A. Georges Bank Atlantic Cod by L. O'Brien

1.0 Background

This stock was last assessed and peer reviewed in April 2000 (O’Brien 2000, Transboundary Resources Assessment Committee 2000) and is summarized in this report. Fully recruited F (ages 4-8, u) was estimated to be 0.22 in 1999, the lowest in the time series (1978-1999). Spawning stock biomass was $34,800 \mathrm{mt}$ in 1999 and continued the increasing trend from the record low estimate of $20,000 \mathrm{mt}$ in 1994. Mean biomass was $43,000 \mathrm{mt}$ in 1999 and has followed trends similar to SSB. Since 1992, recruiting year classes have all been below the long term average and the 1997 year class which entered the 1999 fishery as 2 year olds, is the lowest on record. The NEFSC spring and autumn bottom trawl survey indices continue to remain near record low values. Recruitment indices for age 2 fish from the 1994, 1995, 1996, and 1997 year classes are below the time series (1963-1999) average . The most recent above average year class occurred in 1993.

2.0 2000 Assessment

The Fishery

Total commercial landings of Georges Bank cod (Table A1, Figure A1) in 1999 (9,800 mt) increased 12% from 1998. USA landings increased $16 \%(8,100 \mathrm{mt})$ and Canadian landings declined 3% (1819 mt) in 1999 (Table A1). No discards estimates were derived for 1999. Recreational landings were estimated at 357 mt , a decline of about 31% from 1998.

The total number of commercial length samples in 1999 were less than in 1998. The number of quarterly samples were adequate for both scrod and market size categories, but poor for the large market category. The 'large' samples were pooled on a semi-annual basis. Spatial coverage was poor for eastern Georges Bank (SA 561, 562), as it has been for several years. As in the last assessment, length samples from western Georges Bank and combined US and Canadian age samples from eastern Georges Bank were applied to characterize the landings from eastern Georges Bank. Landings were dominated in numbers by age 3 fish in both the US and Canadian fisheries and in weight by age 3 fish in the USA fishery and age 4 fish in the Canadian fishery.

Input data and Analyses

The current assessment is an update of the 1999 assessment and employs the same VPA formulation (NDWG,NEFSC 2000). A slight variation from the previous assessment is that the number of surveys available as tuning indices in the terminal year decreases from three to two since the USA 2000 spring survey was not available when the assessment was conducted. Catch at age has been updated with total 1999 landings (USA and Canadian) and research survey indices have been estimated for the 1999 NEFSC spring and autumn bottom trawl surveys and the 2000 Canadian Department of Fisheries and Oceans (DFO) spring bottom trawl survey. A conditional non-parametric bootstrap procedure (Efron 1982) was used to evaluate the
precision of fishing mortality, spawning stock biomass, and mean biomass estimates. A retrospective analysis was performed for terminal year fishing mortality, spawning stock biomass, and age 1 recruitment.

3.0 Assessment Results

NEFSC spring and autumn survey abundance and biomass indices declined in 1999 to similar values observed in 1997, except for the autumn biomass index which has increased slightly since 1997. All indices, however, remain below the long term average (Table A2, Figure A2). The Canadian spring survey index of abundance increased in 1999 to similar values observed in 1996 (Figure A2). The recruitment indices for age 1 and 2 from the 1999 NEFSC autumn bottom trawl survey were well below average.

Fully recruited fishing mortality (age 4-8) was estimated at 0.22 in 1999 and the uncertainty of this estimate, as indicated by the retrospective analysis, is discussed below. The 1998 F estimate was $0.39,39 \%$ higher than initially estimated in the 1999 assessment (NDWG, NEFSC 2000) (Figure A3). Biomass weighted fishing mortality declined from a time series high of 0.64 in 1993 to 0.23 in 1999 (Table A3, Figure A3). Spawning stock biomass in 1999 was estimated at $34,800 \mathrm{mt}$, a 10% increase from 1998 and a 74% increase from the record low in 1994 (Table A3, Figure A4). Mean biomass increased from a record low $31,000 \mathrm{mt}$ in 1994 to $43,000 \mathrm{mt}$ in 1999 (Table A3, Figure A4). Recruitment of the 1998 year class (5.3 million age 1 fish) is estimated to be similar to the 1994 year class (4.7 million age 1 fish) (Table A3, Figure A4). The survival ratio of recruit/SSB was above average for the 1995 and 1996 year classes and below average for the more recent year classes.

