Official Transcript of Proceedings

NOCTER'S BECATUDE COMMITION

Title: Advisory Committee on Nuclear Waste -[153rd Meeting]

Docket Number: (not provided)

Location: Las Vegas, Nevada

Date: Wednesday, September 22, 2004

Work Order No.: NRC-012

Pages 1-362

NEAL R. GROSS AND CO., INC. Court Reporters and transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

		1
1	UNITED STATES OF AMERICA	
2	NUCLEAR REGULATORY COMMISSION	
3	+ + + +	
4	ADVISORY COMMITTEE ON NUCLEAR WASTE	
5	+ + + +	
6	WEDNESDAY	
7	SEPTEMBER 22 ND , 2004	
8	+ + + +	
9	The Committee met at the Suncoast Hotel,	
10	9090 Alta Drive, Ballroom A, Las Vegas, Nevada.	
11	Advisory Committee Members Present:	
12	MICHAEL T. RYAN CHAIRMAN	
13	RUTH F. WEINER	
14	MEMBER	
15	ALLEN G. CROFF	
16	MEMBER	
17		
18	<u>Others Present:</u>	
19	KEITH ECKERMAN	
20	Oak Ridge National Laboratory	
21	FRED HARPER Sandia National Laboratories	
22	DAVID JOHNSON ABS Consulting	
23	BRUCE CROWE Los Alamos National Laborator	су
24	DR. BILL MELSON Smithsonian National Institut	ce

1	MICHAEL LEE ACNW
2	JOHN LARKINS
3	ACNW
4	JAMES CLARKE
5	ACNW
6	WILLIAM HINZE
7	ACNW
8	<u>Others Present:</u>
9	BRUCE MARSH ACNW
10	BOB BRUDNITZ
11	LLNL on detail to DOE
12	LYNN ANSPAUGH
13	University of Utah
14	B. JOHN GARRICK NWTRB
15	GEORGE HORNBERGER NWTRB
16	
17	
18	
19	
20	
21	
22	
23	
24	
I	

2

	4
1	A-G-E-N-D-A
2	Opening Statement
3	Working Group Purposes 7
4	Working Group 1: Geologic Considerations in the
5	Estimation of Probability of Igneous Activity at
6	Yucca Mountain
7	NRC Perspective on Volcanism Modeling Issues 10
8	NRC Overview of Igneous Activity in the
9	Yucca Mountain Region
10	1996 Probabilistic Volcanic Hazard Analysis:
11	One Subject Matter Experts' Perspective 96
12	Alternative Views on the Likelihood of an
13	Igneous Event in the Yucca Mountain Region 136
14	Session 1 Work Group Roundtable Discussion 169
15	Working Group 2: Characterization of Magma 214
16	Repository Interactions
17	Alternative Views on Modeling of Magma/Repository
18	Interactions at Yucca Mountain
19	Session 2 Work Group Roundtable Discussion 325
20	Public Comments
21	
22	
23	
24	

5

	6
1	P-R-O-C-E-E-D-I-N-G-S
2	8:05 a.m.
3	OPENING REMARKS
4	CHAIRMAN RYAN: Good morning. The
5	meeting will now come to order. This is the first day
6	of the 153 rd meeting of the Advisory Committee on
7	Nuclear Waste.
8	I am Michael Ryan, Chairman of the ACNW.
9	The other members of the Committee present are Ruth
10	Weiner and Allen Croff. Also present are ACNW
11	consultants William Hinze and Bruce Marsh.
12	James Clark, another ACNW consultant will
13	be joining us later in the meeting. He was
14	unavoidably called away. During the next two days the
15	Committee will conduct a working group meeting to
16	review and discuss issues related to the evaluation of
17	igneous activity and its consequences at a potential
18	geologic repository Yucca Mountain, Nevada.
19	The Committee will gather information,
20	analyze relevant issues and facts, and formulate
21	proposed positions and actions as appropriate in the
22	form of advice to the Commission.
23	The meeting is being conducted in
24	accordance with the provisions of the Federal Advisory

7 Committee Act. The rules for participation in today's 1 2 meeting have been announced as part of the notice of 3 this meeting previously published in the Federal 4 register. 5 Mr. Mike Lee is the designated Federal 6 Official for these sessions. A transcript of this 7 meeting is being kept. And the transcript will be 8 made available as stated in the Federal register 9 notice. 10 It is requested that speakers first 11 identify themselves and speak with sufficient clarity 12 and volume so that they can be readily heard. 13 We have received no request for time to 14 make oral statements from members of the public 15 regarding today's sessions. Should anyone wish to address the Committee, please make your wishes known 16 17 to one of the Committee's staff. 18 an administrative matter, if As you 19 haven't already done so, it is requested that you sign 20 in at the table in the back. We also request that, if 21 you have them, please confirm that your cell phones 22 are turned off or alternatively have been rendered into silent ringing mode. 23 24 Lastly, for those of you who wish to do

