Annex I: Meeting Transcription

Captured by Togue Brawn (Workshop coordinator); reviewed and corrected by workshop participants. Disclaimer: These notes were transcribed simultaneously to the workshop presentations and dialogues. They are as accurate as possible, and have captured as much dialogue as possible, but some discussions are not fully complete.
Comments from the note-taker are given in italics. Presentations and comments by the "lead speaker" (whoever was giving the presentation) are given in normal font. Dialogue before, after, or within a presentation is indicated by the speaker's name being underlined immediately before the comment.

Day One

Day one began with an introduction by Paul Rago, Fishery Biologist, National Marine Fisheries Northeast Regional Office, who defined the purposes and goals of the workshop.
These purposes are:
I) To increase interaction/collaboration between programs.
2) To elicit feedback on current and upcoming Northeast tagging programs
3) To set the foundation for future workshops in order to increase interaction.

We're talking about the fate of almost 2 million tags released in past 20 years (this figure includes salmon tags, but not Carlin tags). This offers us a good opportunity to gain insight into how analyses can be conducted, and to see where we can have some modifications of programs, and take advantage of things in terms of design.
This workshop will cover a broad range of programs - some in place for years, some just starting. This workshop will be interactive and lively. We have a flexible schedule. The keynote speakers will apply their information to what is presented here today. Day three will allow for targeted feedback on each of the primary tagging programs. We will also try to develop a list of design recommendations for each of the programs. Where appropriate, we'll try to identify areas where we can move forward, in particular in regards to some of the ancillary experiments, such as telemetry. Alistair has a lot of experience in that.
We hope there will be "cross pollination" here. There are a lot of commonalities between the programs, and common objectives. There will opportunities here like cross training - you learn something in another form and you start to build upon that.
We're talking about observations of a cryptic animal, and most observations are of the terminal kind. There are a lot of models for mark recapture, which is often less applicable to these programs. In fisheries, they're generally killed when they're captured. In bird stuff, this method is called band recovery models. We're working on broad geographic and temporal scales. One thing that has a lot of currency in literature now is the heterogeneity of processes (how the capture process influences estimates of abundance - the capture may or may not be a random variable). We also have heterogeneous recapture processes: Release gear, recapture gear, detection, reporting rate, and continuous tagging process (recovered over course of season, interpreted at end).
We're also dealing with equivocal parameters - they're often confounded. If you recover a lot of tags in one area, this could be due to a high reporting rate, could be due to high site fidelity, or high fishing pressure. How do you remove these variables? To the extent that you can use ancillary information, you can have a lot of insight into the underlying process.
There are clever methods to filter: looking at recapture rates among fisheries might offer insight into reporting and detection. A lot of ancillary information is captured through fisheries, and there is also a lot of fisheries independent research. Embedded experiments also help. There are all sorts of things that can confound perfect implementation, and embedded experiments that get information after the fact are helpful.
We need to consider: how do we know what we think we know? We're on a spectrum in between
design and model. There needs to be a real focus on underlying assumptions, and we'll try to highlight this: what are the assumptions under these models and how well are they satisfied, and what sorts of tests can we devise to test their veracity? (shedding rates, initial mortality, etc.) We should focus on the quality of recovery information. It's important to get a large buy-in from fishermen.
We'll also examine hypothesis models - how do we go from the hypothesis to the operational model, based on how the world works? Hopefully we can also identify tools (software, etc.). There are references available on this on the disk within your packet.

Presentation I: Northeast Regional Cod Tagging Program

Given by Shelly Tallack of the Gulf Of Maine Research Institute. She noted that the program is 20 months old, and that this workshop was the first time she'd really been able to present preliminary analysis of the data itself.

We have four goals:

I) Our primary aim is to look at movement and mixing of Atlantic cod throughout the Gulf of Maine (GOM), and byproducts of this will be information on growth and spawning grounds. They've been examined in the past, but these studies have tended to be smaller and more finely focused, and there were often many years in between studies. We will also be looking for whether there has been a change in pattern of what's been seen in past?
2) To develop a hugely collaborative program (100,000 tags deployed by fishermen and scientists working together throughout the study area).
3) To make data available/visible to public.
4) To come up with future research questions based on the findings.

This study was not designed to count cod or to give an estimate of stock abundance, but it should provide information on key biological parameters which will compliment other ongoing studies in the region.
We have been working with ~ 75 boats -34% are charter vessels, 66% are commercial fishing vessels. There is a huge range of gear type, effort, etc., which means there are a lot of variables. The tagging locations were those identified through town meetings coordinated by the New England Aquarium prior to the start of this Program. Based on discussions at our End of Year One meeting, we added one additional tagging area (Western Gulf of Maine) in Year Two. Originally it wasn't going to be included because tagging was being undertaken there by UNH, but then we decided to add it to complement what was being done while also being able to have data from the same time frame as the rest of this Program's data.
We developed a standardized tagging technique early in the program. A protocol manual was developed and given to all participants. You're working with a lot of people who aren't used to dealing with scientific techniques. This manual provides them with a reference.

Outreach:

Outreach is a large component of this program: we're working with many different people, and also depending on fishermen to return tags. We aim to increase people's awareness of the program, of the incentives offered, and we provide regular updates.
We send mass mailings to about 5,000 federal permit holders every 6 months, and also send larger information packages to processing plants. Other forms of outreach include press releases, posters, website, TV shows, and presentations at trade shows.

Rewards:

In processing plants, whoever finds the tag usually gets the reward. People who find multiple tags have sometimes schemed to use their uncle's name, aunt's name, etc. to be sure they get a reward for each tag found, even if it is e.g. 5 tags found all at once (we don't necessarily send out a reward for each tag in the envelope, but we try to reward each time someone returns tags).
High reward tags are blue (different to our regular yellow tags), and receive a $\$ 100$ reward. They must be sent in to GMRI for the tag reporter to be eligible for the money; the minimum data required is $\mathrm{Tag} \#$, Date of capture, fish length and recapture location.

John Hoenig, Virginia Institute of Marine Science: We should come up with a decision that all high reward tags across systems are one color.
S. Tallack: One criticism of that might be the potential for variability in tag detection - is increased reporting due to increased compliance or increased detection? Would it be better to release some high reward tags with the same color as the normal tags to test for this?
〕. Hoenig: It doesn't matter. You have a standard tag that has some return rate, and it doesn't matter what the color is. You compare that rate to tags with a 100% reporting rate. You want to make the assumption that no one will fail to return a high-reward tag. This method presupposes: I) fishermen being aware of high reward program; 2) the tag is detectable; 3) the tag reward is high enough to mean something.
Also, l've always advocated for special posters for high reward programs. If you really want to know your program is working the way it's supposed to, you need to know $\$ 100$ is adequate, and you can do that with rated rewards $\$ 20$, $\$ 50$, etc., so you can see if increasing reward increases the rate of return. You can check to see if people are aware of the high-reward tags by doing interviews at marinas, etc.
Chris Pickett, National Marine Fisheries Service: Will they disregard regular tags, if all they get is a cup?
S. Tallack: Using different reward options is something that we have done, to try to keep people interested (e.g. T-shirts, hats and mugs). Maybe we could discuss as a group the relative appeal and therefore effectiveness of each type of reward. Once you have t-shirt, do you want another one?
J. Hoenig: You should probably give out a mug and a t-shirt and a cap with your high-reward money. You're trying to make sure that everyone turns in the tags. Use all your motivations. Plus, it's advertising. And I always advocate for cash options, in case they get satiated. P. Rago (Chair), National Marine Fisheries Service: I see an incentive group developing tomorrow: How to motivate and how you analyze it?

Lottery:

Lottery winners are selected from five categories of tag returns based on where the tag was recaptured: Northern Gulf of Maine, Georges Bank, Cape Cod \& vicinity, NH \& MA inshore waters, and Processors and Markets. To be eligible for the lottery, the tag return must include tag\#, fish length, date and location.

John Hoenig: If a fisherman realizes that a certain category is likely to be less populated with tags, he'll see it's best to report it from that area. By doing so they increase the likelihood of being selected a winner (fewer tags reported from the area means there will be a smaller pool of tags from which you'll choose). It's public data, so sooner or later people will catch on. S. Tallack: I'm not convinced they think that hard about it.
J. Hoenig: New Jersey had a very subtle glitch, where tags with duplicate numbers in their lottery had slightly higher odds for being selected as lottery winners, and someone figured it out.
S. Tallack: We felt when designing the lottery program that it doesn't really matter to us who wins: we've had some people who have won multiple times. The lottery gives us an ability to say you have a chance to get a reward if you return all this information. It's an outreach/PR tool.
Alistair Hobday, CSIRO Marine: He's asking why do you need to divide it in to areas? Is there an incentive to lie about it? If you're trying to get location information, why include an incentive to lie about where the tag was caught?
S. Tallack: This is another way of getting information out about the program, and it gets to all the regions.
」. Hoenig: If you did this based on where the fish was tagged, there's less incentive to lie,
there's no incentive to figure out the recapture location most likely to result in a winner. P. Rago: we may want to pursue this later. We're trying to do two things: I) increase overall level of reporting; 2) try to get the absolute rate of reporting based on the assumption that certain rewards will bring about a 100% reporting rate.
S. Tallack: It's certainly an interesting point, but this was chosen as a way to make sure there were winners throughout the region. The value of making regional winners is high. Local papers pick up on the press releases and publish them.
A. Hobday: You don't publish how many tags were reported. As overall reporting rate starts to approach 100% level, there may be problems with detectability. Maybe we could discuss this tomorrow in each region, right?
S. Tallack: Yes, we don't publish the number of returns per category each month, so they don't know these numbers.

Website:

Our website (www.codresearch.org) is simple but informative, and is updated regularly (every week or two). It links directly to our online mapping interface for tagged cod, where as soon as data is entered and approved, it becomes viewable. Right now, it shows just year one's data but that will change as more data gets approved. It's open to anyone. Filters of various categories are built in.
In addition to this site, we also send thank-you letters and recapture reports.

Data Collection and Entry:

We currently have 4 separate data sheets (described in slide). We started off with two, but we added two more recently with the onset of the high reward tagging and the fact that we now also collect data on non-tagged cod.
We've developed a complex online relational database. What we have now is more in line of what we thought we'd have later in the program; originally we thought we'd not be using an online database in Year I (we're more advanced than we thought we would be at this point).
Photocopied hard copies of all datasheets are held at GMRI: we request that the partner organizations keep the originals, but copies are sent to us.
Data gets entered by partners organizations, they enter and submit it (on line), we receive an email telling us a new trip requires verification, it gets rechecked at GMRI and then approved; this is when it becomes viewable. Quality control takes place during entry by built in tools (primarily for format, but counts etc. are also cross-checked), and also by manual checking. We're currently in phase three of database enhancement.

Bill Duffy, Northern Geomantics Inc: The data entry is very quick - you can move right along. In fact, when Cape Cod started, the program couldn't keep up with the speed that they were entering data, so we had to create a message telling them to slow down.
S. Tallack: We may have 16-20 people in different areas entering in data, on different machines and operating systems. We opted for an online database to avoid having to continually update software with program partners as the database evolved.
〕. Hoenig: Bill Hearn worked in Hobart with Southern Bluefin Tuna (SBT). He discovered that on one cruise the two taggers (they took turns) had widely different return rates, one had a 19% return rate, the other a 2% return rate. No one knew why: they thought maybe this was an artifact (maybe someone recopied the data sheets). But he looked into it and found out they were original data sheets. His recommendation was that you should always keep track of who's doing tagging at all times.
S. Tallack: For haul data, we request in our protocols that you don't switch taggers within a haul, or a "capture event". We also request that no one move more than 0.5 miles before rereleasing the fish. Also, all our taggers undergo training, even on recreational vessels, there's a scientist doing tagging, or people trained in tagging.
Tom Rudolph, Cape Cod Commercial Hook Fishermen's Association: We hammer it into
them that each haul has to have the same person, and we prefer to keep the same tagger throughout [the trip and even all trips].
We allow the use of inches when collecting and entering data, in order to increase accuracy for people who aren't used to measuring metrically. But the lengths are stored in centimeters; we have a built in converter so there is less chance for human error during conversion to centimeters.
We have a new feature: we're able to assign a specific haul to a closed area, and l'll be thinking about how to change that in the past data soon. There's a dropdown list of 5 permanent closed areas in our zone. We also have auto-fill information to minimize entry time and potential for error.
We can enter up to three tags for each fish. The system checks to make sure there are 6 digits, and also looks to see if the tag has already been entered. If so, it prompts along the lines of: this is a recapture, is this right, do you want to proceed?
As for the "Fate of fish: field: The default is "released", but we also have "floaters" or potential floaters, or "seagull", "gutted", also "dead".
P. Rago: Is there an option for "beat up", etc.
S. Tallack: That goes into the comments. I looked at the comments after about 6 months of field work, and from that, created as much as possible a standardized list.
J. Hoenig: You're recognizing some fish might be released, but you're not asking about the fate of the tag, whether it was clipped off or not.
S. Tallack: If the fish is released, it's released with the tag.
J. Hoenig: There are two issues: we need to know fate of tag, and the fate of the fish.
S. Tallack: If they clip out the tag and throw it back, that's captured in fish comments.
J. Hoenig: For estimating mortality rates, you need to know the fate of both the tag and the fish. Without that, you're getting bias on survival.
S. Tallack: That's in the comment field.
J. Hoenig: The problem is you'll have to read every single comment field to extract out the information you need.
S. Tallack: So maybe we need to add this to our dropdown list, something like "released with tag" to differentiate. We must re-enter a lot of recapture information, so this would be a prime opportunity.
A. Hobday: What's the percentage of released cod that are recaptured and re-released?
S. Tallack: I have the number with me, but don't remember it off the top of my head - it appears in a later slide
P. Rago: What's the reason for re-releasing?
S. Tallack: It tends to be done by recreational guys, who have learned enough to know we'll get more information if they put the fish back. Generally speaking it's a low number. I think roughly 65 or so thus far.
T. Rudolph: They might also be sublegal.
J. Hoey: Across a variety of programs, this is a good kind of exchange for everyone to take to heart.
T. Rudolph: l've had a really hard time with the fact that fishermen are going to do what they're going to do. l've had a really hard time getting them to understand what we want them to do. We've made some complex scenarios in the past. Somewhere along the way I said it's less important that you do the right thing, as long as you tell me what you did. And they still can't do that.
J. Hoey: We need to get back to tell them "There is no right or wrong here" We just need the data (discussion of why fishermen might be afraid to report stuff, don't know what's "right"). Maybe on the third day we can come up with standardized recommendations.
S. Tallack: At our End of Year One meeting, the point was made that we really need to
request that tags get sent in, so we can verify the numbers reported. We've made a big point of encouraging this since December 2003. We still have a pretty good return rate on the actual tags from before December 2003, bearing in mind we didn't request that it specifically originally.
A. Hobday: Can they be rewarded for not submitting tag?
S. Tallack: Yes.
J. Hoenig: They can enter the lottery without returning the tag? I bet your tag numbers are sequential. People can just make up a recapture to report. What's the worst that could happen? They just say they made a mistake.

Database - Recaptures:

We've improved the database to allow us to flag substandard data on recaptures. You'll see four check boxes here (on slide). There's a check box for "didn't receive tag". There are also checkboxes for estimates rather than actual data (for date, fish length, location). For instance, if someone reports a general area of a recapture but does not give coordinates, we can give a midpoint location rather than having to completely discard this information. This categorization as "sub-standard" data allows us to filter out all of these "estimates" if necessary at a later date.
We also added a "User check" for fish length: In the first version of the database, we couldn't see the original fish length when entering a recaptured fish. Now, we can click on the fish icon to pick up a tag's history, but this must be done manually. Now, that information goes into comments "fish size was given as X on recapture, but the release size is larger". We make a note into comments, and we check "substandard" data.
Originally we did not have the ability to rate data quality, but it became obvious we needed it. But this tool developed fairly late on, and the recaptures that were entered before this now need to be re-entered. We do now have a backlog of recapture information that needs to be entered.

Kohl Kanwit, Maine Department of Marine Resources: With DMR herring tagging we have a graded system of "accuracy": level I, 2 or 3. If a fisherman reports a fish being caught "around Mt Desert Rock", that's one level versus a larger area (such as "near shore Southern Maine"). Gary Shepherd, National Marine Fisheries Service: Do you have fishermen unwilling to give you exact coordinates?
S. Tallack: There has been some reluctance, but it's been much better lately - as time goes on, they are more willing and also more aware of exactly what we need. Pat [Pat Foote, GMRI] has a really good manner of talking to these guys, and this helps a lot. People display a huge range of attitudes. There are some who report the tags to get stuff (rewards), and there are also many who just want to get good information and aren't interested in the rewards.
P. Rago: Is there a problem with fouling or degradation of tags?
S. Tallack: No, and Hallprint tags were specifically chosen to avoid this. We've had no problems so far.
Azure Westwood, National Marine Fisheries Service: with long hauls, do you take middle coordinates or beginning, or end?
S. Tallack: We do short hauls, ~ 20 minutes; we record the start and the end location, but the release is associated with the end location.
G. Shepherd: How about recaptures?
S. Tallack: Fishermen report a location. We ask for one location, we don't ask for haul start and end.
Pros and cons of database (slide):

Advantages:

- All users have access to most current database.
- Data is error checked as it's entered.
- Data links directly to GIS mapping interface automatically; live.

Disadvantages:

- Can't be used at sea - can only be entered online.
- Data entry is a little slower than if working down a column in Excel, and then uploading.
- Preliminary data analysis:
- Our analysis has really only just begun (on size relationships, growth rates, displacement and dispersal/exchange between areas).
We tag down to 36 cm . We are trying to tag the entire size range above this. The largest fish we've seen so far have been 133 cm (both tagged by DMR). Fish caught by hook tend to be smaller.
Releases cover the full size range. We haven't recaptured as many of the small fish, and whilst we don't know exactly why, it is likely to be a combination of: gear selectivity and differences in catchability of small fish; and the effects of fishermen focusing on areas where they are likely to get bigger fish. It is possible also that small fish do not survive the tagging process so well? Or maybe we are seeing growth?
A number of our fish are being caught very soon after release.
K. Kanwit: if you're using contract trips, why are you getting so many back so soon?
S. Tallack: l've looked at where they're coming from within the tagging trips, and when large schools come up, it's a prime time to tag a good number of fish, but this also presents the risk of recapturing what you just tagged - these fish still get recorded as a recapture. It is also be due to fishing activity that happens to be in an area you were just in.

Movement:

We looked at displacement. It looks as if there's a slightly higher westward movement coming inshore, but no real difference north to south.
There's not much movement in the spring, but each other season has much greater movement. You definitely see interaction between north and south, between maritime waters and Georges Bank waters in other seasons.
One criticism so far is that we're not targeting spawning fish enough. I would argue that we've tried, but we haven't seen that many. It's one of our priorities, but it's not always an option.

Return Rate:

Overall we're at a 2.2% tag return rate (to date). Returns are dependent on awareness of the program, tag detection, compliance to report tag and good information, and fishing effort (4 things total). Compliance varies highly from individual to individual.
The high compliance (high return rate) in Canada is probably due to processors in Canada reporting much more. Cape Cod's rate is low, which may be due to the number of smaller fish being tagged. 4.4% of recaptures are re-released.
Our return rate is increasing. 61\% of reports come in by mail, 3% in person, 27% phone, 9% by email.
We primarily tag in spring and fall.

Lessons learned:

If cooperative research is key, the involvement of all stakeholders is necessary. Doing so may have delayed decisions in our program, but it's worked really well.
Attention to program design is important. It's worth putting time in to get it right, and to go back and check data.

