J. Southern New England/Mid-Atlantic Winter Flounder by P. Nitschke

1.0 Background

The Southern New England/Mid-Atlantic stock complex of winter flounder was last assessed by SAW 28 in December 1998, with catches through 1997 (NEFSC 1999). The assessment is for the entire stock complex, which includes several inshore spawning aggregations that individually may not demonstrate the same trend in abundance as the complex. Fully recruited (ages 4-6) fishing mortality in 1997 was estimated at 0.31 , corresponding to a biomass weighted $\mathrm{F}=0.24$ (given current age structure). Mean stock biomass in 1997 was estimated to be $17,900 \mathrm{mt}$. Forecasts made in 1999 (Northern Demersal Working Group 2000) indicate that fully recruited F (age 4-6) in 1998 was 0.33 , corresponding to a biomass weighted F (ages 1 and older) of 0.19 . In the SAW 28 assessment, $\mathrm{B}_{\text {MSY }}$ was estimated to be $27,810 \mathrm{mt}$, MSY was estimated to be $10,200 \mathrm{mt}, \mathrm{F}_{\text {MSY }}$ was estimated to be biomass weighted $\mathrm{F}=0.37$, and the FMP Amendment 9 ten year rebuilding target biomass weighted fishing mortality was estimated to be $\mathrm{F}_{\text {target10 }}=0.24$.

2.0 2000 Assessment Update

The Fishery

Commercial and recreational catch was updated through 1999 (Table J1). Commercial discards were assumed to be 7% of the landings, as in SAW 28 projections, and were calculated to be 242 mt for 1999. Recreational landings were taken from the MRFSS, and estimated to be 322 mt in 1999. Recreational discards were taken from the MRFSS, and estimated to be 12 mt in 1999. Total landings were estimated to be $3,779 \mathrm{mt}$, total discards were estimated to be 254 mt , and total catch was estimated to be $4,033 \mathrm{mt}$ in 1999. Total catch has remained relatively stable and low since 1993 ($4,041 \mathrm{mt}$) in comparison to a high of $15,657 \mathrm{mt}$ in 1981 (Figure J1).

Research Survey Indices

NEFSC spring and autumn survey indices were updated though spring 2000 (Table J2; Figure J1). NEFSC survey indices show an increase in stock biomass since 1993. The NEFSC spring 1999 ($1.245 \mathrm{~kg} /$ tow) and 2000 ($1.123 \mathrm{~kg} /$ tow) survey biomass index are among the highest since 1985 ($1.983 \mathrm{~kg} /$ tow). The NEFSC autumn 1999 survey biomass index ($1.549 \mathrm{~kg} /$ tow) has decreased since 1997 ($2.583 \mathrm{~kg} /$ tow $)$ but remain among the highest since 1983 ($2.691 \mathrm{~kg} / \mathrm{tow}$). The MDMF 1999 spring survey biomass index ($4.44 \mathrm{~kg} /$ tow) has decreased from 1998 (7.99 kg/tow; Figure J2).

Assessment Results

Projections based on 1998 and 1999 total catch indicate that fully recruited F (age 4-6) declined slightly from 0.33 to 0.29 , respectively (Table J3). The assumed $1999 \mathrm{~F}=0.33$ used in the 1999 projection (Northern Demersal Working Group 2000) is slightly higher but does fall within the
updated $1999 \mathrm{~F}=0.2980 \%$ confident interval ($0.23-0.36$). The updated 1999 stock biomass $(25,300 \mathrm{mt})$ is therefore slightly higher than the estimated biomass from the 1999 projection $(25,000 \mathrm{mt})$. Fishing mortality in 1999 likely remained at status quo given that total landings have remained stable and that survey indices have not changed greatly from 1998.

3.0 Harvest Control Rule

The target fishing mortality to be used when stock biomass is greater than $\mathrm{B}_{\mathrm{MSY}}(27,800 \mathrm{mt})$ was estimated as the $10^{\text {th }}$ percentile of $\mathrm{F}_{\text {MSY }}$ (Figure J3). $\mathrm{F}_{\text {THRESHOLD }}=\mathrm{F}_{\text {MSY }}=0.37$ on biomass when biomass $=\mathrm{B}_{\text {MSY }}$. When total stock biomass is between $1 / 2 \mathrm{~B}_{\text {MSY }}(13,900 \mathrm{mt})$ and $\mathrm{B}_{\text {MSY }}$, a 10 -year rebuilding strategy applies. When total stock biomass is between $\mathrm{B}_{\text {THRESHOLD }}=1 / 4 \mathrm{~B}_{\text {MSY }}(7,000 \mathrm{mt})$ and $1 / 2 \mathrm{~B}_{\text {MSY }}$, a 5 -year rebuilding strategy applies. When biomass is below $1 / 4 \mathrm{~B}_{\text {MSY }}, \mathrm{F}_{\text {THRESHOLD }}=0$.

