikeli ihood	108.162	105.653	106.632	104.497	110.650	107.997	109.478	106.937	108.388	106.105	110.155	108	110.930	109.08
Bias-corrected_AIC	223.368	221.124	223.542	221.806	223.661	221.156	223.870	221.743	223.820	222.028	224.864	223.699	224.619	223.693
Diagnostic Comments	predicted R at high $S$ below mean from hindcast	auto-correlation implies long period forcing	insufficient information for steepness prior	insufficient information for steepness prior	predicted R at high S below mean from hindcast	auto-correlation implies long period forcing	insufficient information for steepness prior	insufficient information for steepness prior	predicted R at high S below mean from hindcast	auto-correlation implies long period forcing	insufficient information for slope prior	insufficient information for slope prior	model selected	auto-correlation implies long period forcing
Parameter Point Estimates														
MSY	10.10	7.86	11.44	9.69	8.39	8.39	8.34	8.12	9.94	9.14	11.57	9.40	17.55	17.72
FMSY	0.370	0.440	0.345	0.360	0.400	0.425	0.375	0.370	0.640	0.710	0.525	0.505	0.320	0.325
SMSY	31.82	21.18	38.41	31.29	24.63	23.33	25.95	25.58	19.22	16.16	26.63	22.39	63.15	62.86
alpha	47.4957	33.7564	55.9377	46.3317	37.8815	36.6725	38.9316	38.1003	1.56768	1.67495	1.35976	1.32092	90.0315	89.6324
expected_alpha	58.4841	41.7738	68.972	56.9967	46.7517	45.2635	48.1262	47.0907	1.93716	2.07107	1.69432	1.65452	111.96	111.34
beta	7.62838	3.41912	10.4767	7.96709	5.06115	4.1212	6.06283	6.06457	-0.049435	-0.060086	-0.033962	-0.040039	19.84	18.8743
steepness	0.810	0.870827	0.785	0.798832	0.836	0.858682	0.814	0.81096	N/A	N/A	N/A	N/A	0.756	0.764303
R_at_input_SMAX	39.23	30.8432	43.38	37.9741	33.23	32.9243	33.35	32.6333	29.00	21.9529	41.24	31.8355	58.16	58.9148
expected_R_at_input_SMAX	48.30	38.1687	53.49	46.7153	41.02	40.6371	41.22	40.3336	35.83	27.1447	51.39	39.8755	72.32	73.1829
unfished_S	122.10	88.7816	142.31	118.581	98.41	96.0444	100.27	98.0008	52.04	44.5986	69.62	58.0868	226.07	225.944
unfished_R	44.70	32.5046	52.10	43.4148	36.03	35.1637	36.71	35.8799	19.05	16.3284	25.49	21.2667	82.77	82.7222
sigma	0.645162	0.652836	0.647244	0.643688	0.648672	0.648802	0.651184	0.650928	0.650579	0.65159	0.663288	0.67109	0.660282	0.658588
phi	N/A	0.442203	N/A	0.386796	N/A	0.429107	N/A	0.413701	N/A	0.404685	N/A	0.401559	N/A	0.357835
sigmaw	N/A	0.585539	N/A	0.593586	N/A	0.586033	N/A	0.592613	N/A	0.595851	N/A	0.614607	N/A	0.61498
last_residual_R	N/A	3.24529	N/A	-3.39503	N/A	1.24743	N/A	1.69255	N/A	9.01503	N/A	0.566479	N/A	-22.8067
last_logresidual_R	N/A	0.101033	N/A	-0.095793	N/A	0.0376375	N/A	0.0514181	N/A	0.310536	N/A	0.0169164	N/A	-0.516012
expected_lognormàl_error_	1.23136	1.23751	1.23301	1.23019	1.23416	1.23426	1.23617	1.23597	1.23569	1.2365	1.24605	1.25255	1.24357	1.24218
prior_meān_steepness -	N/A	N/A	0.75	0.75	N/A	N/A	0.75	0.75	N/A	N/A	N/A	N/A	N/A	N/A
prior_se_steepness	N/A	N/A	0.07	0.07	N/A	N/A	0.07	0.07	N/A	N/A	N/A	N/A	N/A	N/A
prior_mean_slope	N/A	0.79	0.79	N/A	N/A									
prior_se_slope	N/A	0.34	0.34	N/A	N/A									
prior_mean_unfished_R	N/A	N/A	N/A	N/A	35.35	35.35	35.35	35.35	N/A	N/A	N/A	N/A	82.98	82.98
	N/A	N/A	N/A	N/A	4.09	4.09	4.09	4.09	N/A	N/A	N/A	N/A	3.39	3.39

Table 3.5.2. Yield and biomass per recruit of Georges Bank yellowtail flounder.

The NEFC Yield and Stock Size per Recruit Program - PDBYPRC PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-1999									
Run Date: 19- 2-2002; Time: 11:52:02.03- 2002									
Proportion of F before spawning: 0.4167   Proportion of $M$ before spawning: 0.4167   Natural Mortality is Constant at: 0.200   Initial age is: 1; Last age is: 6   Last age is a PLUS group;   Original age-specific PRs, Mats, and Mean Wts from file: ==> C:\groundfish \ypr\gbyt_ypr.dat									
Age-specific Input data for Yield per Recruit Analysis									
Age \| Fish Mort Nat Mort	ProportionAverage Weights   \| Pattern Pattern   Mature Catch Stock								
1 0.0060 1.0000 0.0000 0.181 0.181   2 0.3150 1.0000 0.5200 0.349 0.349   3 0.6480 1.0000 0.8600 0.462 0.462   4 1.0000 1.0000 0.9800 0.578 0.578   5 1.0000 1.0000 1.0000 0.710 0.710   6 1.0000 1.0000 1.0000 0.948 0.948									
Summary of Yield per Recruit Analysis:									
Slope of the Yield/Recruit Curve at $F=0.00:-->$ 2.5847   F level at slope=1/10 of the above slope (F0.1): $----->$    Yield/Recruit corresponding to F0.1: ----->   F level to produce Maximum Yield/Recruit (Fmax) : 0.2444   Yield/Recruit corresponding to Fmax: -----> 0.2802   F level at 40 of Max Spawning Potential (F40):     SSB/Recruit corresponding to F40:----------->									
								0.265	
								0.800	
1 Listing of Yield per Recruit Results for:									
FMORT		TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP	
0.000.100.20		0.00000	0.00000	5.5167	3.3366	3.6975	2.7314	100.00	
		0.22655	0.15910	4.3893	2.3163	2.5736	1.7285	63.28	
		0.34186	0.22291	3.8178	1.8175	2.0055	1.2441	45.55	
$\text { F0. } 1$	0.26	0.39118	0.24444	3.5742	1.6120	1.7642	1.0468	38.33	
$\mathrm{F} 40 \%$	0.25	0.37959	0.23976	3.6314	1.6597	1.8208	1.0925	40.00	
	0.30	0.41255	0.25241	3.4690	1.5251	1. 6602	0.9639	35.29	
	0.40	0.46084	0.26697	3.2318	1.3346	1.4266	0.7838	28.69	
	0.50	0.49627	0.27431	3.0588	1.2012	1.2570	0.6593	24.14	
	0.60	0.52359	0.27795	2.9259	1.1030	1.1276	0.5689	20.83	
	0.70	0.54548	0.27963	2.8200	1.0278	1.0252	0.5004	18.32	
	0.80	0.56351	0.28025	2.7332	0.9684	0.9418	0.4469	16.36	
Fmax	0.80	0.56356	0.28025	2.7330	0.9682	0.9416	0.4468	16.36	
	0.90	0.57871	0.28028	2.6604	0.9202	0.8723	0.4041	14.79	
	1.00	0.59177	0.28001	2.5981	0.8802	0.8134	0.3690	13.51	
	1.10	0.60314	0.27958	2.5441	0.8465	0.7626	0.3397	12.44	
	1.20	0.61318	0.27907	2.4966	0.8177	0.7183	0.3148	11.53	
	1.30	0.62214	0.27853	2.4544	0.7927	0.6793	0.2935	10.75	
	1.40	0.63020	0.27799	2.4166	0.7707	0.6445	0.2749	10.07	
	1.50	0.63750	0.27747	2.3825	0.7513	0.6134	0.2587	9.47	
	1.60	0.64417	0.27696	2.3515	0.7339	0.5853	0.2442	8.94	
	1.70	0.65030	0.27647	2.3231	0.7182	0.5597	0.2314	8.47	
	1.80	0.65595	0.27601	2.2970	0.7040	0.5364	0.2198	8.05	
	1.90	0.66119	0.27557	2.2729	0.6911	0.5150	0.2093	7.66	
	2.00	0.66607	0.27515	2.2506	0.6792	0.4952	0.1998	7.32	



Figure 3.5.1. Landings and research vessel survey abundance indices for Georges Bank yellowtail flounder.
(a)

(b)

(c)


		F0.1	F40\%MSP
F reference point		0.265	0.248
ssb per recruit at F		1.047	1.093
n	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
mean	37	37	37
min	42.03	44.00	45.94
max	5.82	6.09	6.36
10th \%'tile	143.75	150.51	157.12
25th \%'tile	8.58	8.99	9.38
50th \%'tile	15.76	16.50	17.23
75th \%'tile	23.44	24.54	25.62
90th \%'tile	61.77	64.67	67.51
Std Dev	80.56	84.35	88.05
CV	34.97	36.62	38.23
For Top Quartile of SSB	0.83	0.87	0.91
Mean			
Median	69.15	72.40	75.58
For SSB>5,000 mt	63.96	66.97	69.91
Mean			56.30

Figure 3.5.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Georges Bank yellowtail flounder. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \%$ MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.5.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$. Year classes from 1963-1972 are hindcast from VPA-fall survey correlations (Figure 3.5.3).


Figure 3.5.3. Comparison of stock and recruitment data from virtual population analysis (VPA) and hindcast for Georges Bank yellowtail flounder.


Figure 3.5.4. Standardized residuals from best fit parametric model (PRHCBH) for Georges Bank yellowtail flounder.


Figure 3.5.5. Equilibrium yield from best fit parametric model (PRHCBH) for Georges Bank yellowtail flounder

## Georges Bank Yellowtail Flounder



Figure 3.5.6. Stock recruitment relationship for best fit parametric model (PRHCBH) for Georges Bank yellowtail flounder. Hindcast stock-recruitment data points are overplotted, along with the predicted S-R line and replacement lines for $\mathrm{F}=100 \% \mathrm{msp}=0.00$ and $\mathrm{F} 40 \% \mathrm{msp}=0.25$.


Figure 3.5.7. Histograms of uncertainty in MSY, BMST and FMSY from 5000 MCMC evaluations of best fit parametric model (PRHCBH) for Georges Bank yellowtail flounder.

Georges Bank Yellowtail Flounder


Figure 3.5.8. Stock and recruitment data for Georges Bank yellowtail. For the empirical non-parametric approach the mean recruitment above $5,000 \mathrm{mt}$ of spawning stock biomass is plotted, along with replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 40 \% \mathrm{msp}=0.248$.

Georges Bank Yellowtail Flounder


Figure 3.5.9. Probability that Georges Bank yellowtail spawning biomass will exceed Bmsy $(58,800 \mathrm{mt})$ annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.


Figure 3.5.10. Median and $80 \%$ confidence interval of predicted spawning biomass for Georges Bank yellowtail flounder under F-msy fishing mortality rates.


Figure 3.5.11. Median and $80 \%$ confidence interval of predicted catch for Georges Bank yellowtail flounder under F-msy fishing mortality rates.

### 3.6 Southern New England yellowtail flounder

## Catch and Survey Indices

Exploitation of Southern New England yellowtail flounder began in the mid 1930s with catches peaking in the 1960s followed by a decline in the 1970s and 1980s and have remained low since 1993 (Figure 3.6.1, Lux 1969b). Both research survey abundance indices for Southern New England yellowtail flounder show a rapid decline in the early 1970s followed by low levels except for two peaks due to large year classes 1980 and 1987 (Figure 3.6.1). It is thought that the large catches of the 1960 s reduced the population abundance so much that the reduced catches in the 1980s were still associated with high fishing mortality rates. The stock appears to be increasing at a slow rate according to the most recent stock assessment.

## Stock Assessment

The most recent VPA assessment for Southern New England yellowtail flounder was reviewed as part of the 2000 assessment of 11 Northeast groundfish stocks conducted by Northern Demersal Working Group (NEFSC 2000). The stock was analyzed with virtual population analysis (VPA), with supporting analysis provided by surplus production modeling. The VPA assessment used data for years 1973 through 1998 and ages 1 through 7+ and was felt to be representative of stock dynamics for the time period. Plots of stock and recruitment estimates from the VPA are provided in Figure 3.6.2. Recruitment has increased somewhat with increasing spawning stock size overall, however the recruitment series is dominated by two large events, the 1980 and 1987 year classes.

## Yield and Spawning Stock Biomass per Recruit

The fishing mortality reference points $\mathrm{F}(0.1)$ and $\mathrm{F} 40 \% \mathrm{MSP}$ given in Figure 3.6.2 were calculated for this exercise using ages 1 through $7+$ in order to be consistent with the projections described below, and thus may differ slightly from previously reported values (Table 3.6.2). From the yield per recruit analysis, $F(0.1)=0.242$ and $\mathrm{Fmax}=1.5$ (both are fully recruited Fs). From the spawning stock biomass per recruit analysis, $\mathrm{F} 40 \% \mathrm{MSP}=0.269$ (fully recruited F ) with an associated spawning stock biomass per recruit of 1.1095 kg .

## Empirical Nonparametric Approach

If F40\%MSP is assumed to be an adequate proxy for Fmsy, then the fishing mortality threshold is 0.269 . This fishing mortality rate produces 1.1095 kg of spawning stock biomass per recruit and 0.2215 kg of yield per recruit (including discards). The strong correlation between the VPA and hindcast stock and recruitment data led to use of hindcast recruitment from the period 1963-1972 in addition to the VPA recruitment data. With this combined dataset, there did not appear to be a relationship between spawning stock size and recruitment. Thus, the mean of the entire time series is assumed to be representative of recruitment levels expected at maximum sustainable yield; this recruitment level is 40.7 million fish. Multiplying this recruitment level by the per recruit biomasses associated with F40\%MSP results in a Bmsy proxy of $45,200 \mathrm{mt}$ and an MSY proxy of $9,000 \mathrm{mt}$ assuming that all fish caught are landed.

## Parametric Model Approach

Maximum likelihood fits of the 24 parametric stock-recruitment models to the Southern New England yellowtail flounder data from 1973-1999 are listed below (Table 3.6.1, see Table 2.1.2 for model acronyms). The six hierarchical criteria are applied to each of the models to determine the set of candidate models.

The priors for the Beverton and Holt steepness parameter and Ricker slope parameter from Myers et al (1999) were thought to be insufficient for the yellowtail stocks as the only data sets used to develop the prior were Georges Bank and Southern New England yellowtail stocks. Thus, models PBH, PABH, P2BH, P2ABH, P2HCBH, P2HCABH, PRK, PARK, P2RK, P2ARK, P2HCRK, and P2HCARK are not considered. Of the remaining models, the first criterion is not satisfied for models $A B H$ and $\operatorname{PRABH}$, due to steepness being estimated at its boundary condition of 1.0. The fifth criteria is not satisfied by any of the remaining autoregressive error models. Models RK and PRRK are also not considered due to estimated Smsy values below historical catches of $20,00 \mathrm{mt}$. Models BH and PRBH have maximum recruitment levels below the mean of the VPA recruitment data ( 26 million fish) and well below the mean of the hindcast 1963-1972 recruitment data ( 77 million fish; Figure 3.6.4), so are not considered.

Given the two candidate models (PRHCBH and PRHCRK), the AIC criterion assigns the greatest probability to the PRHCBH model. The odds ratio of PRHCBH being true to PRHCRK being true is over $4: 1$. Thus, there is a clear basis for choosing between these two parametric models for Southern New England yellowtail flounder.

The results of using the PRHCBH model as the best fit parametric model are shown below (Figures 3.6.53.6.8). The standardized residual plot of the fit of the PRHCBH model to the stock-recruitment data shows that the standardized residuals generally lie within $\pm$ two standard deviations of zero (Figure 3.6.4), with the exception of the 1987 year class.

In the equilibrium yield plot (Figure 3.6.6), the yield surface is relatively flat in the neighborhood of the point estimate of $\mathrm{Fmsy}=0.320$. This estimate of Fmsy is greater than the calculated values for $\mathrm{F}(0.1)(0.242)$ and F40\%MSP ( 0.269 ), which are traditional proxies for Fmsy. This difference is most likely due to the high growth rate, strong resiliency, and current partial recruitment pattern for this stock. For comparison, Fmsy generates approximately $36 \%$ of maximum spawning potential. The point estimates of Smsy ( $64,200 \mathrm{mt}$ ) and MSY $(14,800 \mathrm{mt})$ appear consistent with the nonparametric proxy estimate of Smsy, once the hindcast stock and recruitment data are considered, and previous estimates of MSY. The stock-recruitment plot (Figure 3.6.7) shows that expected recruitment values near Smsy are around 65 million fish, which is within the maximum observed range from the VPA data and below the average of the 1963-1972 hindcast recruitments.

Parameter uncertainty plots show histograms of 5000 MCMC sample estimates of MSY, Smsy, and Fmsy drawn from the posterior distribution of the MLE (Figure 3.6.8). For MSY, the 80 percent credibility interval was $(12,900,16,400)$ with a median of $14,700 \mathrm{mt}$. For Smsy, the 80 percent credibility level was $(55,900$, $71,000)$ with a median of $63,300 \mathrm{mt}$. For Fmsy, the 80 percent credibility level was $(0.260,0.400)$ with a median of 0.330 . Overall, the point estimates of MSY, Smsy and Fmsy were nearly identical to the medians of the MCMC samples.