8 so, there are comment feedback sheets available at the 1 2 sign-in desk. Items of interest, before starting the 3 first session, I would like to cover some brief items 4 of current interest. 5 August 16th, 2004 President On Bush 6 announced his intention to appoint ACNW members Dr. 7 John Garrick and Dr. George Hornberger to the Nuclear 8 Waste Technical Review Board. 9 Dr. Garrick was designated as the Board's 10 new Chairman. We regret their resignations from the 11 Committee and wish them well in this new endeavor. 12 Congratulations to you both in every success. The Committee and I, as the previous 13 14 Committee Vice-Chair, have assumed the Chairmanship of 15 the ACNW. Volumes one and two of the Nureg 1710 16 series on the history of water development in the 17 Amargosa desert were recently approved for publication 18 by the ACNW's Executive Director. 19 These Nureqs were co-authored by Mike Lee 20 and Neil Coleman of the ACNW technical staff and Tom 21 Nicholson of the NRC's Office of Nuclear Regulatory 22 Research. 23 In addition to service to this Committee, 24 the ACNW has encouraged the support of the Staff's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	9
1	efforts to publish technical reports and papers the
2	Agency's overall mission.
3	Lastly, Mr. Marvin Sikes, a Senior Staff
4	Engineer with the Advisory Committee on Reactor
5	Safety, the ACNW sister Committee, has been selected
6	to fill a branch D position in NRC's region one
7	division of reactor safety.
8	He will depart for his new position in
9	mid-November, and the Committee wishes him well. The
10	ACNW has been tracking developments related to the
11	modeling of a disruptive igneous event at Yucca
12	Mountain for several years.
13	Earlier Committee views on the pertinent
14	issues can be found in five letter reports. Copies of
15	these letter reports can be found in the Committee's
16	internet web, as well as in Nureg 1423, the
17	compilation series for ACNW letters.
18	Most recently, in June 2002, the ACNW
19	conducted a workshop group meeting to learn more about
20	the issues which resulted in the letter report for the
21	Commission dated August 1 st , 2002.
22	WORKING GROUP PURPOSES
23	The overall focus of the working group
24	meeting is to better understand what knowledge base is

10 available for decision making, areas of specific ACNW interest, including understanding the realism of existing approaches and calculations and identifying areas in those approaches and calculations that may require additional work.

6 Consistent with the published agenda, 7 three technical sessions, consisting of about 15 8 presentations are planned over two days to focus on 9 the treatment of probability, consequence, and dose in 10 igneous activity performance assessment analysis.

To help the Committee explore the issues and interrogate the invited speakers, and maybe just have a conversation with the invited speakers, rather than interrogate, a panel of invited experts has been assembled.

They include Dr. Robert Budnitz from the 16 17 Lawrence Livermore National Laboratory, Dr. Dave 18 Johnson from ABS consulting of Irvine, California, Dr. 19 William Hinze, Professor of geology and geophysics at Perdue University, and Dr. Bruce Marsh, professor of 20 21 igneous petrology at Johns Hopkins University, and 22 finally Dr. William Melson, Senior Scientist of 23 volcanology at the Smithsonian Institute in 24 Washington, D.C.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	11
1	Welcome all, thank you very much for your
2	time and participation in this working group meeting.
3	At the conclusion of tomorrow's meeting, Dr. Johnson
4	will provide summary remarks concerning the issues
5	discussed in the context of the application of the
6	risk triplet, the risk triplet being three questions.
7	What can go wrong? How likely is it? And
8	what are the consequences? So, we will be thinking
9	along those lines. The first session planned today is
10	on probability.
11	Areas of specific ACNW interest here
12	include understanding the types and kinds of geologic
13	information needed for generating probability
14	estimates, the uncertainty in that information, and
15	identifying which analytical approaches yield
16	defendable estimates.
17	And, to address these issues, three
18	presentations have been scheduled for the first
19	session. The first presentation will be by Dr. John
20	Trapp of the NRC staff, and will feature a discussion
21	of the geologic features of the Yucca Mountain region
22	considered to be important in the estimation of
23	igneous event probabilities.
24	Dr. Bruce Crowe, of Los Alamos National

	12
1	Laboratory, former principal investigator of igneous
2	activity in DOE's Yucca Mountain programs, and a
3	subject matter expert in the 1996 probabilistic
4	volcanic hazards analysis, will share his perspectives
5	on the type of geologic information that is important
6	to decision making at the time the expert elicitation
7	is conducted.
8	Other perspectives on the interpretation
9	of the local geologic record, and how it affects
10	probability estimates will be made in a presentation
11	by Mr. Neil Coleman of the ACNW staff.
12	He will present a paper that he co-
13	authored with Dr. Lee Abrams of NRC's Office of
14	Research and Bruce Marsh that was recently submitted
15	to geophysical research letters.
16	This paper relies on statistical methods
17	to evaluate the probability of the issue. I'll talk
18	about the second session when we begin that session.
19	So, without further ado, let me turn to our first
20	speaker, Dr. John Trapp.
21	NRC PERSPECTIVE ON VOLCANISM MODELING ISSUES
22	MR. TRAPP: Okay, Good morning. Like I
23	was saying, a few comments. The actual discussion on
24	probability comments will be given by Dr. Britt Hill.

	13
1	I'm going to be presenting just a brief
2	overview of our program, talking about really the
3	main assumptions. That was the second one we were
4	talking about.
5	And then, in addition, talking about what
6	we feel like the risk significant items that we need
7	to understand. That's basically coming out of I
8	partly should first off say some things that we will
9	not be talking about.
10	We will not be discussing any of the work
11	that is presently in progress. Everything that we are
12	talking about today from the NRC perspective will
13	material that is readily available to the public.
14	In addition, we will not be making
15	comments about DOE's licensing case. A, we really
16	don't know it, and B, it's inappropriate at this time
17	to discuss this type of things by the NRC staff.
18	Next slide please. So, what am I going to
19	be doing? I'm basically going to, like I said, be
20	providing a basic assumption, the NRC's and the RPA
21	evaluating these.
22	Based on results that we have are not
23	specific. Next slide please. For those of you who
24	have not been to the area of Yucca Mountain, this was