VPA Diagnostics

Stock size estimates for ages 1-8 were well estimated with CVs ranging from 0.21 to 0.47 . The distribution of F estimates from the bootstrap analysis ranged from 0.16 to 0.40 with an 80% probability that F in 1999 was between 0.18 and 0.25 . The distribution of SSB estimates from the bootstrap analysis ranged from $28,000 \mathrm{mt}$ to $48,000 \mathrm{mt}$ with an 80% probability that SSB in 1999 was between $31,000 \mathrm{mt}$ and $39,000 \mathrm{mt}$. The distribution of the 1999 mean biomass estimates, derived from bootstrap analysis, ranged from 32,000 to $62,000 \mathrm{mt}$. There is a 80% probability that the mean biomass in 1999 was between $38,000 \mathrm{mt}$ and $48,000 \mathrm{mt}$.

A retrospective pattern exists in this model formulation back to 1994 (Figure A5). The terminal year estimates of both recruits and fishing mortality are less than converged estimates since 1994 and 1995, respectively, and SSB estimates are greater than converged estimates since 1994. This may partially be due to the lack of Canadian indices in the calibration for 1993 and 1994. Other factors influencing the retrospective pattern may include mis-reporting of catch, immigration or emigration, an unrepresentative estimate of natural mortality, and mis-specification of the model.

The fishing mortality of 0.28 that was assumed for the projection analysis in 1999 (NDWG, 2000) was not within the 80% confidence interval ($0.18-0.25$) of the 1999 F derived from current VPA calibration.

4.0 SFA control rule

The SFA control rule for Georges Bank cod is based on $\mathrm{B}_{\text {MSY }}(108,000 \mathrm{mt})$ and states that when the stock biomass is between $1 / 4$ and $1 / 2 \mathrm{~B}_{\mathrm{MSY}}(27,000-54,000 \mathrm{mt})$, the threshold mortality rate is defined by a five year rebuilding time period, and if the stock is between $1 / 2 B_{\text {MSY }}$ and $B_{\text {MSY }}$ the rebuilding time period is 10 years (Figure A6). In 1999, mean biomass was estimated at 43,000 mt , about 40% of the target $\mathrm{B}_{\mathrm{MSY}}$ and F weighted by biomass was estimated at 0.23 .

5. 0 Sources of Uncertainty

- Landings data for 1994-1999 are derived by proration and are provisional.
- There was inadequate commercial sampling in 1999 both temporally and spatially. The large market category was not well sampled by quarter, and samples from eastern GB were minimal.
- The retrospective analysis indicates a pattern in the estimates of F, SSB, and recruits in the VPA. The terminal year estimates of both fishing mortality and recruits are less than the converged estimates and SSB estimates are greater than the converged estimates.
- There are inadequate data to characterize both the recreational and discarded catch, particularly if these components increase. The SARC previously rejected using poorly sampled recreational catch since a recreational catch at age with a similar age structure to the commercial catch at age would only be a scaling factor.

6.0 References

Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Phila. Soc. Ind. and Appl. Math. 34: 92 p.

NDWG (Northern Demersal Working Group, Northeast Regional Stock Assessment Workshop). 2000.. Assessment of 11 Northeast groundfish stocks through 1999: a report to the New England Fishery Management Council's Multi-Species Monitoring Committee. Northeast Fish. Sci. Cent. Ref. Doc 00-05; 175 p.

O'Brien, L. 2000. Assessment of the Georges Bank cod stock for 2000. Northeast Fish. Sci. Cent. Ref. Doc 00-17, 117 p.