Key tasks for future months:

Outreach will continue, tagging will continue, and finally we hope to come up with ancillary studies.
So far, ancillary studies we've begun or are considering are:

- High reward tagging.
- Also had huge discussion about bycatch issues, where our permits only allow us to work
on cod. Some fishermen were concerned with number of other species being caught. We looked into how we could also collect information on these species, so as not to completely waste them. But in the end, industry did not want to incorporate bycatch information because they feared it would come back to "bite" them.
- Potentially this fall, we might do genetic sampling - we've been requested by the Research Steering Committee to do this. At this point, we've only got one field season left.
- Maybe tagging in closed areas? Refining - already doing this.
- Tagging of spawning aggregations? Refining - already doing this, just don't have high numbers.
A. Hobday: I see three key things with this program: I: The physical tag is acquired. 2: Raw copies of data sheets are maintained 3: The willingness to go back and change data as necessary. This is all commendable.
Laura Singer, Gulf of Maine Research Institute: Having funding available to move around (willingness of sponsors) is why we're able to do this.
P. Rago: It gets harder to re-tool as you get more inertia.
S. Tallack: Only two people can change data - it used to be only Northern Geomantics that could "fix fish," but now Shelly and Pat can do so as well.

Presentation 2: Yellowtail Flounder Cooperative Tagging Project

Given by Steve Cadrin of the National Marine Fisheries Service.

Our technical objectives focus on movement, mortality and growth.
There are three stocks of yellowtail, and each has a different history of fishery and stock development, and have different challenges. 3 stocks: Cape Cod Gulf of Maine (two within this), Georges Bank, Southern New England Mid Atlantic (2 within this). Yellowtail fishery first developed in Southern New England.
I) CC GOM: Cape Cod assessment suggests that stock has been relatively stable, in fact the spawning biomass seems to have increased despite high fishing mortality (F) rates. These rates present a problem for management. Although we've reduced mortality on other groundfish stocks, CC yellowtail sticks out like sore thumb. There are major uncertainties in coming up with F, M and stock size. Darby suggested that if M rates are that high, you should be able to confirm them with a tagging study. This was one of first impetuses for this tagging study.
Cape Cod natural mortality (M) is at $10 \times \mathrm{FMSY}$.
Goal One: confirm mortality rates.
2) Southern NE: Historically this was the dominant resource, but it was depleted in the early 90 's. Despite closure in Nantucket, FM has not been reduced, which may be due to the lack of management in the Mid Atlantic. So another goal is to better understand the movement between the mid Atlantic and southern New England. Historically this was a way more productive resource. It's depleted right now, and we need to better understand where fish are moving around SNE/ Mid Atlantic area.
Goal Two: examine movement patterns, specifically around SNE/Mid-Atlantic.
3) Georges Bank. The Georges Bank stock was depleted in the early 90 's but is now rapidly rebuilding. After closing area 2 , we had mesh size increases, and Canadians had restrictions on TAC. But we also have some technical problems. Maybe we're not aging these fish correctly. 3rd goal is to confirm age determinations, as well as understand the movement of yellowtail from the closed area.
Goal Three: confirm age determinations and understand movement patterns from closed area. This entire project has been cooperative. Fishermen really wanted to have a tagging program. Luis Ribas, Dave Goethel, Fred Matera, Rodney Avila were the main movers for getting Yellowtail tagging on the map.

General Strategy:

Ideally, you want to have one objective, but we have multiple objectives. The only way we could meet them was to have our tagged subset of fish representative of the entire population.
Ideal Tag Distribution would be all of the US resource, and the Canadian portion of Georges Bank. We tried to relate the distribution of tags to the natural distribution of fish. We were able to slice up pie of tagging requirements into three pieces. Canadians do Canada, NEFSC does CC GBank SMAST/Rhode Island Fish and Wildlife does SNE-MA. We base this all on days at sea.
J. Hoenig: When you want to do a tagging study, you need tagged fish to be representative of the population, so you have to:
Tag in one location, hope they distribute themselves.
Tag on random fishing trips and let the spatial differences in catches "self weight" for spatial differences in abundance.
I tell them to tag in proportion to local abundance, and judge this by catch rate. You can't tag based on locations. You should say "tag best 80% of what you catch", then it's self weighted. If you tag a certain number in each area no matter how many you catch, you weight toward marginal areas.
S. Cadrin: When (tagging) days are funded, we have a target number of fish to tag. When taggers meet the target, they move on. I don't think we're double-counting, we're always going back to number of releases.
J. Hoenig: In general if you do a trawl haul, and tag whatever is there, you're tagging more in areas with greater abundance. You're catching more there, and you're sticking around longer.

Analytical Design:

We assume observed recaptures are a function of I) mortality in each area and 2) movement among areas.
Our model includes a process equation: the number of tagged fish in an area is a function of the survival of fish that remained there plus those that moved into the area.
. Hoenig: Where is the time step?
S. Cadrin: That's up to us. We tried for a flexible model - three stock areas and an annual time step is minimal for what we propose. We'd like to test further and further resolution. We'd like to try a seasonal model, since people think there's a seasonal component of movement. We'd also like to look at smaller geographical segments.
This is simplest way to do it, although we may need to explore other options. The model assumes they move at the beginning of the time step (e.g. move, then either survive or die).

Movement Mortality Model:

Once we have process equation of how tags move through system, we can ultimately get to expected number of tag returns in an area at a given time. We apply the harvest equation to the results of the process equation.
Tag loss rate and tag-induced mortality are not included.
Third goal is growth, which is unrelated to movement mortality model.
Growth figures will come from marginal increment analysis. We have scale margin at time of release, we get another image of recapture after a known time at large to see how circulai are being laid down, and we look for seasonal patterns.
Marginal increment analysis is less dependent on getting an accurate length. It's more dependent on looking at annulus increments.

Field Protocol:

We relied on John Boardman (Mass DMF), who had lots of experience with the Pilgrim Power Plant study, when we came up with the field protocol. We went with Peterson disks.
We've developed protocol that goes out on every cruise - captains and chief scientists have a copy of it. How do we capture fish? Captains must put us on an area with a lot of yellowtail and conduct short tows so we don't get a lot of bycatch. If we get in an area where we're catching too
many other fish (bycatch), we move. We ensure all surfaces are wet, and minimize time out of water.
We get a good indication of fish health prior to tagging.
Yellowtail are placid, but Peterson disks require more effort, so the overall processing time is the same as for cod. They don't have a swim bladder, which is good.
There are standardized ways to tag fish. We're getting minimal tearing, and any tearing is usually on recapture. Signs so far are that tagging is going well.

Database:

Our database has a simpler structure than that of cod. We capture I) tow (date, area, tow), Then 2) tags (tag number, tagger, recorder, time, length, sex, scales, condition observations).
3) Returns. Tag number, fisherman, vessel, address, phone email, length, date, depth, lat, lon, category (fisherman, processor, scientist), comments.
It's time-consuming to analyze with this system. Right now our audits are posterior to key punching.

Outreach:

Our outreach is very much at the grass-roots level. We understand that our lead fishermen are not a representative sample. Azure is outreach leader.
Our 2003 trips took place from Maine to the Mid-Atlantic. We distribute 30,000 lottery tags with four $\$ 1 \mathrm{~K}$ reward drawings each year, and 200 high-value tags. We also issue a $\$ 100$ reward for data storage tags.
Our high rewards tags have the same visibility as standard - same color. We want them to have the same chance of being seen, so we know any difference of rate is not due to color.
We distribute Portuguese posters in New Bedford and Provincetown.
Reporting system and reward system: these both serve dual objectives of outreach and maximizing returns. We have a toll free number, and started a dialogue (both came from striped bass recommendations). It's also important to communicate to give information back to the fishermen. It's important to maintain a cooperative approach throughout the process. Highliners are invited to all meetings.

Model:

We looked at putting historical data into our model. In 1950's, there was tagging in the areas we're currently in. Larry Alade structured a very simple model. He had three areas and collapsed their time at large, so they all started at year zero. Simplified assumptions, tested models (single coast wide F), 6 movement rates among 3 areas, Pooled year returns, (see slide), assumed no tag loss or tag-induced mortality, ignored returns with missing location information (we may want to talk about this later).
He took a simple sum of squares estimator. (we'll probably move on from this to a likelihood model).
Larry also played with estimability of Beta parameter.
We found that overall F was fairly large but it did have some estimability. Beta (reporting parameter) had better information on it. There was enough unique information from each of them to get good information.
2004 started off with annual cooperators meeting. Reviewed preliminary data, planned 2004 tagging.
Movements from Cape Cod: had large movements (not many, but a few very large ones that we suspected were errors). We checked "suspect" fish against observer logs and found they were recorded correctly. Lesson: don't discount reported fish that seem unlikely.
We need to look at representativeness of return data.
From GB to Cape Cod we also had some large movements. But by far, most recaptures were in stock area of release. Among GB releases, there was more movements between release sites.
P. Rago: Steve brings up a point here: one of the ways we depict movement information is net
displacement vectors: an "A to B" kind of thing, but the paths they might follow are kind of interesting. We'll gain insight into this through ancillary studies.
S. Cadrin: What we really wanted to look at were patterns of our returns. This was really a function of "where are we getting recaptures from?". We'll add time at large in later on.

Data Tags:

Data tags give depth and temperature over time. Tags go out beginning with a 14 second interval where they record time, temp, depth. As it fills up, it deletes every other data point and goes to 28 seconds.
With short time at large returns, we have high resolution. One thing we see is comparison of behavior immediately after tagging with long-term behavior. It appears as though (from this particular tag) that immediately after tagging it went to very deep water. You can see spikes where it's coming up off bottom. You see diurnal patterns from tidal cycles. It appears that in the first few weeks, fish was still searching around for yellowtail habitat. We may need to consider tag-induced movement.
You can see that fish come up off the bottom to find a new depth - we don't know if there's a causality there, but you can see a distinct pattern. My perception used to be that yellowtails were clams essentially. Now we're learning that at fairly frequent intervals, they're coming up off bottom fairly close to the surface.
We could infer movement for a couple fish that had a very narrow corridor (Inferred movement slide).
We reevaluated after 2004 meeting, and agreed to maintain proportionality of coastwide tag releases. (Conclusions of 2004 Meeting slide).
In order to address the movement of juvenile yellowtail in Southern New England, we decided we'd also tag sublegal yellowtail in low density areas to look at the movement.
So far, rates of return for fish in "excellent" and "good" are similar. In future, we'd like to look at having a criteria for return rate within an area.
J. Hoenig: You should look at the ratio of excellent vs. good at time of tagging and time of recapture. If that ratio is one, it's an estimate of relative survival and retention of the tag. It says the goods are retaining the tag equally to the excellents. But if you find that the goods are retaining the tag and surviving less well, it tells you that conditions matter. Then you wouldn't be quite as confident that all fish are retaining the tags.

2004 Season:

In 2004, we have some of same fishermen, and some new ones, from Maine to the Mid Atlantic.
7\% of 2003 standard discs returned, 17% of high-value discs returned.
Average time at large was 103 days, average distance traveled was 12 nautical miles, with a maximum distance traveled of 139 nautical miles.
We've had some $\$ 100$ rewards from fish houses, so we know they're slipping by fishermen.
We don't have many SNE returns yet. There is some mixing between areas.
We compared our data to that of the 1950's, and found the same pattern: major pattern is residence in the same area. Although some of the movements we've seen weren't observed before. For example, our study showed the first observation of movement from GB to CC.
Time and Distance: The relationship between time and distance is not simple. Some of our longest movements happened in very short times at large.

Data Tag Analysis:

We went through over 200 off-bottom movements, and found that most of them were happening in late evening hours 18:00-22:00, which supports the fact that they get up off the bottom after they feed (visual feeders). This confirms the movement is not associated with feeding. fanything, it's cessation of feeding. It doesn't appear to be related to spawning.

Holding studies:

Experiment I: Our first holding study experiment suggests tagged and untagged fish had
different patterns of mortality. The suggested tag-induced mortality may be substantial, but better controls are needed. This shows we need to do more experiments.
Experiment 2: In our second experiment, it appeared that mortality in holding experiments may not be related to tagging (no histological reaction at tag sites). We have a cage study proposed for 2005. We're proposing to hold fish in cages on inshore grounds.

We need to investigate the immediate versus continuous effect. Tagging can either affect a fish's health immediately after tagging, or continuously over its time at large.

Work Plan:

We've received funding for another year of tagging. We've been funded for 5000 coastwise releases, and have put forth a proposal to do holding experiments. We'll continue outreach and reporting systems.
In 2008, the groundfish science and management system is conducting benchmark stock assessments on a number of species. They'll be looking to see "what new methods can be used to evaluate stock status". A good goal for us to have is to vet results by then.
. Hoenig: You want people to instantly report a high reward tag - they might have seen it and ignored it. The key assumption is that your high reward tags are fully visible. You need the reporting rate, but you don't need the motivation.
As for estimating returns from reporting ratio: if you're including scientific observers, that sets it off a bit.
S. Cadrin: We were very close with numbers of fish tagged to recent historical abundance.
J. Hoenig: You achieved your goal (weight according to best information for distribution), but there was a simpler way, which was to fish at random locations and tag everything. There's danger in what you're doing if the distribution of yellowtail has changed in the last 3 years. You should update this to include more recent information.
Also, when you do studies about short term mortality, temperature tends to be critical factor. If you tag in August, that could have a much bigger impact than doing it in the spring when the fish is coming from cold water to cold air. It tends to be big fish that die under summer conditions due to the smaller gill surface area to body volume ratio, so bringing them into warmth is more stressful.
S. Cadrin: We would schedule any such experiments early in the year. Even if you're keeping the fish in tanks (sucking surface water in), that (surface) water can be a lot warmer. Also a reminder: you don't want to go too late into the year for tagging operations. This results in them going through a stratified water column.
The problem of tag-induced mortality studies is that there is no "REAL" control - real control is the fish swimming around on bottom, never touched.
. Hoenig: Your goal should be to try to get as many to survive in your trials as possible, if it's high, you probably don't have a problem.

Following are the wrap-up notes from Paul Rago:

- Linkage between tagging and fisheries independent/dependent and how that's used as basis for design.
- Operational Model (formulating an explicit hypothesis of movement between areas, linkage, processes underlying those things).
- Using Historical Data as basis for testing and exploring data.
- We're operating on censored observations (the time of the event is not necessarily recorded when we do subsequent analyses. We put them into bins, and that becomes censoring. Getting more continuous events is more important. Also, did event occur before mortality or after mortality).
- Ancillary Experiments (data tags, model-based inference, holding, information they can give you on initial mortality and behavior).
- Progressive Development, interactive aspects related to begin the experiment, get
feedback with cooperators, and refine the model.
John Annala, Gulf of Maine Research Institute: We need to standardize initial tagging process the physical handling by the tagger has a big impact on initial mortality. Wet cotton gloves are better than bare hands, as you can introduce bacteria with bare hands.

Presentation 3: Cooperative Black Sea Bass Tagging Program

Given by Gary Shepherd of the National Marine Fisheries Service.

Impetus for doing tagging work: several years back, analytical assessment was not accepted given a lack of good information. The current assessment was based on survey data, and given their behavior (distribution inshore), there's been a question as to whether trawl gear is adequate for catching them. A push to come up with alternative assessment method resulted in tagging. Black Sea Bass are migratory, managed as a single stock north of Cape Hatteras. In the spring, they're on the edge of the continental shelf, then during May into June, there's a northern inshore migration. Spawning takes place in Spring from MA to VA, NC. By Autumn, they're distributed on inshore rocky or artificial reef habitat close to shore.

Objectives of the program:

- Determine exploitation rate (total and regional differences).
- Determine seasonal migration patterns (using internal anchor and archival tags.
- Estimate natural mortality
- Foster cooperation with fishermen, increase confidence in stock assessment information.

With our experimental design, there were several issues we wanted to identify:

- First, to select tag types to minimize tag loss, experimental determination of tag loss, mortality.
- Release number by region proportional to landings.
- Restrict releases to limited period prior to offshore migration (tight time window) - this becomes critical in exploitation estimate in modeling - we don't want fishing mortality to change over the period of release, we picked a time in September where we could release fish prior to their moving offshore (coastwide all at the same time, which was tough due to changes in pattern over geo area).
- Fish sizes to reflect fisheries (legal or legal within year).
- Capture gear to reduce mortality.
- Include high-reward tags for reporting rate estimate.
- Outreach to increase exposure to program.