	14
1	just kind of a slide overview.
2	The center of the slide is Yucca Mountain.
3	If you take a look off to the west, you will see Bare
4	Mountain. And, in between Yucca Mountain and Bare
5	Mountain, there are a series of electrons down there.
6	As you come to the southeast, in the
7	Crater Flat area, what you don't see is a series of
8	other basalts, which are basically 3.7, approximately,
9	a million years old.
10	Farther down, at the very tip of the
11	mountain, you will see the youngest igneous feature,
12	which is present in the area, Lathrop Wells. The
13	Amargosa Desert area is an area which has quite a few
14	varied igneous features and quite a few anomalies,
15	which may or may not be igneous features.
16	This is an area where DOE has run a recent
17	aeromagnetic electromagnetic survey, the results of
18	which are just starting to become available.
19	Yesterday the preliminary results from DOE this
20	hopefully will shed a lot of light on information
21	about the distribution of igneous bodies in the area,
22	and help us work to determine the probability.
23	Jackass Flats, which is on the west side,
24	or the east side of Yucca Mountain, has feature

15 covered mountains -- the Fortymile Wash basin, which 1 2 going to be quite important in the is whole 3 discussion. 4 Let's take a look at these. That's of the 5 wells that was drilled by -- there was a basalt of, I 6 and a half, believe, nine а million years, 7 approximately from that well. 8 More important, for the sake of some of 9 the discussions that will be going on negative today, 10 if you notice, the drainage coming out of Fortymile 11 Wash, you will see just along the highway, running east and west through that area 23 feet that the 12 13 characteristic of the drainage system changes 14 tremendously. 15 You're going from a marginal system into 16 a depositional system. This also happens to be 17 approximately in the area where the reasonably 18 maximally exposed individual, the person that we have 19 to use to characterize doses to the public too high. 20 Next slide please. So, what are some of 21 the basic assumptions? Well, if you took a look at 22 that slide, you will see that a small volume of 23 basaltic cones have occurred in the general area of 24 Yucca Mountain in the past.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	And there is some potential that there
2	will be future basaltic igneous events that could
3	possible occur. We modeled it, the DOE has modeled
4	it, the State has modeled.
5	So far, all the models and there is
6	quite a bit of arguments back and forth on what the
7	probability is but, all the probability models come
8	out a value that's larger than regulatory requirements
9	considered in our performance assessment.
10	There is large uncertainty with this, like
11	I said DOE has finished the aeromagnetic survey. They
12	have been doing some drilling with some of the
13	anomalies to determine which ones really are under the
14	basalt.
15	They are going to be digging those
16	basalts. All of this will hopefully produce the
17	uncertainty on this probability. Next slide. If you
18	take a look at the volcanoes that you've got in the
19	aerial, you'll see that these all produce not only
20	lava flows, but their results, the deposits, show
21	periods of sustained eruption columns with buoyant
22	tephra plumes.
23	If you take a look at the historically
24	active analog, what you will see is these type of

17 volcanoes have the capability of hitting buoyant 1 2 plumes and transporting them 10 to 100 kilometers 3 downwind. 4 If you take a look at some of the recent 5 results that have been published in the literature, 6 what you will find is, contrary to some of the earlier 7 modeling and some of the assumptions, these basalts 8 are actually quite wet. 9 They have got -- the best estimate would 10 be something like about four percent water. One of 11 many of the original modeling studies on these were 12 done with much lower water percents. 13 And what we are talking about is, with 14 this high water, you definitely have potential 15 fragmenting and getting these connected dispersive 16 plumes. 17 Next slide please. One of the questions 18 that has been asked quite a few times in the past is, 19 why didn't we put any other -- a risk likely to in 20 this? 21 Well, one of the reasons is, there really 22 isn't a good way to measure how big the volcano is. 23 Here is one example. If you take a look along the 24 top, you will see that, really what it is talking

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	18
1	about is two factors.
2	How much tephra is produced in the ash?
3	And how high do these columns get? It doesn't talk
4	about the total volume of magma produced. It concerns
5	some of the other type eruption sequences.
6	If you go on down, you will look at the
7	volcanic explosive that makes number two. And,
8	basically, this is of all the studies we have done,
9	approximately a majority of the events they may
10	sneak down to a one.
11	They may sneak up to a three. But,
12	really, we're talking about a single class for all
13	practical purposes, is ten to the minus seven cubic
14	meters tephra and columns on the order of two to five,
15	maybe seven, possibly even size ten, but I doubt that
16	high.
17	Another important point is, if you go on
18	down a line, you will see that these do not get into
19	the stratospheric level. So, this is very important
20	in talking about some of the potential health effects
21	and other considerations for that.
22	Next slide. Another assumption that we
23	have is that the waste package is intercepted by magma
24	and be subject to very high thermal stress, and very

	19
1	large mechanic stress.
2	This is a likely caused failure of the
3	canister. And, therefore, many radioactive waste is
4	exposed to magma. We have given this problem to our
5	waste package engineers and talked about the
6	conditions that we got in this type of situation.
7	And, with the days to weeks that this
8	package would be subject to these types of thermal
9	stresses, mechanical stresses, the conclusion that we
10	come to is that this package well, basically, can
11	be breached.
12	Our assumptions in the what we have
13	done, is assumed the waste package offers no
14	protection whatsoever. This assumption has been used
15	in previous DOE analysis.
16	It may change, etcetera, but this is the
17	present assumption that we are using. Next slide.
18	Okay. We've got the package breached. So what
19	happens?
20	Well, we've got the waste sitting there.
21	And this is now assumed to be available to put in the
22	tephra column. We don't really model, like I said,
23	lava flows for a very simple fact.
24	If you take a look at all the data that

(202) 234-4433

	20
1	you've got, a lava flow by itself really doesn't pick
2	up too much. We do not assume that this waste melts
3	in the basalt, because, really, we do not have the
4	type of material that would dissolve in magma.
5	What we're following is what you see in a
6	normal eruption, the fragmentation of the wall rock,
7	the fragmentation of the material. This gets broken
8	down in small sizes and traded with the material, and
9	put up, and then transformed back.
10	Next slide. Okay, you've got stuff up in
11	the air. You've got a transporter downwind. It falls
12	to the ground. Well, when it hits the ground, we're
13	basically assuming that, yes, you can suspend the
14	stuff into the air, from which people can breathe it
15	and get a dose.
16	This turns out to be the igneous scenario,
17	the main method by which the dose gets in the we're
18	using a bunch of very simplified assumptions going all
19	the way through this.
20	It really boils down to two primary
21	factors. What mass loading factor do we use, and how
22	long does the deposit last? Next slide. The next
23	assumption we talked about, we took a look at where
24	the site was.

