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Abstract 

This report summarizes work performed by Argonne National Laboratory on fatigue and 
environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2003.  
Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon 
and low–alloy steels and austenitic stainless steels (SSs), (b) irradiation–assisted stress corrosion cracking 
(IASCC) of austenitic SSs in boiling water reactors (BWRs), (c) evaluation of causes and mechanisms of 
irradiation-assisted cracking of austenitic SS in pressurized water reactors (PWRs), and (d) cracking in Ni 
alloys and welds. 

Fatigue tests have been conducted on two heats of Type 304 stainless steel (SS) under various 
material conditions to determine the effect of heat treatment on fatigue crack initiation in these steels in 
air and LWR environments.  Heat treatment has little or no effect on the fatigue life in air and low 
dissolved oxygen (DO) environment, whereas in a high–DO environment, fatigue life is lower for 
sensitized SSs.   

Crack growth rate (CGR) data were obtained on Type 304L SS (Heat C3) irradiated to 
0.3 x 1021 n/cm2, nonirradiated Type 304 L SS submerged–arc weld heat affected zone (HAZ) specimens 
from the Grand Gulf (GG) reactor core shroud, and a Type 304 SS laboratory–prepared shielded metal arc 
weld.  The irradiated specimen of Heat C3 showed very little enhancement of CGRs in high–DO water.  
The results for the weld HAZ material indicate that under predominantly mechanical fatigue conditions, 
the CGRs for the GG Type 304L weld HAZ are lower than those for shielded metal arc (SMA) weld HAZ 
prepared in the laboratory with Type 304 SS. 

Slow-strain-rate tensile (SSRT) tests have been completed in high-purity 289°C water on steels 
irradiated to ≈3 dpa.  The bulk sulfur (S) content correlated well with the susceptibility to intergranular 
stress corrosion cracking (IGSCC) in 289°C water.  The irradiation-assisted stress corrosion cracking 
(IASCC) susceptibility of SSs that contain >0.003 wt.% S increased drastically.  These results and a 
review of other data in the literature indicate that IASCC in 289°C water is dominated by a crack-tip 
grain-boundary process that involves S.  The IASCC–resistant or susceptible behavior of austenitic SSs in 
BWR-like oxidizing environment is described in terms of a two–dimensional map of bulk S and carbon 
(C) contents of the steels. 

Crack growth tests were completed on a Alloy 600 round robin specimen and a Alloy 182 weld 
specimen in simulated PWR water at 320°C.  Under cyclic loading, the CGRs for the weld specimen were 
a factor of ≈5 higher than those for Alloy 600 under the same loading conditions in air; little or no 
environmental enhancement was observed.  The CGRs obtained with a trapezoidal waveform (i.e., a 
constant load with periodic unload/reload) were comparable to the average behavior of Alloy 600 in a 
PWR environment.  The cyclic CGRs for the Alloy 600 round-robin specimen show significant 
environmental enhancement.  However, the crack front was U-shaped, indicating that the growth rates 
were significantly higher near the edge of the specimen than the center. 
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Foreword

For more than 34 years, Argonne National Laboratory (ANL) has served the U.S. Nuclear Regulatory
Commission (NRC), Office of Nuclear Regulatory Research (RES), as a prime contractor for studies
of the environmental degradation of structural materials in light-water reactor environments.  As Volume 34
in the NUREG/CR-4667 series, this document represents the annual report of ANL program studies
for Calendar Year 2003.  During this year, the program has evolved to keep pace with the most critical
contemporary issues facing the industry and the NRC:

• Task 1 focuses on the environmental degradation of fatigue life of pressure boundary materials.

• Task 2 addresses irradiation-assisted stress corrosion cracking (IASCC) of stainless steels
in boiling-water reactor (BWR) environments, while the parallel program in Task 3 addresses
IASCC of stainless steels in pressurized-water reactor (PWR) environments.

• Task 4, the study of crack growth rates in nickel-base alloys typically used in vessel penetrations, is
currently focused on testing Alloy 600 and its associated weld metals, Alloys 82 and 182.

Studies of the degradation of fatigue life of pressure boundary materials focused on the effects of heat
treatment and the degree of sensitization of stainless steels.  Sensitization appears to have little or no effect
in air or low-dissolved oxygen (i.e., PWR-type environments), and the fatigue life of sensitized stainless
steels is lower in high-dissolved oxygen (i.e., BWR-type environments).  Moreover, the amount of
degradation is linked to the degree of sensitization.  In addition, studies of the morphology of incipient
fatigue cracks show that fatigue cracks propagate in a transgranular mode in air and PWR-type environments. 
However, cracks in sensitized stainless steels begin as intergranular cracks, transitioning to transgranular
cracks after about 200 mm.