## Reference Points

Based on the conformance of the recruitment-biomass per recruit analyses and the parametric stock-recruitment relationship, the following management parameters are considered most appropriate: Bmsy=45,200 mt, Fmsy $=0.269$ (fully recruited F), and MSY $=9,000 \mathrm{mt}$ (including discards). This level of yield is expected by
building the stock size through reduced fishing mortality, relative to historical levels that were above 1.0 , increased survivorship of young fish relative to the historical use of much smaller mesh size when peak catches were taken, and an expectation that on average recruitment will stay within the range predicted by the most recent stock assessment. The median recruitment, stock-recruitment scatterplot, and replacement lines under $\mathrm{F}=0$ and $\mathrm{F}=0.269$ are given in Figure 3.5.9.

## Projections

No projections were considered to truly represent the potential rebuilding rate of this stock due to the recent history of low recruitment during the past ten years. The largest recruitment in this period was 16.4 million fish, which under no fishing would only produce $45,500 \mathrm{mt}$ of spawning biomass in equilibrium. Thus, until recruitment increases from this recent history, rebuilding is not expected to occur.

Table 3.6.1. Summary of parametric fits for Southern New England yellowtail flounder.

## Southern New England Yellowtail Flounder

	Prior											
	0	0	0	0	0	0	0	0	1	0	0	0
	BH	ABH	Pbh	PABH	PRBH	PRABH	P2BH	P2ABH	PRHCBH	PRHCABH	P2HCBH	P2 2 CABH
Posterior Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00
Odds Ratio for Most									1.00			
Normalized Likelihood	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.803	0.000	0.000	0.000
Model AIC Ratio	0	0	0	0	0	0	0	0	4.077565	0	0	0
	BH	ABH	PBH	PABH	PRBH	PRABH	P2BH	P2ABH	PRHCBH	PRHCABH	Р2 2 CCBH	P2HCABH
Number_of_data_points	25	25	25	25	25	25	25	25	25	25	25	25
Number_of_parameters	3	4	3	4	3	4	3	4	3	4	3	4
Fit_negloglikelihood	102.372	96.679	102.653	98.2818	102.605	96.8514	103.002	98.2964	104.158	100.641	104.158	100.737
Penalty_steepness	0	0	-1.51557	-1.3962	0	0	-1.33299	-1.39452	0	0	-1.73985	-1.70931
Penalty_slope	0	0	0	0	0	0	0	0	0	0	0	0
Penalty_unfished_R	0	0	0	0	2.07324	2.04498	2.12351	2.02848	2.57088	2.57576	2.57064	2.57106
Negative_loglikelihood	102.372	96.679	101.137	96.8856	104.678	98.8964	103.793	98.9303	106.729	103.217	104.989	101.599
Bias-corrected_AIC	211.887	203.359	212.448	206.564	212.353	203.703	213.147	206.593	215.458	211.283	215.460	211.474
Diagnostic Comments	predicted R at high $S$ below mean from VPA	steepness at boundry of 1	insufficient information for steepness prior	insufficient information for steepness prior	predicted R at high $S$ below mean from VPA	steepness near boundry of 1	insufficient information for steepness prior	insufficient information for steepness prior	model selected	auto-correlation implies long period forcing	insufficient information for steepness prior	insufficient information for steepness prior
Parameter Point Estimates												
MSY	5.116	2.975	5.778	3.089	4.002	4.079	3.849	3.530	14.767	15.838	14.742	14.987
FMSY	0.415	0.740	0.360	0.370	0.445	0.700	0.375	0.370	0.320	0.385	0.320	0.335
SMSY	18.21	7.11	22.91	11.99	13.53	10.10	14.79	13.70	64.20	59.64	64.09	62.84
alpha	24.9821	12.1636	30.4655	16.0301	18.9398	16.8273	19.8265	18.3126	83.1063	80.454	83.1844	82.5691
expected_alpha	46.685	25.5137	57.7461	31.5299	35.8123	35.5559	38.2677	35.1647	170.955	171.921	171.122	169.108
beta	2.99261	0.0016858	5.38337	2.64026	1.84024	0.0936947	3.15866	3.01346	18.8216	11.9751	19.0081	17.352
steepness	0.853	1.000	0.797	0.808	0.877	0.992	0.813	0.808	0.754	0.823	0.752	0.767
R_at_input_SMAX	23.87	12.16	28.12	15.40	18.41	16.80	18.90	17.49	64.31	67.84	64.23	65.04
expected_R_at_input_SMAX	44.61	25.51	53.29	30.29	34.82	35.50	36.48	33.59	132.29	144.97	132.12	133.22
unfished_S	66.30	33.74	79.12	41.82	50.70	46.58	51.84	47.78	211.70	211.19	211.73	211.68
unfished_R	23.90	12.16	28.52	15.08	18.28	16.79	18.69	17.23	76.32	76.14	76.33	76.31
sigma	1.11827	1.21718	1.13089	1.16316	1.12874	1.22319	1.14681	1.14232	1.20107	1.23235	1.20109	1.19742
phi	N/A	0.691706	N/A	0.587218	N/A	0.690169	N/A	0.564674	N/A	0.541224	N/A	0.49319
sigmaw	N/A	0.879023	N/A	0.941494	N/A	0.885163	N/A	0.942776	N/A	1.03626	N/A	1.04166
last_residual_R	N/A	-4.51754	N/A	1.36882	N/A	-8.3114	N/A	1.04412	N/A	-2.33657	N/A	0.290101
last_logresidual_R	N/A	-0.464844	N/A	0.197604	N/A	-0.736558	N/A	0.147077	N/A	-0.267026	N/A	0.0387421
expected_lognormal_error_	1.86874	2.09754	1.89546	1.96692	1.89085	2.11299	1.93013	1.92024	2.05706	2.13688	2.05713	2.04808
prior_mean_steepness	N/A	N/A	0.75	0.75	N/A	N/A	0.75	0.75	N/A	N/A	0.75	0.75
prior_se_steepness	N/A	N/A	0.07	0.07	N/A	N/A	0.07	0.07	N/A	N/A	0.07	0.07
prior_mean_slope	N/A											
prior_se_slope	N/A											
prior_mean_unfished_R	N/A	N/A	N/A	N/A	17.36	17.36	17.36	17.36	76.94	76.94	76.94	76.94
prior se unfished R	N/A	N/A	N/A	N/A	3.03	3.03	3.03	3.03	5.18	5.18	5.18	5.18

Table 3.6.1. (continued) Summary of parametric fits for Southern New England yellowtail flounder.

## Southern New England Yellowtail Flounder

	Prior											
	0	0	0	0	0	0	0	0	1	0	0	0
Posterior Probability	$\begin{gathered} \text { RK } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { ARK } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { PRK } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { PARK } \\ & 0.00 \end{aligned}$	$\begin{aligned} & \text { PRRK } \\ & 0.00 \end{aligned}$	$\begin{gathered} \text { PRARK } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { P2RK } \\ & 0.00 \end{aligned}$	$\begin{gathered} \text { P2ARK } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { PRHCRK } \\ 0.20 \end{gathered}$	$\begin{gathered} \text { PRHCARK } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { P2HCRK } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { P2HCARK } \\ 0.00 \end{gathered}$
Odds Ratio for Most Likely Model									4.08			
Normalized Likelihood	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.197	0.000	0.000	0.000
Model AIC Ratio	0	0	0	0	0	0	0	0	1	0	0	0
	RK	ARK	PRK	PARK	PRRK	PRARK	P2RK	P2ARK	PRHCRK	PRHCARK	P2HCRK	P2HCARK
Number_of_data_points	25	25	25	25	25	25	25	25	25	25	25	25
Number_of_parameters	3	4	3	4	3	4	3	4	3	4	3	4
Fit_negloglikelihood	101.207	97.191	102.737	98.8742	102.685	99.1561	103.539	100.24	105.563	102.301	105.713	102.452
Penalty_steepness	0	0	0	0	0	0	0	0	0	0	0	0
Penalty_slope	0	0	1.2304	0.190776	0	-	0.736879	0.248412	${ }^{0}$	${ }^{0}$	0.0853812	-0.072571
Penalty_unfished_R	0	0	0	0	2.24219	2.3225	2.05584	2.10177	2.56489	2.56491	2.56434	2.56443
Negative_loglikelihood	101.207	97.191	103.967	99.065	104.927	101.479	106.332	102.59	108.128	104.865	108.363	104.943
Bias-corrected_AIC	209.558	204.382	212.617	207.748	212.513	208.312	214.222	210.479	218.269	214.601	218.569	214.903
Diagnostic Comments	Smsy less than historical catch	auto-correlation implies long period forcing	insufficient information for slope prior	insufficient information for slope prior	Smsy less than historical catch	auto-correlation implies long period forcing	$\begin{aligned} & \text { insufficient } \\ & \text { information for } \\ & \text { slope prior } \end{aligned}$	$\begin{aligned} & \text { insufficient } \\ & \text { information for } \\ & \text { slope prior } \end{aligned}$		auto-correlation implies long period forcing	insufficient information for slope prior	insufficient information for slope prior
$\underset{* * * * * * * * * * * * * * * * * * * * * * * * * * * * ~}{\text { Parameter Pr }}$												
MSY	5.167	4.936	4.702	2.240	7.171	7.569	6.305	5.575	27.731	27.686	25.236	23.624
FMSY	1.390	1.590	0.595	0.440	0.785	0.935	0.525	0.450	0.485	0.485	0.420	0.380
SMSY	8.50	7.53	12.96	7.63	16.52	15.67	18.94	18.69	88.09	87.94	89.01	89.85
alpha	1.94408	2.01712	1.35695	1.07473	1.58107	1.70706	1.24533	1.09724	1.17225	1.16978	1.02812	0.932069
expected_alpha	3.4364	3.53262	2.58319	2.53485	3.00184	3.22082	2.47408	2.23624	2.6275	2.60716	2.327	2.12669
beta		-0.135617	-0.074083	-0.114385	-0.060997	-0.065405	-4.91E-02	-0.047144	-1.03E-02	-0.010295	-9.62E-03	-0.009171
steepness	N/A											
R_at_input_SMAX	0.19	0.08	2.12	0.12	6.16	5.26	9.48	9.27	107.09	106.90	96.90	90.61
expected_R_at_input_SMAX	0.34	0.14	4.03	0.28	11.69	9.92	18.83	18.88	240.02	238.26	219.32	206.75
unfished_S	24.57	22.40	32.09	18.32	42.65	41.70	46.15	44.91	212.73	212.73	212.92	212.89
unfished_R	8.86	8.07	11.57	6.60	15.37	15.03	16.64	16.19	76.69	76.69	76.76	76.75
sigma	1.06737	1.05865	1.13471	1.31001	1.13236	1.12682	1.17172	1.19332	1.27052	1.26606	1.27816	1.28446
phi	N/A	0.521656	N/A	0.680215	N/A	0.49713	N/A	0.518425	N/A	0.482133	N/A	0.495733
sigmaw	N/A	0.903193	N/A	0.960255	N/A	0.977718	N/A	1.02043	N/A	1.10919	N/A	1.11552
last_residual_R	N/A	-2.48565	N/A	3.54602	N/A	-0.725116	N/A	2.94852	N/A	2.27151	N/A	3.39797
last_logresidual_R	N/A	-0.281867	N/A	0.62456	N/A	-0.090741	N/A	0.488144	N/A	0.353184	N/A	0.588985
expected_lognormal_error_	1.76762	1.75132	1.90368	2.35859	1.89861	1.88677	1.98668	2.03807	2.24142	2.22877	2.26334	2.28169
prior_mean_steepness	N/A											
prior_se_steepness	N/A											
prior_mean_slope	N/A	N/A	0.79	0.79	N/A	N/A	0.79	0.79	N/A	N/A	0.79	0.79
prior_se_slope	N/A	N/A	0.34	0.34	N/A	N/A	0.34	0.34	N/A	N/A	0.34	0.34
prior_mean_unfished_R	N/A	N/A	N/A	N/A	17.36	17.36	17.36	17.36	76.94	76.94	76.94	76.94
prior se unfished R	N/A	N/A	N/A	N/A	3.03	3.03	3.03	3.03	5.18	5.18	5.18	5.18

Table 3.6.2. Yields and biomass per recruit of Southern New England yellowtail flounder

[^0]| Proportion of F before spawning: 0.4167 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Proportion of M before spawning: 0.4167 |  |  |  |  |  |
| Natural Mortality is Constant at: 0.200 |  |  |  |  |  |
| Initial age is: 1; Last age is: 7 |  |  |  |  |  |
| Last age is a PLUS group; |  |  |  |  |  |
| Original age-specific PRs, Mats, and Mean Wts from file: ==> C:\groundfish $\backslash y p r \backslash s n y t ~ y p r . d a t ~$ |  |  |  |  |  |
| Age-specific Input data for Yield per Recruit Analysis |  |  |  |  |  |
| Age | Fish Mort | Nat Mort | Proportion | Average | Weights |
|  | Pattern | Pattern | Mature | Catch | Stock |
| 1 | 0.0100 | 1.0000 | 0.1300 | 0.130 | 0.130 |
| 2 | 0.1200 | 1.0000 | 0.7400 | 0.318 | 0.318 |
| 3 | 0.5300 | 1.0000 | 0.9800 | 0.398 | 0.398 |
| 4 | 1.0000 | 1.0000 | 1.0000 | 0.473 | 0.473 |
| 5 | 1.0000 | 1.0000 | 1.0000 | 0.636 | 0.636 |
| 6 | 1.0000 | 1.0000 | 1.0000 | 0.785 | 0.785 |
| 7 | 1.0000 | 1.0000 | 1.0000 | 1.029 | 1.029 |

Summary of Yield per Recruit Analysis:

Slope of the Yield/Recruit Curve at $\mathrm{F}=0.00$ : --> 2.4632								
F level at slope=1/10 of the above slope (FO.1): -----> 0.242   Yield/Recruit corresponding to F0.1: -----> 0.2155								
F level to produce Maximum Yield/Recruit (Fmax) :								1.500
	Yield/	cruit co	respond	ng to Fma		0.2		
F level at 40 \% of Max Spawning Potential (F40) : -----> 0.269								
SSB/Recruit corresponding to F40: --------> 1.1095								
1   Listing of Yield per Recruit Results for:								
FMORT		TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
0.00		0.00000	0.00000	5.5167	3.2011	4.0669	2.7739	$100.00$
0.10		0.21199	0.14794	4.4618	2.1891	3.0065	1.7792	64.14
0.20		0.31949	0.20335	3.9290	1.7041	2.4686	1.3074	47.13
$\begin{aligned} & \text { F0. } 1 \\ & \text { F40\% } \end{aligned}$	0.24	0.35009	0.21547	3.7779	1.5721	2.3154	1.1799	42.54
	0.27	0.36742	0.22148	3.6925	1.4990	2.2287	1.1095	40.00
F40\%	0.30	0.38515	0.22695	3.6052	1.4255	2.1400	1.0389	37.45
	0.40	0.42984	0.23748	3.3860	1.2476	1.9163	0.8688	31.32
	0.50	0.46250	0.24215	3.2265	1.1254	1.7529	0.7527	27.14
	0.60	0.48763	0.24405	3.1046	1.0370	1.6273	0.6690	24.12
	0.70	0.50770	0.24464	3.0077	0.9702	1.5270	0.6060	21.85
	0.80	0.52421	0.24461	2.9284	0.9182	1.4445	0.5569	20.08
	0.90	0.53811	0.24433	2.8619	0.8764	1.3752	0.5176	18.66
	1.00	0.55004	0.24394	2.8051	0.8421	1.3158	0.4853	17.50
	1.10	0.56045	0.24355	2.7558	0.8135	1.2641	0.4582	16.52
	1.20	0.56964	0.24319	2.7124	0.7890	1.2185	0.4351	15.69
	1.30	0.57784	0.24286	2.6738	0.7679	1.1779	0.4152	14.97
	1.40	0.58524	0.24258	2.6391	0.7494	1.1414	0.3976	14.34
	1.50	0.59197	0.24234	2.6076	0.7331	1.1082	0.3821	13.78
Fmax	1.50	0.59200	0.24234	2.6075	0.7330	1.1081	0.3821	13.77
	1.60	0.59813	0.24214	2.5789	0.7184	1.0780	0.3683	13.28
	1.70	0.60380	0.24197	2.5525	0.7052	1.0502	0.3557	12.82
	1.80	0.60906	0.24182	2.5281	0.6933	1.0245	0.3444	12.41
	1.90	0.61395	0.24170	2.5054	0.6823	1.0007	0.3340	12.04
	2.00	0.61853	0.24159	2.4842	0.6722	0.9785	0.3244	11.69



Figure 3.6.1. Landings and research vessel survey abundance indices for Southern New England yellowtail flounder.

Southern New England Yellowtail Flounder
(a)


Southern New England Yellowtail Flounder
(b)


Southern New England Yellowtail Flounder
(c)


		F0.1	F40\% MSP
F reference point		0.242	0.269
ssb per recruit at F		1.1799	1.1095
	Recruitment (millions)	SS Biomass at	F0.1
S	26	26	26
mean	25.01	29.51	27.75
min	0.88	1.04	0.98
max	126.93	149.77	140.83
10th \%'tile	1.89	2.23	2.10
25th \%'tile	4.94	5.83	5.49
50th \%'tile	13.46	15.89	14.94
75th \%'tile	29.78	35.14	33.05
90th \%'tile	52.78	62.28	58.56
Std Dev	33.41	39.42	37.07
CV	1.34	1.34	1.34
For Top Quartile of SSB			
Mean	20.88	24.63	23.16
Median	14.61	17.24	16.21

Figure 3.6.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Southern New England yellowtail flounder. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \%$ MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.6.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.
(a)

(b)


Southern New England Yellowtail Flounder
(c)


		F0.1	F40\%MSP
F reference point		0.242	0.269
ssb per recruit at F	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
n	35	35	35
mean	40.72	48.05	45.18
min	0.91	1.07	1.01
max	178.05	210.08	197.55
10th \%'tile	3.21	3.78	3.56
25th \%'tile	8.36	9.86	9.28
50th \%'tile	16.73	19.74	18.56
75th \%'tile	60.53	71.42	67.16
90th \%'tile	119.20	140.64	132.25
Std Dev	45.24	53.38	50.19
CV	1.11	1.31	1.23
For Top Quartile of SSB			
Mean	77.01	90.87	85.45
Median	74.66	88.09	82.84
For Hindcast Recruitment			
Mean	76.94	90.78	85.37

Figure 3.6.3. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Southern New England yellowtail flounder using hindcasts data prior to 1973. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F0.1 and F40\% MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.6.2). Smoother in the stock- recruitment plot is lowess with tension $=0.5$. Smoother for the spawning stock biomass plot (a) is 0.3 .


