Restoring the Pecos River at Bitter Lake National Wildlife Refuge

Paul Tashjian, USFWS, Water Resources Paul_Tashjian@fws.gov 505-248-7958

- 1) Ground Water Inflow from adjacent aquifers
- 2) Recharge to bottom land from precipitation
- 3) Drain and tributary inflow to river
- Recharge to bottom land from upstream Dam releases and flood inflow

- Evaporation from river surface, wet sand bars, and bare ground
- 2) Evapotranspiration from phreatophytes
- 3) Irrigation diversion and pumping from river
- 4) Pumpage from wells in bottomland
- 5) Loss to river side drains

HYDROLOGIC EFFECTS OF PHREATOPHYTE CONTROL, ACME-ARTESIA REACH OF THE PECOS RIVER, NEW MEXICO, 1967-82

- By G.E. Welder

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4148

> Prepared in cooperation with the PECOS RIVER COMMISSION

> > Albuquerque, New Mexico 1988

sites, 1957-61 and 1967-82.

Aquatic Species of Bitter Lake NWR 24 fish species, 19 are native 3 Federally Threatened or Endangered **52** Amphibians and Aquatic Reptile species **50+ dragonfly species** Most diverse in North America Most biologically significant wetland in New Mexico **The Roswell Area Spring System and Pecos River are Unsung National Natural Treasures Migratory Birds** Sandhill Cranes, Snow Geese, Canadian Geese Snowy Plover nesting area (only site in New Mexico) Wetland Plant Species: saltgrass marsh community, **Endangered Pecos Puzzle Sunflower**

Pecos River at Fort Sumner Water Year 1928 Hydrograph

Pecos River at Fort Sumner Water Year 1984 Hydrograph

Pecos River at Acme 1984 Hydrograph

Pecos River Between Sumner and Brantley Reservoirs: Channel Morphology Overview

Middle Pecos River Sediment Overview

Atkins Ranch Habitat Site: 1995 and 1996 Cross Sections

meters

Rio Felix Habitat Site: 1992-1996 Cross Sections

meters

Pecos River Between Sumner and Brantley Reservoirs: Channel Morphology Overview

Pecos River Geomorphic Setting of the Refuge

- Junction between quality habitat to the north and poor habitat to the south
 - quality habitat marked by higher width to depth ratios and active sand bed
 - poorer habitat marked by low width to depth ratios, tamarisk lined, inactive sand/silt bed
- River incised on Refuge 1942-1953
- Modern River is very active on Refuge

Why do Pecos River Restoration at Bitter Lake NWR?

- At transition between quality and poor habitat on Middle Pecos River.
- Channel is very active. Restoration will nudge it towards a healthier system.
- The Pecos at the Refuge is always wet: Perennial flows on the Pecos begin at Bitter Lake NWR
- Ideal location for pelagic fishes habitat: acts as a catchment for upstream fish eggs
- Establish greater continuity in habitat with upper quality reach.
- Ties Refuge into Pecos River conservation.
- Refuge can act as a showcase for the Pecos.
- Potential societal benefits: ecotourism, water salvage, flood control, fire control.

Restoration Alternatives -General Strategies

- Vegetation removal
- Bank lowering
- Reworking channel morphology
- Native vegetation plantings
- Diverting river into original meanders

Reconnect Oxbow 4 Improves spring connection to Pecos River Salt Cedar Removal Native vegetation planting Allow River to establish habitat under with hydrology

- 1) Ground Water Inflow from adjacent aquifers
- 2) Recharge to bottom land from precipitation
- 3) Drain and tributary inflow to river
- Recharge to bottom land from upstream Dam releases and flood inflow

- Evaporation from river surface, wet sand bars, and bare ground
- 2) Evapotranspiration from phreatophytes
- 3) Irrigation diversion and pumping from river
- 4) Pumpage from wells in bottomland
- 5) Loss to river side drains

Water Budget

- Groundwater gradient is towards river
 - Gaining rivers are locations of accruement for riparian ET reductions
- Increased water:
 - Reconnection of springs in Oxbow 4
 - Reduction of ET from tamarisk removal
- Decreased water:
 - Increase in area of base flow from connecting Oxbow 4
 - Increase in overbank flows from removing bankline levees
- Net estimate: 2000af/ammum increase in water budget

Water Budget (continued)

- Net estimate: 2000af/ammum net increase in water budget
- Estimate takes a very conservative approach
 - The future condition of the removed salt cedar acres will be a mix of salt cedar, willow and grassland. This percent is estimated to be 20% salt cedar, 30% willow, 20% Saltgrass and 30% other grassland.
 - Increase in overbank flows assumes flows greater than 200cfs will result in a complete flooding of 43 additional acres. In reality flows greater than 1200cfs will inundate these areas and flows greater than 5000cfs will result in complete flooding.
 - Assumes a current condition for spring contribution to Oxbow 4 of 6 acres. This is about half of what the lowest acreage is as obtained from aerial photography for the period 1996-2004.

10/97: 15 acres of open water

Re-vegetation Issues

- What was the native riparian vegetation community of the Pecos River at Bitter Lake NWR?
- Coyote Willow reveg techniques
 - Conceptual reveg design being conducted by Parametrix (Todd Caplan)
- Grassland component
 - Sporabilis arodis (alkali sacaton)
 - Distichilis spicata (salt grass)
- What examples are there of native revegetation successes along Middle Pecos River?

QUESTIONS?