A study by MA DMF in 1988 used 1000 T-bar tags, 1000 internal anchor tags, and had a 3:I return rate for internal tags compared to T-bar. So we opted for the internal tags.
Internal anchor tab has to go inside a cavity, so you need to cut into the abdomen as opposed to being intramuscular, so you tag in the stomach.
We conducted 3 experiments on tag retention, and found infections were from aquarium exposure, not tagging itself. In a larger study, Mary Fabrizio found no tag-induced mortality. A RI DFW study had somewhat higher tag loss. In that experiment, of a total of 70 fish kept in the aquarium, 7 tags were lost, with no mortality associated.
We estimated that once you get around 3000 or more tags, your benefits of increasing tag numbers diminishes. We were shooting for about 3000 tags annually to release. The tag release was conducted by recreational and commercial fishermen. In general, one person could tag 250300 fish per day if fish were available.
We're chartering commercial vessels also. When we tag fish we note condition, keep in totes to monitor their condition. Sometimes we pierced the bladder and squeezed out excess air for some fish. We felt getting fish back to the bottom was more beneficial than the risks imposed by doing
this.
Tagging is a quick process, it takes 30 seconds.
We had 4 tagging periods, starting in September 2002. We tried to put proportionally more tags in MA.
In Spring 2003, our objective was to tag in the beginning as well as the end of the recreational fishing season to have a way to estimate natural mortality as well (but due to funds, we weren't able to continue).
Overall spring numbers were lower, as we weren't catching fish in RI, CT, NY.
We've also released $\$ 100$ reward tags, which are red instead of orange. (Couldn't really use blue due to blue sheen on males in spring).
There's concern about releasing in well-known spots versus less-known spots given the site fidelity of these fish (some captains would take people to "secret spots"). Fishing intensity can be very localized and very variable (in one spot a bunch of fish were tagged in May, and we got all back by August).
We decided early on to use just hats as reward (logistics and cost reasons).
The sizes of fish released and the distribution of sizes mimicked landings information across all tagging periods.
Release locations: initially these were divided into four regions. That's changed since then (ultimately, it's managed as a single stock).
Most of the recoveries occur in the same areas they were released.
Different areas have different migrations (seasonal migrations). In the South, there's less movement relative to northern stocks.
We tend to get a spike in recaptures based on the minimum size. Overall, distribution is somewhat skewed reflecting the release sizes (tried to release fish from 27 cm and greater). Reporting rate variations: looked at it regionally by fishery, (remembering some sample sizes are small). There's a relatively low reporting rate in recreational fishing vs commercial and in the North compared to further south. Overall we have a 67% reporting rate.
Came up with a Peterson estimate based on fish greater than 28 cm (II'), at large greater than 7 days but less than 365 (after 7 days there were at least several fish that were released in one location and recaptured in another). Without RI recaptures within 2 weeks of release (in that period we had used a pot fisherman who had done releases, and he recaptured and returned a good number of tags). Include a 10% tag loss. Limited it only to returns associated with a dead fish.
J. Hoenig: For every two recaptures you got back in 7 days, there might have been one fish killed but not reported. Thus, if you want to eliminate fish caught within 7 days of release you need to subtract the 2 from the number of reported recaptures but 3 from the number of fish tagged. That is, ignoring reported recaptures at liberty for less than 7 days and subtracting that number from the number of fish causes a bias. The bias is small if the number of fish caught within 7 days of release is small, there was one where the fish was killed.
Since you know size of tagging for every fish, you could look at R/M ratio by size group. If it all looks like the same number, with maybe just random fluctuations due to sampling error, it's all good, and the exploitation rate applies to all. If not, you have to look at it by size group.
G. Shepherd: During course of stock assessment review, if you change assumption of high reward reporting from 100 to 80% it changes your results, but not by a lot. Maybe in the discussion, we can see if there's a way to determine the rate:
」. Hoenig: What you're doing is dividing by the tag reporting rate. If you think it's 100%, you divide by one. If it's 50%, you divide by a factor of $1 / 2$; in other words, you multiply by 2 . But if you thought it was 10% you're off by factor of 10 . As long as reporting rate is high, it's not a big deal. But if you think it's 2% and it's actually I\%, that's a big deal. It doesn't make much difference as long as your reporting rate is up high. You're protected from errors and you don't have to know exactly what the reporting rate is.
G. Shepherd: At least half the fishermen are recreational, which means we think the rate is rather high.
J. Hoenig: It's important to talk to the fishermen to see if they know about the high reward tagging, and then check up to see if people intend to comply.
Other notes: it's good to have tag numbers on both sides - sometimes a part of the number will be illegible on one side.
Also, it's best to start high-reward tagging at the same time as your standard tagging program. Otherwise it will possibly cause the rate of reporting of standard tags to change over time.
G. Shepherd: We reduced sample size of high reward tags in high exploitation areas (eg Cape May).
Model: Alternative Method (Rago and Goodyear 1985 - see slide).
Results: Mortality is robust to changes in reporting rate, which would not be the case if there were a low reporting rate.
Peer Review: We decided we should move into a more analytical phase. We have three years of releases we've done. Intent is to get more captures, and do more elaborate modeling.
Some assumptions to explore: 100% reporting rate of high reward tags, site fidelity to underexploited areas (secret or unknown sites) - it would be nice to know ahead of time what all the possible locations are and what the effort is, regional/fishery differences in reporting, and regional differences in mortality.
Discussion of problems with data tags (had a lot that didn't work)...
A. Hobday: Did you have an agreement for complete replacement with Lotek?
G. Shepherd: No, they replaced a percentage based on what they thought was reasonable. There's still a reward associated with the broken tags, so it's still costing us for recaptures of broken tags.
A. Hobday: We negotiate ahead of time what constitutes a failure, and what the actions will be.
G. Shepherd: We test them all now - deploy them in a PVC pipe and make sure they work.
A. Hobday: Yes, you need to test them first before you put it in the water.
G. Shepherd: We did get back one that seemed to have worked: it was released in November in Rhode Island, then recaptured in February off Hudson Canyon. It followed temperatures of roughly 52-54 degrees until the edge of the shelf, where the temp drops so much, there's nowhere else to go.
A. Westwood: Did you see a period of adjustment to being tagged (in archival data)?
G. Shepherd: Those fish (with data storage tags) were tagged and held in captivity (for two weeks) before they were released, so we'd be sure they'd survive.
S. Tallack: How much does something like that affect their subsequent behavior?
G. Shepherd: I don't think much at all. They were released in a group of 25 fish, not solitary. Gary Nelson, Massachusetts Division of Marine Fisheries: Are those data tags marked with your address? How do you get them back?
G. Shepherd: Return information is located on a bright pink tab on one side. The return rate isn't very good. We don't know if the process itself is killing fish, or if the numbers are just so small.
」. Hoenig: How did your F's compare to analytical assessment?
G. Shepherd: The analytical assessment was done several years ago, and hasn't been updated.

Those F's were about .5 or so, prior to updating. These F's were just below what the target
F's were that management was shooting for.
J. Hoenig: Will you make this into a multi-year tagging model?
G. Shepherd: Yes, that's the goal.

This concludes the "major species presentations". The rest of the afternoon was devoted to smaller presentations, whose brief summaries follow:

Presentation 4: Shark Tagging

Given by Nancy Kohler of the National Marine Fisheries Service. A transcript of this presentation was made available and has been included here:
"Pat Turner and I work at the NMFS's Lab in Narragansett, RI in the Apex Predators Program where we run a cooperative marine research-tagging program for sharks.
The CSTP was initiated in 1962 by Jack Casey and is part of continuing research directed to the study of the biology of large Atlantic sharks. The program began with an initial group of less than 100 volunteers and has expanded in subsequent years to include over 6,500 volunteers distributed along the Atlantic and Gulf coast of North America and Europe.
A variety of tags have been used over the years, starting with the fin tags up to the dart tags still used today. The rototag is a two-piece, plastic cattle ear tag, which is inserted through the first dorsal fin. These tags were primarily used by NMFS biologists on small sharks during the first few years of the CSTP. The fish were brought on board, measured, tagged and released.
As the program expanded to include thousands of volunteer fishermen, the dart tag was developed to be easily and safely applied to sharks in the water. The " M " tag is composed of a stainless steel dart head, monofilament line, and a Plexiglas capsule containing a vinyl plastic legend with return instructions printed in English, Spanish, French, Japanese and Norwegian. These dart tags, in use since 1965 , are implanted in the back musculature near the base of the first dorsal fin. More recently, the roto tags and a Hallprint tag have been used on a limited basis for use on small sharks in the nursery areas.
Numbered tags are sent to volunteer participants on self-addressed return post cards for recording tagging information (date, location, gear, size and sex of shark), along with a tagging needle, tagging instructions, and an Anglers Guide to Sharks and current management information. When a previously tagged shark is re-caught, information similar to that obtained at tagging is requested from the recapturer. Initially, a $\$ 5.00$ reward was sent as an incentive for returning tags; since 1988, a hat with an embroidered logo has been used.
Between 1962-2003, more than 180,000 sharks of 52 species have been tagged and more than 10,000 sharks of 33 species have been recaptured. Maximum time at liberty is 27.8 years for a sandbar shark and longest distance traveled is $3,740 \mathrm{~nm}$ for a blue shark that was tagged off the Northeast US coast and recaptured south of Equator.
The number of sharks tagged varies from I for the scoophead to 97,843 for the blue shark. Eightysix percent of the tags are represented by eight species: blue shark, sandbar shark, tiger shark, dusky shark, shortfin mako, blacktip shark, Atlantic sharpnose shark, and scalloped hammerhead shark.
Numbers of recaptures by species range from I for the Greenland shark to 6,261 for the blue shark. Eighty-eight percent of the recaptures are made up of seven species: blue shark, sandbar shark, shortfin mako, tiger shark lemon shark, blacktip shark, and dusky shark. The rate of recapture ranges from 1.3% for the oceanic whitetip shark to 12% for the shortfin mako.
Anglers using rod and reel accomplish the majority of the tagging for all species combined. Biologists, fisheries observers, and commercial fishermen using primarily longlines, handlines, and nets (gill, trawl) account for the remainder. Conversely, commercial fishermen using longlines and net gear, and rod and reel anglers are responsible for the majority of the recaptures. Following is information on the number of tags by year, number of recaptures by year and recapture percentage by year for all species combined. The annual number of fish tagged per year varies from 38 in 1962 to 9,404 in 1996 and averages 4,300 releases per year. The number of fish recaptured by year ranges from 3 in 1963 to 702 in 1999 and averages about 300 per year. Trends in number of fish tagged and recaptured in a cooperative program must be interpreted with caution because tagging effort can vary due to annual changes in fishing effort, weather conditions,
water temperature, number of participants in the CSTP, occurrence of research cruises, opening or closure of a commercial fishery, and number of tags available. The decline in the numbers tagged in recent years may be attributed to a number of these factors including decrease in the program's visibility and number of tags available, fishermen's negative attitude towards NMFS, as well as a possible decline in numbers of available fish.
Technical objectives for the CSTP include: Investigate spatial and temporal variation in the distribution and migratory patterns of coastal and pelagic Atlantic shark species at various life history stages; this is an ongoing process and we have accomplished this to various degrees for a variety of species. For instance, this slide shows blue shark recaptures covering the North Atlantic Ocean.
The second objective is: Delineate nursery and pupping areas and seasonal residence time. COASTSPAN or the Cooperative Atlantic States Shark Pupping and Nursery survey was developed to determine the location and species composition of shark nursery grounds along the US east coast and to determine the relative abundance, distribution, and migration of sharks utilizing these nursery grounds through the use of tag and recapture data. Roto and M tags are sent to COASTSPAN cooperators from coastal states including North and South Carolina, Georgia, and Florida where they conduct longline and gillnet operations to catch and tag neonate and juvenile sharks.
The APP conducts the Delaware Bay portion of the study, which is a primary nursery ground for the sandbar shark. Tag studies in this area also include acoustic telemetry work to delimit shortterm movements, niche space utilization, and tidal orientation of juvenile sandbar sharks in their primary nursery area.
Other technical objectives of the CSTP include:

- Obtain individual migration and growth rates and longevity data;
- Validate and verify age determination methods;

Release and recapture data are essential for age and growth analysis in sharks. Vertebral counts can be validated through OTC and known age recaptures as well as through traditional tag recapture analysis. We have injected tagged sharks with tetracycline like this porbeagle shark shown here. We request that all recapturers return a portion of the backbone from any recaptured shark that they are retaining. They measure the fork length and remove a 6 - 10 inch piece of backbone, freeze it and mail it to the laboratory.
This is an example of a vertebra from an OTC injected porbeagle shark. The fish was at liberty for 3.4 years and you can see 3 plus rings on the backbone after the OTC mark. This tag recapture graph is also for the porbeagle shark and shows individual growth from tag recaptures and a growth curve fit to the data. Thus for the porbeagle shark, we have been able to validate vertebral counts through age II by recaptures from OTC injected fish, known age fish and verified the growth curve through tag recapture analysis of measured fish.
Another tagging objective is: Determine stock identification and the degree of mixing between stocks. The blue shark is an Atlantic wide pelagic shark species. For analysis of the tag/recapture data, we divided the North Atlantic into four geographical areas and calculated size frequencies, and sex ratios for each region. These data in combination with the within area movements, the between area movements, and the exchange between areas determined that the blue shark constitute one stock of fish in the North Atlantic.
Another objective of the CSTP is to identify fine-scale factors influencing distribution, behavior, and growth including sea surface temperature and salinity. In addition to acoustic telemetry studies on sandbar sharks in their nursery grounds, movement studies have been accomplished for porbeagle sharks in the Gulf of Maine. Tags were attached to two fish that were tracked and information on movements and depth were obtained.
Another tag type recently in use on sharks is pop off archival satellite tags, which will collect data on depth, temperature and location. We have five tags ready to go of which two were recently attached to shortfin mako sharks off the coast of Massachusetts. Data obtained shows southerly
movement to off the Delaware coast.
The next technical objective of the CSTP is to Determine survival estimates. We are beginning to accomplish this goal for two species of pelagic sharks through a collaborative program with NMFS staff and researchers from the University of Washington and University of Rhode Island.
The objectives of this research are to:

- Construct a time series of blue and mako shark catch rates (CPUE) from research surveys
- Estimate migration and survival rates using data from the NMFS CSTP
- Develop an integrated tagging and population dynamics model for the North Atlantic for use in stock assessment
Another study to directly measure individual survival and recovery is underway through post release survivorship research on juvenile sandbar sharks. Tagged sharks retained in experimental tanks that were subjected to angling stress recovered in less 3 hours and subsequent recaptures of these fish showed long term survival.
The final goal listed for the CSTP is to promote conservation through catch and release. This is one of the original primary goals of the program when it was started in the early 1960's by Jack Casey. Largely through his efforts and the expansion of the program and spread of information on the biology and movements of the shark species, the old adage that the only good shark is a dead shark no longer applies."
G. Shepherd: With the hindsight that you have, where should we be going from what you saw this morning?
N. Kohler: I think there are a lot of things we could do with the database that we have. J. Hoey: You could structure your patterns of releases so you had control over that part of the experiment. With these programs, you're using opportunistic tagging. Over 40 years, you could probably show some sort of patterns of changes, cycles. For instance, there were interesting historical things to look at (mercury shut-down of shark fishing), how do we interpret variability of tagging, recapture and effort levels over time to get at estimates of fishing mortality? In this case there's a very wide area, had 20 K fish tagged, never had a transAtlantic recapture. Then we hit a threshold, and all of a sudden started getting returns. We need to figure out some way to match that up with reporting rates and get that out of it. J. Hoenig: It's true that when they cross international boundaries, you need recovery instructions in so many languages, you can't get posters to all the marinas. But if you put out high-reward tags that are worth $\$ 1000$, word will spread. You could use archival tags to get the most out of it.

Lunch

Presentation 5: Striped Bass Program

Given by Gary Nelson of the Massachusetts Division of Marine Fisheries.

This cooperative program's primary objective is to offer an independent estimate of annual survival. We use this to compare fishing mortality estimates from our age structured modeling that we also do.
Programs take place in MA, NY, NJ, DE/PA, MD, VA, NC.
Mass captures by hook and line, NC haul seines, NJ trawl. Electroshock in Delaware river. Returns from Maryland tagging program range from Maine to NC. They occur from Canada to the Gulf of Mexico, but south of NC, they generally don't migrate out of their native estuary.
Our MA program has recaptures from NB to Georgia.
(US Fish and Wildlife Service) USFWS maintains release/recovery database. They have available a standard data return program. MA has its own program for data recording.
USFWS offers, hats, trinkets, and $\$ 5$. In MA, we get about 22% of fish returned after 5 years.
We follow an information-theoretic approach based on Kullback-Libler information theory and

Akaike's info criterion.
You identify a priori candidate models, and then look at data, weight models based on what you have. 12 possible models, based on a number of parameters.
Each model fit to data using maximum likelihood of parameters.
Bias Adjustment: The assumption is that (with Brownie model) all fish recovered are dead. This is not true, so Smith applied a bias adjustment.
Issues:

- Violation of assumptions - non-mixing may be an issue for striped bass in first year of release (which is a violation of assumption).
- Model selection inconsistencies: depending on year reported, survival trends can change dramatically.
- In different years, different models are used, which impacts "distribution of weights". In some years, one particular model is used more than others.
P. Rago: We have this issue of deciding what is the best model - it changes often across years, and you have to question why we're seeing one sort of flip. It's probably identifying model misspecification errors in the same way that you get them with other types of modeling approaches.
J. Hoenig: The assumption being made is that an angler will catch a tagged fish and either clip off the tag and kill the fish, or clip off and release the fish. If it's not clear what happened, someone has to call to ask if it was released. As for the ad hoc procedure for dealing with catch and release, it's a little tortuous. There's a version of the Brownie Model that Sieber did, and the interest is based on the survival rate. To do this adjustment, you need to fit the Brownie model with a little f, and then adjust it after the fact. It met the requirements for what was needed, but not the best.
G. Shepherd: What about the fact that you might keep one fish out of five, and you're more likely to release the tagged fish for conservation reasons. Does this bias selectivity because it is tagged?
J. Hoenig: That relates to "what are we assuming about the catching process?" Assumption is that an angler will either report the tag or not. You don't have to know what the reporting rate is, but you have to assume it's the same for tags clipped and fish released vs. tags clipped and fish kept. You can guess that someone that's releasing the fish is a real conservationist, and would be more likely to report. Only way to look at that is the MRFSS data, which has data on fish released.
G. Shepherd: You have to assume there's no change in behavior of fishermen due to the tag. I'm not sure that's always the case.

Presentation 6: Herring Tagging Project

Given by Kohl Kanwit of the Maine Department of Marine Resources.
The herring fishery has changed to an offshore fishery. Stock has also changed from the last time tagging was done, which was when Georges Bank stock had collapsed. We'd like to see what's going on now that the stock seems to have recovered. If we're off on how stocks are mixing, it impacts the fishery in a real way.

Project Design:

The area is divided into special strata. Nova Scotia stock is considered separate from other stocks, so we want to see if that's true. Our areas of concern are Gulf of Maine, Georges Bank, Nova Scotia, and Southern New England.
We also have temporal strata - this is a seasonal fishery that migrates up the coast. We're focusing on summer feeding/spawning and winter stratum. They're mixing in spring and fall migration, so we focus on winter/summer.
So far we haven't touched Georges Bank - we've tagged Southern New England, Eastern GOM,

Western GOM. This presents a problem because the numbers of fish we'll have to tag is so huge there are so many there. We're trying to tag in proportion to population.
In a day we can tag up to 3000 fish. Right now, the stock is managed as one unit. We're going to tag on Inshore GOM versus Georges, as far as where we tag in those areas it depends on where the fish are - they move so much.
Our recapture rate is very low, and a real concern. Most of our tag returns come from fish that were at large for over a month, and we've seen a real distance traveled.
Southern New England - almost all the fish tagged in SNE and then recaught went to Nova Scotia. The herring fishery is a pumped fishery. Our reporting rate is low. We didn't go with standard tags because the likelihood of them being seen is very low. Rewards are lotteries - nothing is given for individual returns.

1. Hoeing: l'd say it's worth your while to try putting out $\$ 20$ reward tags. If you don't get anything back, you haven't wasted money. If you get a lot back, you know the reward is the problem. You need to experiment with that. You've got nothing to lose by trying more.
K. Kanwit: Our biggest problem seems to be lobstermen. We're relying on lobstermen to see the tag and want to report it. Lobstermen don't bother to return it because by the time it gets to their bait bag, they think we can't possibly trace it back to where it was caught, so they don't return it (this is an incorrect assumption).
We're working on education right now. We have trip-level reporting for dealers, so we can trace it back with great accuracy.
They have shown tag-induced mortality in herring. We've tried cage studies, holding studies. The problem is they don't transport well.
J. Hoenig: You could hold them right where you've caught them.

Presentation 7: Atlantic Salmon Tagging Project

Given by Chris Legault of the National Marine Fisheries Service.

There's no capture of Atlantic salmon allowed in US waters, so this presentation will be different than the previous ones.
The Penobscot River program is a coordinated study between NOAA fisheries, ME Atlantic Salmon Commission, and the University of Maine.
Smolts are released at different times (marked), and intercepted at different times when still within fresh water. They can also be captured in West Greenland in the commercial catch, although this is unlikely. Then they pass through a weir when they return to Maine.
There are wild fish mixed in with the hatchery raised fish, but numerically there are far fewer of them. The return rate of released fish has been steadily declining for a number of years. Return rate now is less than I\%.
Overall, we'd like to know if we can improve the really low return rates by changing when and where the stocking occurs. We'd also like to get at growth rates and patterns, movement, population estimates (how many smolts are surviving the transition from fresh to marine conditions). We'd also like to evaluate tag retention, and tag event mortality. Also, we're using markers to help in physiology studies.
We can tag lots and lots of fish because of our hatchery program. We've tagged over IM fish in past few years. These are visual implant elastomer tags, and we insert plastic behind the eye. We hire contractors who paint fish. We set up 8 different batches per year with $\sim 25 \mathrm{~K}$ fish per group [so, $\sim 200 \mathrm{~K}$ total/year]. At the same time as releasing marked fish, we also release $\sim 350 \mathrm{~K}$ unmarked fish. So we mark about 36% of hatchery fish.
Some marks are difficult to distinguish. Some fluoresce to make it easier.
Fish are traveling over I00km downriver before reaching the estuary. We do post-smolt trawl surveys in the estuary; after the Greenland trip, they must pass through adult traps on their way back up. On the way out to the estuary, they're caught in Rotary screw traps, information is collected, they are released, and they continue on their way.