Figure 3.6.4. Comparison of stock and recruitment data from virtual population analysis (VPA) and hindcast for Southern New England yellowtail flounder.


Figure 3.6.5. Standardized residuals from best fit parametric model for Southern New England yellowtail flounder


Figure 3.6.6. Equilibrium yield from best fit parametric model for Southern New England yellowtail flounder.


Figure 3.6.7. Stock recruitment relationship for best fit parametric model for Southern New England yellowtail flounder. Hindcast stock-recruitment data points are overplotted, along with the predicted S-R line and replacement lines for $\mathrm{F}=100 \% \mathrm{msp}=0.0$ and $\mathrm{F} 40 \% \mathrm{msp}=0.22$.


Spawning Biomass at MSY (thousand mt)

Figure 3.6.8. Histograms of uncertainty in MSY, Bmsy, and Fmsy from 5000 MCMC evaluations of best fit parametric stock-recruitment model for Southern New England yellowtail flounder.

Southern New England Yellowtail Flounder


Figure 3.6.9. Stock and recruitment data for Southern New England yellowtail. For the empirical non-parametric approach the mean recruitment for all spawning stock biomss is plotted, along with replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 40 \% \mathrm{msp}=0.269$.

### 3.7 Cape Cod yellowtail flounder

## Catch and Survey Indices

Catches of Cape Cod yellowtail flounder peaked in the late 1970s followed by a decline in the 1980s and have remained low (Figure 3.7.1). All four research survey abundance indices for Cape Cod yellowtail flounder show an overall decline and rebuilding pattern from the early 1980s to present (Figure 3.7.1). The increasing stock size in recent years is difficult to explain considering the high exploitation rates thought to be occurring based on the most recent stock assessment.

## Stock Assessment

The most recent assessment for Cape Cod yellowtail flounder was reviewed as part of the 2001 review of 19 Northeast groundfish stocks conducted by Northeast Fisheries Science Center staff (Northern Demersal and Southern Demersal Working Groups 2001). The stock was analyzed with virtual population analysis (VPA). The VPA assessment used data for years 1985 through 1999 and ages 1 through 6+ and was felt to be representative of stock dynamics for the time period. Plots of stock and recruitment estimates from the VPA are provided in Figure 3.7.2. Recruitment has been nearly independent of spawning stock size overall, however the recruitment series is dominated by a single large events, the 1987 year class.

## Yield and Spawning Stock Biomass per Recruit

The fishing mortality reference points $\mathrm{F}(0.1)$ and $\mathrm{F} 40 \% \mathrm{MSP}$ given in Figure 3.7.2 were calculated for this exercise using ages 1 through $6+$ in order to be consistent with the projections described below, and thus may differ slightly from previously reported values (Table 3.7.2). From the yield per recruit analysis, $\mathrm{F}(0.1)=0.231$ and $\mathrm{Fmax}=0.528$ (both are fully recruited Fs ). From the spawning stock biomass per recruit analysis, $\mathrm{F} 40 \% \mathrm{MSP}=0.214$ (fully recruited F ) with an associated spawning stock biomass per recruit of 1.0680 kg .

## Empirical Nonparametric Approach

If F40\%MSP is assumed to be an adequate proxy for Fmsy, then the fishing mortality threshold is 0.214 . This fishing mortality rate produces 1.068 kg of spawning stock biomass per recruit and 0.2165 kg of yield per recruit (including discards). Since the VPA estimates of recruitment does not increase with increasing spawning stock size, the mean of all recruitments is assumed to be representative of recruitment levels expected at maximum sustainable yield (MSY). Thus, recruitment of 7.85 million fish results in an estimate of $8,400 \mathrm{mt}$ of spawning stock biomass (Bmsy proxy) and $1,700 \mathrm{mt}$ of yield (MSY proxy) assuming that all fish caught are landed.

## Parametric Model Approach

Maximum likelihood fits of the 12 parametric stock-recruitment models to the Cape Cod yellowtail flounder data from 1985-1998 are listed below (Table 3.7.1, see Table 2.1.2 for model acronyms). Note that the historical stock and recruitment data did not match well with the VPA data (Figure 3.7.3), and so no parametric models using hindcast recruitment priors were
considered. The six hierarchical criteria are applied to each of the models to determine the set of candidate models.

The priors for the Beverton and Holt steepness parameter and Ricker slope parameter from Myers et al. (1999) were thought to be insufficient for the yellowtail stocks as the only data sets used to develop the prior were Georges Bank and Southern New England yellowtail stocks. Thus, models PBH, PABH, P2BH, P2ABH, PRK, and PARK are not considered. Of the remaining models, the first criterion is not satisfied for models PRBH and PRABH due to steepness being estimated at its boundary condition of 1.0. The fourth criterion is not satisfied for models RK and ARK as the estimates of Fmsy are twice as large as the estimate of FMAX (0.528). The fifth criteria is not satisfied by model ABH given the short time period of data (14 years). The only remaining model, BH , estimates Smsy at nearly half the nonparametric proxy of $8,400 \mathrm{mt}$ and thus is not considered. Thus, no parametric model fits were considered to be appropriate for Cape Cod yellowtail flounder (see Figure 3.7.4 for plots of parametric fits).

## Reference Points

Based on the rejection of all parametric model fits, the following management parameters are considered most appropriate: Bmsy proxy $=8,400 \mathrm{mt}$, Fmsy proxy $=0.214$ (fully recruited F), and $\mathrm{MSY}=1,700 \mathrm{mt}$ (including discards). This level of yield is expected by building the stock size through reduced fishing mortality, relative to historical levels that were above 2.0, increased survivorship of young fish relative to the historical use of much smaller mesh size when peak catches were taken, and an expectation that on average recruitment will stay within the range predicted by the most recent stock assessment.

## Projections

Given that all the parametric model fits were rejected, projections were conducted by resampling observed recruitments using a cumulative distribution function to allow predicted recruitment values between those observed to occur. Since the last year in the VPA was 1999, catch for 2000 and 2001 were estimated using the 2000 US landings, 2000 US landings from Jan-Nov (7,062 mt ), 2001 US landings in Jan-Nov in 2000 by gear type, and the average US discard:landings ratio for 1995-1999 ( $15.6 \%$ ). The 2000 catch estimate is $2,354 \mathrm{mt}$ and the 2001 catch estimate is $2,571 \mathrm{mt}$. For 2002, the fishery was assumed to fish at the median rate projected for 2001 (2.047 fully recruited F). For the first projection, for years 2003 through 2009, the fishery was assumed to fish at a rate of $\mathrm{F} 40 \% \mathrm{MSP}$ ( 0.214 fully recruited F ). Under these assumptions, there is a $13.3 \%$ chance that the spawning biomass in 2009 will be at least as large as the Bmsy proxy (Figure 3.7.5). Thus, a rebuilding F must be calculated. The constant fishing mortality rate for years 2003 through 2009 was found that produced a $50 \%$ probability the spawning biomass in 2009 will be at least as large as the Bmsy proxy. This constant F was found to be 0.139 (fully recruited F ) which generated a $50.3 \%$ probability of achieving the spawning biomass goal (Figure 3.7.5). Based on these projections, the median fishing mortality rate in 2001 was 2.047 which must be decreased $93 \%$ to the rebuilding F level of 0.139 . Under the rebuilding F , the median spawning stock biomass in 2009 will be $6,900 \mathrm{mt}$ with an $80 \%$ confidence interval of $6,100 \mathrm{mt}$ to $8,600 \mathrm{mt}$ (Figure 3.7.6). The associated median catch will be 1,400 mt with an $80 \%$ confidence interval of $1,200 \mathrm{mt}$ to $1,700 \mathrm{mt}$ (Figure 3.7.7).

Table 3.7.1. Summary of parametric fits for Cape Cod yellowtail flounder.

## Cape Cod Yellowtail Flounder

Prior	Prior
0	0
BH	ABH


Prior	Prior
0	0
PBH	PABH

Prior
0
PRBH
Prior
0
PRABH
Prior
0
P2BH
Prior
0
P2ABH
Prior
0
RK
Prior
0
ARK

Prior	Prior
0	0
PRK	PARK

Posterior Probability
Odds Ratio for Most
Likely Model
Normalized Likelihood
Model AIC Ratio

	BH	ABH	PBH	PABH	PRBH	PRABH	P2BH	P2ABH	RK	ARK	PRK	PARK
Number_of_data_points	14	14	14	14	14	14	14	14	14	14	14	14
Number_of_parameters	3	4	3	4	3	4	3	4	3	4	3	4
Fit_negloglikelihood	32.6521	32.3295	33.8297	33.1961	32.8685	32.8563	33.2378	35.5944	33.1894	32.4656	37.9647	36.3346
Penalty_steepness	0	0	0.727911	-0.334412	0	0	3.74079	-1.62222	0	0	0	0
Penalty_slope	0	0	0	0	0	0	0	0	0	0	4.59894	-0.120112
Penalty_unfished_R	0	0	0	0	-0.180217	-0.179228	-0.08469	-0.189339	0	0	0	0
Negative_loglikelihood	32.6521	32.3295	34.5576	32.8617	32.6883	32.6771	36.8939	33.7828	33.1894	32.4656	42.5636	36.2145
Bias-corrected_AIC	73.7043	77.1034	76.0593	78.8367	74.1371	78.157	74.8756	83.6332	74.7788	77.3757	84.3294	85.1136
Diagnostic Comments	Smsy well below nonparametric proxy	```autocorrelation implies long period forcing```	insufficient information for steepness prior	insufficient information for steepness prior	steepness at boundry of 1	steepness at boundry of 1	insufficient information for steepness prior	insufficient information for steepness prior	Fmsy>> Fmax	Fmsy>> Fmax	insufficient information for slope prior	insufficient   information   for slope   prior
Parameter Point Estimates												
MSY	2.008	2.475	3.206	4.591	1.742	1.741	1.735	1.388	1.839	2.043	55891.000	0.525
FMSY	0.470	0.415	0.375	0.340	0.525	0.525	0.485	0.280	1.465	1.180	0.600	0.270
SMSY	4.627	6.425	9.173	14.438	3.611	3.608	3.878	5.267	1.415	1.947	101965.00	2.062
alpha	8.45769	10.91	14.7462	22.2218	7.09551	7.0997	7.23484	7.58127	2.80473	2.58121	1.83892	0.885876
expected_alpha	8.96835	11.5946	15.8054	24.1227	7.53779	7.54235	7.71103	11.1742	2.98802	2.75584	2.08424	2.64375
beta	0.149475	0.477534	1.02708	2.26831	4.27E-06	0.0050366	0.0897127	1.39428	-0.759707	-0.555828	-1.01E-05	-0.380285
steepness	0.974	0.938	0.906	0.867	1.000	0.999	0.982	0.784	N/A	N/A	N/A	N/A
R_at_input_SMAX	8.21	9.96	12.23	15.29	7.10	7.09	7.11	5.93	1.85	4.10	31.45	1.81
expected_R_at_input_SMAX	8.71	10.58	13.11	16.59	7.54	7.53	7.58	8.74	1.97	4.38	35.64	5.40
unfished_S	22.44	28.66	38.35	57.07	18.95	18.95	19.23	18.85	4.98	6.41	278224.00	4.91
unfished_R	8.40	10.73	14.36	21.37	7.10	7.10	7.20	7.06	1.87	2.40	104187.00	1.84
sigma	0.342422	0.348875	0.372469	0.405171	0.347756	0.347797	0.35705	0.880825	0.355818	0.36184	0.500452	1.47877
phi	N/A	0.293138	N/A	0.493203	N/A	0.0461746	N/A	0.89135	N/A	0.370318	N/A	0.961539
sigmaw	N/A	0.333549	N/A	0.352464	N/A	0.347426	N/A	0.399291	n/A	0.336115	N/A	0.406172
last_residual_R	N/A	-0.260495	N/A	-0.761572	N/A	0.89756	N/A	4.08344	N/A	-0.60565	N/A	5.9353
last_logresidual_R	N/A	-0.03215	N/A	-0.091228	N/A	0.119431	N/A	0.717765	N/A	-0.073216	N/A	1.36424
expected_lognormal_error_	1.06038	1.06275	1.07183	1.08554	1.06233	1.06235	1.06582	1.47392	1.06535	1.06765	1.1334	2.98434
prior_mean_steepness	N/A	N/A	0.75	0.75	N/A	N/A	0.75	0.75	N/A	N/A	N/A	N/A
prior_se_steepness	N/A	N/A	0.07	0.07	N/A	n/A	0.07	0.07	n/A	N/A	N/A	N/A
prior_mean_slope	N/A	0.79	0.79									
prior_se_slope	N/A	0.34	0.34									
prior_mean_unfished_R	N/A	N/A	N/A	N/A	7.05	7.05	7.05	7.05	N/A	N/A	N/A	N/A
prior se unfished R	N/A	N/A	N/A	N/A	0.33	0.33	0.33	0.33	N/A	N/A	N/A	N/A

Table 3.7.2. Yield and biomass per recruit of Cape Cod yellowtail flounder.

The NEFC Yield and Stock Size per Recruit Program - PDBYPRC PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-1999

```
Run Date: 19- 2-2002; Time: 13:41:13.00
```

CAPE COD YELLOWTAIL FLOUNDER - 2002

-----------------------------------------------------------------
Summary of Yield per Recruit Analysis:

Slope of the Yield/Recruit Curve at $\mathrm{F}=0.00$ : --> 2.6001								
$F$ level at slope $=1 / 10$ of the above slope (FO.1): -----> 0.231 Yield/Recruit corresponding to F0.1: -----> 0.2214								
$F$ level to produce Maximum Yield/Recruit (Fmax) :								0.528
Yield/Recruit corresponding to Fmax: -----> 0.2								
F level at $40 \%$ of Max Spawning Potential (F40): -----> 0.214								
SSB/Recruit corresponding to F40: -------> 1.0680								
1								
Listing of Yield per Recruit Results for:								
FMORT		TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
0.00		0.00000	0.00000	5.5167	3.1973	3.3453	2.6704	100.00
0.10		0.21691	0.15544	4.4373	2.1221	2.2682	1.6168	60.54
0.20		0.32679	0.21209	3.8928	1.6043	1.7261	1.1164	41.81
F0. 1	0.23	0.35074	0.22136	3.7745	1. 4958	1.6086	1.0126	37.92
F40\%	0.21	0.33789	0.21655	3.8380	1.5538	1.6716	1.0680	39.99
	0.30	0.39382	0.23458	3.5623	1.3061	1.3982	0.8325	31.17
	0.40	0.43937	0.24309	3.3389	1.1156	1.1776	0.6537	24.48
	0.50	0.47261	0.24545	3.1768	0.9850	1.0185	0.5330	19.96
Fmax	0.53	0.48035	0.24553	3.1392	0.9559	0.9817	0.5062	18.96
	0.60	0.49812	0.24506	3.0531	0.8909	0.8979	0.4471	16.74
	0.70	0.51847	0.24351	2.9551	0.8204	0.8030	0.3835	14.36
	0.80	0.53517	0.24153	2.8750	0.7657	0.7263	0.3348	12.54
	0.90	0.54921	0.23949	2.8081	0.7223	0.6628	0.2966	11.11
	1.00	0.56123	0.23753	2.7511	0.6870	0.6093	0.2658	9.959.01
	1.10	0.57170	0.23573	2.7018	0.6577	0.5636	0.2406	
	1.20	0.58092	0.23410	2.6585	0.6330	0.5239	0.2195	8.22
	1.30	0.58915	0.23262	2.6201	0.6118	0.4891	0.2016	7.55
	1.40	0.59655	0.23128	2.5856	0.5934	0.4584	0.1863	6.97
	1.50	0.60327	0.23007	2.5545	0.5773	0.4310	0.1729	6.48
	1.60	0.60941	0.22895	2.5261	0.5630	0.4064	0.1612	6.04
	1.70	0.61507	0.22792	2.5001	0.5501	0.3842	0.1509	5.65
	1.80	0.62030	0.22696	2.4761	0.5385	0.3641	0.1417	5.31
	1.90	0.62516	0.22605	2.4539	0.5280	0.3456	0.1334	4.99
	2.00	0.62970	0.22520	2.4332	0.5184	0.3288	0.1259	4.71

Cape Cod Yellowtail Flounder


Figure 3.7.1. Landings and research vessel survey abundance indices for Cape Cod yellowtail flounder.
(a)


Cape Cod Yellowtail Flounder
(b)


Cape Cod Yellowtail Flounder


		F0.1	F40\% MSP
F reference point		0.231	0.214
ssb per recruit at $F$		1.013	1.068
n	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
mean	14	14	14
min	7.85	7.95	8.38
max	4.71	4.77	5.03
10th \%'tile	21.23	21.50	22.67
25th \%'tile	5.33	5.39	5.69
50th \%'tile	5.81	5.88	6.20
75th \%'tile	7.13	7.22	7.61
90th \%'tile	7.90	8.00	8.44
Std Dev	8.84	8.95	9.44
CV	4.04	4.09	4.32
	0.52	0.52	0.52

Figure 3.7.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Cape Cod yellowtail flounder. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F0.1 and F40\% MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.7.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.


Figure 3.7.3. Comparison of stock and recruitment data from virtual population analysis (VPA) and hindcast for Cape Cod yellowtail flounder.

Cape Cod Yellowtail Flounder


Figure 3.7.4. Stock and recruitment data for Cape Cod yellowtail flounder. For the empirical non-parametric approach the mean recruitment is plotted along with the replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 40 \% \mathrm{msp}=0.21$.


Figure 3.7.5. Probability that Cape Cod yellowtail spawning biomass will exceed Bmsy ( $8,400 \mathrm{mt}$ ) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.


Figure 3.7.6. Median and $80 \%$ confidence interval of predicted spawning biomass for Cape Cod yellowtail under F-rebuild fishing mortality rates.


Figure 3.7.7. Median and $80 \%$ confidence interval of predicted catch for Cape Cod yellowtail under F-rebuild fishing mortality rates.