Transboundary Resources Assessment Committee. 2000. TRAC advisory report on stock status: a report of the third meeting of the Transboundary Resources Assessment Committee (TRAC), Woods Hole, Massachusetts, April 26-28, 2000. Northeast Fish. Sci. Cent. Ref. Doc 00-08, 20 p.

Table A1. Commercial landings (metric tons, live) of Atlantic cod from Georges Bank and South (Division 5Z and Subarea 6), 1960-1999.

Year	Country					Other	Total
	USA	Canada	USSR	Spain	Poland		
1960	10834	19	-	-	-	-	10853
1961	14453	223	55	-	-	-	14731
1962	15637	2404	5302	-	143	-	23486
1963	14139	7832	5217	-	-	1	27189
1964	12325	7108	5428	18	48	238	25165
1965	11410	10598	14415	59	1851	-	38333
1966	11990	15601	16830	8375	269	69	53134
1967	13157	8232	511	14730	-	122	36752
1968	15279	9127	1459	14622	2611	38	43136
1969	16782	5997	646	13597	798	119	37939
1970	14899	2583	364	6874	784	148	25652
1971	16178	2979	1270	7460	256	36	28179
1972	13406	2545	1878	6704	271	255	25059
1973	16202	3220	2977	5980	430	114	28923
1974	18377	1374	476	6370	566	168	27331
1975	16017	1847	2403	4044	481	216	25008
1976	14906	2328	933	1633	90	36	19926
1977	21138	6173	54	2	-	-	27367
1978	26579	8778	-	-	-	-	35357
1979	32645	5978	-	-	-	-	38623
1980	40053	8063	-	-	-	-	48116
1981	33849	8499	-	-	-	-	42348
1982	39333	17824	-	-	-	-	57157
1983	36756	12130	-	-	-	-	48886
1984	32915	5763	-	-	-	-	38678
1985	26828	10443	-	-	-	-	37271
1986	17490	8411	-	-	-	-	25901
1987	19035	11845	-	-	-	-	30880
1988	26310	12932	-	-	-	-	39242
1989	25097	8001	-	-	-	-	33098
1990	28193	14310	-	-	-	-	42503
1991	24175	13455	-	-	-	-	37630
1992	16855	11712	-	-	-	-	28567
1993	14594	8519	-	-	-	-	23113
1994	9893*	5276	-	-	-	-	15169
1995	6759*	1100	-	-	-	-	7859
1996	7020*	1885	-	-	-	-	8905
1997	7537*	2898	-	-	-	-	10435
1998	6959*	1873	-	-	-	-	8832
1999	8061*	1819	-	-	-	-	9880

* Provisional data

Table A2. Standardized stratified mean catch per tow in numbers and weight (kg) for Atlantic cod in NEFSC offshore spring and autumn research vessel bottom trawl surveys on Georges Bank (Strata 13-25), 1963-2000. [a,b,c]

Spring			Autumn	
Year	No/Tow	Wt / Tow	No/Tow	Wt / Tow
1963	-	-	4.37	17.8
1964	-	-	2.98	11.6
1965	-	-	4.25	11.7
1966	-	-	4.81	8.1
1967	-	-	10.38	13.6
1968	4.72	12.6	3.30	8.6
1969	4.64	17.8	2.20	8.0
1970	4.34	15.6	5.07	12.5
1971	3.39	14.2	3.19	9.9
1972	8.97	19.0	13.09	23.0
1973	18.68 [d]	39.7 [d]	12.28	30.8
1974	14.75	36.4	3.49	8.2
1975	6.89	26.0	6.41	14.1
1976	7.06	18.6	10.44	17.7
1977	6.30	15.4	5.45	12.5
1978	12.31	31.2	8.59	23.3
1979	5.16	16.9	5.95	16.5
1980	6.12	16.7	2.91	6.7
1981	10.44	26.1	9.04	19.0
1982	8.20 [e]	15.4 [e]	3.71	6.9
1983	7.70	24.0	3.64	6.5
1984	4.08	15.4	4.75	10.3
1985	6.94	21.5	2.43	3.5
1986	5.04	16.7	3.12	4.7
1987	3.26	10.3	2.33	4.4
1988	5.86	13.5	3.11	5.8
1989	4.80	10.8	4.78	4.6
1990	4.74	11.6	3.62 [f]	7.1 [f]
1991	4.39	9.0	0.96	1.4
1992	2.67	7.5	1.84	3.1
1993	2.48	7.3	2.15	2.2
1994	0.94	1.2	1.82	3.3
1995	3.29	8.4	3.62	5.6
1996	2.70	7.5	1.10	2.7
1997	2.32	5.2	0.87	1.9
1998	4.36	11.7	1.87	2.8
1999	2.15	4.7	1.02	3.0
2000	3.57	8.2		
Average	5.86	16.64	4.46	9.55