	21
1	Okay, and take a look at where the remedy
2	is, and try to do what I talked about, modeling
3	assumptions. The majority of the time, based on our
4	knowledge of the winds and the altitude, the tephra
5	column will not go directly to the RMEI.
6	It would sometimes. But, most of the
7	times, it would be blown somewhere east and deposited
8	at Jackass Flats. So, I'm going to get to the RMEI.
9	I'm going to get to the RMEI by two means.
10	It can be brought down by strain erosion. And, if you
11	took a look at the Fortymile Wash, what you will see
12	at the Fortymile Wash, like I said, as you go right at
13	the RMEI location, right before the erosional
14	sequence, that position of sequence.
15	It can also be brought by wind erosion,
16	etcetera. This, we believe, is a very important
17	factor which needs to be taken care of. And we're
18	working on that with the Staff.
19	Next slide. So, what's important? Well,
20	according to our code, what is the probability of an
21	event. This is apparently straight-forward. The rest
22	is directly proportional to the probability.
23	Dr. Britt Hill will be presenting
24	information on that. Another significant thing, well,

	22
1	the waste package is intersected by volcanic events.
2	And we're talking about the risk being
3	proportional to the amount of waste that can be
4	exposed. So far, packages in a larger area, the large
5	area was.
6	The volume of ash produced during an
7	eruption was important. And this is actually the
8	inversely proportional, because, what you end up with
9	here is a delusional package.
10	Larger volume eruptions tend to dilute the
11	amount the material that is there. Smaller volume
12	eruptions encounter larger concentrations. With these
13	two factors, especially number two that we will
14	discuss to certain extend this afternoon when we get
15	to that session.
16	Next slide. As I mentioned,
17	remobilization of the process is important, because
18	this will keep the majority of the ash to the
19	location. Dr. Don Hooper will be discussing that, I
20	believe, in tomorrow's session.
21	He will talk about the modeling in this
22	area. And, like I mentioned, inhalation is the major
23	factor by which you get the dose to the humans.
24	So, we will have a discussion talking

	23
1	about this fact, this subject matter, and how it is
2	handled. These are the important things that we see
3	in the load.
4	They can all be discussed in more detail
5	later.
6	CHAIRMAN RYAN: Thank you, Dr. Trapp. And
7	thank you for competing with the music next door.
8	Maybe we can get somebody to see about turning that
9	down just a tweak.
10	Thank you. Are there any openings? I
11	think John set the stage for the following
12	presentations and their own opening for John. Or
13	shall we reserve out thoughts for the more detailed
14	presentation? Yes, Bill Hinze?
15	MR. HINZE: Well, let me ask you, John,
16	you did an excellent job going through all of the
17	assumptions at various stages.
18	CHAIRMAN RYAN: You have to flip the
19	microphone on.
20	MR. HINZE: I would like to ask you about
21	this. We all understand that there are uncertainties
22	with modeling because you use various assumptions.
23	Some of these uncertainties remain.
24	Others, we would like to and Britt will expand upon

	24
1	this. Which of these has the greatest chance in the
2	next few years of decreasing the uncertainty with
3	better models, with better data?
4	MR. TRAPP: I think we can reduce the
5	uncertainty quite a bit by taking a look at the
6	remobilization. I think that is an extremely
7	important factor.
8	Again, you are correct, you have large
9	uncertainties. And we're not going to get rid of them
10	by coming out in the DOE program to reduce the
11	uncertainties in the probability model.
12	Again, we will not eliminate them. But we
13	will reduce them. There is work that is going on in
14	the understanding of magma flow, some of which you've
15	got some preliminary. And there is quite a bit more,
16	which we cannot discuss at this time.
17	And, yes, I think there will be some
18	reduction in uncertainty in that area, but not as much
19	as we could probably expect over the areas of the
20	remobilization period. Britt, would you want to
21	comment on that?
22	MR. HILL: That was fine.
23	CHAIRMAN RYAN: Any other opening
24	questions or comments?

	25
1	MR. HINZE: If Britt doesn't have a
2	comment, I would like to ask you about this dilution
3	that you mentioned. And perhaps Don will expand upon
4	this in his presentation.
5	I understand he's making a presentation on
6	this re-distribution of distribution. Yes, you
7	mentioned that you are really interested in having
8	more tephra because that leads to dilution.
9	But, according to your slide six, as we
10	have larger amounts of tephra, our column height also
11	increases.
12	MR. TRAPP: Right.
13	MR. HINZE: And that means that to me
14	you have greater dispersion. And so, does this
15	necessarily mean that, as you go from violent to
16	whatever, that you really are leading to dilution?
17	MR. TRAPP: If you could have those type
18	of eruption, yes you would be getting a tremendous
19	amount of more dilution. But, seeing no evidence that
20	we would have eruptions or volcanic activity, it would
21	be anything more than approximately two.
22	So, we're really talking about a very
23	limited subset of that. You would not have something
24	like a PDI 4 or like a Mount Saint Helens.