### 3.8 Mid Atlantic Yellowtail Flounder

## Catch and Survey Indices

A fishery for yellowtail flounder in the Mid-Atlantic Bight developed in the 1940s, and expanded in the 1960s. Landings ranged from 3,000 to $9,000 \mathrm{mt}$ between 1967 and 1973, but subsequently declined to less than 1,000 mt after 1975 and have not exceeded 500 mt since 1985 (Figure 3.8.1). The fishery for yellowtail in the Mid-Atlantic area occurs in proximity to the western boundary of the Southern New England yellowtail stock.

Survey catches indicate relatively high biomass in the 1960s and early 1970s, followed by a sharp decrease in the mid 1970s (Figure 3.8.1). Survey indices have been less than $10 \%$ of historical levels since the late 1980s.

## Stock Assessment

The Mid-Atlantic yellowtail flounder stock has never been assessed through the SAW/SARC process. The state of this stock was most recently evaluated in 2000 via index assessment (NEFSC 2001a). At that time, it was noted that the average fall biomass index for the last three years (1997-1999 average $=0.26 \mathrm{~kg} /$ tow $)$ was about $2 \%$ of the current $\mathrm{B}_{\text {MSY }}$ proxy (1963-1972 median $=11.69 \mathrm{~kg} /$ tow $)$ and well below the biomass threshold ( $\mathrm{B}_{\mathrm{MSY}} / 2=5.85 \mathrm{~kg} /$ tow $)$.

Survey observations from 1963-1966 are not directly comparable to subsequent observations, because strata south of New Jersey were not sampled prior to 1967. However, the median survey biomass index for 1967-1972 (12.91 kg/tow) is similar to the median for 1963-1972. Therefore, a revised $\mathrm{B}_{\mathrm{MSY}}$ proxy of $12.91 \mathrm{~kg} /$ tow indicates essentially the same stock status as the current proxy.

The recent average exploitation index (landings/fall survey biomass index $=2.01$ ) was $618 \%$ of the $\mathrm{F}_{\text {MSY }}$ proxy ( 0.28 ), derived as the MSY proxy (1964-1969 average annual landings, 3300 mt ) divided by the current $\mathrm{B}_{\text {MSY }}$ proxy.

## Relative Exploitation Rate Analyses

The replacement ratio analysis for Mid-Atlantic Bight yellowtail suggests that the stock can replace itself at an exploitation index of 0.33 (with a CV of $48 \%$ and marginally significant correlation of replacement ratio and exploitation index, $\mathrm{P}=0.108$; Figure 3.8.2; Table 4.1.1). Using the revised biomass proxy, which is based on consistent survey data (median biomass index for 1967-1972 $=12.91 \mathrm{~kg} /$ tow $)$, the MSY proxy is $4,300 \mathrm{mt}\left(\mathrm{F}_{\text {MSY }} \cdot \mathrm{B}_{\text {MSY }}=0.33 \cdot 12.91\right.$; Table 4.2).


Figure 3.8.1. Landıngs and research vessel survey abundance indices tor Mid-Atlantic yellowtail flounder.


Mid Atl Yellowtail, Fall

Figure 3.8.2. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Mid-Atlantic yellowtail - fall. Dashed lines indicate proposed biomass and fishing mortality rate proxies of Bmsy and Fmsy.

### 3.9 Gulf of Maine - Georges Bank American Plaice

## Catch and Survey Indices

The fishery for American plaice developed in the mid-seventies (Figure 3.9.1) as other popular flounder stocks became less abundant and fisheries were more heavily regulated (Sullivan 1981). Historically, American plaice had either been discarded or used as bait (Lange and Lux 197). Commercial landings increased to a record high in 1980 and then declined to a low in 1989. Landings peaked again in 1992 as the 1987 year class recruited to the fishery and have gradually been declining since 1992 (Figure 3.9.1). Both spring and autumn bottom trawl survey indices indicate relatively higher abundance of American plaice in the early 1960s and during the late 1970s to early 1980s compared to the lower abundance during the 1990s. The stock appears to be slowly increasing since the mid-1980s (Figure 3.9.1).

## Stock Assessment

The most current assessment of Gulf of Maine-Georges Bank American plaice (O'Brien and Esteves 2001) was peer reviewed by the $32^{\text {nd }}$ Northeast Regional Stock Assessment Workshop (NEFSC 2001b). The assessment includes US commercial landings and discard catch at age (9+) data from 1980-1999. The NMFS and Massachusetts Division of Marine Fisheries spring and autumn bottom trawl survey age data were used to calibrate the VPA. Estimates of SSB indicate a declining trend during 1980 to 1989 and then a gradual increase since 1989 (Fig 3.9.2a). Recruitment at age 1 has been variable with high recruitment events in 1988, 1993 and 1999 (Fig. 3.3.2b). The most recent estimates of recruitment are subject to change in subsequent assessments as more catch is taken from each of the cohorts.

## Yield and SSB per Recruit Analysis

A yield and SSB per recruit analysis conducted using recent assessment data (O'Brien and Esteves 2001) resulted in changes in the previously estimated biological reference points (Table 3.9.1). Input data for catch weight (ages 1-9+) and stock weight (ages 1-8) was derived from the long term average weight during 1980-1999 (O’Brien and Esteves 2001). Stock mean weights for ages $9+$ were derived from an expanded age structure to age 24 (oldest age observed in survey) at $\mathrm{F}=\mathrm{F}_{40 \%}=0.166$ and $\mathrm{M}=0.2$. The mean weights for ages 10 to 24 were estimated from the length-weight equation (Lux 1969a) : $\log$ Weight $(\mathrm{g})=\log (-5.955)+3.345 \log$ Length ( mm ). The mean length at ages 10-24 was derived from the von Bertalanffy growth equation: Length $(\mathrm{mm})=675$ * $\left(1-\exp \left(-0.15^{*}(\right.\right.$ age-0.10) for female American plaice (Lux 1970). The partial recruitment (PR) is based on a normalized geometric mean of 1995-1998 fishing mortality and the maturity ogive is derived from pooled 1998-1999 female data (O'Brien and Esteves 2001).

The newly estimated biological reference points for $\mathrm{F}_{40 \%}=0.166, \mathrm{~F}_{\max }=0.312$ and $\mathrm{F}_{0.1}=0.174$ are slightly lower than those reported in O'Brien and Esteves (2001).

## MSY-based Reference Point Estimation

## Empirical Nonparametric Approach

The stock-recruit relationship for Gulf of Maine - Georges Bank American plaice indicates a general trend of decreasing recruitment of age 1 fish with increasing spawning stock biomass at SSB less than about $25,000 \mathrm{mt}$. (Figure 3.9.2c). A review of 1980-1994 hindcasted autumn bottom trawl survey indices indicate a similar stock-recruit relationship as seen in the VPA time series (Brodziak et al. 2001). All hindcasted data combined (1963-1994) indicates medium recruitment at high stock sizes similar to those observed in the VPA series. Given this pattern, the recruitment expected at $\mathrm{SSB}_{\text {msy }}$ can be considered to be the mean recruitment associated with all SSB estimates. Using $\mathrm{F}_{40 \%}=0.17$ as a proxy for $\mathrm{F}_{\mathrm{MSY}}$, the $\mathrm{SSB} / \mathrm{R}$ at $\mathrm{F}_{40 \%}=0.9985$, and the mean recruitment of 28.61 million fish results in a $\mathrm{SSB}_{\text {msy }}$ of 28,600 mt (Figure 3.9.2 and 3.9.3). Similarly, multiplying the yield per recruit of 0.17143 (Table 3.9.1) by mean recruitment results in a MSY estimate of $4,900 \mathrm{mt}$.

The estimate of MSY is within the range of observed landings and $\mathrm{SSB}_{\text {msy }}$ is below the maximum SSB (46,600 mt) observed in the VPA time series.

## Parametric Model Approach

The stock recruit relationship for the VPA time series (1980-1999) indicates an atypical negative relationship of decreasing recruitment with increasing SSB (Figure 3.9.3). Autumn survey hindcasted data, as described above, suggests that with a longer VPA time series this negative relationship would not persist. The current VPA time series of stock recruit data was therefore considered insufficient to apply to any parametric stock-recruit model.

## Reference Points

Reference points derived from the yield per recruit analysis are : $\mathrm{F}_{40 \%}=0.166, \mathrm{MSY}=4,900 \mathrm{mt}$ and $\mathrm{SSB}_{\mathrm{MSY}}=28,600 \mathrm{mt}$. The MSY includes commercial landings and discards.

## Projections

Stochastic age-based projections (Brodziak and Rago 2002) were performed to forecast the probability of attaining $\mathrm{SSB}_{\text {MSY }}$ within 10 years under an $\mathrm{F}_{\text {MSY }}(0.17)$ and F rebuilding (0.13) strategy. Recruitment was derived from resampling of predicted recruitment from a cumulative distribution function based on observed VPA age 1 recruitment from 1981-1999. Stock and catch mean weight, maturity at age, and partial recruitment input data are the same as described above for the yield and SSB per recruit analysis. The 2000 starting year population vector was derived from 1000 bootstrap iterations of the final VPA formulation (O'Brien and Esteves 2001).

Fishing mortality in 2000 and 2001 was based on estimated total catch (US + Canada+Discards) of $5,275 \mathrm{mt}$ in 2000 and $5,370 \mathrm{mt}$ in 2001. Fishing mortality in 2002 was set equivalent to the F estimated in 2001 (0.33).

The projections (section 7) indicate that there is only a $15 \%$ probability of reaching $\mathrm{SSB}_{\text {MSY }}$ $(28,600 \mathrm{mt})$ by 2009 under an $\mathrm{F}_{\mathrm{MSY}}$ strategy (Figure 3.9.4). Under a rebuilding $\mathrm{F}=0.13$, there is a $50 \%$ probability of achieving $\mathrm{SSB}_{\text {MSY }}$ by 2009 (Figure 3.9.4-3.95). The landings are expected to decline in 2003 and subsequently increase at a low rate through 2010 (Figure 3.9.6).

Table 3.9.1. Yield and biomass per recruit of American plaice.

```
The NEFC Yield and Stock Size per Recruit Program - PDBYPRC
 PC Ver.1.2 [Method of Thompson and Bell (1934)] 1-Jan-1992

American plaice Gulf of Maine-Georges Bank - 2002
```

Proportion of F before spawning:
Proportion of M before spawning:
Natural Mortality is Constant at:
Initial age is: 1 ; Last age is: 200
Last age is a PLUS group;
Original age-specific PRs, Mats, and Mean Wts from file:==> AP_LND_2.DAT


| Age | Fish Mort | Nat Mort <br> Pattern | Proportion <br> Mature | Average <br> Cattern | Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stock |  |  |  |  |  |

Summary of Yield per Recruit Analysis for:
American plaice Gulf of Maine-Georges Bank - 2002

Slope of the Yield/Recruit Curve at $\mathrm{F}=0.00$ :	2.5719	
F level at slope=1/10 of the above slope (F0.1):		. 174
Yield/Recruit corresponding to F0.1: ----->	. 1735	
F level to produce Maximum Yield/Recruit (Fmax) :		. 312
Yield/Recruit corresponding to Fmax: ----->	1869	
F level at 40 \% of Max Spawning Potential (F40): SSB/Recruit corresponding to F40:	$\begin{array}{r} ---\gg \\ .9985 \end{array}$	. 166

Listing of Yield per Recruit Results for:
American plaice Gulf of Maine-Georges Bank - 2002

	FMORT	TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
	. 000	. 00000	. 00000	5.5167	2.7694	2.7687	2.4970	100.00
	. 050	. 10716	. 09294	4.9830	2.0611	2.2447	1.8025	72.19
	. 100	. 17954	. 14100	4.6232	1.6128	1.8944	1.3660	54.71
	. 150	. 23203	. 16624	4.3627	1.3095	1.6433	1.0730	42.97
F0. 1	. 174	. 25222	. 17346	4.2627	1.1990	1.5477	. 9668	38.72
F40\%	. 166	. 24612	. 17143	4.2929	1.2320	1.5765	. 9985	39.99
	. 200	. 27208	. 17909	4.1644	1.0943	1.4544	. 8667	34.71
	. 250	. 30381	. 18496	4.0076	. 9360	1.3068	. 7161	28.68
	. 300	. 32971	. 18680	3.8799	. 8160	1.1881	. 6030	24.15
Fmax	. 312	. 33506	. 18685	3.8535	. 7924	1.1639	. 5808	23.26
	. 350	. 35135	. 18632	3.7733	. 7230	1.0906	. 5160	20.66
	. 400	. 36981	. 18451	3.6826	. 6493	1.0089	. 4477	17.93
	. 450	. 38579	. 18197	3.6042	. 5899	. 9394	. 3932	15.75
	. 500	. 39983	. 17906	3.5355	. 5413	. 8795	. 3489	13.97
	. 550	. 41231	. 17601	3.4746	. 5009	. 8272	. 3126	12.52
	. 600	. 42350	. 17293	3.4199	. 4670	. 7812	. 2823	11.30
	. 650	. 43364	. 16992	3.3705	. 4381	. 7404	. 2568	10.28
	. 700	. 44290	. 16700	3.3255	. 4133	. 7038	. 2350	9.41
	. 750	. 45140	. 16421	3.2842	. 3918	. 6709	. 2164	8.67
	. 800	. 45927	. 16155	3.2460	. 3729	. 6410	. 2003	8.02
	. 850	. 46657	. 15902	3.2106	. 3563	. 6138	. 1862	7.46
	. 900	. 47340	. 15662	3.1775	. 3415	. 5889	. 1738	6.96
	. 950	. 47980	. 15433	3.1465	. 3282	. 5660	. 1628	6.52
	1.000	. 48582	. 15216	3.1173	. 3162	. 5449	. 1530	6.13



Figure 3.9.1. Landings and research vessel survey abundance indices for American plaice.


(b)


		F0.1	F40\% MSP
F reference point		0.174	0.166
ssb per recruit at F		0.9668	0.9985
	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
n	20	20	20
mean	28.61	27.66	28.57
min	13.06	12.63	13.04
max	53.36	51.58	53.27
10th \%'tile	14.09	13.62	14.07
25th \%'tile	21.07	20.37	21.04
50th \%'tile	26.11	25.24	26.07
75th \%'tile	35.05	33.89	35.00
90th \%'tile	42.70	41.29	42.64
Std Dev	11.76	11.37	11.75
CV	0.41	0.41	0.41

Figure 3.9.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for American plaice. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \% \mathrm{MSP}$, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.9.1). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.


Figure 3.9.3. Stock and recruitment data for American plaice. For the empirical non-parametric approach the mean recruitment is plotted along with the replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 40 \% \mathrm{msp}=0.17$.


Figure 3.9.4. Probability that American plaice spawning biomass will exceed Bmsy ( $28,600 \mathrm{mt}$ ) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.


Figure 3.9.5. Median and $80 \%$ confidence interval of predicted spawning biomass for American plaice under F-rebuild fishing mortality rates.


Figure 3.9.6. Median and $80 \%$ confidence interval of predicted catch for American plaice under F-rebuild fishing mortality rates.

### 3.10 Witch Flounder

## Catch and Survey Indices

After averaging approximately $1,000 \mathrm{mt}$ since the 1960 s , witch flounder landings peaked around $6,000 \mathrm{mt}$ in 1971-72, declined to an annual average of $2,800 \mathrm{mt}$ during 1973-81, and then increased sharply to over $6,000 \mathrm{mt}$ in 1983-85. Landings then declined steadily to $1,500 \mathrm{mt}$ by 1990, the lowest value since 1964. Landings for 1991-2000 averaged 2,200 mt annually (Figure 3.10.1). The NEFSC spring and autumn bottom trawl survey biomass indices fluctuated without trend during the mid-1960 to late 1970s. However, in the 1980s biomass declined to record low levels in the early 1990s; since the mid-1990s, biomass has remained low (Figure 3.10.1).

## Stock Assessment

Witch flounder are assessed as a unit stock from the Gulf of Maine southward (NAFO Subareas 5 and 6). An analytical assessment was conducted on this species in 1999 (Wigley et al. 1999) and reviewed at SAW 29 (NEFSC 1999b). The VPA assessment used data from 1982 to 1998 with ages 1 to $11+$ which included discards in the catch at age matrix. Estimates of spawning stock biomass and recruitment (age 3) from the VPA are given in Figure 3.10.2. Spawning stock biomass has decreased over the assessment time period while recruitment has increased.

## Yield and Spawning Stock Biomass per Recruit Analysis

Yield and spawning stock biomass analysis was revised slightly from the 1999 assessment to fully account for the age distribution of fish within the plus group. This was accomplished by adjusting the age $11+$ mean weight at age to account for the F likely to rebuild biomass and using recent catch and stock mean weights derived for the 1994-1998 period. Partial recruitment and maturation at age were consistent with the 1999 assessment. The YPR analysis was performed using ages 3 to $11+$ for consistency with the age structure of the stock sizes in the projections. A sensitivity analysis was conducted using maturation at age from 1980-1982, a period of delayed maturation associated with higher biomass levels. The yield and spawning stock biomass results are presented in Table 3.10.1. The yield and spawning stock biomass per recruit analysis indicate that $\mathrm{F} 0.1=0.168, \mathrm{~F} 40 \%=0.164$ and $\mathrm{Fmax}=0.358$. At $\mathrm{F} 40 \%$, the yield per recruit is 0.2406 kg and the spawning stock biomass per recruit is 1.602 kg . In the sensitivity run, F0.1 and Fmax remained unchanged, F40\% decreased to 0.136 and the yield per recruit and spawning stock biomass per recruit decreased to 0.226 kg and 1.439 kg , respectively (Table 3.10.2)

## MSY-based Reference Points

## Empirical Nonparametric Approach

If F40\% msp is assumed to be the proxy for Fmsy, then the fishing mortality threshold is 0.164 . The spawning stock biomass per recruit associated with this fishing mortality rate is
1.602 kg and the yield per recruit is 0.2406 kg . Since the VPA stock-recruit data for the 19821994 year classes revealed a negative trend, the arithmetic mean of the VPA recruitment (age 3) data was used as a proxy for recruitment at maximum sustainable yield (MSY). The mean recruitment of 12.42 million fish results in an estimate of $19,900 \mathrm{mt}$ of spawning stock biomass (Bmsy proxy) and MSY of $2,990 \mathrm{mt}$ (including landings and discards).