[a] During 1963-1984, BMV oval doors were used in spring and autumn surveys; since 1985, Portuguese polyvalent doors have been used in both surveys. Adjustments have been made to the 1963-1984 catch per tow data to standardize these data to polyvalent door equivalents. Conversion coefficients of 1.56 (numbers) and 1.62 (weight) were used in this standardization (NEFC 1991).
[b] Spring surveys during 1980-1982, 1989-1991 and 1994 and autumn surveys during 1977-1981, 1989-1991, and 1993 were accomplished with the R / V Delaware $I I$; in all other years, the surveys were accomplished using the R / V Albatross $I V$. Adjustments have been made to the R / V Delaware $I I$ catch per tow data to standardize these to R / V Albatross $I V$ equivalents. Conversion coefficients of 0.79 (numbers) and 0.67 (weight) were used in this standardization (NEFC 1991).
[c] Spring surveys during 1973-1981 were accomplished with a '41 Yankee' trawl; in all other years, spring surveys were accomplished with a '36
Yankee' trawl. No adjustments have been made to the catch per tow data for these gear differences.
[d] Excludes unusually high catch of $1894 \operatorname{cod}(2558 \mathrm{~kg})$ at Station 230 (Strata tow 20-4).
[e] Excludes unusually high catch of $1032 \operatorname{cod}(4096 \mathrm{~kg})$ at Station 323 (Strata tow 16-7).
[f] Excludes unusually high catch of $111 \operatorname{cod}(504 \mathrm{~kg})$ at Station 205 (Strata tow 23-4).

Table A3. Estimates of beginning year stock size (thousands of fish), instantaneous fishing mortality (F), mean biomass (mt), spawning stock biomass (mt), and percent mature of Georges Bank cod, estimated from virtual population analysis (VPA), calibrated using the commercial catch at age ADAPT
formulation $1978-1999$

Stock Numbers (Jan 1) in thousands																							
	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
1	27711	23512	20109	41393	17471	9615	27391	8675	42754	16377	23456	15718	9252	17881	6880	9225	7706	4656	8803	10420	2842	6830	5329
2	4270	22686	19220	16383	33865	14004	7774	22352	6981	34863	13385	19195	12869	7568	14593	5569	7549	6308	3812	7206	8528	2327	5590
3	25527	3140	16774	12318	10514	19458	7588	5182	12486	4516	21781	9532	13827	6064	4817	8168	3625	5820	4810	2933	5432	6314	1647
4	7933	13889	1756	8460	6266	5148	8635	3115	2032	6085	2425	10574	5160	6758	2031	1980	2846	1587	3808	3121	1823	3373	3426
5	2877	4411	6965	986	4697	2608	1992	4052	1312	943	3063	1070	4898	2522	2564	723	612	679	673	2001	1758	1110	2122
6	1127	1604	2515	3614	594	2036	1181	871	1611	640	519	1153	576	1962	745	758	194	145	293	333	920	1146	727
7	1414	804	899	1085	1687	232	965	500	340	752	296	205	455	265	622	245	194	72	79	129	154	539	850
8	67	846	588	334	511	772	104	375	212	200	371	97	93	150	103	229	57	35	35	51	29	91	333
9	147	12	463	403	162	226	419	46	124	108	107	126	40	44	60	53	58	5	15	26	27	11	60
10+	55	148	27	191	187	145	293	208	76	68	99	45	89	43	18	28	9	2	1	2	18	17	19