	26
1	MR. HINZE: It just seems to me that, if
2	you have more, you don't dilute because you're
3	throwing it up higher and spreading it out more.
4	MR. TRAPP: That's true.
5	MR. HINZE: Okay.
6	CHAIRMAN RYAN: John, just a quick follow-
7	up as just kind of a question for maybe some of the
8	other presenters as well. We kind of end up at the
9	end of the day with a question of what is in the air
10	that's inhaled by the RMEI or some theorized person?
11	You've touched on a lot of very complex
12	processes that get us to what is an irrespirable size
13	range in the fraction for that exposure scenario.
14	That's very complicated. And Bill has
15	touched on one aspect of that. So, to the extent you
16	and the other speakers can talk a little bit about,
17	you know, what part of the mobilization process in an
18	event leads us to that endpoint of irrespirable
19	particles. That would be real helpful.
20	MR. TRAPP: Part of what Britt will be
21	talking about will cover that. Don will definitely
22	cover that. Keith Compton will go into effects.
23	CHAIRMAN RYAN: Thanks. To me, that's
24	kind of the focal point. Because, at the end of the

	27
1	day, having uncertainty on that is really where you
2	can kind of begin, you know, be satisfied or
3	unsatisfied with the uncertainty question.
4	MR. TRAPP: Like I said, Don will be
5	discussing that.
6	CHAIRMAN RYAN: Okay, great. Thanks.
7	MR. HILL: This is Brittain Hill at the
8	CNWRA. I just wanted to clarify a little bit for Dr.
9	Hinze in response to his comment. In our performance
10	assessment and calculates, we allow the total volume
11	of tephra to be ten to the sixth to ten to the eight
12	cubic meters.
13	But, the column height is though of not
14	only of the volume, but the rate that it would come
14 15	only of the volume, but the rate that it would come out. So, we also vary the duration of the event
15	out. So, we also vary the duration of the event
15 16	out. So, we also vary the duration of the event between essentially one day to like a week.
15 16 17	out. So, we also vary the duration of the event between essentially one day to like a week. It's about five days, is our approximate
15 16 17 18	out. So, we also vary the duration of the event between essentially one day to like a week. It's about five days, is our approximate sort of mass blow. So, the column height, while it is
15 16 17 18 19	out. So, we also vary the duration of the event between essentially one day to like a week. It's about five days, is our approximate sort of mass blow. So, the column height, while it is partially a function of volume, is also a function of
15 16 17 18 19 20	out. So, we also vary the duration of the event between essentially one day to like a week. It's about five days, is our approximate sort of mass blow. So, the column height, while it is partially a function of volume, is also a function of duration.
15 16 17 18 19 20 21	out. So, we also vary the duration of the event between essentially one day to like a week. It's about five days, is our approximate sort of mass blow. So, the column height, while it is partially a function of volume, is also a function of duration. So, when we run a large number of
15 16 17 18 19 20 21 22	out. So, we also vary the duration of the event between essentially one day to like a week. It's about five days, is our approximate sort of mass blow. So, the column height, while it is partially a function of volume, is also a function of duration. So, when we run a large number of realizations in our performance assessment, we can

	28
1	We can also have larger volume events that
2	would happen over a long period of time, that would
3	give us the lower volume. It's not quite as
4	straightforward as simply larger volume, more distal
5	dispersion.
6	And, also, the source is about to vary
7	between one and ten waste packages per event. So, we
8	are getting that full sample in the variability. And
9	no one particular size is truly driving the risk
10	analysis.
11	MR. HINZE: I think we'd all like to hear
12	about that in more detail as the presentations are
13	made. I guess one of my concerns is that this is a
14	useful chart, but it is very simplistic. And that's,
15	I think, what you are saying.
16	MR. HILL: Yes.
17	MR. HINZE: Yes, don't hang your hat on
18	that.
19	MR. HILL: No, this figure was just meant
20	to be an example of the full range of volumes that
21	volcanoes can produce. And, relative to that full
22	range, here is the area of interest for a particular
23	hazard related to potential
24	MR. HINZE: There are a lot of problems

	29
1	with Richter magnitude, but at least it's
2	MR. HILL: Right.
3	CHAIRMAN RYAN: Any other questions?
4	You've accomplished the goal of the first speaker,
5	which is to get everybody's attention and stimulate
6	their interest. So, off we go.
7	NRC OVERVIEW OF IGNEOUS ACTIVITY AT THE YUCCA
8	MOUNTAIN REGION
9	MR. HILL: Good morning. It's nice to see
10	we have such a taste in laptop computers. That's the
11	correct one. I'm Brittain Hill. I'm the principal
12	investigator for igneous activity at the Center for
13	Nuclear Waste Regulatory Analysis.
14	And, this first talk this morning, I would
15	like to talk to you about some of the Staff's
16	positions and tools that we have developed for
17	assessing the effects of uncertainty on probability
18	estimates for potential volcanic eruptions at the
19	potential repository site at Yucca Mountain.
20	Next slide, please. After a brief
21	introduction, it includes a little bit of regulatory
22	basis. I would like to talk about some of the
23	uncertainties that we have in very basic probability
24	estimates and also make sure that we all have a common