## Parametric Model Approach

The spawning stock biomass and age 3 recruitment from the most recent witch flounder assessment revealed an unexplained negative stock-recruit relationship for the 1982-1994 year classes (Figure 3.10.2). This negative relationship persisted regardless of recruitment age (e.g. age 1 , age 2 or age 3 ). To determine if a longer time series of stock-recruit data would provide a different relationship, Brodziak et al. (2001) hindcast stock-recruit data were examined. The survey-derived hindcast data for the 1963-1995 year classes did not provide evidence of a positive relationship. Given the limitations of the survey-derived hindcast data series (no survey age data prior to 1980, and a discrepancy in the magnitude between the hindcast recruitment and the VPA recruitment), the hindcast data were not utilized. Due to the negative trend in the VPA stock-recruit data, parametric modeling was not appropriate, and the Working Group agreed to accept the empirical nonparametric approach.

## Reference Points

Based on the yield and spawning stock biomass per recruit analysis, the following management parameters are considered most appropriate: $\mathrm{Bmsy}=19,900 \mathrm{mt}, \mathrm{Fmsy}=\mathrm{F} 40 \%=0.164$ (fully recruited F ) and $\mathrm{MSY}=2,990 \mathrm{mt}$. This level of yield is expected to rebuild and maintain the stock size given that average recruitment is within the range observed in the most recent assessment (Figure 3.10.3).

## Projections

To evaluate the trajectories of spawning stock biomass and catch under the F40\% fishing mortality rate, a stochastic age-based projection (Brodziak and Rago MS 2002) was conducted over a twelve year time period beginning in 1999. Since the last year of the VPA was 1998, the projection used estimates of total catch in 1999-2001. Annual discards for 1999-2001 were estimated by multiplying1999-2001 annual landings by the 1998 discard:landings ratio (0.18). The 2001 landings were estimated by multiplying the 2001 January-November landings by the ratio of 2000 January-November landings to 2000 January-December. The estimated total catch in 1999-2001 was $2,505 \mathrm{mt}, 2,878 \mathrm{mt}$, and $3,459 \mathrm{mt}$, respectively. The partial recruitment at age, maturity at age and the stock and catch mean weights are the same as used in the yield and spawning stock biomass per recruit analysis given above. Initial stock sizes in 1999 were derived from 1000 bootstrap iterations of the final VPA formulation. To capture the recruitment stochasticity in the rebuilding projections, resampling from the cumulative distribution function based on the VPA age 3 recruitment from the 1982-1994 year classes was used (Brodziak and

Rago MS 2002). The F in 2002 was set to the median F in 2001 (0.191). The fishing mortality rate in 2003-2010 was set to $\mathrm{Fmsy}=\mathrm{F} 40 \%=0.164$ as derived in the YPR analysis.

The projection shows that fishing at Fmsy (0.164) between 2003 and 2009 will result in a $76 \%$ probability of rebuilding the spawning biomass to SBBmsy (19,900 mt) by 2009 (Figure 3.10.4). The projected median spawning biomass declines slightly from 28,400 mt in 2003 to 23,100 mt in 2009 (Figure 3.10.5). The projected median catch declines slightly from 4,400 mt in 2003 to 3,500 mt in 2009 (Figure 3.10.6).

Table 3.10.1. Yield and biomass per recruit of witch flounder, using current growth and maturity rates.

The NEFC Yield and Stock Size per Recruit Program - PDBYPRC PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-1999					
Run Date: 21-2-2002; Time: 13:57:11.89 Witch flounder					
```Proportion of F before spawning: .1667 Proportion of M before spawning: .1667 Natural Mortality is Constant at: . }15 Initial age is: 3; Last age is: 11 Last age is a PLUS group; Original age-specific PRs, Mats, and Mean Wts from file: ==> wit311s.dat```					
Age-specific Input data for Yield per Recruit Analysis					
Age	Fish Mort Pattern	Nat Mort Pattern	Proportion Mature	Average Catch	Weights Stock
3	. 0130	1.0000	. 0000	. 067	. 042
4	. 0730	1.0000	. 0800	. 179	. 114
5	. 2330	1.0000	. 4500	. 264	. 221
6	. 4730	1.0000	. 8500	. 399	. 333
7	1.0000	1.0000	1.0000	. 527	. 468
8	1.0000	1.0000	1.0000	. 660	. 595
9	1.0000	1.0000	1.0000	. 868	. 766
10	1.0000	1.0000	1.0000	. 974	. 920
$11+$	1.0000	1.0000	1.0000	1.248	1.236

Summary of Yield per Recruit Analysis for:
Witch flounder

| Slope of the Yield/Recruit Curve at $F=0.00:-->$ | 3.8732 | |
| :---: | :---: | :---: | :---: | :---: |
| F level at slope $=1 / 10$ of the above slope (F0.1): | $---->$ | .168 |
| Yield/Recruit corresponding to F0.1: -----> | .2420 | |
| F level to produce Maximum Yield/Recruit (Fmax): | $----->$ | .358 |
| Yield/Recruit corresponding to Fmax: ----> | .2669 | |
| F level at 40 \% of Max Spawning Potential (F40): | $---->$ | .164 |
| SSB/Recruit corresponding to F40: --------> | 1.6017 | |

Listing of Yield per Recruit Results for:
Witch flounder

	FMORT	TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
	. 00	. 00000	. 00000	7.1792	4.3601	4.7636	4.0045	100.00
	. 05	. 15695	. 13425	6.1354	3.1692	3.7230	2.8217	70.46
	. 10	. 25205	. 19992	5.5038	2.4784	3.0947	2.1377	53.38
	. 15	. 31620	. 23412	5.0785	2.0340	2.6726	1.6994	42.44
F0.1	. 17	. 33462	. 24204	4.9565	1.9108	2.5517	1.5782	39.41
F40\%	. 16	. 33102	. 24057	4.9803	1.9347	2.5753	1.6017	40.00
	. 20	. 36264	. 25220	4.7710	1.7281	2.3684	1.3987	34.93
	. 25	. 39801	. 26144	4.5374	1.5069	2.1380	1.1822	29.52
	. 30	. 42597	. 26564	4.3530	1.3409	1.9569	1.0204	25.48
	. 35	. 44875	. 26689	4.2030	1.2126	1.8103	. 8958	22.37
Fmax	. 36	. 45193	. 26690	4.1821	1.1953	1.7899	. 8790	21.95
	. 40	. 46774	. 26640	4.0783	1.1110	1.6889	. 7975	19.92
	. 45	. 48388	. 26491	3.9724	1.0289	1.5864	. 7184	17.94
	. 50	. 49782	. 26284	3.8812	. 9613	1.4984	. 6536	16.32
	. 55	. 51002	. 26046	3.8014	. 9048	1.4220	. 5997	14.98
	. 60	. 52084	. 25794	3.7309	. 8570	1.3549	. 5542	13.84
	. 65	. 53051	. 25539	3.6678	. 8160	1.2952	. 5154	12.87
	. 70	. 53924	. 25287	3.6110	. 7804	1.2419	. 4819	12.03
	. 75	. 54717	. 25040	3.5595	. 7493	1.1937	. 4527	11.30
	. 80	. 55444	. 24802	3.5123	. 7218	1.1499	. 4270	10.66
	. 85	. 56113	. 24573	3.4689	. 6973	1.1099	. 4043	10.10
	. 90	. 56733	. 24354	3.4287	. 6753	1.0732	. 3840	9.59
	. 95	. 57310	. 24144	3.3914	. 6555	1.0393	. 3658	9.13
	1.00	. 57848	. 23944	3.3566	. 6375	1.0079	. 3493	8.72

Table 3.10.2. Yield and biomass per recruit of witch flounder using historical maturity rates.

The NEFC Yield and Stock Size per Recruit Program - PDBYPRC PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-1999										
Witch flounder sensitivity run using 1980-1982 maturity ogive										
```Proportion of F before spawning: .1667 Proportion of M before spawning: .1667 Natural Mortality is Constant at: . }15 Initial age is: 3; Last age is: 11 Last age is a PLUS group; Original age-specific PRs, Mats, and Mean Wts from file: ==> wit311sm.dat```										
Age-specific Input data for Yield per Recruit Analysis										
Age \| Fish Mort Nat Mort	Proportion	Average Weights	Pattern Pattern	Mature	Catch Stock					
3	. 0130	1.0000	. 0000	. 067	. 042					
4	. 0730	1.0000	. 0000	. 179	. 114					
5	. 2330	1.0000	. 0200	. 264	. 221					
6	. 4730	1.0000	. 1500	. 399	. 333					
7	1.0000	1.0000	. 4900	. 527	. 468					
8	1.0000	1.0000	. 8200	. 660	. 595					
9	1.0000	1.0000	. 9700	. 868	. 766					
10	1.0000	1.0000	1.0000	. 974	. 920					
$11+$	1.0000	1.0000	1.0000	1.248	1.236					

Summary of Yield per Recruit Analysis for:
Witch flounder sensitivity run using 1980-1982 maturity ogive

| Slope of the Yield/Recruit Curve at $F=0.00:-->$ | 3.8732 |  |
| :---: | :---: | :---: | :---: | :---: |
| F level at slope $=1 / 10$ of the above slope (F0.1): | $---->$ | .168 |
| Yield/Recruit corresponding to F0.1: -----> | .2420 |  |
| F level to produce Maximum Yield/Recruit (Fmax) : $----->$ | .358 |  |
| Yield/Recruit corresponding to Fmax: ----> | .2669 |  |
| F level at $40 \%$ of Max Spawning Potential (F40): |  |  |
| SSB/Recruit corresponding to F40:----------> | 1.4388 | .136 |

```
Listing of Yield per Recruit Results for:
```

Witch flounder sensitivity run using 1980-1982 maturity ogive

	FMORT	TOTCTHN	TOTCTHW	TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
	. 00	. 00000	. 00000	7.1792	4.3601	3.5826	3.5970	100.00
	. 05	. 15695	. 13425	6.1354	3.1692	2.5748	2.4293	67.54
	. 10	. 25205	. 19992	5.5038	2.4784	1.9775	1.7595	48.92
F40\%	. 14	. 30006	. 22645	5.1854	2.1436	1.6825	1.4388	40.00
	. 15	. 31620	. 23412	5.0785	2.0340	1.5848	1.3345	37.10
F0. 1	. 17	. 33462	. 24204	4.9565	1.9108	1.4742	1.2179	33.86
	. 20	. 36264	. 25220	4.7710	1.7281	1.3085	1.0464	29.09
	. 25	. 39801	. 26144	4.5374	1.5069	1.1047	. 8417	23.40
	. 30	. 42597	. 26564	4.3530	1.3409	. 9489	. 6910	19.21
	. 35	. 44875	. 26689	4.2030	1.2126	. 8264	. 5769	16.04
Fmax	. 36	. 45193	. 26690	4.1821	1.1953	. 8097	. 5617	15.62
	. 40	. 46774	. 26640	4.0783	1.1110	. 7280	. 4886	13.58
	. 45	. 48388	. 26491	3.9724	1.0289	. 6475	. 4189	11.65
	. 50	.49782	. 26284	3.8812	. 9613	. 5806	. 3630	10.09
	. 55	. 51002	. 26046	3.8014	. 9048	. 5243	. 3176	8.83
	. 60	. 52084	. 25794	3.7309	. 8570	. 4764	. 2801	7.79
	. 65	. 53051	. 25539	3.6678	. 8160	. 4353	. 2490	6.92
	. 70	. 53924	. 25287	3.6110	. 7804	. 3996	. 2227	6.19
	. 75	. 54717	. 25040	3.5595	. 7493	. 3685	. 2005	5.57
	. 80	. 55444	. 24802	3.5123	. 7218	. 3411	. 1815	5.04
	. 85	. 56113	. 24573	3.4689	. 6973	. 3169	. 1651	4.59
	. 90	. 56733	. 24354	3.4287	. 6753	. 2953	. 1508	4.19
	. 95	. 57310	. 24144	3.3914	. 6555	. 2761	. 1384	3.85
	1.00	. 57848	. 23944	3.3566	. 6375	. 2587	. 1275	3.54

## Witch Flounder



Figure 3.10.1. Landings and research vessel survey abundance indices for Witch flounder.
(a)


Witch Flounder
(b)



		F0.1	F40\% MSP
F reference point		0.168	0.164
ssb per recruit at $F$		1.578	1.602
n	Recruitment (millions)	SS Biomass at	F0.1
SS Biomass at $\mathrm{F} 40 \%$			
mean	13	13	13
min	12.42	19.60	19.89
max	2.95	4.66	4.73
10th \%'tile	27.83	43.93	44.58
25th \%'tile	5.17	8.16	8.28
50th \%'tile	6.87	10.84	11.01
75th \%'tile	9.50	15.00	15.22
90th \%'tile	15.28	24.11	24.47
Std Dev	25.02	39.49	40.08
CV	7.99	12.60	12.79
	0.64	0.64	0.64

Figure 3.10.2. Spawning stock (a), recruitment (age 3 millions, b), and scatterplot (c) for witch flounder. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \%$ MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.10.1). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.

## Witch Flounder



Figure 3.10.3. Stock and recruitment data for witch flounder. For the empirical non-parametric approach the mean recruitment is plotted along with the replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 40 \% \mathrm{msp}=0.16$.


Figure 3.10.4. Probability that witch flounder spawning biomass will exceed Bmsy ( $19,900 \mathrm{mt}$ ) annually under Fmsy.

## Witch Flounder



Figure 3.10.5. Median and $80 \%$ confidence interval of predicted spawning biomass for witch flounder under F-msy fishing mortality rates.


Figure 3.10.6. Median and $80 \%$ confidence interval of predicted catch for witch flounder under F-msy fishing mortality rates.

### 3.11 Southern New England winter flounder

## Catch and Survey Indices

After reaching an historical peak of nearly 12,000 metric tons ( mt ) in 1966, then declining through the 1970s, total U.S. commercial landings again peaked at $11,200 \mathrm{mt}$ in 1981, and then steadily declined to a record low of $2,200 \mathrm{mt}$ in 1994. Commercial landings have increased since 1994 to about $3,900 \mathrm{mt}$ in 2000. Commercial fishery discards are generally about 5-10\% of the commercial landings, and were estimated to be about 270 mt in 2000. Recreational landings reached a peak of $5,800 \mathrm{mt}$ in 1984, but declined dramatically thereafter, and were estimated at about 530 mt in 2000 . Recreational discards are small in relation to the other components of the catch, and were estimated at only 24 mt in 2000 . The total catch of Southern New England winter flounder varied between 12,000 to 16,000 in the early 1980s, declined through the 1980s to about 4,000 mt by 1994, and was about 4,700 mt in 2000 (Figure 3.11.1). NEFSC research survey indices dropped from the beginning of the time series in the 1960s to a low point in the early to mid-1970s, then rose to a peak by the early 1980s. Following several years of high indices in the early 1980s, NEFSC abundance indices reached near- or record low levels in the late 1980s- early 1990s. NEFSC survey indices have generally increased since 1993, and are currently at about $50 \%$ of the peak levels seen in the mid-1960s and early 1980s (Figure 3.11.1). Massachusetts Division of Marine Fisheries (MADMF) research survey indices steadily declined from a peak in 1979 to a low in 1992, and then increased to moderate levels in the late 1990s (Figure 3.11.1).

## Stock Assessment

The Southern New England/Mid-Atlantic Bight stock complex of winter flounder was last fully assessed by SAW 28 in 1998, with catches through 1997 (NEFSC 1999a). The assessment is for the entire stock complex, which includes several inshore spawning aggregations that individually may not demonstrate the same trend in abundance as the complex. Fully recruited (ages 4-6) fishing mortality in 1997 was estimated at 0.31, and total stock biomass in 1997 was estimated to be $17,900 \mathrm{mt}$. Reference points were estimated by a surplus production model in the SAW 28 assessment. Bmsy (total stock biomass) was estimated to be $27,810 \mathrm{mt}$, and MSY was estimated to be $10,200 \mathrm{mt}$, Fmsy was estimated to be biomass weighted $\mathrm{F}=0.37$ (equivalent to fully recruited F of 0.59 ), and the FMP Amendment 9 ten year rebuilding target biomass weighted fishing mortality was estimated to be $\mathrm{F}_{\text {target10 }}=0.24$ (equivalent to fully recruited F of 0.33 ). Projections for Southern New England winter flounder through 1999 were reviewed as part of the 2001 review of 19 Northeast groundfish stocks conducted by the NEFSC staff (Northern Demersal and Southern Demersal Working Groups 2001). Projections based on 1998 and 1999 total catch indicated that fully recruited F (age 4-6) was still at about 0.30 in 1999, and total stock biomass was estimated to be about $25,300 \mathrm{mt}$. The fishing mortality reference points $\mathrm{F}(0.1)$ and $\mathrm{F} 40 \%$ given in Figure 3.11.2 were calculated for this exercise using ages 1 through 7+ in order to be consistent with the projections described below, and thus may differ slightly from previously reported values (see appendix for yield per recruit analysis results).

## Empirical Nonparametric approach

If F40\% is assumed to be an adequate proxy for Fmsy, then the fishing mortality threshold is 0.206 . This fishing mortality rate produces 1.1063 kg of spawning stock biomass per recruit and 0.2462 kg of yield per recruit (including discards; Figure 3.11.2). Since the VPA estimates of recruitment increase with increasing spawning stock size, the mean of the top 5 value of spawning stock biomass is assumed to be representative of recruitment levels expected at maximum sustainable yield (MSY). Thus, recruitment of 42.31 million fish results in an estimate of $46,810 \mathrm{mt}$ of spawning stock biomass (Bmsy proxy) and $10,420 \mathrm{mt}$ of total yield (including discards; Figure 3.11.2).