$1+$	1127	1053	99317	85167	75953	54244	56343	45375	67929	64552	65503	57714	47259	43258	32432	26979	2285	19308	22328	26222	21533	21757
Fishing Mortality																						
	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1	0	0	0	0	0.02	0.01	0	0.02	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0
2	0.11	0.1	0.24	0.24	0.35	0.41	0.21	0.38	0.24	0.27	0.14	0.13	0.55	0.25	0.38	0.23	0.06	0.07	0.06	0.08	0.1	0.15
3	0.41	0.38	0.48	0.48	0.51	0.61	0.69	0.74	0.52	0.42	0.52	0.41	0.52	0.89	0.69	0.85	0.63	0.22	0.23	0.28	0.28	0.41
4	0.39	0.49	0.38	0.39	0.68	0.75	0.56	0.66	0.57	0.49	0.62	0.57	0.52	0.77	0.83	0.97	1.23	0.66	0.44	0.37	0.3	0.26
5	0.38	0.36	0.46	0.31	0.64	0.59	0.63	0.72	0.52	0.4	0.78	0.42	0.72	1.02	1.02	1.12	1.24	0.64	0.5	0.58	0.23	0.22
6	0.14	0.38	0.64	0.56	0.74	0.55	0.66	0.74	0.56	0.57	0.73	0.73	0.58	0.95	0.91	1.16	0.79	0.41	0.62	0.57	0.34	0.1
7	0.31	0.11	0.79	0.55	0.58	0.6	0.74	0.66	0.33	0.51	0.92	0.59	0.91	0.75	0.8	1.27	1.52	0.51	0.24	1.28	0.33	0.28
8	1.49	0.4	0.18	0.52	0.62	0.41	0.63	0.91	0.47	0.43	0.88	0.68	0.56	0.72	0.46	1.17	2.3	0.65	0.1	0.43	0.75	0.22
9	0.36	0.44	0.51	0.44	0.66	0.67	0.6	0.71	0.54	0.49	0.73	0.58	0.63	0.87	0.94	1.09	1.27	0.64	0.46	0.47	0.28	0.22
10+	0.36	0.44	0.51	0.44	0.66	0.67	0.6	0.71	0.54	0.49	0.73	0.58	0.63	0.87	0.94	1.09	1.27	0.64	0.46	0.47	0.28	0.22
mn4-8,	0.54	0.35	0.49	0.47	0.65	0.58	0.64	0.74	0.49	0.48	0.79	0.60	0.65	0.84	0.80	1.14	1.42	0.57	0.38	0.65	0.39	0.22
Fwb	0.31	0.29	0.39	0.32	0.47	0.52	0.41	0.53	0.29	0.33	0.42	0.35	0.53	0.55	0.57	0.64	0.5	0.26	0.25	0.26	0.22	0.23

Table A3 continued. Estimates of beginning year stock size (thousands of fish), instantaneous fishing mortality (F), mean biomass (mt), spawning stock
biomass (mt), and percent mature of Georges Bank cod, estimated from virtual population analysis (VPA), calibrated using the commercial catch at

Mean biomass (mt)

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1	17756	18930	15201	33078	11990	8411	26100	7072	35928	10767	16706	11525	6965	18026	7119	7289	6327	3823	7037	9008	1492	5137
2	4816	29255	22650	19782	36452	15601	10449	24026	8347	41188	17252	26461	14109	9907	17073	6946	9698	8127	5054	9900	10923	3079
3	47057	5118	29978	21113	20017	31667	12313	7020	21792	8390	36585	16164	24310	9394	7862	11373	5349	9937	9507	5419	9947	10500
4	20817	42243	4894	21840	16000	10999	21921	8106	5192	18433	5814	27821	12978	14801	4867	3884	5528	4082	9512	8386	5027	9319
5	9449	16495	28841	4033	17037	8352	6889	13464	5247	4126	10558	4304	15698	6951	6973	1999	1557	2522	2375	5708	6772	4427
6	5533	8742	11357	18264	2510	9170	5214	3621	8109	3448	2246	5023	2536	6869	2768	2640	916	800	1323	1398	4228	6364
7	8154	6341	4785	6532	10957	1273	5563	2718	2353	4828	1564	1165	2326	1267	2954	965	742	553	533	541	981	3141
8	275	6555	4453	2347	3458	5943	717	2321	1538	1487	2266	691	697	1034	741	1151	195	273	259	326	163	721
9	1326	107	2801	4217	1355	1693	3264	341	1107	894	774	1020	345	260	431	290	296	33	140	227	273	113
10+	553	1376	303	2611	2091	1408	3101	1839	751	735	986	533	880	407	202	206	79	23	5	19	209	191