Each group had equal numbers released, but there were very different return rates. It appears some release points are better than others. Some are very good at feeding small mouth bass. We're not using coated wire tags any more due to suggestions they reduce ability to find natal rivers.
Post-smolt trawl recoveries - also note differences in the post-smolt trawl returns. This is somewhat biased by sampling time - this is only out for about a months, so you can miss an early or late run of fish.
For adult recaptures, (at the Veazie Dam), early release fish seem to do much better than late. (which contradicts what we found in the river).

Bayesian Estimation of Emigration Rates

We want to try to come up with an estimate of how many smolts are actually leaving the estuary. Use priors for RST and PST catchability modified by environmental factors to estimate how many smolts survive to estuary.

G. Shepherd: Do you have any sort of "tagger effect" on survival?

C. Legault: Taggers are a pretty good group of people, there are differences in their quickness, but not their effectiveness.
P. Rago: Arnusson/Schwartz type models - have they been considered?
C. Legault: I think that's where we're going to start as a jumping off point and then build in the environmental covariates.
J. Hoenig: If you could sample Greenland catch and find what percentage have the elastomer from Penobscot, and then you go and see what's coming up the river, you have a fraction, and you multiply that by the known catch.
C. Legault: Starting with Greenland catch, we can use genetic information to show NA versus Europe. Then we can split out US and Canada genetically, then we can attribute the little US to Penobscot vs. all other rivers based on returns. Then we can estimate "OK, about 20 fish are being caught in Greenland from Penobscot, and of those, maybe one had a tag". Part of this is because catch has been severely reduced in Greenland.

Presentation 8: Atlantic Haddock Tagging Program

Given by Tom Rudolph of the Cape Cod Commercial Hook Fishermen's Association
This program is only funded "in theory". It's a very new project. It's a cooperative, region-wide effort.
We're really trying to figure out innovative ways to avoid wasting the bycatch from research trips.
We'd like to try to sell that fish to fund further research.
We'll be working with the Cod Tagging infrastructure.
Rationale for the project: Haddock is a historically important species commercially, and will be even more so in future.
Movement rates were last studied in 1950's. Haddock is currently managed as two stocks: GOM and Georges. There's a need for better understanding of exchange rates. Also need to see if GB stock has eastern and western component (suggestions are that this is the case).
Importance of Closed areas in recovery: Closed Area One is known as the Haddock Zoo.

Social Goals:

It's important to overcome communication barriers over data collection and usage by developing working relationships between fishermen and scientists.
We also want to create supplemental income for fishermen, and create a formal mechanism for fishermen to contribute to science.
We'd like to acclimate fishermen to the concept of using fish sales as a means to match federal funds and augment cooperative research objectives.

Experimental Design:

We want to release 10,500 tags.

Dedicated trips will be on commercial longliners．Paid at fixed daily rate，with variation depending on how far from beach，and how many hooks are set．Hoping to tag 250 healthy haddock per trip． Will make sure all tagging is done by trained technicians because of the lower numbers we＇re tagging．All marketable bycatch will be sold and proceeds pooled back into program（unhealthy haddock，or haddock caught in such numbers that we can＇t get them back）．So we＇ll have to use A DAS at sea．
We＇ll also use non－dedicated trips．Will capitalize on active commercial longlining trips，or other research programs．Will compensate at $\$ 5$ per fish tagged．That may vary．All tagging will be done by trained technicians．
We＇re hoping to tag 7000 fish in GB， 3500 in GOM．Numbers based on survey tows that show roughly double haddock abundance on Georges Bank．Will be split between open and closed areas （not evenly split）．

Data Management：

We hope to model as much as possible for what＇s already in place for cod．
Outreach and Returns：
We＇ll use same 800－number as cod tagging．

Data analysis：

Tag recovery will be analyzed to determine the probability of movement between areas．
If tag recaptures indicate movement from one stock area to another，posterior probabilities of haddock movement rates will be estimated．
This approach will provide confidence intervals for movement rates that are easily interpretable （see slide）．

〕．Hoey：To fish opportunistic trips outside closed areas，you don＇t need permits for that at all， correct？
T．Rudolph：Maybe a Letter of Acknowledgement for，say，guys holding juveniles in a live tank to tag them．
〕．Hoey：We need to get together with enforcement on that．I＇m talking about what you do in closed areas－we need to take away the incentives．Let＇s say you＇re in a closed area，and all you＇re doing is tagging fish．The exemption you＇d want is to allow that fishermen can retain the bycatch［the revenue from which would go back into the program，not to the fisherman］． Are you being told you need to use A DAS for that operation？
T．Rudolph：Yes，we are starting to hear through channels that yes，you are．
．Hoey：A DAS are going to become so valuable，A DAS are going to be cost prohibitive．
L．Singer：We＇ve been told all the mortality is accounted for，and it＇s been distributed（in A DAS）．More mortality through research must be attributed．There＇s no set－aside for research．
J．Hoey：We won＇t be able to afford boats any more soon．A DAS are too valuable，or will be soon．Can we compensate with catch［putting the revenue back into the program］？The target fishing mortality for all these stocks is tied to A DAS．It doesn＇t matter if some species are regulated and some aren＇t．They＇re all tied to those regulated stocks．And if we can＇t access closed areas then you lose temporal spatial coverage．
T．Rudolph：There must be a set－aside of A DAS for research．Or maybe research could factor in leasing．
〕．Hoey：If we put together recommendations to management，that would be cogent for this meeting．

Summary of Day One

Paul Rago gave an overview of the day＇s discussions．
There were a few points that came up repeatedly：
－Design，selection of sample，sample size，appropriate levels of stratification．
－Ancillary experiments，testing assumptions，getting ways of interpreting assumptions in
light of small scale studies.

- Reward programs. John made point that the higher the overall level of reporting rates, the less you have to worry about some of these other concerns.
- Movement, and how we estimate, how do we distinguish dispersal from directive migrations.
- Need to develop a consensus on expectations for various programs. What are the long term products we can get, thinking in light of future funding, thinking of overselling versus underselling, where they fit into future management.
- We haven't talked too much today about sharing of data and its subsequent archives. Where do these data go when these programs go away? Look at the historical data that was used in YT. Could have done more if even more raw data had been archived.
- A lot of programs have a strong structure in how to determine how many tags to release in different areas. Cod has a huge variation in where they were released.
A lengthy discussion took place on this management/permitting issue. However, since the discussion raised larger issues which were outside the remit of the cod tagging workshop, the exact content of the full discussion was not captured here.

Gary S: You plan to tag over a 12 month period. So this is just to estimate movement. It seems that if you change the structure of your releases, you might be able to get both movement and exploitation rates so that it's in more of a discrete time frame.
T. Rudolph: Would that give you movement over the course of the whole year?
G. Shepherd: It could, if you have tag recoveries over the course of the whole year.
S. Tallack: Part of the reason for tagging over the whole year is to get fishermen money throughout the whole year, and keep people enthusiastic over the course of the whole year. T. Rudolph: That's much less of a concern with this program than it was with others. I thought you would need to have releases and recaptures on both sides of the line over all seasons. If that's wrong, we can look into changing it.

1. Hoenig: I can see a distinct advantage of knowing how many fish are in each area. The way you find that out is by releasing them, when you know how many were put there.
G. Shepherd: But you can release them in discrete times as opposed to over the whole year. J. Hoenig: But if you just do it in July, you don't know how many are there a few months later. If you do it regularly, you get regular updates on how many are there.
T. Rudolph: I catch your point that it's hard to get exploitation rate if you do it regularly.
G. Shepherd: I also think you have to structure your sample size: if you have IOK fish to release, and you have to spread it out over a certain time, you need to make sure you have an adequate cohort in each area, particularly if the exploitation rate is low.
〕. Hoenig: Maybe consider two scenarios. Tag every two months, or twice a year, and look at what the data will look like, and you can evaluate them by simulation or something to see can you get what you want from each of those scenarios, and therefore which is better?
P. Rago: There's a whole spectrum of movement patterns we're trying to detect.
T. Rudolph: It was never our intention to trickle them out in every month. We were looking at roughly equal events in quarterly basis.
P. Rago: This points out the need for continuous modeling, to see what kind of precision you're likely to obtain.
P. Rago: Tomorrow we'll try to summarize strong points of each of the programs. They have different degrees of malleability.

Day Two

Keynote presentation I: "Tagging inferences: beyond stock assessment"
Alistair Hobday, CSIRO Marine Research
l'll focus on things beyond assessment, and focus on things we can do, inferences we can do with the data.

Why tag?:

You want to understand the state of the system. It's defined by abundance of animals out there, productivity (incl. growth) of environment, and distribution (incl movement) of things in the environment. If you have these, you understand the system state, and you can decide how to manage it.
Historically, Abundance has been the focus, leading to stock assessment. But there are other things that can help you understand the system, and I argue that these are also important.
There are a range of tagging options. You need to figure out what variables you want to understand. There are a bunch of tradeoffs you must understand. Acoustic tracking is a choice, but that's only good for a period of time, and you must realize that you've already modified the fish's behavior by tagging it.
Acoustic monitoring - longer time, but perhaps dependent on animal staying there within range. Archival: need to get the tags back, and the resolution is only plus or minus a degree. If you're looking on a scale of less than 60 nm , you're in trouble.
Satellite - large tags, and very expensive, and tradeoffs in resolution for size of animals you can tag.

Technology Tradeoffs:

What will you get out of supplementary studies?
Spatial and temporal resolution is a concern, but what is the cost? What is your effective cost of putting out a tag? If you put out 1000 tags to get one back, one tag effectively costs the same as a
1000. Think about losing listening equipment (over the side by accident). What is the cost of rewards? What's the value of data per tag, per recovery, per day of data?

Tagging Mortality:

Tagging mortality is difficult to estimate, which is an issue for mortality, less so for movement and growth, unless mortality is size dependent. For movement/growth studies, you're just reducing sample size, not impacting results.

How could you estimate mortality?

Score life status (good, excellent, seagull). Also, you could compare return rates from excellent, good, and bad taggers.
You can conduct holding studies, but this isn't natural. Is the information you get really what you're after?
Satellite pop-up tags. There's a depth trigger so when it gets certain depth, you know it's survived to that depth. If it pops up early you know it's died.
Acoustic: If you detect the fish, you know it's survived. If you don't, you don't know if it's left the area or just moved away. You can detect and recapture, you can detect and not recapture, you can not detect, recaptured, or not detect, not recaptured. By understanding the percentages between these, you understand mortality.

Tag Shedding:

I didn't get the feeling people were all that concerned about this yesterday. Example from CSIRO: We've used 64 taggers and put out 98,000 tags. Frequency of fish that each tagger has used is shown. Tagging has been dominated by 10 people roughly. Look at these 10 . Overall recapture rate is 8.97%. Some individuals are getting 13%, others, less than 1%. There's substantial variation in recapture rate between individuals. Double tags can get at this. When we look at shedding rate as a function of recovery rate, people with poor recapture rate have high shedding rate. High recovery rate people have low shedding rate.
It's worth doing a lot of tagging to understand the pattern. You need higher numbers to
understand these biases. If your focus is movement and growth, it's not a big deal, but if you're trying to understand mortality, it's worth doing.
S. Cadrin: Do you use double tags in your analytical model?
A. Hobday: Yes.
P. Rago: Then you have database issues to deal with.
A. Hobday: In our database, you have primary tag and secondary tag space.

Shedding rates are not instantaneous - they happen over time. If you don't have enough data, you might have to assume shedding is instantaneous.
P. Rago: Legibility issue also relates to shedding - progressive loss of readability. Also, I think that many times shedding is function of wound not healing, which is more instantaneous.
A. Hobday: We do 100% double-tagging, and think it's worthwhile.

Reporting rates - how do you get a handle on them?
Observers - you can assume it'll be 100% recovery.
Tag Seeding - you look at recapture rate of known number of tags introduced into the population.(with SBT, they're grown out in cages, and that shows us reporting rate - we seeded before they're put in cages).
Variable rewards (high versus low reward, assuming higher rewards higher recovery). But think about this - assumption you're making with your high reward is that you're reaching the asymptote, and people often assume it's $\$ 100$. If you have variable rewards, low, medium, high, you can get a better idea of what the (reporting rate) curve looks like.
J. Hoenig: They did this in Florida, but the sample size was too small to figure this out.
A. Hobday: Steve, with yours you have low reward, high reward, and data storage, it's almost like this.
S. Cadrin: But data storage is also $\$ 100$.

A sociological study may be better. What sorts of incentives will help people to return tags? What do people prefer? Canvas all permit holders.
A. Hobday: Also, you can look at areas where you know you'll have 100\% recapture (like black sea bass).
S. Tallack: l've considered that, we currently have hats t-shirts mugs, the idea being that someone can get all three by turning in multiple tags. We've been thinking recently whether we can develop another product (a jacket, say), where they don't get anything until they give us a certain number.
A. Hobday: I don't know if a cumulative reward lets you get at this.
J. Hoenig: I see several issues here. One is that if you use money, you can study tag reporting rate. If you use products, you might boost your tag reporting rate, but how do you know what that rate is? For some models, you need to know the rate or you're dead in your tracks.
Another thing is that if you did the cumulative thing, you might get zero tags from a fisherman until he gets 50 . But now, what is the probability of a tag being returned? To model what the reporting rate is, it's a nightmare. I would not recommend a cumulative thing. You'll wind up getting batches.
S. Tallack: We already get batches.
J. Hoenig: Then I would argue that your rewards are not adequate.
B. Duffy: But in your case, you're not getting batches to get a reward.
S. Tallack: No, they're waiting for efficiency sake.
J. Hoenig: But if you have a reasonable reward, they might not hold them up.
J. Hoey: The recovery is going to be conditioned on the operation that's recapturing them. If I'm on a 30 day trip, the question is whether I can give you an exact date and location for each tag. Maybe by examining data in a batch and examining frequencies, maybe we can determine the degree of mixing.
」. Hoenig: OK, they might not remember exactly where they caught it on a long trip, but for
survival estimates and mortality estimates, you don't need an exact date. The problem with batch tags is that you don't have adequate incentives. Also, you're not spreading out your tags, maybe you're putting out clusters of tags. That doesn't cause bias in survival estimates, but it inflates your variance. You'll calculate a variance and think you have a nice estimate, but you really don't because your effective sample size is much smaller, being a cluster. It's a real trade off between what's convenient and feasible, and what gives you good results. There's a different reporting rate for someone who's captured one fish versus 10 fish.
J. Hoey: I wonder if we can look at the data we have, on types of vessels, etc., is there information we could get on recaptures that would impact the cluster issue (length of trip, type of vessel).
P. Rago: You want to encourage q high rate of reporting, but if they haven't had a chance to even acclimate, much less disperse, your chance of getting a cluster is high.
J. Hoenig: Spreading out the tags is particularly critical if you get high reward tags. Especially if you have a species that doesn't move much. (Snook example in Florida - you don't want people fishing for tags).
P. Rago: A lot of this is basic marketing as well, and there must be a lot of literature in marketing on how to create incentives to return things. Is there anyplace around, where companies leverage tings?
A. Hobday: I thought about incentives - where people want to participate, incentive can be really low - look at recycling. People do it, and it's not for the 5 cents, it's because there's a desire to recycle. I suspect there must be marketing examples, what sort of societal good do you need?
G. Shepherd: I would argue that the basic rewards are thank-you's, not rewards. If the hat was an incentive, you wouldn't return tags after your first hat. Varying the high reward ones is going to get you information, not varying the basic rewards. I suspect across the board for tagging programs, there's probably a reporting rate that's close to being a mean across everything, coming out of most programs. That may be good enough, as long as you're getting above a certain threshold.
J. Hoenig: l've yet to meet a fish biologist who told me they thought the reporting rate in the project is low. They all think they have outreach, and they talk to the fishermen so the reporting rate must be high. You can be shocked by how low the reporting rate is (for instance a student of mine anticipated an 80% reporting rate, but it was actually estimated to be 18% with a very small standard error. People say they'll send in the tags, and they might not. There's a lot of missing information - do they not see it, or do they not do it? Point is we don't know much about tag reporting rate.
A. Westwood: A large part of this is that we're not looking at psychology or sociology of tag returns. A lot of the guys that return tags are the same guys, regardless.
P. Rago: We've talked of heterogeneity on release side, but not on recapture side.
A. Hobday: Maybe they've had more observers, or more experience in tagging, etc.
N. Kohler: We've heard that commercial guys don't care about hats, but recreational fishermen do.
$\underline{\text { S. Cadrin: One of the best pieces of information we have is catch by permit. If we look at the }}$ permits that return tags, and then look at unaccounted for catch, we might get a very good sense of the return rate by permit, or reporting rate.
T. Rudolph: We have a very dramatic dichotomy going on between hook and line guys that participate in the program, and then the other half, sink gillnetters, the vast majority of whom don't return any tags - they don't throw them out, but they won't give them to us. We are fortunate enough to have two or three gillnetters that return 100%. We've thought of looking at the fishing effort of these guys, looking at their catch, then looking at remaining catch. Steve and Azure, you could do this, too: look at using that pattern to estimate your reporting rate, then do socio study to try to increase that rate. We might be a good guinea pig for that study.
G. Shepherd: The key is the marketing perspective. People might try to second guess it, what will happen if I return this data?
J. Hoenig: You can look at fishermen that return 100%. Hearn and Pollack looked at this in terms of observers. Say you have observers on one part of the fleet but not the others. If you can assume that your tagged fish are well mixed, then it doesn't matter where people are fishing. If you know from cooperating fishermen that they're catching say 2 tagged fish per IOK and you know what the landings are, you multiply by 2 per IOK. You can then say OK I should be getting this certain number, and if you're getting half, you know your reporting rate is 50% for the other fleet components. Cultivating fishermen is useful, but also dangerous - do you trust them?
G. Shepherd: How do you make the distinction between reporting rate and recovery or detection rate? Some may appear to have low reporting, but they're not seeing tags. If you put an observer in there that's looking for tags, you get a higher rate, but it's actually a detectability rate.
J. Hoenig: You want probability that tag will be reported given that it's caught - it combines detectability and reporting. If you're trying to improve reporting rate, you need to distinguish between the two. If you're looking only at stock assessment, it doesn't matter whether they're not seeing it or not reporting it.
P. Rago: To be a contrarian, you do have to consider it from fishermen's point of view - that's how they make lures.
S. Cadrin: One thing we've taken advantage of is color absorbency.
P. Rago: We can sort of decompose, getting a tag back shows that it's retained, fish lives, is caught and reported, no errors in reading information, no errors in recording data, there's a whole chain of custody issue. Some things you can work on to improve, others you can't.
A. Hobday: Summary: reason we went down here is rewards. Getting cumulative returns is bad because it shows your fish were clustered, your fishermen were catching them in clusters, or you weren't given good enough incentives - look at why you're getting batches back. Once you get tags back you're putting them in a database. Think about how you're going to maintain these beyond your programs. Can you incorporate your databases? Also, what about rewards? If you stop rewarding those tags, you're going to de-train all those people that have been trained to report. If you stop feedback, you're penalizing every researcher that goes after you. In Hobart, we've created an ongoing pool of money for this.
J. Hoenig: This is a matter of professional ethics or etiquette. If you put out $\$ 20$ for a tag, it can impact programs elsewhere - raise expectations. You can create your own problems by being inconsistent. Above all, it's important to pay rewards when you've said you will.
A. Hobday: The challenge is how you can help yourself by looking ahead.
P. Rago: It's a broad-scale institutional commitment. Programs are interlinked. Failure to pay old cod tags will have implications across all tagging programs.
K. Kanwit: Exchange between programs is important, making sure tags are followed up. You don't just dump it off on someone else.
G. Shepherd: NMFS maintains a website that's a tag registry.
J. Hoenig: Old tagging programs sometimes provide useful information.
A. Hobday: Think about ways to keep recording information. Addresses change, telephone number might change - how can these tags be returned?
Don Clark, Canadian Department of Fisheries and Oceans: I find I get everyone's tags, regardless of the address. Now they know l'm the tag guy, they send everything to me. Most people don't even read the tag. They rip it out of the fish, they send it into one person regardless of what it says on it.
S. Tallack: We get a lot of others, and we used to log the data for the others as well, but now we can't (too many).