## Parametric Model Approach

Maximum likelihood fits of the 10 parametric stock-recruitment models to the Southern New England winter flounder VPA estimates for 1982-1998 are listed below (Table 3.11.1). The model acronyms are: $\mathrm{BH}=$ Beverton-Holt, $\mathrm{ABH}=$ Beverton-Holt with autoregressive errors, $\mathrm{PBH}=$ Beverton-Holt with steepness prior, $\mathrm{PABH}=$ Beverton-Holt with steepness prior and autoregressive errors, $\mathrm{PRBH}=$ Beverton-Holt with recruitment prior, $\mathrm{PRABH}=$ Beverton-Holt with recruitment prior and autoregressive errors, $\mathrm{RK}=$ Ricker, ARK $=$ Ricker with autoregressive errors, $\operatorname{PRK}=$ Ricker with slope at the origin prior, PARK $=$ Ricker with slope at the origin prior and autoregressive errors. The six hierarchical criteria are applied to each of the models to determine the set of candidate models.

The ABH model does not satisfy criterion 1 because the estimate of steepness is on the boundary of the feasible range. The second criterion is not satisfied by the BH, PBH, RK, and PRK models because their point estimates of MSY are above the maximum observed landings value of 15,800 mt . All remaining models satisfy criterion 3 . The remaining models also satisfy the fourth criterion because $\mathrm{F}_{\mathrm{MAX}}=0.89$. The remaining autoregressive models $\mathrm{PABH}, \mathrm{PRABH}, \mathrm{ARK}$, and PARK, do not satisfy criterion 5 because their power spectra imply long-term forcing beyond the length of the stock-recruitment time series (Figure 3.11.3). The last remaining model is the PRBH model which satisifies criteria 3 through 6. Thus, the PRBH model is the only candidate parametric model for Southern New England winter flounder.

The results of using the PRBH model as the best fit parametric model are shown below (Figures 3.11.4-3.11.7). The standardized residual plot of the fit of the PRBH model to the stockrecruitment data shows that the standardized residuals generally lie within $\pm$ two standard deviations of zero (Figure 3.11.4), with the exception of the 1992 data point.

In the equilibrium yield plot (Figure 3.11.5), the yield surface is relatively flat in the neighborhood of the point estimate of $\mathrm{F}_{\mathrm{MSY}}=0.32$. The point estimates of $\mathrm{S}_{\mathrm{MSY}}(30,100 \mathrm{mt})$ and MSY (10,600 mt) appear consistent with the nonparametric proxy estimate of $\mathrm{S}_{\text {MSY }}$ and previous estimates of MSY. The stock-recruitment plot (Figure 3.11.6) shows that recruitment values near $\mathrm{S}_{\mathrm{MSY}}$ are roughly 45 million fish which is consistent with the long-term average of the observed recruitment series when spawning biomass was high, during the early 1980s.

Parameter uncertainty plots show histograms of 5000 MCMC sample estimates of MSY, $\mathrm{S}_{\mathrm{MSY}}$, and $\mathrm{F}_{\mathrm{MSY}}$ drawn from the posterior distribution of the MLE based on an uninformative prior. For MSY, the 80 percent credibility interval was $(9,500,11,200)$ with a median of $10,400 \mathrm{mt}$ (Figure 3.11.7). For $\mathrm{S}_{\mathrm{MSY}}$, the 80 percent credibility interval was $(25,500,32,100)$ with a median of $28,900 \mathrm{mt}$. For $\mathrm{F}_{\text {MSY }}$, the 80 percent credibility interval was $(0.305,0.355)$ with a median of 0.325 . Overall, the point estimates of MSY and $\mathrm{S}_{\mathrm{MSY}}$ were slightly larger than the medians of the MCMC samples.

## Reference Points

Based on the conformance of the recruitment-biomass per recruit analysis and the parametric stock-recruitment relationship, the following management parameters are considered most appropriate: Bmsy $=30,100 \mathrm{mt}$ (spawning stock biomass), $\mathrm{Fmsy}=0.32$ (fully recruited F ), and MSY $=10,600 \mathrm{mt}$ (including commercial and recreational landings and discards). Catch equal to or exceeding this estimate of MSY was removed from the stock during the early 1980s, but at a spawning stock biomass ( $10,000-15,000 \mathrm{mt}$ ) of about $50 \%$ of the Bmsy level, and at much higher fully recruited fishing mortality rates ( $\mathrm{F}=0.45-0.77$ ) than the Fmsy level.

## Projections

Given that the Beverton and Holt model with a prior on recruitment (set at the mean of the recruitment ( 42.31 million) produced by the spawning stock biomass present during the early 1980s ( $>10,000 \mathrm{mt}$ )) was assumed to be the most appropriate fit for the VPA stock and recruitment data, projections were conducted with this relationship. Since the last year in the VPA was 1997, total catch for 1998-2001 was estimated using 1998-2000 commercial and recreational landings and discard estimates, 2001 commercial landings for January-November raised to an annual total, 2001 commercial discards assumed to be $7 \%$ of the 2001 commercial landings, and 2001 preliminary recreational landings and discards estimates. The 2000 total catch estimate is $4,711 \mathrm{mt}$ and the 2001 total catch estimate is $4,746 \mathrm{mt}$. For 2002, the fishing mortality rate was assumed to be the same as that estimated for $2001, \mathrm{~F}=0.251$. For years 2003 through 2009, the fishery was assumed to fish at a rate of Fmsy ( 0.32 , fully recruited F). Under these assumptions, there is a $45 \%$ chance that the spawning stock biomass will be at least as large as Bmsy by 2009 (see Figures 3.11.8-3.11.10. for projection results). A second projection indicates that fishing mortality would need to be reduced to $\mathrm{F}=0.30$ during 2003 through 2009 to provide at least a $50 \%$ chance that spawning stock biomass will reach Bmsy by 2009.

Table 3.11.1. Stock-recruitment model comparisons for southern New England winter flounder.

Southern New England Winter Flounder Model Comparison					Prior					
SMAX =	$14.8$		Prior	Prior		Prior	Prior	Prior	Prior	Prior
	Prior	Prior								
	0	0	0	0	1.0000	0.0	0	0	0	0
	BH	ABH	PBH	PABH	PRBH	PRABH	RK	ARK	PRK	PARK
Posterior Probability	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Odds Ratio for Most Likely Model					1.00					
Normalized Likelihood	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Model AIC Ratio					1					
	BH	ABH	PBH	PABH	PRBH	PRABH	RK	ARK	PRK	PARK
Number_of_data_points	17	17	17	17	17	17	17	17	17	17
Number_of_parameters	3	4	3	4	3	4	3	4	3	4
Negative_loglikelihood	57.3304	54.4788	55.9922	53.8859	61.6136	57.7619	57.3451	55.336	59.7565	56.1928
Bias-corrected_AIC	122.507	120.291	122.557	121.841	125.772	121.797	122.536	122.005	124.919	125.295
Diagnostic Comments	MSY exceeds max observed landings \& SMSY substantially exceeds proxy	Steepness parameter at boundary of feasible range	$\begin{aligned} & \text { MSY exceeds } \\ & \text { max observed } \\ & \text { landings \& } \\ & \text { SMSY } \\ & \text { substantially } \\ & \text { exceeds proxy } \end{aligned}$	Power spectrum dominant frequency exceeds $1 / 2$ time series length	Most Likely   Model	Power spectrum dominant frequency exceeds $1 / 2$ time series length	MSY exceeds max observed landings	Power spectrum dominant frequency exceeds $1 / 2$ time series length	MSY and SMSY are outside credible range	Power spectrum dominant frequency exceeds $1 / 2$ time series length
Parameter Point Estimates										
***********************										
MSY	24.8351	7.73735	21.6966	9.71019	10.606	10.4364	17.1342	8.24175	32407.8	1.79024
FMSY	0.265	0.905	0.27	0.345	0.32	0.37	0.44	0.755	0.35	0.26
SMSY	85.9627	7.10725	73.6515	25.4992	30.1439	25.4559	34.7668	9.28666	83823.1	6.32069
alpha	125.526	25.5949	107.923	41.6089	47.5356	43.2341	1.41779	2.06335	1.15144	0.812791
expected_alpha	131.789	29.4582	113.324	44.7586	50.4245	46.8443	1.48866	2.29786	1.21789	2.57165
beta	29.5672	6.641E-06	24.2383	5.30601	7.39754	4.63312	-2.57E-02	-1.06E-01	-1E-05	-0.117795
RMAX	41.8728	25.5948	40.9151	30.6282	31.6939	32.9265	41.7365	24.2483	46.8016	5.83601
expected_RMAX	43.9621	29.4582	42.9627	32.9467	33.6201	35.676	43.8226	27.0042	49.5028	18.465
Prior_mean			0.8	0.8	42.314	42.314			0.79	0.79
Prior_se			0.09	0.09	4.95	4.95			0.18	0.18
Z_Myers	0.75	1.00	0.75	0.84	0.82	0.87				
sigma	0.312	0.530	0.313	0.382	0.344	0.400	0.312	0.464	0.335	1.518
phi		0.88		0.71		0.74		0.82		0.98
sigmaw		0.25		0.27		0.27		0.27		0.28
last log-residual R		-0.419		-0.422		-0.510		-0.479		0.872
expected lognormal error term	1.050	1.15	1.05	1.08	1.06	1.08	1.05	1.11	1.06	3.16

Table 3.11.2. Results of yield and spawning stock biomass per recruit analyses for Southern New England winter flounder.

The NEFC Yield and Stock Size per Recruit Program - PDBYPRC PC Ver.1.1 [Method of Thompson and Bell (1934)] 1-OCT-1991

Run Date: 21-2-2002; Time: 11:08:52.02
SNE/MAB WFL: SARC 28 PR, Mean Weights, 7+


## Southern New England Winter Flounder



Figure 3.11.1. Landings and research vessel survey abundance indices for Southern New England winter flounder.

Southern New England Winter Flounder
(a)


Southern New England Winter Flounder
(b)


Southern New England Winter Flounder
(C)


		F0.1	F40\% MSP
F reference point		0.253	0.206
ssb per recruit at F		0.9624	1.1063
	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F40\%
n	17	17	17
mean	25.51	24.55	28.23
min	8.83	8.50	9.77
max	56.51	54.38	62.51
10th \%'tile	12.26	11.80	13.57
25th \%'tile	16.84	16.20	18.63
50th \%'tile	23.29	22.41	25.76
75th \%'tile	32.81	31.57	36.29
90th \%'tile	42.18	40.59	46.66
Std Dev	13.37	12.87	14.79
CV	0.52	0.52	0.52
For Top 5 Values of SSB			
Mean		42.31	40.72
Median	35.62	34.28	46.81

Figure 3.11.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Southern New England winter flounder. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $\mathrm{F} 40 \%$ MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.11.2). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.


Figure 3.11.3. Southern New England winter flounder periodicity of environmental forcing for autoregressive stock-recruitment models.


Figure 3.11.4. Southern New England winter flounder standardized residuals for the most likely stock-recruitment model


Figure 3.11.5. Southern New England winter flounder equilibrium yield vs. F for the most likely stock-recruitment model.


Figure 3.11.6. Stock recruitment relationship for best fit parametric model for Southern New England winter flounder. Stock-recruitment data points are overplotted, along with the predicted S-R line and replacement lines for $\mathrm{F}=100 \% \mathrm{msp}=0.00$ and $\mathrm{F} 40 \% \mathrm{msp}=0.21$.


Figure 3.11.7. Histograms of uncertainty in MSY, BMY and FMSY from 5000 MCMC evaluations of best fit parametric model for Southern New England winter flounder.


Figure 3.11.8. Probability that Southern New England winter flounder spawning biomass will exceed Bmsy ( $30,100 \mathrm{mt}$ ) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.


Figure 3.11.9. Median and $80 \%$ confidence interval of predicted spawning biomass for Southern New England winter flounder under F-rebuild fishing mortality rates.


Figure 3.11.10. Median and $80 \%$ confidence interval of predicted catch for Southern New England winter under F-rebuild fishing mortality rates.

### 3.12 Georges Bank Winter Flounder

## Catch and Survey Indices

Commercial landings of Georges Bank winter flounder generally increased during the 1960s and early 1970s, ranged between 1,800 and $4,500 \mathrm{mt}$ per year during the 1970s and 1980s, and decreased to less than 2000 mt . Since 1989, total landings (U.S. and Canada) have been less than 2000 mt since 1986 (Figure 3.12.1).

Survey biomass indices are relatively variable, but generally suggest intermediate levels of abundance from the early 1960s to early 1980s, a decrease in stock biomass during the 1980s, and an increase in biomass in the 1990s (Figure 3.12.1).

## Stock Assessment

The most recent assessment of Georges Bank winter flounder was based on a biomass dynamics model (ASPIC) of catch and survey indices, and the results were reviewed by the $34^{\text {rd }}$ Northeast Regional Stock Assessment Workshop (34 ${ }^{\text {th }}$ SAW) in November 2001 (NEFSC 2002). Results from the biomass dynamics model indicate that yield has been below the estimated surplus production since 1994 (Figure 3.12.2). Relative estimates of mean biomass ( $\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\mathrm{MSY}}$ ) declined sharply during 1977-1994, but then increased to $\mathrm{B}_{\mathrm{MSY}}$ in 2001.

## Reference Points

Results from the biomass dynamics analysis indicate a reasonable fit to the input data. A maximum sustainable yield (MSY) of $3,020 \mathrm{mt}$ was estimated to be produced by a biomass $\left(\mathrm{B}_{\text {MSY }}\right)$ of $9,360 \mathrm{mt}$ at a $\mathrm{F}_{\text {MSY }}$ of 0.32 . Bootstrap analysis indicates that MSY was estimated with relatively high precision (relative interquartile range, $\mathrm{IQR}=6 \%$ ), and $\mathrm{B}_{\mathrm{MSY}}(\mathrm{IQR}=29 \%)$ and $\mathrm{F}_{\text {MSY }}$ ( $\mathrm{IQR}=28 \%$ ) were estimated with moderate precision.

Although current reference points for Georges Bank winter flounder are expressed in survey units ( $2.49 \mathrm{~kg} /$ tow $)$ and an exploitation index proxy for Fmsy ( $1.21 \mathrm{C} / \mathrm{I}$ ), estimates of biomass were similar from ASPIC and VPA (NEFSC 2002). Therefore, the working group considers the absolute estimates of $\mathrm{B}_{\mathrm{MSY}}$, and $\mathrm{F}_{\mathrm{MSY}}$ to be more reliable than survey equivalents, because absolute reference points will facilitate determination of stock status through analytical modeling rather than averaging of recent survey observations.

The replacement ratio analysis for Georges Bank winter flounder suggests that the stock can replace itself at an exploitation index of 1.18 (Figure 3.12.6; Table 4.11), which corresponds to an F of 0.31 using the ASPIC estimate of survey catchability ( 0.2653 ). Therefore the empirical results generally confirm the $\mathrm{F}_{\mathrm{MSY}}$ estimate from ASPIC (0.32).

The use of "total biomass" indices in ASPIC, and the resulting currency of MSY reference points (i.e., $\mathrm{B}_{\text {MSY }}$ in total biomass, and $\mathrm{F}_{\text {MSY }}$ on total biomass), has presented problems with interpretation, especially during times of strong recruitment, when a large portion of total biomass may not be recruited to the fishery (NEFSC 2001c). Therefore age distributions in the
catch and surveys were compared to investigate the proportion of unrecruited fish comprised in the aggregate biomass indices. During the large-mesh regulatory period (1994-2000) age compositions were similar: fishery catch was $3 \%$ age- $1,26 \%$ age- 2 and $71 \%$ age- $3+$, the fall survey was $1 \%$ age- $1,22 \%$ age- 2 and $77 \%$ age- $3+$, and the spring survey was $3 \%$ age- $1,24 \%$ age- 2 , and $72 \%$ age- $3+$ (in numbers, differences would be even less in weight). The Working Group concluded that the survey appears to measure the biomass of the exploitable stock. Therefore, survey indices are not expected to be sensitive to biomass of unexploited fish (i.e., prerecruits).

## Projections

Stochastic projection was performed using bootstrap distributions of stock biomass in 2001, and biomass dynamics parameters (Prager 1995). Observed catch from January to November 2001 was $1,920 \mathrm{mt}$, which corresponds to a total annual U.S. catch of $2,070 \mathrm{mt}$ based on proportion of 2000 landings taken in December, by gear. Canadian catch in 2001 was 590 mt , and the total estimate of 2001 catch was $2,670 \mathrm{mt}$. The resulting fishing mortality in 2001 ( 0.28 ), was assumed to continue in 2002. For the 2003-2008 fishing years, $\mathrm{F}_{\mathrm{MSY}}(0.32)$ was projected.

Projected biomass is maintained at $\mathrm{B}_{\text {MSY }}$ throughout the projected time series with high probability (Figures 3.12.3 and 3.12.4). Projected catch increases to $3,000 \mathrm{mt}$, and is maintained at that level for the projected time series (Figure 3.12.5).


Figure 3.12.1. Landings and research vessel survey abundance indices for Georges Bank winter flounder.


Figure 3.12.2. Results of surplus production analyses (ASPIC) for Georges Bank winter flounder


Figure 3.12.3. Probability that Georges Bank flounder total biomass will exceed Bmsy annually under Fmsy. Projections are based on an ASPIC surplus production analysis.


Figure 3.12.4. Median and $80 \%$ confidence interval of predicted spawning biomass for Georges Bank winter flounder under F-msy fishing mortality rates.


Figure 3.12.5. Median and $80 \%$ confidence interval of predicted catch for Georges Bank winter flounder under F-msy fishing mortality rates.

## GB Winter Flounder, Fall



Figure 3.12.6. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Georges Bank winter flounder. Dashed lines indicate equivalent biomass and fishing mortality rate proxies of Bmsy and Fmsy.