4.0 References

NEFSC. 1999. $28^{\text {th }}$ Northeast Regional Stock Assessment Workshop (28 ${ }^{\text {th }}$ SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessment. NMFS/NEFSC, Woods Hole Laboratory Ref. Doc. 99-08.

NDWG (Northern Demersal Working Group, Northeast Regional Stock Assessment Workshop). 2000. Assessment of 11 Northeast groundfish stocks through 1999: a report to the New England Fishery Management Council's Multi-Species Monitoring Committee. Northeast Fish. Sci. Cent. Ref. Doc. 00-05, 153 p.

Table J1. Total winter flounder recreational and commercial catch for the Southern New England/Mid-Atlantic stock complex in weight (mt) and numbers (000 s).

Year	Commercial Landings		Commercial Discards		Recreational Landings		Recreational Discards		Total Catch		$\begin{gathered} \% \\ \text { Discards/Total } \end{gathered}$	
	mt	000s										
1981	11,176	20,705	1,343	5,123	3,050	8,089	88	437	15,657	34,354	9.1	16.2
1982	9,438	19,016	1,149	4,271	2,457	8,392	66	341	13,110	32,020	9.3	14.4
1983	8,659	16,312	1,311	5,251	2,524	8,365	125	399	12,619	30,327	11.4	18.6
1984	8,882	17,116	986	3,936	5,772	12,756	148	745	15,788	34,553	7.2	13.5
1985	7,052	14,211	1,534	4,531	5,198	13,297	230	714	14,014	32,753	12.6	16.0
1986	4,929	9,460	1,273	4,902	2,940	6,994	66	356	9,208	21,712	14.5	24.2
1987	5,172	10,524	950	3,545	3,141	6,899	61	347	9,324	21,315	10.8	18.3
1988	4,312	8,377	904	3,728	3,423	7,359	69	416	8,708	19,880	11.2	20.8
1989	3,670	7,888	1,404	5,761	1,802	3,684	49	335	6,925	17,668	21.0	34.5
1990	4,232	7,202	673	2,567	1,063	2,485	31	201	5,999	12,455	11.7	22.2
1991	4,823	9,063	784	2,701	1,214	2,794	51	230	6,872	14,788	12.2	19.8
1992	3,816	6,759	511	1,811	393	802	15	83	4,735	9,455	11.1	20.0
1993	3,010	5,336	457	1,580	543	1,180	31	155	4,041	8,251	12.1	21.0
1994	2,159	1,948	304	344	598	1,210	34	93	3,095	3,595	10.9	12.2
1995	2,634	2,321	121	107	661	1,390	23	69	3,439	3,887	4.2	4.5
1996	2,781	2,372	173	149	689	1,555	64	168	3,707	4,244	6.4	7.5
1997	3,426	5,834	267	1,200	618	1,204	26	85	4,337	8,323	6.8	15.4
1998	3,213		231		564		16		4,024		6.1	
1999	3,457		242		322		12		4,033		6.3	

Table J2. Winter flounder NEFSC and MDMF survey index stratified mean number and mean weight (kg) per tow for the Southern New England- Mid-Atlantic stock complex, strata set (offshore 1-12, 25, 69-76 ; inshore 1-29, 45-56; MDMF 11-21).

	NEFSC Spring		NEFSC Fall		MDMF Spring	
YEAR	Number	Weight	Number	Weight	Number	Weight
1963			8.554	3.283		
1964			13.673	4.894		
1965			15.537	4.435		
1966			9.843	3.275		
1967			9.109	2.745		
1968	2.444	0.734	8.106	2.191		
1969	5.640	3.414	6.842	1.939		
1970	2.729	1.326	5.110	2.376		
1971	2.035	0.756	3.862	1.232		
1972	1.866	0.656	7.687	3.054		
1973	7.459	2.013	2.691	0.776		
1974	3.362	1.043	2.032	0.821		
1975	1.136	0.354	2.358	0.742		
1976	3.085	0.805	2.375	1.251		
1977	4.186	1.190	4.722	1.735		
1978	6.696	1.758	3.743	1.430	51.50	18.12
1979	2.965	1.069	10.058	2.606	53.61	18.17
1980	15.250	3.551	9.975	3.216	38.92	15.18
1981	18.234	4.762	9.899	3.109	46.05	15.77
1982	6.986	1.918	4.927	1.683	40.23	14.82
1983	6.262	2.469	8.757	2.691	56.39	19.45
1984	5.524	2.072	2.681	0.887	36.64	14.68
1985	5.360	1.983	2.727	0.991	38.36	11.60
1986	2.266	0.766	1.538	0.487	36.51	10.42
1987	1.763	0.568	1.167	0.419	37.84	9.57
1988	2.126	0.730	1.246	0.530	27.57	6.46
1989	2.485	0.582	1.435	0.341	24.42	7.96
1990	1.992	0.472	1.979	0.546	25.75	5.38
1991	2.473	0.692	1.950	0.708	10.57	2.91
1992	1.579	0.435	2.963	0.829	28.69	7.99
1993	0.961	0.219	1.382	0.392	46.92	8.16
1994	1.510	0.329	4.134	1.482	48.43	12.59
1995	2.097	0.592	2.253	0.626	33.35	7.26
1996	1.517	0.428	3.186	1.063	30.18	9.78
1997	1.436	0.399	7.893	2.583	39.31	10.02
1998	2.774	0.845	6.597	2.232	34.63	7.99
1999	4.171	1.245	3.596	1.549	25.11	4.44
2000	3.172	1.123				