SSB at the start of the spawning season - males and females ($\mathbf{m t}$)

	978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	199	1999
1	912	1104	850	1962	1200	902	3122	773	8516	2226	3481	2482	638	1964	791	722	106	63	112	1002	126	622
2	1411	7540	6911	5784	16138	6347	4303	11650	5032	25333	8898	13723	6629	4245	9031	3577	3180	2713	1662	4620	5497	1192
3	33839	3730	22412	15924	15649	26066	10500	6879	18778	7106	32841	14541	22033	9069	7483	11494	5473	9005	8047	4662	8793	9526
4	20179	38255	4300	21375	15792	12655	21656	8076	4842	17024	6137	27191	12817	16519	5296	4619	6431	3965	9113	8318	4783	8801
5	8796	16541	30441	3962	17468	9636	7118	14908	5434	3936	12375	4200	18065	8434	8395	2538	1926	2644	2597	6554	6695	4279
6	4892	8127	12487	20325	2961	10514	5653	4252	8584	3704	2763	5937	2959	8694	3355	3310	1000	779	1541	1593	4152	6013
7	8094	5563	5914	7240	12174	1464	6221	3163	2355	5364	2024	1326	2844	1548	3501	1303	1041	572	575	734	991	3282
8	366	6672	5047	2693	4108	6842	815	2980	1702	1701	2932	811	769	1217	786	1518	313	291	321	389	209	756
9	1339	111	3841	4111	1557	2059	3958	420	1245	1030	965	1193	408	372	557	420	432	40	163	236	262	109
10+	657	1674	376	3178	2704	1825	3942	2407	941	907	1296	673	1127	554	281	296	117	30	,	24	242	217
Total	80485	89318	92581	86552	89751	78311	67288	55509	57430	68331	73713	72077	68289	52617	39476	29798	20019	20102	24138	28131	31750	34796

Percent Mature (females)

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Age	1	7	7	7	13	13	13	13	28	28	28	28	12	12	12	12	2	2	2	13	13	13
2	34	34	34	34	47	47	47	47	67	67	67	67	52	52	52	52	39	39	39	57	57	57
3	78	18	18	78	84	84	84	84	91	91	91	91	90	90	90	90	95	95	95	92	92	92
4	96	96	96	96	97	97	97	97	98	98	98	98	99	99	99	99	100	100	100	100	100	100
5-10+	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Figure A1. Total commercial landings of Georges Bank cod (Division $5 Z$ and Subarea 6), 1893-1999 (Panel A) and total commercial landings of Georges Bank cod by country, 1960-1999 (Panel B).

Figure A2. Standardized stratified mean weight (Panel A) and number (Panel B) per tow of Atlantic cod in NEFSC spring and autumn research vessel bottom trawl surveys, 1963 -1999, and Candian spring research vessel bottom trawl surveys, 1986-1992 and 1994-2000, on Georges Bank.

Figure A3. Trends in total commercial landings and fishing mortality for Georges Bank cod, 1978-1999.

Figure A4. Trends in spawning stock biomass and recruitment for Georges Bank cod, 1978-1999.

Figure A5 Retrospective analysis of Georges Bank cod recruits at age 1 (A), spawning stock biomass (B) and fishing mortality (C, average F, ages $4-8$, unweighted) based on the final ADAPT VPA formulation, 1999-1994.