### 3.13 Acadian Redfish

## Catch and Survey Indices

Redfish, Sebastes fasciatus Storer, are assessed as a unit stock in the Gulf of Maine and Georges Bank region (NAFO Subarea 5). The fishery on this stock developed rapidly during the 1930s (Mayo 1980). Landings rose rapidly from less than 100 mt in the early 1930s to over 20,000 mt in 1939, peaking at $56,000 \mathrm{mt}$ in 1942, then declined throughout the 1940s and 1950s (Figure 3.13.1). Redfish have been harvested primarily by domestic vessels, although distant water fleets took considerable quantities for a brief period during the early 1970s. The distant water fleet effort, combined with increased domestic fishing effort, resulted in a brief increase in total catch to about 20,000 mt during the early 1970s. Landings declined throughout the 1980s and have averaged less than 500 mt per year during the 1990s

Relative biomass indices (stratified mean weight per tow) have been calculated from NEFSC spring and autumn surveys based on strata encompassing the Gulf of Maine and portions of the Great South Channel (strata 24, 26-30, 36-40). Trends in total abundance and biomass are similar in both spring and autumn surveys (Figure 3.13.1). Relative biomass of redfish has declined sharply in both survey series, from peak levels in the late 1960s and early 1970s to generally less than 2 kg per tow during the mid-1980s through mid-1990s. Both series suggest a slight increase in biomass between the mid-1980s and 1990s followed by a sharp increase in autumn 1996 and spring 1997.

## Stock Assessment

The most recent stock assessment was completed in 2001 (Mayo et al. 2002b), and the results were reviewed at the $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop in June, 2001 (NEFSC 2001c). The assessment was based on several analyses including trends in catch/survey biomass exploitation ratios; a yield and biomass per recruit analysis; an age-structured dynamics model which incorporates information on the age composition of the landings, size and age composition of the population, and trends in relative abundance derived from commercial CPUE and research vessel survey biomass indices; and an age-aggregated biomass dynamics model. Surplus production estimates were derived from the age-structured dynamics model, and information on current biomass and fishing mortality relative to MSY-based reference points were also provided by the biomass dynamics model.

Exploitation ratios (catch/survey biomass) suggested that fishing mortality has been very low since the mid-1980s compared to previous periods. Estimates of fishing mortality derived from the age-structured dynamics model and the age-aggregated biomass model were similar, both indicating that current fishing mortality is low relative to past decades and less than $5 \%$ of $\mathrm{F}_{\text {msy }}$. Stock biomass has increased since the mid-1990s, and current biomass was estimated to be about $33 \%$ of $\mathrm{B}_{\text {msy }}$ due, in large part, to strong recruitment from the early 1990s. The spawning stock and recruitment estimates derived from the age-structured dynamics model are provided in Figures 3.13.2 and 3.13.3.

## Yield and SSB per Recruit Analysis

The yield and spawning stock biomass analysis conducted during the course of the 2001 assessment was revised slightly during the present analysis to provide an estimate of F50\% MSP as recommended by the Stock Assessment Review Committee of the $33^{\text {rd }}$ SAW. Partial recruitment, catch and stock mean weights, and maturation at age were the same as those employed in the 2001 assessment. Estimates of $\mathrm{F}_{0.1}$ and $\mathrm{F}_{50 \%}$ are presented in Table 3.1.1. The spawning stock biomass per recruit estimate corresponding to $\mathrm{F}_{50 \%}$, when combined with information on historical recruitment, provides an estimate of $\mathrm{SSB}_{\text {msy }}$ as described in the following section.

## MSY-based Reference Point Estimation

## Empirical Nonparametric Approach

Estimates of recruitment obtained from the age-structured biomass dynamics model reviewed at the $33^{\text {rd }}$ SAW were used to imply the probable recruitment that could be produced by a rebuilt stock. Recruitment estimates derived by the model from the 1952-1999 yearclasses served as the basis for evaluating trends and patterns in recruitment. The stock-recruitment data suggest an increase in the frequency of larger year classes ( $>50$ million fish) at higher biomass levels (Figure 3.13.2). Therefore recruitment estimates corresponding to the upper quartile of the SSB range served as the basis for deriving mean and median recruitment estimates. In accordance with the recommendation of the Stock Assessment Review Committee of the $33^{\text {rd }}$ SAW, the estimate of $\mathrm{F}_{50 \%}$ ( 0.04 ) is taken as a proxy for $\mathrm{F}_{\text {msy }}$. This fishing mortality rate produces 4.1073 kg of spawning stock biomass per recruit and 0.1429 kg of yield per recruit. The resulting mean recruitment of 57.63 million fish results in an $\mathrm{SSB}_{\text {msy }}$ estimate of $236,700 \mathrm{mt}$ when multiplied by the SSB per recruit, and an MSY estimate of $8,235 \mathrm{mt}$ when multiplied by the yield per recruit.

## Reference Point Advice

Reference points derived from the nonparametric approach are: $\mathrm{MSY}=8,235 \mathrm{mt}$ and $\mathrm{SSB}_{\text {msy }}=$ $236,700 \mathrm{mt}$ (Table 4.2). In lieu of an analytically-derived estimate of $\mathrm{F}_{\text {msy }}$, the F proxy advised by the $33^{\text {rd }}$ SAW $\left(\mathrm{F}_{50 \%}=0.04\right)$ is recommended. The estimate of MSY represents total landings..

## Projections

Stochastic age-based projections (Brodziak and Rago MS 2002) were performed over a 10-year time horizon beginning in 2001 to evaluate relative trajectories of stock biomass and catch under various fishing mortality scenarios. Recruitment was generated by resampling observed recruitment using a cumulative distribution function which allows predicted recruitment values to occur within the range of those from the 1952 through 1999 yearclasses as estimated by the age structured dynamics model. Stock and catch mean weights at age, the maturity at age schedule, are the same as those employed in the yield and SSB per recruit analyses presented above, and the partial recruitment at age vector was derived from the age structured dynamics model. The 2001 survivors at ages 1 through $26+$ age estimated by the age structured dynamics model were employed as the initial population vector. The projection was performed at two
fishing mortality rates: $\mathrm{F}_{50 \%}$ (0.04) and F calculated to rebuild spawning biomass to $\mathrm{SSB}_{\text {msy }}$ by 2009. Fully recruited fishing mortality in 2001 was derived from iterative calculations based on the estimated total 2001 commercial landings ( 328 mt ). Fishing mortality in 2002 was fixed at the 2001 value.

The medium-term projections (Figures 3.13.4 and 3.13.4 and 3.13.6) suggest that fishing at $\mathrm{F}_{50 \%}$ (0.04) between 2003 and 2009 will result in less than a $1 \%$ probability of rebuilding spawning biomass to $\mathrm{SSB}_{\text {msy }}(236,700 \mathrm{mt}$ ) by 2009 (Figure 3.13.4). Even if F is reduced to 0 , there is still less than a $1 \%$ probability of rebuilding spawning biomass to $\mathrm{SSB}_{\text {msy }}$ by 2009 (Figures 3.13.5).

Table 3.13.1. Yield and biomass per recruit of Acadian redfish.


REDFISH UPDATED AVE WTS \& FPAT, MAT VECTOR (MAYO ET AL. 1990)

Slope of the Yield/Recruit Curve at $\mathrm{F}=0.00$ : -->   F level at slope $=1 / 10$ of the above slope (F0.1) Yield/Recruit corresponding to F0.1: ----->   F level to produce Maximum Yield/Recruit (Fmax) Yield/Recruit corresponding to Fmax: ----->   F level at $50 \%$ of Max Spawning Potential (F50): SSB/Recruit corresponding to F50: ----------> 4.1073							.059    .127    .040	
Listing of Yield per Recruit Results for:   REDFISH UPDATED AVE WTS \& FPAT, MAT VECTOR (MAYO ET AL. 1990)								
FMORT		TOTCTHN TOTCTHW		TOTSTKN	TOTSTKW	SPNSTKN	SPNSTKW	\% MSP
	. 00	. 00000	. 00000	20.5042	9.1737	15.7030	8.7760	100.00
F50\%	. 04	. 34434	. 14293	13.6199	4.4727	$\begin{aligned} & 8.8513 \\ & 8.0041 \end{aligned}$	4.1073	46.80
	. 05	. 38712	. 15522	12.7649	3.9263		3.5674	40.65
F0. 1	. 06	. 41925	. 16317	12.1227	3.5252	$\begin{aligned} & 8.0041 \\ & 7.3690 \end{aligned}$	3.1719	36.14
	. 10	. 51797	. 17890	10.1507	2.3604	5.4286	2.0284	23.11
Fmax	. 13	. 55860	. 18057	9.3395	1.9207	4.6377		18.23
	. 15	. 58466	. 17981	8.8194	1.6549	4.1345	1.6001 1.3428	15.30
	. 20	. 62564	. 17533	8.0023	1.2684	3.3532	-. 9718	11.07
	. 25	. 65370	. 16973	7.4432	1.0297	2.8287	. 7459	8.50
	. 30	. 67435	. 16423	7.0323	. 8698	2.8512	. 5967	6.80
	. 35	. 69033	. 15916	6.7145	. 7561	2.1657	. 4923	5.61
	. 40	. 70318	. 15459	6.4593	. 6714	1.9418	. 4158	4.74
	. 45	. 71381	. 15049	6.2483	. 6060	1.7611	. 3578	4.08
	. 50	. 72281	. 14681	6.0696	. 5540	1.6119	. 3124	3.56
	. 55	. 73058	. 14349	5.9156	. 5117	1.4864	. 2762	3.15
	. 60	. 73739	. 14047	5.7808	. 4765	1.3793	. 2467	2.81
	. 65	. 74343	. 13772	5.6612	. 4467	1.2868	. 2222	2.53
	. 70	. 74885	. 13520	5.5540	. 4212	1.2058	. 2016	2.30
	. 75	. 75376	. 13288	5.4570	. 3991	1.1345	. 1841	2.10
	. 80	. 75823	. 13072	5.3685	. 3797	1.0710	. 1690	1.93
	. 85	. 76234	. 12871	5.2872	. 3625	1.0141	. 1559	1.78
	. 90	. 76614	. 12683	5.2122	. 3471	$\begin{aligned} & .9628 \\ & .9163 \end{aligned}$	$\begin{array}{r} .1444 \\ 13443 \end{array}$	1.65
	. 95	. 76967	. 12506	5.1425	. 3333			1.53
	1.00	. 77296	. 12340	5.0775	. 3208	. 8740	. 1253	1.43



Figure 3.13.1. Landings and research vessel survey abundance indices for Acadian redfish.
(a)


Acadian Redfish
(b)


Acadian Redfish
(c)


		F0.1	F50\% MSP
F reference point		0.059	0.04
ssb per recruit at $F$		3.1719	4.1073
	Recruitment (millions)	SS Biomass at F0.1	SS Biomass at F50\%
n	48	48	48
mean	42.84	135.87	175.94
min	1.56	4.95	6.41
max	327.49	1038.76	1345.10
10th \%'tile	2.52	7.98	10.33
25th \%'tile	4.91	15.58	20.17
50th \%'tile	29.12	92.36	119.59
75th \%'tile	63.12	200.20	259.24
90th \%'tile	77.26	245.07	317.34
Std Dev	59.48	188.68	244.32
CV	1.39	1.39	1.39
For Top Quartile of SSB			
Mean	57.63	182.80	236.71
Median	64.11	203.34	263.31

Figure 3.13.2. Spawning stock (a), recruitment (age 1 millions, b), and scatterplot (c) for Acadian redfish. Data are the calculated spawning stock biomasses for various recruitment scenarios multiplied by the expected SSB per recruit for F 0.1 and $50 \%$ MSP, assuming recent patterns of growth, maturity and partial recruitment at age (Table 3.13.1). Smoother in the stockrecruitment plot is lowess with tension $=0.5$.

## Acadian Redfish



Figure 3.13.3. Stock and recruitment data for Acadian redfish, 1952-1999. For the empirical non-parametric approach the mean recruitment is plotted along with the replacement lines for $\mathrm{F}=0.0$ and $\mathrm{F} 50 \% \mathrm{msp}=0.04$.


Figure 3.13.4. Probability that Acadian redfish spawning biomass will exceed Bmsy ( $236,700 \mathrm{mt}$ ) annually under two fishing mortality scenarios: Fmsy and F required to rebuild the stock to Bmsy by 2009.


Figure 3.13.5. Median and $80 \%$ confidence interval of predicted spawning biomass for Acadian redfish F-rebuild fishing mortality rates.


Figure 3.13.6. Median and $80 \%$ confidence interval of predicted catch for Acadian redfish under F-rebuild fishing mortality rates.

### 3.14 White Hake

## Catch and Survey Indices

Commercial landings of white hake increased from less than 2,000 mt during the late 1960s to over $10,000 \mathrm{mt}$ during the early-to-mid 1980s (Figure 3.14.1). Landings remained relatively high through the early 1990s, fluctuating between 6,000 and $10,000 \mathrm{mt}$ until 1993. Landings subsequently declined, reaching $2,200 \mathrm{mt}$ in 1997, and have remained between 2,000 and 3,000 mt since then (Figure 3.14.1).

NEFSC spring and autumn bottom trawl survey biomass indices for white hake increased from relatively low levels during the 1960s and fluctuated without trend for several decades thereafter (Figure 3.14.1). Both indices declined sharply during the 1990s and currently remain extremely low.

## Stock Assessment

The most recent assessment of white hake was based on a biomass dynamics model (ASPIC) of catch and survey indices of $>60 \mathrm{~cm}$ fish, and the results were reviewed by the $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop ( $33^{\text {rd }}$ SAW) in June 2001 (NEFSC 2001c). These results confirmed the trends derived from the previous analyses and indicated further declines in stock biomass and increases in fishing mortality between 1998 and 2000. The biomass estimates from the model indicate that biomass increased to levels above $\mathrm{B}_{\text {msy }}$ in the late 1960s through the early 1980s. Biomass has since declined and is estimated to be about $20 \%$ of $B_{\text {msy }}$. The estimates of fishing mortality show an increasing trend from a low in 1967. The current estimate of fishing mortality is at least twice the $\mathrm{F}_{\text {msy }}$ estimate.

## Surplus Production Analysis

A surplus production model incorporating covariates (ASPIC, Prager, 1995) was conducted on the biomass of white hake greater than 60 cm (NEFSC 2001c). The reference points from this analysis were considered to be provisionalLY acceptable, because of a concern about an increase survey catchability after 1972. B msy was estimated to be $14,700 \mathrm{mt}$, Fmsy was estimated to be 0.29 , and MSY was estimated to be $4,200 \mathrm{mt}$ (Figure 3.14.2).

## Projections

Observed catch from January to November 2001 was $3,150 \mathrm{mt}$, which corresponds to a total annual catch of $3,360 \mathrm{mt}$ based on proportion of 2000 landings taken in December, by gear. Assuming 200 mt of Canadian catch, and $75 \%$ of U.S. catch $>60 \mathrm{~cm}$, the preliminary estimate of 2001 catch $>60 \mathrm{~cm}$ is $2,670 \mathrm{mt}$. With an estimate of 2001 stock biomass of $3,000 \mathrm{mt}$ from the biomass dynamics model, the estimate of 2001 catch would severely deplete the stock, especially if the large resulting F were assumed to continue in 2002. Projections were not considered to be reliable from the biomass dynamics model, because age-aggregated models do not perform well for describing the dynamics of severely depleted, age-structured populations. However, the working group concludes that if such high levels of catches were taken in 2001 and the intense exploitation rate continues in 2002, the stock will be in a severely depleted state, well below the most recent stock status of $20 \% \mathrm{~B}_{\mathrm{MSY}}$.

## White Hake



Figure 3.14.1. Landings and research vessel survey abundance indices for White hake.



Figure 3.14.2. Results of surplus production analyses (ASPIC) for white hake

### 3.15 Pollock

## Catch and Survey Indices

Pollock have been exploited by Canadian, USA and distant water fleets on the Scotian Shelf, in Gulf of Maine, and on Georges Bank. The total commercial catch from these areas increased from an annual average of $38,200 \mathrm{mt}$ during 1972-76 to 68,800 mt in 1986 (Mayo et al. 1989), but has since declined to $10,000-15,000 \mathrm{mt}$ per year. For the purposes of the present analysis, only catches from the Gulf of Maine and Georges Bank and west taken by all countries were included. Prior to 1976, fleets from all countries fished for pollock throughout the Scotian Shelf and Georges Bank, and in portions of the Gulf of Maine. Total landings increased from less than $10,000 \mathrm{mt}$ per year during the 1960 s to about $15,000 \mathrm{mt}$ by the mid 1970 s . Landings increased sharply during the late 1970s to over 20,000 mt per year, peaking at 26,500 mt in 1986 (Figure 3.15.1).

After this period of relatively high catches, total landings began to decline rapidly, and have averaged between 4,000 and $8,000 \mathrm{mt}$ per year since 1994. Since 1984, the USA fishery has been restricted to areas of the Gulf of Maine and Georges Bank west of the line delimiting the USA and Canadian fishery zones. The Canadian fishery occurs primarily on the Scotian Shelf with some additional landings from Georges Bank east of the line delimiting the USA and Canadian fishery zones (Neilson et al. 1999).

Indices of relative biomass (ln re-transformed), derived from NEFSC autumn research vessel bottom trawl surveys have varied considerably since 1963 (Figure 3.15.1). Indices generally fluctuated between 2 and 5 kg per tow throughout most of the 1960s and 1970s, peaking at over $5-7 \mathrm{~kg}$ per tow during the mid-to-late 1970s, reflecting recruitment of several moderate-to strong year classes from the early 1970s. Strong year classes were also produced in 1979 and 1980, after which recruitment began to diminish during the 1980s. Biomass indices declined rapidly during the early 1980s, and continued to decline steadily through the early 1990s, reaching a minimum in 1994. Since 1994, biomass indices from the Gulf of Maine-Georges Bank region have gradually increased.

## Stock Assessment

Pollock, Pollachius virens (L.) have generally been assessed as a unit stock from the eastern Scotian Shelf (NAFO Division 4V) to Georges Bank and the Gulf of Maine (Subarea 5). Canadian assessments (Neilson et al. 1999) treat the management unit within the Canadian EEZ separately. This stock was last assessed over its entire range via VPA in 1993 (Mayo and Figuerido 1993), and the results were reviewed at the $16^{\text {th }}$ Northeast Regional Stock Assessment Workshop in 1993 (NEFSC 1993a, 1993b). At that time, spawning stock biomass had been declining since the mid-1980s, and was expected to reach its long-term average ( $144,000 \mathrm{mt}$ ). Fishing mortality was estimated to be 0.72 in 1992 , above $\mathrm{F}_{20 \%}$ ( 0.65 ) and well above $\mathrm{F}_{\text {med }}(0.47)$.