The evaluation of the effects of irradiation on mechanical properties, stress corrosion cracking,
and fracture toughness of stainless steels and nickel-base alloys used in reactor core internal structures
is an important aspect of the ANL program.  The database of IASCC results was extended this year,
reinforcing the previous conclusion that IASCC degradation is directly linked to sulfur content of the steels. 
However, extremely low sulfur, coupled with very low carbon content (i.e., very clean steel), also creates
susceptibility to IASCC.  Crack growth rate testing of Type 304 and Type 304L stainless steel aimed to
establish the threshold for IASCC as functions of water chemistry and irradiation damage.  Future IASCC
work will test materials that have received higher radiation doses, and will involve more microstructural
characterization of such materials.

Evaluation of the stress corrosion crack growth resistance of nickel-base alloys continued during this period,
and will continue for the foreseeable future.  Crack growth rate tests on Alloy 182 weld metal indicate
that growth rates are about a factor of five greater than those for Alloy 600 under the same test conditions. 
In future years, the stress corrosion crack studies of nickel-base alloys will begin to focus more on
Alloy 690 and its associated weld metal, Alloy 152, including cold-worked and heat-affected zone forms
of the wrought material.
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Executive Summary 

The existing fatigue strain vs. life (ε–N) data indicate potentially significant effects of light water 
reactor (LWR) coolant environments on the fatigue resistance of carbon and low–alloy steels, as well as 
of austenitic stainless steels (SSs).  For austenitic SSs, the fatigue lives in LWR environments depend on 
applied strain amplitude, strain rate, temperature, and dissolved oxygen (DO) in water.  A minimum 
threshold strain is required to cause an environmentally assisted decrease in the fatigue life; strain rate and 
temperature have a strong effect on fatigue life in LWR environments.  Limited data indicate that, the 
effect of DO on fatigue life may depend on the composition and heat treatment of the steel.  

During the present reporting period, fatigue tests have been conducted on two heats of Type 304 SS 
to determine the effect of heat treatment on fatigue crack initiation in these steels in air and LWR 
environments.  The results indicate that heat treatment has little or no effect on the fatigue life of 
Type 304 SS in air and low–DO pressurized water reactor (PWR) environment.  In a high–DO boiling 
water reactor (BWR) environment, fatigue life is lower for sensitized SSs; life continues to decrease as 
the degree of sensitization is increased.  The cyclic strain–hardening behavior of Type 304 SS under 
various heat treatment conditions is identical; only the fatigue life varies in different environments. 

In air, irrespective of the degree of sensitization, the fracture mode for crack initiation and crack 
propagation is transgranular (TG).  In the BWR environment, the initial crack appeared intergranular (IG) 
for all heat–treatment conditions, implying a weakening of the grain boundaries.  For all conditions 
tested, the initial IG mode transformed within 200 µm into a TG mode with cleavage–like features.  
However, the size of the IG portion of the crack surface increased with the degree of sensitization.  By 
contrast, for all of the samples tested in PWR environments, the cracks initiated and propagated in a TG 
mode irrespective of the degree of sensitization.   

The susceptibility of austenitic SSs and their welds to irradiation-assisted stress corrosion cracking 
(IASCC) as a function of the fluence level, water chemistry, material chemistry, and fabrication history is 
being evaluated.  Crack growth rate (CGR) tests and slow strain rate tests (SSRTs) are being conducted 
on model SSs, irradiated at ≈288°C in a helium environment in the Halden boiling heavy water reactor.  
Crack growth tests are also being conducted on irradiated specimens of Type 304 and 304L SS weld heat-
affected zone (HAZ) to establish the effects of fluence level on IASCC of these materials. 

Slow-strain-rate tensile tests have been completed in high-purity 289°C water on steels irradiated to 
≈0.43, 1.3, and 3.0 dpa.  The bulk S content provided the only good correlation with the susceptibility to 
IGSCC in 289°C water.  Good resistance to IASCC was observed in Type 304 and 316 steels that contain 
sulfur concentrations of ≈0.002 wt.% or less.  The IASCC susceptibility of Type 304, 304L, 316, and 
316L steels that contain >0.003 wt.% S increased drastically.  Steels containing ≥0.008 wt.% were very 
susceptible at high fluence.  A comparison of the results with data available in the literature is presented.  
The IASCC–resistant or –susceptible behavior of austenitic SSs in a BWR-like oxidizing environment is 
represented in terms of a two–dimensional map of bulk S and C contents of the steels.  To investigate the 
importance of the roles of S and C on IASCC, evidence of grain-boundary segregation was characterized 
by Auger electron spectroscopy on BWR neutron absorber tubes fabricated from two heats of Type 304 
SS.   