General ideas from the pelagic group:

You were wondering about how to get people to participate: SBT is a quota managed fishery, and we have a research quota. We have 15 tons that's allocated by the international management commission, which can give us access to closed areas. We can use sale of catch to support research, and we can give money from sale of catch to the crew. Science is a stakeholder, too. Maybe there's a way to join the table.
Rewards: we have a high turnover of rewards. Look at having a bunch of rewards - diversity good (companies that produce these things don't require high volume - look through catalogues of companies that produce a wide variety of trinket options).

Growth:

No one mentioned much yesterday if they were using growth rate at age or growth rate at size. How fast are two year olds growing compared to how they used to grow? As system state changes, you will see changes in growth rate.
There is evidence of changes in growth rate in many species.
If you can match this back to age, you can use growth rate as proxy for state of the system as well.
You need to pay attention to how you're going to age the samples.
Collect otoliths. Even if you can't do anything with it, it's cheap to collect - you can always take scales. Start archiving that stuff. When it becomes important, you've got the collection.

Movement:

SBT: Currently overfished. It's at about I0\% of virgin biomass. In Australia, it's worth 350M per year. See slide for basics.
Mature at about I0-II years, live to about 40 years. We catch juveniles (agel-5). Migrate out, return next summer. At 5-6 years old, they go to southern ocean.
There was a quote in a paper in Australia where a researcher said "Basically it's very simple: the less tags you return, more fish there must be". This quote resulted in the need for seeding.
P. Rago: We've talked about simple tags, and a bit about pop-ups, satellite. There must be a middle ground there. I'm wondering if you have any experience with those.
A. Hobday: Well, with lobsters there are PIT tags, you have detectors in bottom of live well (lobsters are kept in live wells). You can put those on with regular tags, to get idea of reporting rate if you think you can get your fish scanned in some way. In situations where your animals are individually processed, there are opportunities to use smart tags, although I don't know of examples.
P. Rago: We tried coated wire tags with menhaden.
K. Kanwit: They're doing that on Pacific herring now, because it's a roe fishery, it's a smaller season. They've had some success.
A. Hobday: The issue is the power of the signal you're getting out of those tags. If you get greater signal, you can be farther away.
P. Rago: With a PIT tag, you send a signal to it and it responds.
S. Cadrin: It's important to show that a return in the second, third, fourth year, a return can lower fishing mortality rate. You can reduce slope of fishing mortality by having more recaptures. In a single year analysis, that misquote is true. But in multiple years, it's different. It's difficult to predict how any one tag is going to impact the model. By all means return the tag - better to get an accurate rate than to try to jimmy it one way or the other.
」. Hoenig: You do have some idea of when tags were put out. Earlier ones have lower numbers. All they have to do is figure out if they're early tags or late tags. I think it's a matter of time before someone figures this out. We do have a security flaw in the operating system, which might require a patch.

Data analysis tools:

Analysis versus visualization: There's effort to be spent in both of these areas, but be careful in how much you put into visualization. Often you go down the path of visualization and it'll never
help you analyze. Use your visual observations as a way to help you analyze.
Having big data sets is key to management. The cod database is an eye-opener for me.
You want to pick a data analysis tool that will let you do simulations. Simulations is a key thing, using historical data to look at what your results might look like, for instance.
But consider: Are you going to take someone else's package to analyze your data? This limits what you can do. I go with Matlab for programming analysis. It's used all over world for marine applications.
I think we can get abundance in other ways as well. I think you can get at it by looking at behavior. A grad student of mine looked at conventional tagging data from SBT releases to look at changes in schooling behavior. The results of this were really easy to explain to stakeholders. We need to be able to explain results to stakeholders.
How do we apply things to benthic species? I'm familiar with schooling pelagics. Look at the basics of schooling.
Fish are known to preferentially school with others of similar size. If the school is mixed, this might be as a result of abundance (not enough available for all of similar size).
If you can understand behaviors over time, you can get at an index.
To get a school, if you have a large population, you'll have one cohort. If it's a smaller population, you might have two cohorts. If it's even smaller even, you might have three cohorts. We argue that you can create metrics from school structure that you can infer to be a population estimate. If you can describe behavioral state, and your school comp changes as pop changes, these metrics can explain population.
You can look at the slope, variance, mean, maximum, etc. of a metric you use to describe a population, and then look at how it has changed over time. We did this, and we saw that as the population changed over time (SBT), its behavior changed.
Is there a way you can use information when you tag to get at this? Don't focus exclusively on recovery. Get creative with the ways you're using the tagging data. Know your species. You guys will know what will and won't work. What changes accompany a population change? "Monotonic changes are best".
Note that seasonal measurements can skew things (might be local in one season, but move a lot).

Archival tags:

You get very different movement data from archival tags. They can round out your data. There can be differences in where you're getting conventional tags, and where you're getting archival. The issue can come up when you get archival tags that are in areas that you don't get conventional. This is because fishermen go in certain areas. You might think there are no fish in an area, but it may just be that fishermen don't go there. Archivals really round out your data (just a small number of smart tags can round out your picture).

Conventional tags:

You want to make sure your deployment is really widespread, or you want to concentrate them, and see how they spread out. The middle between those is dangerous.

Movement issues:

Circular migrations: Recaptures in species having circular migrations look like no movement unless you have year-round captures. When analyzing the data look at mean distance versus time. If animals are dispersing and then returning, you'll see a parabolic distribution and then a decline in that - look at trying to get data at the time distance from tagging is highest (look for maxima).
-You can also weight your recaptures by total catch (recent, historical) to get proportions moving.

- With closed areas, lower recapture possible. Look at McGarvey (Australian Journal of Marine and Fresh Water Research).
-A suite of models for analysis - spatially explicit (slides were shown giving various examples)
Conventional tagging: Vector addition:
Consider vectors of movement, distance and direction.

Break into small time periods (need recaps from different time periods) Bootstrap.
Reconstruct the pathway.
Test with ancillary studies (eg, data storage tags).
P. Rago: Instead of plotting vectors from release to recapture for each time period, you could use vector addition over time, so that chronological recaptures are depicted as a sequence. A. Hobday: This can also show you what ancillary studies you need to design to test your assumptions. A limited release of data tags in a particular area might pay off.
」. Hoenig: I like the approach, and it may work in some cases, although there are cases where it would fail miserably. Think of heterogeneous populations, like shark - males going north, females going south, and if you ignore sex, and calculate vectors, you'll think they're staying put. Your mean is something no one animal is actually doing.
If you have a bunch of recaptures that actually fall on that path, it's a far more compelling picture. To test whether this is reasonable, I would put in dots for recaptures. If none fall on the path, question it. If all do, or many do, you're more confident.
To build models for SBT, we've been tagging for 40,000 days of data. You can make simulations of movement based on these data.
SBT are also surveyed via airplanes, which is a good cross check. We can try to build a model to reproduce this. (showed movie of movement).

notes not taken for $\boldsymbol{\sim} \mathbf{5}$ minutes

You can synthesize data to gather a conceptual sense rather than showing models.
You can test your models ability to show changes in abundance as a result of movement into an area. What would happen if I had 40% more, or 60% more?
We built a model based on movement rates, and interaction and came up with information on where and when to try to recapture. In tuna, you tag a school, it's a cluster. If you know the movements, or the exchange rates between those areas, you can estimate your mixing. We modeled low interaction and high interaction, in designing our tagging programs, you can start to figure out where to do your tagging, and when. Where and when you do your tagging, it's important to go upstream far enough so that by the time they get there, they're fully mixed.

Supplemental studies for movement:

Conventional tags give you low spatial and temporal resolution, start-end point information only.
Archival tags give you high temporal resolution, but medium horizontal spatial resolution (to get position you need light, or gradient in environment (depth, temp). They can give you fine scale vertical resolution.
Acoustic tags give you very high horizontal spatial resolution, low numbers, small area (see slide for more information).
We've used acoustic technology to resolve management issue in Australia. We track along the juveniles. Had to design a dedicated experiment to pick up two year olds that had "disappeared". Developed a listening station design, and whenever fish swims in certain area, it gets detected. We tagged fish upstream, and found animals actually were concentrated inshore.
In terms of designing supplemental studies to complement your conventional ones, you need to be really clever. You get good insight into the biology of the animal you're studying. Improve the advice you can provide to management. There may be a biological explanation for what you're seeing.

Keynote presentation 2: "Theory, and Practical Concerns, of Tagging Studies"

John Hoenig, Virginia Institute of Marine Science
Dr. Hoenig gave a brief presentation of the theory behind basic models used in fish tagging programs. Notes contain only a few points from this presentation, and focus on the discussions that took place during and after the presentation.

The logic of the Brownie model is simple: suppose you tag m animals each year. You'll get some
back year one, some year two, three, etc. The trick is to say what do these numbers mean? What do we expect to observe. If two cohorts of tagged fish are released one year apart and become well mixed into the population immediately, we would expect to get back equal fractions from each cohort in year 2 except for the fact that the first cohort has been at liberty for an extra year and has thus experienced more mortality. Thus, we should get back a lower proportion from cohort I in year 2 than from cohort 2 in year 2.
It's important to note that you have to tag for two years to get an estimate of survival in year one (Brownie Model gives you "ancient history").
What are we assuming, and what are we not assuming? Well, you're assuming your sample is representative of population, so what you measure on tagged animals is same as what's going on with untagged. For Brownie Models, we assume no chronic tag loss, but as long as the tag loss each year is constant, it's not a problem. You're looking at ratios, as long as initial tag loss is the same each year, they'll cancel each other out (one in numerator, one in denominator).
You're also assuming fates of tagged fish are independent. If you tag schools of fish instead of individuals, you can still get estimates of survival, etc, but you'll underestimate variance.
Lastly, you're assuming homogeneous survival and recovery rates within each year. You need to look at groups. If there are differences between groups, you can assume that there are differential survival rates between groups.
What you're not assuming: Tag reporting rate is 100%, tag reporting rate is known, tag reporting rate is constant, fishing and/or natural mortality is constant, natural mortality is known.

Testing for non-mixing:

A modest amount of non-mixing can cause a huge bias. How do you detect if non-mixing is a problem? You can fit a model assuming mixing, and fit another model assuming non-mixing. Then you get an answer of "yes there's non- mixing" or no, but this isn't good enough.
An alternative approach is to look at the geographic distribution of your tag returns. If they're well-mixed, they should have same spatial distribution. Look at individual areas, newly tagged versus previously tagged, and amount coming back across all areas and all years, to see if you're getting mixing (chi square on a contingency table).
T. Rudolph: this tells you if you have mixing between tagged animals from year one and year two: how do you tell if you have mixing between tagged and animals as a whole?
J. Hoenig: That's difficult. If there's mixing, then the fraction of the catch that has tags should be constant over space.
A. Westwood: What if you have a short tagging period, say in the spring. What if there's a period of adjustment the fish has to undergo (due to altered behavior), so they're not really mixing, because they've been tagged. Is that a problem?
」. Hoenig: It is, and there are two ways to deal with it: a quick and dirty way, and a theoretically more pleasing way. Quick: with striped bass, they tag in the spring, and if they get a recapture within 7 days, they discard it. As long as your numbers are small, and your reporting rate is high, this is OK. You subtract the number discarded from consideration in that time from those caught, as well as those marked. (If reporting rate is low, you'll subtract too few from those marked).
Nonmixing models: you pay a big penalty in terms of your precision when you do this. You're best off tagging at as many locations as you can to spread them out over the entire stock area, and tag in proportion to population density in each location. I say let your sampling gear determine what you tag: tag a certain percentage of all the fish you have in each area. This means you're assuming the gear is performing equally well. Steve's way (going by survey) uses more information. It might be more precise, but somewhat biased.
G. Shepherd: What if your fish are clustered?
. Hoenig: There really is no good solution, unless you have tons of cash. If you get clusters of fish, you don't know how many clusters are in each area, you don't know how many fish are in
each cluster. In that case, l'd be mistrustful of a model that assumes mixing.
Estimating gear selectivity: a test for unequal catchability.
G. Nelson: How does time at large affect this model?
J. Hoenig: You want to use recaptures over as limited a period of time as possible.

Interesting cod experiment: We looked at historical data (while in Newfoundland). Noticed that in olden days, larger fish could outswim the trawl, and they can no longer do that. (Resulted in a dome shaped selectivity pattern - big ones don't get caught). This has interesting implications for management, although it wasn't noticed or shared in time to have an impact.
So you want to know how well tagged fish are surviving - are you causing tag-induced mortality? How can you determine this? You catch a bunch of fish, you apply a numbered tag, and you note condition on release (I to 4 , which is good to very poor).
Then, look at ratios of fish you get back relative to numbers tagged.
If you're willing to make the assumption that all fish in category I survived, then instead of saying relative to one, you can say, that a certain percent (if 95% of condition two survive, you can say 95% rather than 95% relative to condition one).
You can then look at percentage that should have survived, and multiply by number of tagged, and you can estimate how many died relative to those released. That suggests the fishery has a certain percent mortality (bycatch mortality).
This is simple, but you need to have very stringent specifications of what each condition is, etc. Movement isn't a problem, as long as all categories move equally.
P. Rago: You could develop a composite model that had these kinds of factors embedded in it. Do you favor that approach, or prefer to do this offline?
(This is addressed more fully in the Yellowtail Summary).
A. Hobday: You're also assuming here that damage has been done due to handling the animal. You can also build in a way to look at the condition of each animal in nature.
J. Hoenig: you can use this to determine survivability of any segment. You can look at females versus males, etc.
Changes in mortality rate with age: the "chop" option. As you're looking at data over time, the data from later years are different - they're older animals. You can chop off older animals. We hoped this would work with red drum, which behave differently with age (move out of the estuary), but it didn't work.
So far, all we've looked at are Brownie Models. But we'd like to get more from the data.
The key is to interpret theta, which depends upon tag retention, whether or not you're going to kill the fish when you tag it, what the exploitation rate is, and the tag reporting rate.
Closed areas: If you're using a Brownie Model and you're going to have open and closed areas, all you're going to get is the survival rate in the open areas. If you have complete mixing (between open and closed), you're going to get a survival rate that's somewhere between the survival rate in the open area and an exact mix of open and closed.
If we're going to estimate exploitation rate and we know what the overall reporting rate is, it's ok to tag in closed areas, but you must know both.
If you know your phi and you know your lamda, then you can interpret your recovery. To get the probability that a fish doesn't die when you tag it and does not shed its tag initially, there are things you can do.

To get reporting rate:

Look at your patterns from observers compared to the overall catch - you look at a percentage of the catch, compare to overall catch, multiply out reporting rate. You know Australians are catching two tags for every 1000 bluefin tuna, and you know the Japanese aren't reporting. You can figure out what they should be reporting, compare to what they actually are reporting, and you can get the Japanese reporting rate. If you have a bunch of segments, you can use all of these (you have to assume mixing). Having observers on more than one fleet allows you to check the
assumption that you have complete mixing.
Twice a year tagging. If you have a short fishery, and you tag both before and after the fishery, you've isolated a period of the year with no fishing mortality, so you can figure out natural mortality and fishing mortality.
When your tag reporting rate is high, you don't have to know what it actually is. Results are not sensitive to it when it's high.

Rewards:

I worry that trinkets lead to satiation, which means the rate of reporting changes.
Cash rewards are good - you don't have to worry about change of rates.
If your cost of tagging is high, and reporting for standard tags is low, it's better to use high reward. Don't forget to add in all the factors of cost. You have to have some kind of idea of what kind of reporting rate you'll get for your standard tags. You have to start thinking about what kind of reporting rate you'll get, and what you want to get.
P. Rago: Generally the government isn't bonded for exposure to an enormous recovery rate. There's no real mechanism that allows you to take that risk and put out more than you have a budget for.

1. Hoenig: there is one way you can get in trouble with high reward tags: if you don't spread them out you could have a massive return of high-reward tags reflecting merely the fact that the tags are not mixed throughout the population. But, if the reason you get back so many is that the fishing mortality is much higher than you thought, i.e. the stock assessment is completely wrong, then it's a great bargain - for the cost of a few tags you've learned extremely important information about the failure of your stock assessment.
S. Tallack: We determined that you must submit four pieces of information in order to be eligible for a high reward. This is a risk. But otherwise you might get no information back for high reward tags other than the tag number.
. Hoenig: I would argue that you should not require that information. High reward tags are designed for one purpose: to find out what the reporting rate is.
People have been talking about the "wait and see lotteries". I don't really like the lotteries - I don't see anyone evaluating them to see if they're good. The agency ought to have some sort of policy to see if they work.
If you want the lottery idea to boost your reporting rate, you can use the scratch and play kind of lottery. If you have variable rewards on your tags, then you're getting into the scratch and play kind of mode - provides incentive to bend down and pick up the fish. Once they have it, half the work of recovering the tag is done, so it might boost your return rate that way.

Lunch

Lottery Discussion Continued:

There are drawbacks to lotteries: You don't know how much a lottery is doing for you, you don't know what the reporting rate is, and it's a problem if you discontinue it.
Somewhere along the line, you need to figure out if it's helping you or not.
Another problem is that if at the end of each year, you have one (only one lottery), you're not really giving feedback to people. You want people going into the bars, saying "I won \$100", etc. That starts generating enthusiasm. Delayed gratification isn't as good to motivate as immediate gratification.
S. Cadrin: Our fishermen said a lottery was one of the best ways to get people to return tags. When we issue a press release that we went to FISHEXPO and a congressman pulled out a tag, we get more questions about "when's your next lottery?", etc. There's a huge buzz about our lotteries. I don't know if $\$ I K$ is the right number, maybe we need a survey, but I wouldn't want to discount the advantages.
J. Hoenig: Another point: if you have a variable reward program, and you want to see how response rate changes with that, it just so happens that it has an element of scratch and play built in. Is it worth bending over to pick up the fish? The element of surprise, chance, enters into it. Maybe I'm more likely to pick it up because l'm curious of how much l've won.
C. Legault: What if you use the scratch and play, and it says you get a cash reward, but they have to mail it in to see how much they get. If you tell them it's a cash reward but not how much, you're using the element of surprise to increase returns.
J. Hoenig: If you're using this to determine how the changes in rewards impact reporting, you need to tell them what the reward is.
A. Hobday: There are two things you can do with this, and you need to decide what you're after: do you want to monitor changes in reporting, or do you want to increase reporting? D. Clark: In Newfoundland, they used $\$ 10$ and $\$ 100$ tags. The first year of the study, the return was 10 percent. At the end, it was 80%. The point is, if everyone knows there's a program out there, they'll send them all in. What you want to do is to get as many tags back as you can.
J. Hoenig: The reporting rate for standard tagging changes over time. And it changes if you implement a high reward tagging program. If you don't know a high reward tagging program has ended, you're protected (as long as you still pay out for them).
G. Shepherd: You see in literature about alternative rewards, or alternative methods to get return rate (mail in this postcard, sent to fishermen - if they mail it in, they've sent in a tag by proxy).
J. Hoenig: I think that's not meaningful.
A. Westwood: I'd be worried personally to be phasing out high reward tags. A lot of the work we're trying to do to improve relationships can affect it.
〕. Hoenig: You're still paying them for any tags returned. Tagging intensity isn't constant, but it's still going on. There's one thing l've never heard anyone talk about: it's possible for someone to figure out a way to scam it (a technician could put a tag in his pocket), well, then you'd basically have fraud. You need to have strict control over the program.
P. Rago: Could we make some agreement that says a lottery program can be an important element of an outreach program, it is a facet that allows for a potential increase in awareness of a program and potential increase of reporting rate, but is ultimately difficult to quantify? It's an aspect that can't be necessarily embedded in a model to indicate the magnitude of its effect.
S. Tallack: My comment is more on high reward tags and your concern of how to get them out there carefully. Basically, SMAST, DMR, DFO always disperse 10% high reward tags, they're always using scientists. The other two organizations only disperse them on trips with scientists.
Plus, our database has an interesting function: if they investigate a tag, we get an e-mail that someone has investigated our that tag. If they go the next step, I get two e-mails. And we can then check for those tag numbers to see if they get reported. It gives a measure of A) how useful is the site - is it being used, and B) are they reporting it once they see if it's released. N. Kohler: but that might reduce reporting. One incentive is to see where fish came from, and they can see that without reporting.
B. Duffy: They can't see where it was released until they fill in some information
J. Hoenig: Captains want to know where the fish are going, and if you give this information away, it removes a motivation for reporting.
S. Tallack: There are three steps: are they interested enough to go to site? Are they interested enough to fill out information to get a report for themselves? Are they interested enough to follow through and report officially. We don't get (in the unofficial page) length information, but we get some location information.