NOTE: NEFSC 1968-1972 spring index does not include inshore strata ; NEFSC 1963-1971 fall index does not include inshore strata. All NEFSC indices calculated with trawl door conversion factors where appropriate.

Table J3. Projection of 1998 VPA (NESFC 1999) with observed 1998 and 1999 catch.

INPUT ASSUMPTIONS							
Age	1	2	3	4	5	6	$7+$
Stock Wt.	0.134	0.388	0.508	0.612	0.754	0.941	1.135
Landed Wt.	0.204	0.427	0.520	0.615	0.755	0.941	1.135
Discard Wt.	0.134	0.277	0.350	0.445	0.617	0.000	0.000
Maturity	0.000	0.000	0.530	0.950	1.000	1.000	1.000
PR	0.020	0.250	0.610	1.000	1.000	1.000	1.000
Discard	1.000	0.350	0.150	0.010	0.010	0.000	0.000

QUOTA	BASED	CATCHES
YEAR	F	QUOTA
1998	(THOUSAND MT)	
1999	3.777	
	3.779	

| PERCENTILES | OF F WEIGHTED | BY MEAN | BIOMASS | FOR | AGES: 1 | TO | 7 | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1% | 5% | 10% | 25% | 50% | 75% | 90% | 95% | 99% |
| 1998 | 0.137 | 0.146 | 0.157 | 0.169 | 0.184 | 0.204 | 0.220 | 0.234 | 0.245 |
| 1999 | 0.109 | 0.122 | 0.129 | 0.143 | 0.162 | 0.183 | 0.202 | 0.216 | 0.242 |

TABLE J3. Continued.

LANDINGS FOR F-BASED PROJECTIONS												
YEAR	AVG	LANDING	S (000	MT) S	TD							
1998		3.777			000							
1999		3.779			000							
PERCENTILES OF LANDINGS (000 MT)												
YEAR	1\%		5\%		0\%	25\%		50\%	75\%	90\%	95\%	99\%
1998		777	3.777		3. 777	3.777		3.777	3.777	3.777	3.777	3.777
1999		779	3.779		3.779	3.779		3.779	3.779	3.779	3.779	3.779
DISCARDS FOR F-BASED PROJECTIONS												
YEAR	AVG DIS	SCARDS	(000 MT) STD								
1998		243		0.0								
1999		226		0.0								
PERCENTILES OF DISCARDS (000 MT)												
YEAR	1\%		5\%		0\%	25\%		50\%	75\%	90\%	95\%	99\%
1998		162	0.187		. 201	0.220		0.246	0.267	0.286	0.295	0.314
1999		144	0.165		0. 176	0.196		0.223	0.252	0.281	0.298	0.343
REALIZED F SERIES FOR QUOTA-BASED PROJECTIONS												
YEAR AVG F STD 1998 0.334 0.048												
$19990.294 \quad 0.051$												
PERCENTILES OF REALIZED F SERIES												
YEAR	1\%	5\%	10\%	25\%	50\%	75\%	90\%	95\%	99\%			
1998	0.234	0. 257	0.275	0.303	0.328	0.365	0.396	0.423	0.440			
1999	0.194	0.220	0.234	0.260	0.289	0.326	0.364	0.391	0.440			

SNE/MA Winter Flounder

Total Catch and NEFSC Spring/Fall Survey Index

Figure J1. Total catch (landings and discards, thousands of metric tons) and the standardized spring and fall survey index for SNE/MA winter flounder.

SNE/MA Winter Flounder MDMF Spring Survey Index

Figure J2. The MDMF spring biomass survey index for SNE/MA winter flounder.
NEFMC Amendment 9 Control Rule for SNE/MA Winter Flounder

Figure J3. NEFMC FMP Amendment 9 control rule for SNE/MA winter flounder for rebuilding to BMSY, with current 1998-1999 projection estimates of biomass weighted F and mean stock biomass using the total catch in 1998 and 1999.