Also, CGR data were obtained on Type 304L SS (Heat C3) irradiated to 0.3 x 1021 n/cm2 
(0.45 dpa), nonirradiated Type 304L SS weld HAZ specimens from the Grand Gulf (GG) reactor core 
shroud and a Type 304 SS laboratory–prepared weld.  The irradiated specimen of Heat C3 showed very 
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little enhancement of CGRs in high–DO water.  Under cyclic loading, the CGRs may be represented by 
the Shack/Kassner model for nonirradiated austenitic SSs in high–purity water with 0.2 ppm DO.  Under 
constant load, the CGRs were below the NUREG–0313 disposition curve for sensitized SSs. 

The results for the weld HAZ material indicate that, under predominantly mechanical fatigue 
loading, experimental CGRs for the GG Type 304L weld HAZ are lower than those for the Type 304 
SMA weld HAZ.  The CGRs for the Type 304 weld HAZ are consistent, and those for the Type 304 L 
weld HAZ are a factor of ≈2 lower than those predicted for austenitic SSs in air.  In the high–DO BWR 
environment, the cyclic CGRs of Type 304 SS SMA weld HAZ are comparable to those of the GG 
Type 304L SA weld HAZ.  Under constant load, the CGRs of as–welded and as–welded plus thermally 
treated GG weld HAZ are comparable.  For both conditions, the CGRs are a factor of ≈2 lower than the 
NUREG–0313 curve for sensitized SSs in water with 8 ppm DO.  

A comprehensive irradiation experiment in the BOR-60 Reactor is in progress to obtain a large 
number of tensile and disk specimens irradiated under PWR-like conditions at ≈325°C to 5, 10, and 
40 dpa.  Irradiation to ≈5 and ≈10 dpa has been completed; the specimens are expected in August 2004.  
Tests performed on the materials irradiated to lesser damage levels in the Halden BWR reactor may, 
however, give some insight into potential mechanisms for IASCC that is also relevant to PWRs.  On the 
basis of these results, and studies on binary Ni–S and crack-tip microstructural characteristics of LWR 
core internal components reported in the literature, an initial IASCC model based on a crack-tip grain-
boundary process that involves S has been proposed.  

The resistance of Ni alloys to environmentally assisted cracking (EAC) in simulated LWR 
environments is being evaluated.  Crack growth tests are being conducted to establish the effects of alloy 
chemistry, material heat treatment, cold work, temperature, load ratio, stress intensity, and DO level on 
the CGRs of Ni alloys.  During this reporting period, CGR tests were conducted on an Alloy 182 SMA 
weld specimen and an Alloy 600 round–robin specimen in simulated PWR water at 320°C.  The results 
for the Alloy 182 weld metal indicate that, in air, the cyclic CGRs are a factor of ≈5 higher than those for 
Alloy 600 under the same loading conditions.  Also, some environmental enhancement was observed in 
PWR environment at R = 0.7 and very low loading frequencies.  The CGRs obtained under constant load 
with periodic unload/reload have been compared with the available CGR data and trend lines from the 
literature.  The CGR test was complemented by an extensive examination of the fracture surface 
conducted with the objective of correlating the test parameters to the resultant fracture modes.   

A CGR test was conducted on an Alloy 600 round–robin specimen in a simulated PWR 
environment at 320°C according to the testing protocol agreed upon by the International Cooperative 
group on Environmentally Assisted Cracking.  Under corrosion fatigue conditions, e.g., high load ratio 
and long rise times, the measured CGRs were higher than those for the alloy in air.  The examination of 
the fracture surface revealed that the appearance of the crack front was U-shaped, implicating that the 
crack growth rates were significantly higher near the edge of the specimen than the center.  This last 
observation is consistent with those made by other round-robin participants from France and Switzerland. 

Initial results of orientation imaging microscopy (OIM) of the weld microstructure indicate that 
weld alloys contain relatively high proportions of cracking-susceptible random boundaries.  In addition, 
OIM imaging revealed that the weld microstructure consists of clusters of grains sharing similar 
orientations.  The possible implication of this finding is that weld alloys may contain a class of random 
boundaries that are more resistant to cracking when separating grains of similar orientations than different 
orientations. 
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