Discussion of parameters:

We get theta which gives us the u (exploitation rate), which depends on fishing and natural mortality. If you have a pulse fishery at the start of the year, natural mortality has nothing to do with fishing mortality - it all comes later. On other hand, if you have fishing and natural mortality going on all year long, you need a more complicated expression. Either way, you have two equations and two unknowns so you can solve for f and m.
If you know your phi and your lambda, you can estimate an F every year and an M every year. S and u are unrelated in the model. Both S and u could go up from one year to the next (S survival, u exploitation rate). Normally if exploitation rate went up, s should go down. But biologically, it can happen that they both go up. If natural mortality goes down, s and u could both go up. We might want to build a model in which, if exploitation rate goes up, S goes down.
Parameter estimation: it's hard to see that all these parameters are estimable, but it's true. We need to make some assumptions to start using these models. Some people hate the assumption that fishing and natural mortality are additive. Fisheries people use Brownie models rather than some of these land-based models because terrestrial biologists don't assume F and M are additive.
Assumption is that timing of fishing and natural mortality are known. It doesn't make much difference to track that it happens one twelfth every month. You can also assume that it all took place at once. It's remarkably insensitive to this.
You also need to assume constant M over at least two years.
F and M are not sensitive to phi lambda if phi lambda is large (reporting rate). The graphs are fairly straight until you get a really low reporting rate. The \mathbf{Z} is even more insensitive to errors in tagging (as M goes down, F goes up).
Around 1998, we saw the natural mortality rate of striped bass go way up, and we wanted to find out why. I increased the tag reporting rate, and no matter what I did, it came out that natural mortality was really high. This showed that indeed, natural mortality had increased. It wasn't an artifact of tag reporting rate.
So then I looked at all the possible reasons that might have gone up. One way is if the newly tagged animals are not fully mixed throughout the population. If you tag a bunch of animals in year one, but instead of an exploitation rate, they have an abnormal exploitation rate (tag boat being followed by a trawler), you get an abnormal rate. To get from the first to second year you have to say what fraction survived, which is dependent on abnormal data. The next year, they're well mixed. Things should be normal. The following year, they go through normal exploitation rate, normal natural mortality rate.
You can't get the first year mortality (nonmixed), because there's no mixing, no real fishing mortality.
Then I took the data and modified it (assumed newly tagged animals were only two thirds as likely to be caught). Created simulated data - following a year's data, fishing mortality higher - more fish to be caught because they weren't caught right off.
If you overlook nonmixing, you wind up precisely wrong. The standard error is small, even though your results are wrong. He looked at all this, to see if this was maybe why m increased in striped bass, and found that non-mixing was not the cause.
It turned out that natural mortality did indeed go up, due to (we assume) a massive outbreak of a bacterial infection (mycobacteriosis).
P. Rago: This points out an important issue of model non-specification. You have two or more plausible candidate models to describe the data. There are several approaches (AIC for example) to determine the best model.
You prove by counterexample that if you use a model that assumes mixing when it's not there, you get biased and precise results (I might have mixed this up - I'm not sure this happens if you assume non-mixing and there is, or if you assume mixing and there isn't).
One thing about the striped bass dataset was that in the beginning, people didn't accept the
estimates．How could Z be increasing？It can＇t be．F must be small，how could Z be large？One of the ways the data became respectable was that by going from Brownie Model to instantaneous model，we reduced the number of parameters．With Brownie model，we had 22 parameters．For 15 years of data，we had 22 parameters．With instantaneous，u＇s are linked to the S＇s，so you have one for every year，and however many ms you wanted，so you brought parameters down，which smoothed things out．
With instantaneous rate，you＇re making a lot of assumptions．The reason I was saying you could do that，was that in the stock assessment that was being done，people were making those assumptions anyway．If you＇re making all those assumptions anyway，you might as well use it．You can choose how small your segments are（ M for one year，M for first five years，etc．）． What could cause big changes in mortality？For I991，we had a whole row of negative residuals （mortality）．What could cause all three programs（tagging programs）to have something that appears like a bad tagger？I don＇t really know why all three programs had that．Something very screwy happened．One possibility is that all three used the same tags．If for example，Floy tag had a bunch of lousy tags，that would explain why all three programs didn＇t get many tag returns back that year．
Caveat：check your tags－（he told a story of one third of someone＇s tags pulling apart，just before they were due to fly to Belize for the tagging project）．

G．Shepherd：In examining the sensitivity to phi lambda，and subsequently using the model to estimate M ，is there any circularity in the sense that the change in the condition of the fish would affect initial tag retention and survival？If at the same time you had some change，a decrease in tag retention and survival because of decreasing condition of the fish，then it would accentuate the decline so that you＇d get down in a lower part of that curve？If disease is increasing，your likelihood of catching a fish that＇s diseased is greater．
〕．Hoenig：So what you＇re saying is，＂supposing mycobacteriosis is high，so when you tag them， the likelihood that surviving tagging goes way down，does that change my M？＂Well，it would have to be a very massive change to bring it down if the philambda was low，but not if it were high．Plus，that would bring it down，and what we saw was that it went up．
G．Shepherd：How does selecting for healthy fish affect your estimate of m ？
J．Hoenig：It Probably means we＇re underestimating it．
C．Legault：Have you looked at using a random lot for m ？（estimating every year，or estimating it in lots）？
」．Hoenig：No I haven＇t，but I haven＇t really done much with this．I didn＇t know you could estimate for multiple for M＇s until recently．Three things could explain what we saw：explosion of mycobacteriosis；the population exceeded its carrying capacity（people reporting very scrawny looking fish）；a big section of cool anoxic water in center of the bay that had once been a refuge became warm．The answer could be a mix of all these（warmer，so they have increased metabolism，so they need more food，so they＇re weak，so they＇re susceptible to disease）．
G．Shepherd：I agree with you in the sense that in the bay，during that time period，catch has gone up．If F is steadily going down，and you＇re getting more and more natural mortality， wouldn＇t you expect that unless you＇re underestimating abundance，your catch is the same？If you＇re maintaining increased catch rate，removing proportionally more by natural mortality， then under those conditions abundance must be increasing faster than the rate of removals， yet such increases are not seen in survey indices．
」．Hoenig：I suspect that fishing mortality was so low，it was inconsequential．The natural mortality was over 0.3 ，and we were assuming 0.15 ．I think that might be what＇s going on although l＇m not sure．
To confirm this，what I want to do is look at the tagging data for Maryland．And they also noticed mycobacteriosis in about 1997．If two different tagging programs show this，then it can＇t be ignored．If it doesn＇t show it，this might be a peculiarity to this program．

Another point: although what I say is that M is higher than people thought, most of this is just one or two ages, so I think that in fact natural mortality for 8 -year-old fish is exactly what we thought it was. I suspect this is just for a few age groups. I don't mean to say that everything was wrong.
P. Rago: The take home message here is that there are a lot of potential embedded experiments within the striped bass tagging database - there are a lot of repeated experiments. If you can, consider spatially replicated systems as part of your design.
〕. Hoenig: The models now are a lot more flexible than they used to be. Theory started out as simple and applicable to one or two studies. Now we're realizing that if you put the effort into it, you can build things in.

Extensions:

You can start to build a model that meets your needs. For example:
I) Strong use of effort: Everywhere you have a fishing mortality, you can replace it with a q (constant you have to estimate) times effort. In some cases, this is disastrous (recreational fishing for example, too many variables). At the other extreme, all the lobstermen use the same kind of round trap, all have same vent, etc. So he only had to estimate a q for the spring and one for the winter, I think three q's. He reduced parameters, and got much more precise estimates. He made more assumptions - what if they failed? Well, they didn't. If you know fishing effort, you can use it.
2) Catch and release. Allowing some catch and release fishing. Assume an angler catches a fish, clips off the tag, and has to decide: release or keep? Report or not?
They assumed the same reporting rate for kept and released fish (despite problems of conservation minded people being more likely to release). Then there are two types of tag returns to keep track of: those for kept fish, and those for released fish.
Ken Pollock said "Let's think of catch and release fishing as another force of mortality on the tags". Focus on the tags. A tag can be killed if the fish dies, or an angler clips off and reports it, or clips it off and doesn't report it. The tag lives only if fish is still swimming with tag in place. Now, you're looking at kept and released fish separately. This means that when you get a bass back, you have to find out if the fish is released or killed. All these parameters relate to tags, not fish.
In some years, tag clipped and fish released is very important. If you don't consider this, you overestimate fishing mortality.
3) Multiple age classes. Age structured models. Suppose in year one I tag fish of age 7, in year 2 age 8 , year 3 age 9 . Some fraction of 7 year olds survive to become 8 year olds in year 2 , you get things to cancel out if you do it this way. If you have ten age groups in your population, you need to do 10 tagging studies, one for each age group. Not surprisingly, no one has done this. You can either tag all age classes, or you can tag just a few age classes.
Brownie model says that tagging one age class is useless. They're right with their model - they're not willing to assume things. But with an instantaneous rate model, you can get useful estimates due to the assumptions.
One of the downsides of just tagging one and two year-olds is that after one year, what do you know about five year olds? Nothing. You have to wait until you've built up a population of tagged five year-olds until you know anything about them. What would work well is to front load your project by starting out tagging all ages, so you have fish of all ages out there, and as time goes on, you could cut back on the number of age groups you have to tag.
Embedded studies: What do I think people could do?
A lot of people should look at gear selectivity by looking at the relative size of returns by sectors. You also might want to measure relative survival of fish in different conditions. Is slight damage critical or not?
You could evaluate angler hooking mortality.

You could also measure the effect of taggers. Not necessarily to crucify someone, but to try to find out if there are effects of taggers, and what's causing it. You could also make up experiments - bare hands versus cotton gloves, etc.

Summary of Day Two

Paul Rago gave an overview of the day, and led a discussion of important points that had been covered in day two and/or should be covered in day three:
P. Rago: One of the omitted items that we didn't address yet is the idea of using the tag rates to estimate a migration parameter. We didn't touch on that enough - what is the magnitude of flux from area A to B in these models? Do we have the data sufficient to support that aspect?
S. Cadrin: Say we do everything right, at the end of the day we have a survival estimate. How then do we deliver that in context of other estimates?
J. Hoenig: If you're estimating exploitation rate, you can get estimate of abundance.
S. Cadrin: As an effort tuner, or as an absolute scalar?
J. Hoenig: If you come up with a really good tagging model, the first thing you'll be hit with is:
"well, how does it compare to the VPA?" The way to get the tagging model accepted is to say
"the VPA is lousy for estimating natural mortality rate. You need to impose some structure on the VPA by specifying selectives - how about you look at how the tagging model can provide these parameters...." Now you're starting to marry the two approaches together. If they look similar, and you're getting them accepted, then you can basically have a VPA likelihood and a tagging likelihood and you're using all the information. But with the VPA you never know variances for some things. With tagging, you assume it's a multinomial, which means variances are very small. If you're trying to combine different sources of information, one of your sources is going to get all the weight unless you manually fix it. People don't know how to weight them.
D. Clark: The cod and yellowtail assessments that I use, they're both so riddled with uncertainty, they couldn't help but be helped by this stuff. We do need to integrate these at some point.
P. Rago: I think it needs to be more than just developing these as a tuning index to a set of data, because that is again easily done in terms of creating another time series to add into the sum of squares or likelihood, but it may not properly reflect weighting or importance of information, and you end up applying weighting factors in VPA's to create importance, but it's arbitrary.
K. Kanwit: I'm interested in hearing more about exchange rates and inter mixing, especially on a seasonal basis.
S. Cadrin: How do you integrate movement information into our resource monitoring and management? In some cases, say for cod, there's going to be some movement, and we manage as if there weren't. What's the best use of this information? Is it purely descriptive, or is there a way that we can account for it?
P. Rago: although all of these studies are designed to provide evidence of movement, if we can't, what do we need to develop that aspect?
D. Clark: From a management perspective, what I need to tell them is: are there enough fish moving out of the Bay of Fundy and getting caught somewhere else, that it invalidates the information l'm giving (estimating that it's not mixing)? How much movement is going on is only important if a lot of them are getting caught. It doesn't matter how many fish I tag in the Bay of Fundy move out in the Canadian side in the winter - you can't fish there. If they go out there and come back, it doesn't affect my estimate of F. But if they go into area 2 or another area that's open, it's a problem.
Can we determine what portion of our data are unreliable? There are some data that are impossible. So with that, there are others that we think are implausible because they don't fit
our expectations. I've tried tracking those down. I had someone call on every fish that was "off". Was it the fisherman, or was it a plant worker? Was the boat even there that day, or was it two months later and they forgot where they'd gotten it? In some cases, it's impossible. Is there a way, short of phoning up everyone, is there some way of trying to estimate what portion of our tag returns might be incorrect?
J. Hoenig: People will do dastardly things, especially if it's a NMFS tag.
S. Cadrin: The danger is we might throw out things that we think are fake. Look at that yellowtail on Fippenies. I would have thrown that out, but it turned out to be true.
J. Hoenig: If it's a real phenomenon, you'd hope it would get replicated.
G. Shepherd: Sometimes it's helpful to quantify or put some quality control parameter on the data. If you get a tag reported, that alone is useful information - it's been removed from the system. But if we get location data that varies a lot - "west of Cape May", it's good enough for some analysis, but not if you're looking for fine-scale stuff. I'd be reluctant to throw out data. A. Westwood: Alistair spoke yesterday about having a responsibility to carrying on different tagging projects: it would be interesting to brainstorm putting part of funds toward a residual funds bank account.
A. Hobday: Whatever is left over, don't roll it back.
S. Tallack: We need to discuss using A vs B day funds.
J. Hoey: I'll get this report to the people that can do something with it. If I go forward and say "I think this is a really good idea", I need background where people that are really doing this can say that what they're doing can be generalized and used to address a variety of issues. I need justification for your programs. If tagging is a fundamental tagging research tool, it has to have a fundamental long-term budget.
ل. Hoenig: If you carry on projects, you must have three aspects I) legacy pay outs of rewards 2) archival of data 3) management of data.
. Hoey: Northeast cooperative research funds came from disaster relief funds. We have industry based surveys, study fleet, and tagging. What I need is documentation that says here are the things that we see as priorities that we'd like to see done in 05 for work we might want to see in 06 and 07 . The budget cycles are set in a way that you need to plan in advance. Otherwise we're going to live off the crumbs forever. We'll start 07 and 08 budgets at the end of this year.
G Shepherd: We need to look at archiving data that's collected in such a way that 20 years from now it will still be useful. I inherited some great tagging data on bluefish. But these were all keypunch cards, and I don't have a reader.

Day Three

Paul Rago gave an introduction to day three, and discussed what he thought was important to accomplish during the day:

This is a very useful day. A lot of this energy will dissipate once we leave, and we should capture as much as possible. We have a number of topics we want to go through today (shows outline) - I just wrote down his headers:

Program Specific Reviews:

- Develop Recommendations and List of Followup Tasks.
- Exp Design, Reward Programs, Ancillary Experiments, Modeling and Model Misspecification, Movement, Identify Tools (software, diagnostics, graphics for information), Identify Technology.
- We'd like to develop a collective sense of recommendations regarding some of the key themes. This will be a reiteration of what we did yesterday. Where do we go in respect
to modeling and movement, and can we improve the tools we have to analyze data?

Important Tasks:

- Review efficacy of tag lottery programs via literature and recent experience.
- Continue and improve coordination among tagging groups in Northeast.
- Develop long term institutional commitment for long-term storage and availability of data.
- Review existing software for tagging analysis, what might be modified to make them more fisheries specific.
At this point, the principal investigators for yellowtail, black seabass, and cod gave brief presentations, in which they identified the three most important questions/issues for each of their program that had either been addressed already, or that they would like to be addressed:

Program Review I: Yellowtail flounder - Steve Cadrin

Action Items for Yellowtail: Field protocols, modeling, database issues, and outreach. We think we have what we need, but we'd love to go back and add to these, and also people from other programs may want to put these on their own list as well. These were the four categories things fell into in going over our notes.
Field protocols:
It seems obvious that we need to look at and update our geographic distribution. We used 19982002 for our distribution, and we should update that to dist. Our 05 releases.
We need to evaluate having a high value tag with a different color. I guess as long as it's at least as visible as our lottery tags, we can use it to get a sense of our report rate.
We need to double tag more: I think it's worthwhile.
P. Rago: Do you need to determine a double-tag mortality study?
S. Cadrin: That's why we were thinking of maybe not using 100%, where these Peterson disks are possibly going to have a big impact on fish, we need to think of the repercussions.
We also need to think more about how to release data storage tags. We need more hypothesis testing, maybe put them in areas where we have a question about how yellowtail are behaving. It may not represent population in general, but it will maybe teach us, answer questions.
We should evaluate the use of wet cotton gloves. We need to evaluate - is it worth doing?

Modeling:

The same boats tend to return tags. It came about from discussions that maybe we can use that information - take landings from those boats in ratio to total landings for all boats, to get at reporting rate. There is information for us to look at for reporting rate.
John recommended we calculate odds ratio of excellent and good return rates. We can do this for yellowtail, that'll give us some insight into mortality for fish.
Need to look at processes equation - we need to explore sensitivity of assumption (assumption of movement before mortality).

Database:

Our data is not publicly available right now.
A. Hobday: How did you avoid that?
S. Cadrin: We have a much smaller group of taggers. We have two players, Cod has 20.

The cod tagging program uses data envelopes: our SMAST people often return data in these envelopes. We should tailor this to our needs to have all our fields on this envelope as well.
If we're going to use vessels to come up with reporting rate, the vessel name is important (not a priority now).
J. Hoey: You need Coast Guard information, as the names change - you can link that with other databases to get you owner information, etc.
S. Tallack: You need permit number.
T. Rudolph: if you have both, you can go from one to the other on an agency website. We thought the substandard key was really useful from the cod tagging database. Maybe we should add a substandard filter.
Reporting method may give us information (phone, mail, intermediate contact). That could help us know where we should put our outreach (should we mail pre-stamped envelopes? Update phone information?).
We need more keypunching personnel. We want to get this information out as soon as possible. Management meetings come up and want to see the data. We need to be more proactive and get this entered.