30 framework or common definition for the remainder of 1 2 the talk. 3 I will then focus on some of our current 4 views on the spatial and temporal uncertainties that 5 affect probability models in the Yucca Mountain region and see how those uncertainties can affect the NRC 6 7 probability estimate, and of course, wrap it up with 8 the conclusions. 9 Next slide, please. I quess that's my 10 soundtrack. That's fine. What we are going to call 11 upon to evaluate the probability models and licensing, you have to keep in mind that these probability models 12 13 -- performance assessment. 14 And so, requirements for review under 10 15 CFR 63.114 are going to apply. In particular, the 16 models for probability need to include actual 17 geological and engineering data, account for data variabilities and uncertainties, consider the effects 18 19 of alternative conceptual models, evaluate events with 20 likelihoods greater than one in ten thousand in ten 21 thousand years, include events that significantly affect risk calculations, and also be supported by 22 23 objective comparisons. 24 So, we have to keep that in mind when we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	31
1	start looking at the currently available information
2	around Yucca Mountain and how that information affects
3	the probability model.
4	And right now, some of the questions that
5	we're asking are how many past events have there been
6	in the Yucca Mountain region? What are these igneous
7	event locations?
8	And what are the event agents. So, I
9	don't want to call this a probability triplet, but
10	there is some parallelism on number, age, and location
11	of past igneous events.
12	And, to cut to the chase, our conclusion
13	is that, from the available information, you can have
14	multiple interpretations and large uncertainties from
15	what we currently have available for assessing
16	probability in the Yucca Mountain region.
17	Next slide, please. One of the basic
18	uncertainties that we have to address, and to begin a
19	definition for any presentation, is what makes up an
20	igneous event?
21	And, taking a figure from the Department
22	of the NRC's technical basis document 13 on igneous
23	activity, to illustrate what the uncertainty is in
24	finding an igneous event.

	32
1	This figure is a geologic map showing the
2	4 million year old basalt outside Southeast Crater
3	Flat. There's a series of numbers out there. Number
4	one, two, and three mark locations that I think, as a
5	general agreement, represent the volcanic center.
6	This is a place where we have a hole in
7	the ground where molten rock came up and material was
8	dispersed in the accessible environment. But we also
9	have points four, five and six, that may represent
10	vent locations.
11	There's just a little less certainty about
12	whether these were large vents, small vents, or vents
13	that could start the beginning phase of an eruption
14	only.
15	So, how many vents were erupting at the
16	same time? How many vents may have erupted in
17	sequence, may have represented gaps in time to be
18	counted as separate volcanic episodes?
19	There's multiple interpretations that you
20	can place just on these six features. For the
21	purposes of this talk, I'm going to keep the simplest
22	definition possible.
23	An igneous event is a volcano that has a
24	hole in the ground. And we're just going to count up

	33
1	holes in the ground or cinder cones and call those our
2	igneous event with this presentation.
3	We also know, in igneous events, have to
4	worry about the subsurface conditions. What's going
5	on beneath the volcanoes as well? And one of the
6	things we see out here in Crater Flat, is the
7	subsurface features, which are called intrusions,
8	extend for 50 years plus laterally away from our
9	vents, and for some unknown distance longitudinally to
10	the north and south in these vents as well.
11	So, in characterizing igneous events, we
12	not only have to find out the surface expressions, but
13	the sub-surface expression as well. And one other
14	point, when you talk about igneous event, is relevant
15	to this.
16	Do you notice how these lava flows have
17	been folded and partially eroded through time? Now,
18	if you continue the deposition process out here and
19	bury these lavas between tens or even 100 meters worth
20	of alluvium, how would you interpret igneous events
21	from this disruptive feature if all you had to go on
22	was a pattern of colors in the geomagnetic map?
23	Keep that in mind when we start looking at
24	pattern analysis in the later part of this talk. We

	34
1	may not be seeing in the subsurface impact features.
2	We have to consider the possibility that these
3	features, like this one at Crater Flat, have been
4	disrupted, faulted, eroded, and then buried.
5	Next slide, please. One other very
6	fundamental uncertainty or assumption in probability
7	models is, what's the extend of the igneous system
8	that we're trying to model.
9	This figure is showing in red basalts
10	that's younger than about 11 million years old. And
11	all of these parts of basalt at one time or another
12	have been used to bring various definitions of what
13	makes up the Yucca Mountain igneous system.
14	These definitions have been based on
15	associations in age, location, and chemistry. And,
16	you can't quite see it, but, the potential repository
17	site is right here on the boundary of the NTS.
18	Now, there's not correct definition of
19	what makes up Yucca Mountain igneous system. The
20	point that we have to make, though, is that a basis
21	for selecting some subset of these basalt features
22	needs to have a clear, consistent basis.
23	And that basis has to be used consistently
24	throughout the probability estimate and any resulting

	35
1	consequence analysis based on that probability
2	estimate.
3	Next slide. So, that being said, I'm
4	going to say what we think the relevant Yucca Mountain
5	igneous system is for the purposes of these.
6	What I'm showing in this figure is the
7	regional gravity survey that's done by the U.S.
8	Geologic Survey a few years ago. What it shows is, in
9	the hot pink colors and orange colors, are areas of
10	fairly dense crustal rock.
11	The cooler colors down in the greens,
12	yellows, and blues, represent low density crustal
13	rock. The reason we are using gravity, is this is a
14	real good regional indicator of structure.
15	What we see is this long feature through
16	here with the low density rock represents an
17	extensional basin where the crust has been pulled
18	apart and in field with low density alluvium and
19	tuffaceous rock.
20	The other rocks in high density here and
21	here haven't been as disruptive in recent time, and
22	consist of older, more crisp rock, like around Bare
23	Mountain.
24	For convenience, we're just going to refer

	36
1	to this feature as the Amargosa Trough structural
2	basin. Now, a little bit on the west, by Bare
3	Mountain by this gravity anomaly, and by the east, by
4	what's commonly referred to as the gravity fault, and
5	extending some unknown distance up towards the old
6	caldera complexes into the mountain.
7	And, again, within the Amargosa Trough is
8	what we think the basaltic features are that are
9	relevant to our probability estimate. And, we're
10	defining igneous events in the following analyses as
11	individual volcanoes that occur within this Amargosa
12	Trough.
13	Based on that definition, we have a
13 14	Based on that definition, we have a starting point of 24 past events in the Yucca Mountain
14	starting point of 24 past events in the Yucca Mountain
14 15	starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis.
14 15 16	starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis. Okay, do not adjust the dials. This is
14 15 16 17	starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis. Okay, do not adjust the dials. This is actually what the data is supposed to look like, these
14 15 16 17 18	starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis. Okay, do not adjust the dials. This is actually what the data is supposed to look like, these wild colors. This is the 2000 or 1999 U.S. Geological
14 15 16 17 18 19	<pre>starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis.</pre>
14 15 16 17 18 19 20	<pre>starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis.</pre>
14 15 16 17 18 19 20 21	<pre>starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis.</pre>
14 15 16 17 18 19 20 21 22	<pre>starting point of 24 past events in the Yucca Mountain region t use in the following sensitivity analysis.</pre>