The state of this stock was most recently evaluated in 2000 via index assessment (NEFSC 2001a). At that time, it was noted that biomass indices for the Gulf of Maine-Georges Bank portion of the stock, derived from NEFSC autumn bottom trawl surveys, had increased during
the mid-1970s, declined sharply during the 1980s, but have been gradually increasing since the mid-1990s.

## Relative Exploitation Rate Analyses

An index of relative exploitation (catch/survey biomass index) corresponding to a replacement ratio of 1.0, as described in section 2.3, was developed for the portion of the unit stock of pollock within the USA EEZ. Autumn NEFSC survey biomass indices from the Gulf of Maine and Georges Bank region from 1963 through 2000 were used to calculate the replacement ratios, and the biomass indices and total landings from the same region were used to compute the relative exploitation rates (Figure 3.15.2). The relative exploitation rates (or relative F) may be considered a proxy for Fmsy for that portion of the pollock stock considered in this analysis.

Prior to the 1980s, a high proportion of the replacement ratios equaled or exceeded 1.0. During the 1980s and early 1990s, most of the replacement ratios were less than 1.0 , with ratios greater than 1.0 appearing again by the late 1990s as the biomass indices began to gradually increase from the very low levels of the mid-1990s.

The relationship between replacement ratios and relative F was evaluated by a linear regression of the $\log _{e}$ replacement ratio on $\log _{\mathrm{e}}$ relative F (Figure 3.15.2, Table 4.1.1) and the results were used to derive an estimate of relative F corresponding to a replacement ratio of 1.0. Results for pollock were significant ( $\mathrm{p}<0.05$, Table 4.1.1.), and the estimate of the relative replacement F ( F rel rep) has a low standard error compared to the point estimate (5.88). The regression indicates that, on average, when the relative F is greater than 5.88 , the stock is not likely to replace itself in the long-term.

The data displayed in Figure 3.15.2 also provide a means to utilize the estimate of the Fmsy proxy (Relative $\mathrm{F}=5.88$ ) to derive a biomass index which relates to the replacement ratios. In this case, it is evident that most of the replacement ratios at or above 1.0 occurred prior to the 1980s when the biomass index was greater than about 3.0. This index may be considered as the biomass proxy for Bmsy that corresponds to the relative F proxy for Fmsy.

Since the relative F relates the catch directly to survey biomass, the catch corresponding to the Bmsy proxy can be estimated from the relative F and the biomass index of Bmsy. For pollock, this computes to $3.0 * 5.88=17.64$, or $17,640 \mathrm{mt}$ as a proxy for MSY. Results of these calculations are presented in Table 4.2.1.

Pollock (Subarea 5)



Figure 3.15.1. Landings and research vessel survey abundance indices for pollock.

## Pollock (Area 5 \& 6), Fall



Figure 3.15.2. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for pollock. Dashed lines indicate proposed biomass and fishing mortality rate proxies of Bmsy and Fmsy. Landings are all reported in Subareas 5\&6, by all countries.

### 3.16 Northern Windowpane Flounder (Gulf of Maine - Georges Bank)

No stock structure information is available. Therefore, a provisional arrangement has been adopted that recognizes two stock areas based on apparent differences in growth, sexual maturity, and abundance trends between windowpane flounder from Georges Bank and from Southern New England. The proportions of total landings contributed by the Gulf of Maine and Mid-Atlantic areas are low (less than 7\%), so data from these areas are combined with those from Georges Bank and Southern New England, respectively.

## Catch and Survey Indices

Since 1975, when landings of this species were first recorded, the majority of the total landings have been harvested from the Gulf of Maine-Georges Bank stock. Following a 1991 record high of $2,900 \mathrm{mt}$, landings declined to 300 mt in 1994. Landings have also been declining since 1996 and reached a record low of 46 mt in 1999 and remained at less than 200 mt in 2000 (Figure 3.16.1). High landings during the early 1990s probably reflect an expansion of the fishery to offshore areas, as well as the targeting of windowpane flounder as an alternative to depleted groundfish stocks.

Stratified mean weight (kg) per tow of windowpane flounder from the NEFSC autumn bottom trawl surveys are presented in Figure 3.16.1 for the Gulf of Maine-Georges Bank stock. Survey biomass indices are highly variable, but in general, show an increasing trend since 1991. The large increase in the 1998 survey index is primarily attributable to a large catch of windowpane at one station.

## Stock Assessment

The northern windowpane flounder stock, which includes the Gulf of Maine and Georges Bank regions, has never been assessed through the SAW/SARC process. The state of this stock was most recently evaluated in 2000 via index assessment (NEFSC 2001a). At that time, it was noted that biomass indices for the Gulf of Maine-Georges Bank stock, derived from NEFSC autumn bottom trawl surveys, had increased since 1991 while the exploitation ratio (catch/survey biomass index) appears to have declined.

## Relative Exploitation Rate Analyses

The replacement ratio analysis for northern windowpane flounder provided and estimate of the exploitation index (Relative F) that would allow the stock to replace itself. However, the regression was not significant ( $\mathrm{p}=0.197$ ) and the standard error was greater than the estimate ( $\mathrm{CV}=130 \%$; Table 4.1.1, Figure 3.16.2). As the relationship between the replacement ratio and relative F is poorly defined, these data do not provide any basis to revise the existing reference points (Table 4.2).


Northern Windowpane

Figure 3.16.1. Landings and research vessel survey abundance indices for Northern windowpane.


Figure 3.16.2. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Northern windowpane. Dashed lines indicate proposed biomass and fishing mortality rate proxies of Bmsy and Fmsy.

### 3.17 Southern windowpane flounder

No stock structure information is available. Therefore, a provisional arrangement has been adopted that recognizes two stock areas based on apparent differences in growth, sexual maturity, and abundance trends in fish from Georges Bank and from Southern New England. The proportions of total landings contributed by the Gulf of Maine and Mid-Atlantic areas are low (less than 7\%), so data from these areas are combined with those from Georges Bank and Southern New England, respectively.

## Catch and Survey Indices

Commercial landings from this stock exceeded those from the Gulf of Maine-Georges Bank stock during 1980-1984, and reached a record high of 2,100 mt in 1985 (Figure 3.17.1). Landings declined rapidly between 1988 and 1995, from 2,100 mt to a record low of 100 mt around1995 and have remained at that level through 2000.

Stratified mean weight ( kg ) per tow of windowpane flounder from the NEFSC autumn bottom trawl surveys are presented in Figure 3.17.1 for the Southern New England - Mid-Atlantic stock. The survey biomass indices appear to have stabilized since 1995 at the lowest level on record.

## Stock Assessment

The southern windowpane flounder stock, which includes the southern New England and MidAtlantic Bight regions, has never been assessed through the SAW/SARC process. The state of this stock was most recently evaluated in 2000 via index assessment (NEFSC 2001a). At that time, it was noted that biomass indices for the Southern New England - Mid-Atlantic stock, derived from NEFSC autumn bottom trawl surveys, had recently declined to record-lows following a period of relatively high exploitation ratios (catch/survey biomass index).

## Relative Exploitation Rate Analyses

The replacement ratio analysis for southern windowpane flounder suggests that this stock can replace itself at an exploitation index (Relative F ) of 0.98 ( $\mathrm{SE}=0.45$, CV of $48 \%$ and marginally significant correlation of replacement ratio and relative F, $\mathrm{p}=0.101$; Table 4.1.1, Figure 3.17.2). Examination of the entire landings data set indicates that the existing estimate of MSY ( 900 mt ) is consistent with potential productivity of this stock. Therefore, the existing eatimate of MSY was divided by the relative F consistent with the replacement ratio analysis to derive a revised estimate of the survey biomass index proxy for Bmsy. Based on these analyses the revised relative F for southern windowpane flounder is 0.98 and the revised Bmsy proxy is $0.92 \mathrm{~kg} /$ tow (Table 4.2).

## Southern Windowpane



Figure 3.17.1. Landings and research vessel survey abundance indices for Southern windowpane.

Southern Windowpane Flounder, Fall


Figure 3.17.2. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Southern windowpane. Dashed lines indicate proposed biomass and fishing mortality rate proxies of Bmsy and Fmsy.

### 3.18 Ocean Pout

## Catch and Survey Indices

Commercial interest in ocean pout has fluctuated widely. Ocean pout were marketed as a food fish during World War II, and landings peaked at $2,000 \mathrm{mt}$ in 1944. However, an outbreak of a protozoan parasite that caused lesions on ocean pout eliminated consumer demand for this species. From 1964 to 1974, an industrial fishery developed, and nominal catches by the U.S. fleet averaged 4,700 mt. Distant-water fleets began harvesting ocean pout in large quantities in 1966, and total nominal catches peaked at $27,000 \mathrm{mt}$ in 1969. Foreign catches declined substantially afterward, and none have been reported since 1974. United States landings declined to an average of 600 mt annually during 1975 to 1983. In the mid-1980s, landings increased to about $1,400 \mathrm{mt}$ due to the development of a small directed fishery in Cape Cod Bay supplying the fresh fillet market. Landings have declined more or less continually since 1987, and remain at record low levels (Figure 3.18.1).

Commercial landings and the NEFSC spring research vessel survey biomass index followed similar trends during 1968 to 1975 (encompassing peak levels of foreign fishing and the domestic industrial fishery); both declined from very high values in 1968-1969 to lows of 300 mt and 1.3 kg per tow, respectively, in 1975. Between 1975 and 1985, survey indices increased to record high levels, peaking in 1981 and 1985. Since 1985, survey catch per tow indices have generally declined, and are presently less than the long-term survey average ( 3.9 kg per tow; Figure 3.18.1).

## Stock Assessment

Ocean pout is assessed as a unit stock from Cape Cod Bay south to Delaware. An index assessment for this species was conducted and reviewed at SAW 11 in 1990 (NEFSC 1990). The status of this stock was most recently evaluated in 2000 (NEFSC 2001a). At that time, the three year average spring biomass index (1997-1999 average $=1.98 \mathrm{~kg} /$ tow $)$ was approximately $40 \%$ of the current Bmsy proxy (1980-1991 median $=4.9 \mathrm{~kg} /$ tow $)$ and below the biomass threshold $(1 / 2 \mathrm{Bmsy}=2.4 \mathrm{~kg} /$ tow $)$. Since1991, the exploitation ratios (landings/three year average spring survey biomass) have declined. The 1999 exploitation index (0.009) was the lowest in the time series and well below the Fmsy proxy ( 0.31 ), derived as the MSY proxy $(1,500 \mathrm{mt})$ divided by the Bmsy proxy. Since discards have not been estimated, and landings, not catch, were used to derive exploitation ratios, the exploitation ratios may be underestimated.

## Relative Exploitation Rate Analyses

The replacement ratio analysis suggest that the input data for this stock may be imprecise given the weak relationship between the replacement ratio and the relative F as indicated by the circular shape of the ellipse (Figure 3.18.2). The relative F where replacement ratio $=1.0$ was estimated to be 0.01 (SE 0.03 ) and the relative F where replacement ratio $=1.1$ was estimated to be 0.00 (SE 0.01; Table 4.1.1). Given that the randomization test for this analysis was not significant ( 0.118 ; Table 4.1.1) and that the precision of the relative F was three times larger than
the point estimate, it was concluded that, for this stock, these analyses were not informative upon which to base recommendations for Bmsy, Fmsy, and MSY.

Ocean Pout



Figure 3.18.1. Landings and research vessel survey abundance indices for Ocean pout.


Figure 3.18.2. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for ocean pout. Dashed lines indicate current biomass and fishing mortality rate proxies of Bmsy and Fmsy.

### 3.19 Atlantic Halibut

## Catch and Survey Indices

The Atlantic halibut (Hippoglossus hippoglossus) is distributed from Labrador to southern New England in the northwest Atlantic (Bigelow and Schroeder 1953; Wise and Jensen 1959). The Atlantic halibut stock within Gulf of Maine and Georges Bank waters (NAFO Subarea 5) has been exploited since the 1830s. This resource is currently depleted and is not expected to rebuild in the near future (NEFMC 1998).

Records of Atlantic halibut landings from the Gulf of Maine and Georges Bank begin in 1893 (Figure 3.19.1). Substantial landings occurred prior to this, however, as the halibut fishery declined in the late 1800s (Hennemuth and Rockwell 1987). Landings have decreased since the 1890s as components of the resource have been sequentially depleted. Annual landings averaged 662 mt during 1893-1940 and declined to an average of 144 mt during 1941-1976. Since 1977, landings have averaged $95 \mathrm{mt} \cdot \mathrm{yr}^{-1}$. Reported landings in 1999 were 20 mt . Of these, 12 mt were landed by domestic fishermen ( $60 \%$ ) with the remainder landed by Canadian fishermen (Division 5Zc).

The Northeast Fisheries Science Center spring and autumn bottom trawl surveys provide measures of the relative abundance of Atlantic halibut within the Gulf of Maine and Georges Bank (Offshore survey strata 13-30 and 36-40). Both indices have high inter-annual variability since relatively few halibut are captured during these surveys; in some years, no halibut are caught. The survey indices suggest that relative abundance increased during the 1970s to early 1980s and subsequently declined in the 1990s. It is unknown whether abundance trends in the Gulf of Maine and Georges Bank have been influenced by changes in the seasonal distribution and availability of Atlantic halibut, however.

## Stock Assessment

Based on updated spring and autumn survey data, Atlantic halibut biomass within the Gulf of Maine and Georges Bank remains very low. Swept-area biomass indices in spring 2000 and autumn 1999 were both less than 100 mt (Figure 3.19.2). Thus, even if survey catchability was as low as $25 \%$, current stock biomass, as indexed by the 5 -year moving average of swept-area biomass, would be below the biomass threshold of $2,700 \mathrm{mt}$. Although no estimates of fishing mortality are available, exploitation rate indices (annual landings/5-year moving average of survey index) suggest that exploitation rates have probably been stable since the 1970s, and may have declined during the 1990s. Thus, the Atlantic halibut stock in the Gulf of Maine and Georges Bank remains depleted and exploitation rates do not appear to have increased since the 1970s.

In the 1998 report on overfishing definitions and its Supplement (NEFMC 1998), the overfishing review panel recommended proxies for the stock biomass ( $\mathrm{B}_{\mathrm{MSY}}$ ) and fishing mortality rate ( $\mathrm{F}_{\text {MSY }}$ ) that would produce the largest long-term potential yield. Based on yield-per-recruit and biomass-per-recruit calculations, the panel concluded that $\mathrm{B}_{\text {MSY }}$ was roughly $5,400 \mathrm{mt}$ and that $\mathrm{F}_{\mathrm{MSY}}$ was about 0.06 per year with an associated long-term potential yield of 300 mt per year. Accordingly, the panel recommended that the biomass threshold ( $\mathrm{B}_{\text {THRESHOLD }}$ ) be set to $1 / 2$ of $\mathrm{B}_{\text {MSY }}$
so that $\mathrm{B}_{\text {ThReshold }}=2,700 \mathrm{mt}$ and that the target fishing mortality rate $\left(\mathrm{F}_{\text {TARGET }}\right)$ be set to $60 \%$ of $\mathrm{F}_{\text {MSY }}$ so that $\mathrm{F}_{\text {TARGET }}=0.04$ per year. The panel also recommended that an appropriate harvest control rule would be to keep fishing mortality as close to zero as practicable until the Gulf of Maine and Georges Bank stock was rebuilt. To evaluate the harvest control rule, the review panel compared swept-area biomass estimates from the NEFSC spring and autumn surveys with the threshold. The panel concluded that the stock was depleted because, on average, the sweptarea biomass index was far below $\mathrm{B}_{\text {THRESHoLD }}$ given an implicit assumption that survey catchability was probably on the order of $25-50 \%$.

## Yield and SSB per Recruit Analysis

A preliminary yield and SSB per recruit analysis was conducted using revised estimates of growth parameters from Sigourny (MS 2002). Catch mean weights were set equivalent to stock mean weights. Stock mean weights at age were derived from a Gompertz growth curve $\left(\mathrm{L}_{\text {inf }}=182 \mathrm{~cm}, \mathrm{~K}=0.2229, \mathrm{t}_{0}=4.4317\right)$ and a log-log length-weight relationship (ln length $=-$ $11.7535+3.0658^{*} \ln$ length) for females only. Plus mean weights for ages $25+$ were derived from an expanded age structure to age 38 (oldest age observed in survey) at $\mathrm{F}=0.1$ and $\mathrm{M}=0.1$. The partial recruitment vector was considered to be knife-edge at age 6 based on the minimum size limit of 36 ". The maturity ogive was derived from pooled 1977-2000 female data presented graphically in Sigourny (MS 2002).

If $\mathrm{F}_{40 \%}$ is considered as a proxy for $\mathrm{F}_{\text {MSY }}$, the newly estimated $\mathrm{F}_{40 \%}=0.08$ is similar to the previously estimated $\mathrm{F}_{\text {MSY }}=0.06$. This analysis will not be accepted, however, until further analyses are conducted regarding the partial recruitment and maturity at age schedule.

## Reference Points.

The reference points will remain as $\mathrm{F}_{\mathrm{MSY}}=0.06, \mathrm{~B}_{\mathrm{MSY}}=5,400 \mathrm{mt}$ and $\mathrm{MSY}=300 \mathrm{mt}$.

## Atlantic Halibut



Figure 3.19.1. Landings and research vessel survey abundance indices for Atlantic halibut.


Figure 3.19.2. Trends in swept-area biomass indices (mt) of Atlantic halibut from NEFSC spring and autumn bottom trawl surveys. Current biomass targets and thresholds Are indicated.


Halibut, Fall

Figure 3.19.3. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Atlantic halibut.


Figure 3.19.4. Trends in relative biomass, landings, fishing rate mortality rate indices (landings/ survey index) and replacement ratios for Atlantic halibut.


[^0]:    The NEFC Yield and Stock Size per Recruit Program - PDBYPRC
    PC Ver.2.0 [Method of Thompson and Bell (1934)] 1-Jan-1999
    Run Date: 27-2-2002; Time: 11:03:34.61
    SNE YELLOWTAIL FLOUNDER - 2002