Outreach:

Bilingual letters would be good (we have bilingual posters).
P. Rago: A thought to keep in mind: are there advantages of using datamodel for cod and applying it to other tagged programs (keep that in mind)? The relational data model, the data entry protocol, the crap detectors, etc. Is that an appropriate thing to think about, or is it a matter of scale? We should maybe talk about that this afternoon.

Expert Feedback on Yellowtail flounder tagging:

Alistair Hobday's comments:
Experimentally, I thought your design was really sound. As for updating your reward, it's easy to do, but l'm not sure it's meaningful.
I think it's very important to have a different color high reward tag.
Getting representative numbers but having only one tag is not useful. Saturate an area to answer key questions.
With shedding, if you're worried about double-tagging being an issue, you could use two different tags, one less invasive than the disk. Your other mark could be much more subtle.
S. Cadrin: I'm assuming 100\% retention with these tags because they're beefy.
A. Hobday: You used historical data to explore what model outcomes might be. I think you could look at different scenarios, and examine whether or not you'd come up with what you need.
Stratifying your data recovery: Between fish condition, tagging from scientists via fishermen bagging (no there was something where you were getting information from three classes)> S. Cadrin: Yes, fishermen, processors or observers. Yes - that would give you a sense of reporting rate (these were three categories of recaptures).
J. Hoenig: If it slips through fishermen it gets to fish house. It's sequential.
A. Hobday: But you could look at fishermen vs. observers. As for the vector models, l'm excited to see what you come up with in those areas.

John Hoenig comments:

I) Strategy for data storage tag releases: You said you wanted to switch from random locations to locations that test particular hypotheses. Clearly, if you have no hypothesis you want to test, this isn't a good way to go.
Clearly, if you release tags at random, you can ask the question: what fraction of fish move from closed area to another. You have a representative sample of the population, you can watch where it moves. If you do hypothesis testing, you don't get an answer to the overall parameter.
A. Hobday: I think you're trying to attack the movement question with standard tags. But if you're interested in movement with data storage tags, you can design tests. Look at movement where you have a difference in depth - they have to move through an easily identifiable area (for data storage).
You're looking at "representativeness" versus "hypothesis testing".
The issue is recapture. You're dealing with expensive tags. If you put them in a known area,
and beef up outreach, you can get them back.
2) You said something about comparing high reward with lottery tags. All your standard tags are lottery tags. That raises an interesting question. You could have three tags: standard (cap or trinket), lottery (trinket,+ lottery), and high reward tags. That way you could examine how much the lottery increases the reporting rate. The downside is that it's complicated to recognize different kinds of tags. If it's too complicated it might just be a mess.
$\underline{\text { S. Cadrin: We have a third year, and we haven't purchased any high reward tags yet, so we }}$ have the opportunity to restructure as necessary.
J. Hoenig: If you found out something about effectiveness of lotteries, people all over the world would want to know about it.
3) You talked about getting at tag reporting rate by comparing rates of return among vessels. That's intriguing, but it's got subtleties. If your tagged fish aren't mixed throughout the population, some boats will report more simply because they caught more tags. One way around that is to look at rate of return of tags that have been at liberty for at least six months. Now you could do something.
A. Hobday: If you see a change in return rate, that should tell you something about mixing in the area as well.
S. Cadrin: Yes, there's a lot of information there.

〕. Hoenig: In theory you can start to get at it, but a lot of things change over time (behavior, movement, grounds, etc). If you do this, you could look at raw rates of return for other vessels, but you need to look at amount of fish - you need to normalize by tags per ton.
4) It would be great to identify a priori boats where you know you'll have 100% reporting (observer on board). Otherwise you're biasing things toward lucky people that happened to catch more tags. If you only assume top returners are just honest, you'll inflate the estimate of catch per ton, and compare to numbers that are biased high.
$\underline{\text { S. Cadrin: There's a probability of capture that's implicit in this. Paul suggested a Poisson }}$ distribution of tags per ton, and to make a cutoff somewhere.
P. Rago: Maybe a generalized linear model, using Poisson. The biggest danger is overinterpreting. You have to consider that these are rare events. There's a chance that some vessels just don't encounter tags. Formalize the structure to get the underlying factors.
S. Cadrin: But I like the thought of (Alistair's) using this to look at mixing. What we could do is see the dropoff rate of tags per ton for Dave Goethel to get at mixing.
A. Hobday: One dropoff is the fact that he's catching a lot (dropoff of amount of tags he's pulled out, thereby removed from the system), the other line is from mixing.
J. Hoenig: I don't think it'll be easy. I think you're better off starting at getting the tag reporting rate by catch per fisherman.
A. Westwood: Currently there's a ten percent mandatory observer coverage. Can we use this?
S. Cadrin: That's how I took John's suggestion. That's something we'd assume a 100% reporting rate from. Just as for Dave Goethel. The difference between these and other boats becomes your reporting rate.
J. Hoenig: You can test the assumption of mixing by seeing variability among observers (the 100% folks - if there's variation, it may be due to mixing).
D. Clark: You should get a list of Canadian vessels and plants and make sure they're getting outreach.
S. Cadrin: Heath Stone is good with this. One thing we need to do is to make the $800 \#$ accessible to Canadians (it's not right now).
D. Clark: I think you have to test the assumption that you can assume mixing after a certain period of time. I think you need to test first before you assume. With cod, I haven't seen this. A. Westwood: In the first year, tagging on Georges, it was 90% females, and this year it's more

Abstract

equal. And I don't know if that's something we could test. It would be interesting to know how they mix by sex. S. Cadrin: Yellowtail is notoriously clustered, females one area, males other. We need to worry about fine-scale differences. J. Hoey: An overarching thing is this idea of clustered releases. We've mentioned it, but I don't know if it's received the attention it might deserve. One comparison between yellowtail and cod that could be helpful is to look at patterns of return rates. One of Shelly's slides showed they got a lot from processing plants in Canada, but not in the US. Is there a way to look at international return rates across species? K. Kanwit: We had to put our posters in Spanish because of processors. There are a lot of Spanish speakers at the plants.

Program Review 2: Black sea bass - Gary Shepherd

Our field work is done. We've had three years of releases, there's no money left, so we're done. However we do have a number of archival storage tags that we could release at will. In the past, we've tried to find a place to release them, but now we need to make a concentrated design focus to release where we get the most information. It's been our experience that in southern areas there's limited migration. In the north, the range of conditions they'll cover is greater, therefore we'll get better information about what they're doing by releasing there.
Tag loss: This fall we initiated double-tagging experiments, so hopefully we'll get information on double-tagging, tag loss.
We've tagged down to NC/VA area. There are some ideas from fishermen south of that (there's a southern stock) that they actually move north and south around Cape Hatteras in the winter. We might want to consider tagging south of Cape Hatteras.

Model considerations:

There do seem to be regional differences in movement - you could almost make the argument that there are several stocks within one management area. In considering regional differences, we ponder over the best way to define where the splits are. Is there some sort of multivariate analysis to see if we can identify discrete groups based on movement?
Once we have movement from vector analysis, how do we incorporate that into models to get something from it? We know where they move, but OK, what do we do with it?
Mixing/non mixing:
We're faced with this mixing/non mixing problem, and closed area consideration: we have areas of releases in which there's limited exploitation compared to other areas where there's a lot: we need to consider this in modeling.
Black seabass go from a non-mixed release (cluster) to an offshore migration. At some point they're mixed, but depending on the level of site fidelity, you might get back to the non-mixed condition you were at when you released them. So how do you deal with this in characterizing mixing? And maybe we should look at local movements in addition to long-distance migrations. We're the only program that's done a coastwide tag release of seabass. There are other localized tagging programs (e.g. NJ and VA). In both cases they've used T-bar tags. Can we incorporate these into our own study? Can we use tag information from other programs? I'm hopeful given John's discussion of reporting rate [i.e. if reporting rates are above $\sim 50 \%$ then the models are quite insensitive to the exact value], that the sea bass reporting rate is high enough that we don't have to worry. We could apply the same rate to other programs (i.e. NJ and VA) and the variation among programs would not be as critical as it would be if the reporting rate was low.
Other issues:
There's a need for increased outreach as number of tags at large decrease. I think we'll have to increase outreach because we need to keep people aware. We need to remind them the program is still ongoing.
We need to evaluate information on tagger variability. We had at least one person who was left
handed, doing tags on opposite tags.
Finally the database management. Right now we enter the data on a spreadsheet and do some SAS auditing, but there's a need for something more formal as database increases. Add fields, for instance.
A. Hobday: There is a difference on left and right handedness, weak versus strong side. This has implications on which tag will fall out (double-tagging).
A. Westwood: You're thinking of releasing more data tags: if these tags might be causing mortality, is it worth putting the rest of them out (it was commented that data tags might be causing wear, stress on animal)?
G. Shepherd: With data storage tags, we're not using them for mortality estimates, it's related to movement. If we have a higher tag-induced mortality, we want to maximize the number we get back. l'm not sure we can replicate this in the aquarium. I don't think there's any better way to put these on than the way we're doing this now.
loshua Moser, National Marine Fisheries Service: The Data Storage Tags probably affect the movement of the fish.
P. Rago: What are the bioenergetic costs of this tag?
G. Shepherd: Potential predation. There's a light flashing on these things "eat me".

Discussion ensued: light flashes next to fish, hopefully not incredibly visible to predators.
J. Hoey: If we want to use a targeted deployment of data storage tags, would that be better to do on the northern extreme before they start migrating? We could put them out in a northern location, and see where we get them back. It would be interesting to know if they pass through certain areas to see if these (closed?) areas are impacting mortality.
G. Shepherd: In the north, we get the most contrast in the data we're getting.
J. Hoey: Would you saturate one area, or would you try to break it up distributionally?
G. Shepherd: We'd Saturate one area.
P. Rago: It might be interesting to look at recaptures by fishermen in relation to survey capture patterns. Surveys are slow motion, taken over two month period from south to north. But you might be able to deduce patterns of fishermen from (comparing these to) looking at survey captures.
A. Hobday: The repeat of the survival experiment is key, but I wasn't sure that the histological experiment was useful. Why do you care why the animal died if it means you have to re-do the experiment?
G. Shepherd: The histology thing I mentioned, that just happens because anything that dies at the aquarium is autopsied by vets. It's a free service.

Expert Feedback on Black sea bass tagging:

Alistair Hobday's comments:
Of the three species, yours is most amenable to an aquarium system.
You have a two-dimensional system. (Compared to others). With acoustic or archival tag information, you can develop some really good models and go into simulation stuff.
You think you have a break in stocks, you have Cape Hatteras as a biogeographic boundary. But you think there are breaks within that. Have a look at whether you're getting breaks in environmental signals. Are there changes in the environment that could be used to predict changes in fish behavior as well? As you get data storage tags back, you can marry with environmental data. Whey you talked about relative mixing rates, looking at the density of data, you've got a bunch of releases. You're interested in finding out if: onshore is not mixed, offshore is mixed. You're looking at separation intervals of pairs of tags. Look: for all the possible separations (Alistair drew schematic on board, Shelly has a picture of it). You go by IOkm, then you look at 20 km differences. You can come up with some mean separation. In a fully mixed state, you'll see no change in the variable with distance. But if you see a difference, you can start to break out the
mixing.
J. Hoenig: I don't have anything to add on this.
S. Cadrin: I have a question: Gary said it would be desirable to get a seasonal analysis. I think I have a similar problem: I only release in one season. How would your Brownie model work if you skip a time of releases (in the triangular portion of your matrix).
〕. Hoenig: well, Brownie estimates survival rate over whatever time you choose: saying a "year" is arbitrary.
S. Cadrin: We release in first, not second, then third, not fourth.
J. Hoenig: Well, you're estimating cumulative survival over first and second combined, and third and fourth combined, etc.
S. Cadrin: we would really like to get into seasonal movements, and l'm not sure we'll be able to because we only released in one season.
. Hoenig: If you're talking about movement, not survival, you get information. It's much better if you can tag more than once during the year. It just gives you more to work with.
S. Cadrin: You lose degrees of freedom without more releases.
J. Hoenig: If you have a lot of movement going on, it makes the Brownie model more complicated because you have to worry about mixing. Movements of fish were designed by the powers that be to make our lives more difficult and interesting.
A. Westwood: What about data tags, the handful of recaptures that were at large for over a year?
S. Cadrin: I think we can descriptively study movement, but whether we can quantify exchange rates and seasonal mortality, well, I'm doubtful if we can do that without seasonal releases. D. Clark: Can't you plot your returns on a background of landings, and then you'll have tag returns seasonally? You'll have a change in the number of tags per ton seasonally if there's a differential mortality.
S. Cadrin: We can look at seasonal patterns of landings. There is data to put into the model other than just recaptures. That will help the model along.
P. Rago: Another thing to consider in general is the issue of evidence of dispersal and interpreting that as the magnitude of transit or migration rate. We haven't really quantified the magnitude of movement here, nor have we discussed its implications for assessment. Does movement preclude single stock assessment protocol?

Program Review 3: Cod - Shelly Tallack

This is our last confirmed tagging season and it's already underway, so there are limitations on the number of modifications we can hope to implement at this stage. This said, numerous constructive comments have been made during this workshop and so l'll review some of the ideas that we can consider implementing at this point in time.
Data collection additions:
Collection of otoliths: Should we consider collecting samples for aging during tagging trips?
A. Hobday: If there is no current aging information available, you should consider collecting this data, but you can also use scales so you don't need to kill the fish. Use this as information complementary to ongoing aging studies on cod in the region. Find out first if aging information is available; if it is, this is less important. What aging studies are going on now? D. Clark: Validating the age by taking fish where we have a reasonable estimate of age, and getting their otoliths if we know it's been in the water for three years, that'd be fun.
Collection of fin clips: We have been recommended by the Research Steering Committee to begin collecting genetic samples and to assist genetic researchers in the region by collecting fin clips during our tagging trips. This is something we need to consider.
Double-tagging: We can increase this rate to 50% or even 100% of remaining tagging efforts. Logistically, it would be easier to implement this at 100% to avoid confusion, providing we can
purchase more tags.
Spawning fish: Despite undertaking tagging at the times of year when spawning fish should be found, this program has not observed many spawning fish to date. Should we make a real attempt to get spawning fish in this final season? Should we consider delaying our remaining trips, rolling them into next year to try to tag again at a time when we're most likely to find spawning fish? The pros and cons (of winter tagging) include weather effects on fish: Fishermen have less control bringing the net up through the near-surface water column (where the pressure change is highest) in poor weather, so fish get bashed around more.
A. Hobday: At this point in the program, spawning data could be considered a bonus, but it's maybe not worth focusing just on spawning fish from this point forward.

Tagging protocol:

Glove use standardization: We should consider implementing glove use standardization, or at least, making note of whether or not each tagger uses gloves, and which type (i.e. cotton, rubber, bare hands etc.).
A. Hobday: The importance of wearing gloves can depend on how a fish is caught: if you're taking out a hook, you need to really squeeze the fish - it sounds trivial, but you can affect the animal this way.
Kevin Kelly, Maine Department of Marine Resources: The deck hands are handling fish as well, and what are they wearing (gloves or no)?
S. Cadrin: What are we trying to do with gloves? Is it scale loss? If so, l'm not concerned with Yellowtail. Scale loss is not a problem.
S. Tallack: By recording what people are wearing, we might be able to begin monitoring for any effects in cod.
. Hoenig: If you want to look at differences, you could design a study to do this, but I suggest that before you do this, you do some power calculations. Use your common sense to see what is most likely to work, and standardize on that. I don't think it's the highest priority to figure this out (are rubber gloves better/worse than cotton), other than the scale loss issue.
J. Hoey: Putting fish in holding tanks might be a good way to spread disease.
P. Rago: Aspects of standardization should be reviewed across programs.
D. Clark: We tried bringing cod and haddock back to the lab - haddock are very susceptible to stress. Cod are not.

Database modifications: (All dependent on whether sufficient funds remain)

Fate of fish: It has been proposed that for recaptures which get re-released, we should be noting whether the cod was re-released with or without its tag. We already do this in the comments field, but it was suggested that this is insufficient and that instead the "Fish Fate" drop-down list in the database should be modified to include additional criteria, e.g. re-released with tag, and rereleased without tag.
Sub-standard data: Recapture information for Tag \#, Date, Fish length and Location can currently be categorized as "sub-standard" data when necessary, i.e. if the data has been estimated in any way, or the physical tag has not been returned. This tool has been commended during this workshop, with the only additional recommendation being that we should consider further rating our sub-standard data (e.g. into 2-3 levels of sub-standardness).
A. Hobday: Your need to break this down depends on the amount of sub-standard data. Maybe you can just remove sub-standard data, or maybe you need to see what of it you can save.
Additional error checks: We could re-visit strengthening the automatic error checks for e.g. distance traveled, Fish length and Date.
B. Duffy: Our initial assumption was that original releases would be entered before the recaptures. We had to do a pretty complicated check to make sure things worked the right way.

Data analysis:

Since we are only at the start of our data analysis phase, there are a number of components that we need to address. Specifically, recommendations concern:
Gear selectivity for recaptures: this is something we should assess
Tag recapture sampling trips: Should we try to schedule sampling trips in closed areas to see if fish are still there or not? The tagging trips do also record recaptures, so those which are targeting closed areas are in effect doing this anyway. Maybe this is sufficient?
G. Shepherd: I would think if you're using data for estimating exploitation, you should make note of the trips where the intent was to collect tags.
B. Neal: In some areas, there's significant recreational effort despite there being limited or no commercial effort.
Batch tag reporting: We need to assess this further re: quality of data - if people report tags in batches, does it affect the quality of data they include?
Reporting rate: We need to look into this in detail to see how it varies by region, gear type etc. Outreach effectiveness:
This program has put a great deal of effort into outreach to date, but we need to check whether it's working and we need to reiterate to program partners the need for face to face outreach with the industry.
Incentives: We may need to re-address the incentives offered and the lottery procedure, to prevent any bias in tag reporting influenced by recapture location.
Website: We should increase the number of links to other tagging programs (reciprocal effort here will improve the visibility of each program online).
Data mapping site: The tag locator tool - we should increase the amount of information needed to create a report. Right now, they need give only date and capture location.