	37
1	are buried and exposed at the surface in this region.
2	We've gone ahead and done a little
3	filtering on these data to enhance the basalt features
4	in the region. The important point here is, we have
5	known features, known igneous events, and surface
6	such as Red Cone, Black Cone, Lathrop Wells, that
7	create obvious anomalies, when you know where to look.
8	The anomalies are just these patterns in
9	the magnetic data that have characteristics
10	representative of buried basalt or strongly magnetized
11	rock.
12	But, the U.S. Geological Survey and
13	ourselves have also identified other areas that are
14	representing sub-surface, buried rock that may
15	represent a very igneous event.
16	And these interpretations are shown on the
17	figure on the right, graded by competence level. The
18	red features are ones that we have high confidence in
19	representing buried basalt.
20	The green features, for example, this
21	from L, M, N, O and two we have moderate confidence
22	that these anomalies represent buried basalt.
23	And, in blue, we have low confidence but
24	can't eliminate the possibility that these anomalies

38 could represent buried basalt. So, one of the primary 1 2 uncertainties that we're having to evaluate right now 3 is, given these anomalies, what if they represent 4 buried basalt? 5 How would the addition of these buried 6 potential features affect our probability estimate? 7 Next slide, please. We have the aeromagnetic survey 8 that shows us features that we can detect, 9 But, along with that data, we can also see 10 that there are some features that we know exist. But 11 we haven't found them yet. They don't create obvious magnetic anomalies. 12 13 So, we have to consider the potential to 14 have additional features located in this region buried 15 in the subsurface that the exploration techniques have been unable to detect. 16 17 One of the ways, and not the only way, you 18 can do it -- but, one of the ways that you can try to 19 get an estimate for potentially buried features is, 20 look at the spatial density of the volcanic fields and 21 compare it to other volcanic fields and say, well, 22 there's a long list of low, and a long list of high. 23 How could you add additional events and 24 change such spatial vents? What we see is, within

	39
1	this Amargosa Trough volcanic system, just with our 24
2	known events, we have a spatial density of one volcano
3	every 29 square kilometers.
4	For comparison, when we look at other
5	volcanic fields in the western great basin, like the
6	Cima volcanic field in California, they have the
7	density of one volcano every four square kilometers.
8	Lunar Crater up in Nevada has one volcano
9	every six square kilometers. The older Pancake range
10	volcanoes are about one volcano every eight square
11	kilometers.
12	And finally, the Big Pine field in the
13	valley of California has a lower density of about one
14	volcano every 16 square kilometers. From the water
15	well drilling out there, we're pretty sure there is
16	some additional hidden events out in the Big Pine
17	field as well.
18	So, we can see that the spatial density of
19	volcanic features in the Amargosa Trough are very
20	pretty low compared to other similar volcanic fields
21	in the western Great Basin.
22	The exploration technique, the
23	aeromagnetic technique that has been used, we have
24	fairly high confidence that the survey has been able

	40
1	to technique buried igneous features in the southern
2	half of the Amargosa Trough.
3	The reason for that is the basement in
4	this area is magnetically very quiet. So, strongly
5	magnetized rock like basalt, will really stand out on
6	aeromagnetic surveys.
7	So, we're not concerned about undetected
8	significant features at this stage in the Amargosa
9	Trough in the southern part. But we have these two
10	areas throughout Jackass Flat and Crater Flat where
11	the magnetic basement is very noisy.
12	And that noise may be masking additional
13	features in the subsurface. Right now we have a
14	volcanic density of one volcano every 13 square
15	kilometers.
16	Just for comparison, if you wanted to get
17	that spatial density up to something comparable to
18	Cima the most dense volcanic field in this analysis
19	you're going to have 26 buried events in order to
20	get that high of a stageable density.
21	That's just a major comparison not that
22	we think you have to have any volcanoes out there.
23	Also, at Jackass Flat, you've got one volcano every
24	160 square kilometers.
	l

	41
1	Now, it is entirely possible that that is
2	the actual spatial density within Jackass Flat and
3	that there are no buried, undetected features in
4	Jackass Flat or Crater Flat.
5	But, right now we can't eliminate that
6	hypothesis. And we have to factor in our uncertainty
7	analysis the potential for undetected events, as well
8	as the events that have been detected by current
9	exploration techniques.
10	MR. HINZE: Mike, is it possible to ask a
11	question?
12	MR. LEE: Sure, I guess so.
13	MR. HILL: Sure Bill.
14	MR. HINZE: The one volcano per 29 square
15	kilometers seems to be key to this discussion. And,
16	it seems to me that your region of the Amargosa Trough
17	does not correspond with the complete region of the
18	Amargosa Trough that you outline in the previous
19	gravity slide.
20	Am I wrong, or right? Or what's wrong
21	here?
22	MR. HILL: It's the extent of volcanic in
23	the Amargosa Trough. Now, the Amargosa Trough, as a
24	crustal structure, extends down all the way into Death