Solicited feedback points:

I) Spatial distribution of tags: The design of this program was not as statistically rigorous as e.g. the Yellowtail or Black sea bass studies - we didn't specify cap limits of how many tags to put where. If analysis shows that the number of tags released in some areas is too low based on historical biomass estimates, should we focus our remaining tagging effort on these areas, or continue to tag throughout the areas?
J. Hoenig: It depends on what you want. If you're interested in movement, it doesn't really matter. If you're trying to get mortality estimates, it would have been nice to get selfweighting. If you didn't get that from the beginning, I don't think you can address it now. It's an interesting question: can you modify a tagging program? From a theoretical point of view, that would be a nice research project.
BR Break: missed some conversation...
S. Cadrin: The general look of release sites looked very similar to catch data. Steve Murawski has looked at logbook data, it may be worth talking to him to see distribution of catch data. Talking to him may help evaluate areas that you might want to add in, or beef up, etc. On the other end, for the releases, in Joe Hunt's program, they weighted their recaptures by local fishing effort. I think it's important to do that: if a fish moves to a low-effort area, it should be "weighted up", and those moving to high effort areas should be "weighted down". I think it's a clever way to avoid over-weighting high effort areas.
J. Hoenig: Two things: are you estimating mortality rates, or investigating migration? As far as I know, no one has thought of how to deal with weighting for mortality. As for movement, you should express the density of fish in recaptured areas. Take the number of recaptures, and divide it by fishing effort in the areas, which I think you can get from VMS. Express the number of tags you're getting back per 100 hours of fishing in an area.
D. Clark: My concern is that it assumes equal effort. I'd prefer to weight by landings.
J. Hoenig: This would be better if you had it geographically referenced.
D. Clark: If I have certain amount of effort on Georges, and a similar amount in the Gulf of Maine, the areas available for fishing will be quite different. I would assume with the same number of fish, the catch rate will be much higher on Georges.
P. Rago: "What is effort?" is always a huge question.
J. Hoenig: This is a good discussion, and I think it's not appropriate to express recaptures per ton landed, it's better to express by amount of fishing effort. If I tag at A, and I get back I0 from the east, and 30 from west, you don't really know anything - how much effort was there in each area? Catch rate is an expression of abundance of fish. l'll grant you CPUE is not terribly well coupled to density of fish in an area, but at least there's a connection. Not so with landings.
D. Clark: How do you account for probability of capture? You use landings or effort as a proxy for fishing mortality, depending on what you have and what you need.
J. Hoenig: what l'm talking about is if 10 go east, 30 go West, what really happened. It may be that more went east than went west, but you got more back from the west, simply because there was more fishing going on. You have to do some sort of standardization for that, because catch isn't representing what you want it to represent. It's representing abundance and effort combined. Suppose in the East there's only good habitat in the summer. Nothing is resident there. Some go there for the summer to feed. In west, they're always there. When fish go west, they're diluted by what else is there. Catch of tagged fish per landed ton goes way down. You go east, and they all moved in there - you're getting only your tagged fish. Point is the density of what's there anyway, you don't want this to dilute your impressions of what's going on.
K. Kelly: Where would this effort data be? VTR's? [Vessel Trip Reports]
P. Rago: There's vessel monitoring data that provides effort measures for a subset of the fleet. And now, there are huge numbers of observers on trips. The general issue of linking all this data is important.
B. Neal: If anyone is causing this problem it's Kevin and I, in not getting enough tags out close to shore. I think it's fair to say, though, that I don't know of a single successful trip in close to shore this year or last year. There is no catch inside those yellow lines (close to shore). No one is catching any fish up there. We can't use this data to interpret mortality. The numbers are so low.
J. Hoey: The granularity of the landings, temporally and spatially, means you can't distinguish where that is in that stat zone. Then, observer patterns have changed, so it's tricky to deal with. I think this is an area that'll take a lot of work to look at these patterns to try to evaluate what's the more efficient weighting scheme to use. Catch rates based on VTRs are not going to be the same as observer observations. This will require a lot of work across programs. Maybe look at all areas: see what's appropriate for what methods. Cashes is not appropriate for draggers. It's in the DMR area, and DMR is using draggers, even though it's not appropriate for that area.
C. Legault: Currently there are two management areas (GB, GOM). Do you foresee this data being used to change that?
S. Tallack: I hope it'll be useful enough to have some impact, whether or not it's a change will depend on what the data tells us. This is another huge motivation for GB guys not to report tags. Their limits are higher right now, so they would want to not report. We're aware of this. Tom is fairly confident that there are two or three gillnet vessels that are indeed reporting tags. We talked on the first day about incorporating them into our estimation of tag returns? D. Clark: Differences in return rates by release area is a way we can address this. An area where people aren't returning tags should show up with much lower tag return rate. Assuming there was some rationale for management to begin with, you can look at this. Continued discussion of motivations for southern cod fishermen (GB) not to return tags.
2) Ancillary study ideas: At the Program's Year 2 six-month update meeting, the program
partners re-visited ideas for ancillary studies and then prioritized these [slide showing order of priority: I) tagging in closed areas, 2) tag-mortality study \& data-storage tagging \& pulse tagging; 3) tagging of spawning aggregations \& historic data; 4) acoustic/telemetry studies \& habitat trawl/video survey; 4) Morphometric sex ID and Genetic studies]. We already do tag in closed areas, so l'd like to focus this discussion on tag-induced mortality estimates. We debated initiating an experiment for this at our End of Year I meeting, but with the sheer number of variables for this Program, it was decided that if funds were available, they would be best spent on a highreward tagging study (implemented in April 2004). My question is what is the most efficient way of us doing this now? Do we try to design an experiment, or do we look at the data and derive it that way?
J. Hoenig: I don't see why the tag induced mortality estimate is seen as so problematic. I think you can get some cod, tag them, and put them in a cage, lower them to the bottom, come back in a few days, and see what's happening.
S. Tallack: But we have five tagging organizations with different geographical conditions, weather, depth, gear type, and numerous taggers. Trying to replicate things, fish caught same day, released same day, you need five experiments, in each season, and the funding needs would be prohibitive.
A. Hobday: You can't afford to do a multivariable experiment like that.
J. Hoenig: Pick 5 or 10 taggers at random, have them put a few cages out, 4 or 5 fish in each, and if zero shed their tag, and zero die, I wouldn't be terribly concerned. You probably don't have massive tag-induced mortality or shedding. If you do see mortality or shedding, then you have to break it down. If you don't see shedding or mortality, it's probably not a problem. N. Kohler: We have cod in an aquarium - you could use them to investigate.
J. Hoenig: I would suggest you get a new guy with no gloves, in hot temps, etc. If you don't have a problem there, you don't have a problem anywhere, and you don't need to worry about it.
K. Kanwit: You would want to get at what happens after handling also. If you're only talking about a couple of days, you could even put them in a flooded tank on a boat, and where the volume is so high, you can keep them a few days. Longer than a couple of days gets difficult. S. Tallack: There are a number of reasons we haven't attempted this yet. This program has so many variables (location, season, gear, etc.), getting at this would require a very sophisticated experiment. But the feedback l'm getting here today is to keep it simple.
. Hoenig: The only reason you'd have to include all those variables is if you want to look at the effect of all those variables. But if you don't have a problem at all, why worry about it? T. Rudolph: But you still have to do different seasons and temperatures.
J. Hoenig: Or just pick the worst: if you have no problem then, you have no problem.
G. Shepherd: I'm reminded to maintain control fish that aren't tagged so you can look at tag induced mortality as well as handling.
P. Rago: You've got a dual effect no matter what.
J. Hoenig: If none die or shed, you don't need controls.
D. Clark: There's already literature on this. For tagging itself, the effect is negligible. Fish farm studies tag every fish with no deleterious effect. They bring fish up five times a year to weigh them. There have been comparisons of tag return rates by gear type, and what you find is that you get a higher return rate from longliners than from otter trawl. Clearly there's at least some mortality for otter trawl. We also have estimates for season and depth.
A. Hobday: You guys that are doing cod are also going to do haddock, and any thinking you do now will help you on that. You might choose to design an experiment for haddock ahead of time.
The collection of genetic data was not considered a priority at the Year 2 six-month update meeting, yet the NRCTP has been requested to collect fin clips during the final tagging season for
genetics researchers in the region. There is not much time left to do this, since we are in our final season. There is a chance that some organizations (DMR, Island Institute) may have their contracts extended to allow tagging into next year, but the tagging focus will likely be Downeast Maine and other areas where it has been hard to tag fish to date.
J. Hoenig: If you do a favor for someone else and start collecting data, be careful of what it is you're collecting. If you only collect in marginal habitat, then someone can infer a large percentage of cod come from these areas; the data is vulnerable to misinterpretation. Only those who design the study should execute, (and fund) it. This program is not designed for a genetic study.
S. Cadrin: I just returned from a trip where we reviewed an EU redfish genetic program that was conducted "piggy-backed" on another study, and it was rejected because it wasn't designed to test the stock structure hypotheses. You need to be careful of the study design. Unless you're taking a certain percentage of all catch, it can be biased.
Historical data: We've also talked about trying to incorporate historical data into the NRCTP database and compare the findings. Data exists from recent studies (UNH, etc.), and also more distant ones (I920s tag releases).
. Hoey: These are generally appropriated funds, we need to focus on getting things done as promised. There may be other venues for us to go into to obtain funds to recover historical data, but I don't want to pay for it out of the funds we have to support our ongoing cooperative research. l'd rather keep us focused on making sure our original program objectives are met. We haven't tapped into the higher level of sources for funding. If you can identify blocks of data that are in danger of disappearing, you can get money by competition. J. Hoey: Well, what about institutional sharing of data? There have been some institutional age-based barriers (over my dead body will you get my data). It's better now - people are more willing to share.
My final question is this: GMRI has funding for a year three, but it's only to maintain the database, manage the data, undertake analysis and respond to tag returns. From the discussions over the previous two days, it seems that a third year of tagging is really necessary. If the Program was to secure more money, what should we do with it? Should we be pushing for more tagging, and if so what type? Should we look at focused study, or keep tagging the way we have been doing?
A. Hobday: I think you're further behind in your analyses than Sea Bass or Yellowtail. I think smart tagging now would be premature. You need more analyses before doing that.
J. Hoenig: I think what you should do in your third year depends on how good your crystal ball is. Possibilities I see are somehow cobbling together a third year of tagging, and then a fourth, and then a fifth, and then eventually a long-term program, and continuity of the time series is important. Another possibility is that the third year is it, in which case I'm not sure what the point is. You might want to just look at tag-induced mortality, or whatever. Another possibility is that you take a hiatus, and then some time down the road you start again. But then you can't join it up with original tagging data - you have to start again. Then you'll wish you'd settled the best way to determine tag reporting rate, and tag induced mortality rate. If you think you can do this indefinitely, then try to keep the data coming on so you don't wreck your time series. If you think there's a hiatus, then focus on answering questions as best you can.
J. Hoey: I think the important point to reflect is that we've identified that as a pilot part of this thing, there are questions that have bubbled to the top as most important: tag induced mortality and reporting rate. It's appropriate to say "if those things get addressed, and if we have reliable estimates, then this could be a very valuable time series tool to compare against other sources of data".
. Hoenig: But only if you maintain the continuity.
J. Hoey: Yes, so Ken and I have to go to Steering Committee and let them know this. I can
argue that we should use the money we have this year to add to the programs (tagging programs) that we're doing now. We need to articulate it, and ask "Are in fact tag induced mortality and reporting rate the two critical areas?"
J. Hoenig: if you think there's a chance to do this long-term, then keep the data coming. I don't think tag-induced mortality and reporting rate have bubbled to the top. I think movement is important - are they really going here, why aren't they going here? That would require you to very quickly look at the movement data, standardize it by effort in the area, and ask if there are things that cropped up that need to be investigated further.

Lunch

Expert Feedback on Cod tagging:

John Hoenig's comments:
I would note a couple of important things:
I) in the data collection part, I think you were saying what I wanted to hear: in essence I think the fate of the fish has to be explicit (adding category fish released with tag in place), and you don't want people to confuse that with "fish was killed". I think this'll be important for any program with catch and release going on.
2) A discussion of the analysis of movement data: It's one thing to plot the movements, but to be quantitative, we need to look at movement in catch of tagged fish per unit of effort in that area. If you want to look at how many tagged fish went to an area, you have to multiply that by size of the area. That applies to all species.
Alistair Hobday's comments:
I think the most important issues are double-tagging and aging the animals (otoliths would kill the fish, if you go for scales, that's easy). From our experience, about 100 otoliths or scales in the size range for each of the areas you're considering would be good.
l'd be down on looking at spawning fish - you need to design the program differently otherwise. Don't re-design to cover that.
At the moment in the database, you have a comment field, and that included a little bit of the fate (seagull, floater, etc). There were also comments that related to what happened ("sub-groups"). At the moment, these "subgroups" are in the comment field. Now the fate field will have three things John just mentioned (released with tag, released no tag, etc) and you will need to work as quickly as you can to get these comments into fields.
You should look at these fields blind - relative scoring of good, bad, excellent (look at "seagull" "hit side of boat", etc., to see how these relate to recapture).
You implemented high reward at end of first year. Now, you could do the sociological thing that Steve was talking about. Call people that participated in year one, and ask if they heard about the high reward (test the penetration).

General comments on cod tagging:

J. Hoenig: On "fate of fish", in shark project we have a lot of guys who will recapture an animal, and then send a note telling us they caught it, but it's released with the tag in it. Others, the tag is taken out, and another tag is put in. Others, it's taken off, nothing put back.
S. Tallack: What should we be saying in our outreach? Should we tell people not to re-release a fish with the old tag in it?
A. Hobday: If the likelihood of the tag being re-caught is minimal, then it's best to cut the tag off. It depends on the sample size, the number of times a fish is likely to be caught or the likelihood of it getting caught at all. To make sure to make the best of "unusual" sightings, it's best to have the tag in your hand.
J. Hoenig: It depends on species, nature of reward, details of the program. In general, though, I
think it's best to clip off tags.
G. Shepherd: In seabass, we only require getting the tag back for the $\$ 100$ tags. How do you deal with people who call in tags, but don't send the tag in? What's the way to respond to tag calls (trinkets)?
. Hoenig: If they don't send it in, call them to remind them to send it in. If they lost it, still reward them.
G. Shepherd: How do you weight these data?

〕. Hoenig: It depends on the use. For mortality, l'd include it. For movement, if they tell me something unlikely, I might need to see it.

Summary of Day Three: Overarching Issues (led by Paul Rago)

Key future tasks:

- To review efficacy of tag lottery programs via literature and recent experience.
- To continue and improve coordination among tagging groups in Northeast.
- An institutional commitment for long-term storage and availability of data.
- To review existing software for tagging analysis.
- Can we look at optimization packages for multinomial models? What about ones where we're trying to integrate oceanographic data? Database considerations: how do we create datasets that support application of alternative models?
A. Hobday: If we get coordination and a group going, there will be an availability of data issue that people will want to know about. What are the data sharing arrangements? For example, I might have a commitment to make data available, but I want to have the first crack at it. J. Hoey: In the HQ database, we took landings from every coastal state, and until that state told us we could release it, it wasn't released. You need to have professional understanding and courtesies. If you're receiving funding from feds, you have right for first scientific publication, but you also have an obligation to get the data out there. We are attempting to coordinate language in the grants that says this. People won't get funding from NMFS if we don't get data back.
A. Hobday: You put it on a database, and only the person in charge can see it for a certain period of time, and after that, it's open. I like this idea.
P. Rago: Many of these programs are sold on the idea that they will contribute to current management. Almost by definition, they have to be used quickly.
P. Rago: Do we want a recommendation in our report directly related to this, and to suggest a mechanism for doing that?
A. Hobday: I say yes.
J. Hoenig: Someone has to be there to pay out rewards, etc. Someone has to be available to make data available when requested.
B. Duffy: Right now, anyone can download various views of the data on the cod tagging database. But Administrators have greater powers.
G. Shepherd: A lot of locations these guys are taking us to with seabass are "secret locations". These captains don't want anyone to know the areas in which these fish are released or recaptured. This is a big issue we need to be particularly sensitive to. We had to say that only I would see the lat long information, and everything else would be generalized.
K. Kanwit: Maybe we could give information to another entity (ACCSP?) for safekeeping. J. Hoey: You're stuck with going with several institutions, or several long term contracts. You're stuck with federal, state, or interstate institutions (one that'll be around for a while).
An integrated database that provides common tools, is very useful.

Experimental Design:

Steve talked about using allocation of the tags in relationship to external information. I think that would be a useful aspect. We talked about cod, relationship between effort and landings. We had
some, another principle was the double-tagging to look at shedding rate. We spent a fair bit of time on first day talking about recovery of heterogeneity, effects of clustering, using variation by fleet tags/ton; tags/effort. Using independent observers at sea.
J. Hoenig: I was recommending that you pick random stations and tag what you find there. Steve talked about historical information. I say that's fine as long as it's not out of date. It's more critical for things that don't move around much.

Needs for all programs:

- Weblinks for all northeast programs, have a general summary.
- Incorporating fact sheets as part of that.
- Continued feedback on tags returned by other programs.
- Coordinated project to unite programs:
- Commit to ongoing tag management and recovery, through a post-hoc analysis of outreach.
- Studies of tag returns when outreach stops \qquad Look at decline as a function of time.
- If some program is starting to have negative implications for another one, that should be communicated as well in a constructive format.
A. Hobday: As you seek to justify "what is the umbrella that unites these programs", one suggestion is a post-hoc analysis of outreach. What's the right strategy, how many posters, t shirts, etc.? If you could know that your reporting rate was somewhere between zero and one, and you have time going along on your axis, if you had one reporting rate, and it petered off a bit after they stopped tagging, that's evidence that there was not enough outreach.. You can look at persistence, success of outreach. The opportunity of meta analysis across programs is good. Why did one program work in this way, why did the other work in another way?
And think about tagging methodology: What are the economics of tagging? What's the true cost of the information you're gathering? Make decisions on basis of that perspective rather than just saying "that tag is too expensive to put on". Look at long-term and short-term costs. It's important to have a mission-appropriate tag. Define objectives, pre-test what kind of information you're going to get.
C. Legault: It's important to do some simulations even before you put your first tag out. If nature follows our hypothesis, what will we see? Can we use that information to discover if our hypothesis is true?
S. Cadrin: Simulation will tell you whether or not you have enough years of data out there. The ability to have a flexible system for modeling pattern of observed recaptures is central to this, and to test various forms of model misspecification is an important component there.
We should investigate the formal incorporation of tagging results into stock assessment.
P. Rago: I suspect a lot of the support for models of these types is motivated on the premise that they will be able to determine flux between areas. I'm not certain that's an accurate assumption. Maybe that should be a general caveat.
〕. Hoey: That will be an important one to highlight, especially for those projects that had movement as a component of their impetus.
P. Rago: Evidence of movement does not constitute evidence of flux. To make that next level of inference is still a stretch, and maybe the simulation modeling kinds of things...
A. Hobday: You should specify how things like behavior and growth are going to feed into management, and what are some realistic expectations of how quickly they could do that?

Database development:

Need to augment existing database programs to support analytical tools.
Can we do simple testing to determine where heterogeneity is likely to occur? Can we bin all the recaptures across all gear types?

We should improve standardization across programs. We need to get all the programs up to a point where transfer of information is important. Rewards and other things have implications across all programs - there are advantages of coordinating.
Analytical software: consider development of software tools that incorporate modern methods applicable to fisheries.

notes missing for ~ 5 minutes; discussions of having another tagging workshop underway

S. Cadrin: Give us time to do what is necessary so we can put our best foot forward in 2008. . Hoey: We budget for annual meetings, and I think this is important. I marked down: integration of mark-recapture models. Getting to a stage where we could then get together again. What happens when we've looked at different data. If we can put these things in longer term plans, then we give you more time to prepare.
D. Clark: I'm expected to do a benchmark next year (I started in 200I). I'd like to have some sort of "excuse", where I can say "we're going to have this meeting to figure out how to do something with this".
C. Legault: Having multiple species in one room, we don't go down one road that's unique to that one data set. Multiple datasets - fewer dead ends.
We might want to follow up on more analytical tools.
S. Cadrin: Should we provide future experts (for meetings like this) with the data for preliminary analysis? We'll have the opportunity for lead time next time, and we can ship out data and include that as part of the contract.
G. Shepherd: The objectives of the meeting should be more refined next time - analysis modeling of exploitation and so forth. I think we'll get to the point where we'll maybe diverge a little bit. Might want to be a little bit more refined.
P. Rago: But you don't want to get too refined - you might miss things - maybe the spatial process matters, and if you think it doesn't, you'll maybe miss that.
J. Hoey: I'd like to make sure that we "kick the tires" and evaluate some of the nuances for the species that'll be evaluated in 2008. I'd like for these (meetings) to be useful for that.
J. Hoenig: What you should do next in terms of outside experts and workshops depends on interests - what do you want to do?