	42
1	Valley, and all the way up into the lunar crater area.
2	MR. HINZE: And it extends considerably
3	south. So, if the Amargosa Trough is controlling
4	this, shouldn't we be concerned with the number of
5	volcanoes per square kilometer or the volcanoes per
6	kilometer, considering the Amargosa Trough problem?
7	MR. HILL: No, I don't believe so, because
8	the Trough is a structural control on ascending magma.
9	Not everywhere in the mantle, though, we believe this
10	for the production of basalt.
11	We have many areas that are extended and
12	lack any appreciable volcanism, not only in the
13	Amargosa Trough, but in other parts of the basin and
14	range as well.
15	So, you have to have an intersection of
16	the whole extended crust and further mantel in order
17	to get volcanism.
18	MR. HINZE: Okay, so you are arbitrarily
19	selecting the north and south
20	MR. HILL: Not arbitrarily. I'm selecting
21	the north and south boundary that, within the last
22	billion years, defines the extent of volcanism within
23	the Amargosa Trough.
24	Until you get down to Death Valley, many

	43
1	tens of kilometers to the south, you're not seeing
2	more volcanism. In the same way, this is butting up
3	against the Caldera Mountain a little south of
4	Caldera Mountain.
5	But, it's the northern extent of Solitario
6	dike complex. We're coming up very close to the
7	Caldera mountain. And I think that's defining a
8	tectonal magnetic regime that we're calling the
9	Amargosa Trough.
10	CHAIRMAN RYAN: We have one follow-up
11	question from Bruce Crowe.
12	MR. HILL: Yes, Bruce?
13	MR. CROWE: I'm Bruce Crowe of Los Alamos
14	Lab. One question I have I messed around with
15	doing cone densities as well. And what I tried to do,
16	though, was divide them in age increments, because you
17	really need to look at how densities have changed
18	through time.
19	And, if you look at the forming, you know,
20	record, versus say the you're going to get somewhat
21	different cone densities, both in Crater Flat Amargosa
22	Trough, and in Lunar and Cima. Have you tried doing
23	that?
24	MR. HILL: To an extent. One of the

	44
1	problems is, while we have good dating in the Yucca
2	Mountain region, these other analogs we have very
3	loose dating.
4	So, I tried to give a representation of
5	the and Pliocene fields. But I don't think any of
6	these fields have Pliocene database that we can go
7	into.
8	As you're well aware, we have some
9	disagreements about the relevant of the Miocene. And
10	I think that's a fair interpretation. And we believe
11	the Miocene from 11 million years, and then to the
12	third.
13	In other words, the past 11 million years
14	is relevant to the probability estimate. Whereas,
15	others are saying that only the past five million
16	years of volcanic history is relevant in their
17	probability estimate.
18	So, for this talk, I'm trying to be
19	consistent with our published positions using the
20	Miocene record, and in standard volcanism the
21	Amargosa Trough.
22	Again, these are not the only potential
23	analogs. They are the most analogous of the Western
24	Great Basin. And they are the limits of the available

	45
1	data for age clustering.
2	Given the uncertainty in the potentially
3	varied events where we don't know the ages of them,
4	we're trying to do more refined approach at this
5	stage, really just pushing it forward.
6	But, to get to, is that to emphasize
7	the main points here for the spatial uncertainty. We
8	may have no undetected events. But we can eliminate
9	the potential for undetected events.
10	We have to come up with some way to
11	quantify in a traceable methodology a way to say how
12	many could there be in this area? And, by looking at
13	a general sense of spatial density, we say that, given
14	an uncertainty of one to ten present undetected
15	events, seeing a reasonable starting point in a
16	sensitivity analysis for evaluating whether this kind
17	of an uncertainty in undetected events is significant
18	or insignificant to the probability estimate.
19	And, just as a point of comparison, if we
20	were to have ten additional events in the Amargosa
21	Trough, we would increase the spatial density within
22	this region from 29 or one volcano for 29 square
23	kilometers, down to one volcano for 23 square
24	kilometers.

	46
1	So, it's not an absurd over-estimate of
2	spatial densities for the Yucca Mountain region.
3	MR. CROWE: Just a follow-up, if I may.
4	If I understand your record, you start with the
5	premise what is there at one to ten present but
6	undetected events.
7	I ask the question, what's the probability
8	of it being one to ten undetected events?
9	MR. HILL: Based on the currently
10	available data, we think that let me back up for a
11	minute. When we had a meeting about a year ago with
12	the U.S. Geological Survey, Department of Energy and
13	others to evaluation the aeromagnetic data, we all
14	agreed that there were a number of known surface
15	features that were difficult to resolve in the
16	aeromagnetic data.
17	So, they were giving a sort of anomaly
18	patterns. They didn't know that basalt was at the
19	surface. You'd have a difficult time convincing
20	yourself that that anomaly represented surface basalt.
21	So that's the first point of why I think
22	there may be contentions there. The second is, out at
23	this location, at Jackass Flat, according to early
24	warning wells, we encountered basalt at about 1,300

	47
1	feet below the surface.
2	That basalt is in an area that has no
3	obvious magnetic anomaly. And that depth that
4	encountered basalt is likely deep enough to attenuate
5	any magnetic character of a buried well.
6	So, we have known features that don't give
7	us a clear anomaly in both the surface expression and
8	in the sub-surface expression. So I believe it is
9	reasonable to assume that there could be additional
10	undetected features here, based on the limits of the
11	current exploration technique to detect known igneous
12	features in the region.
13	I cannot give you a probability estimate
14	though. I think that's so speculative on top of a
15	speculation, on top of a hypothesis, that we really
16	can't gain much knowledge that way.
17	CHAIRMAN RYAN: And therein is my problem
18	in that, you know, we are in a way scuba-diving around
19	in open. We really don't know where the bubbles are
20	and where uncertainties are at this point.
21	Perhaps the new aeromagnetic data helps
22	us, you know, resolve some of that. But that, to me,
23	is kind of a critical issue, because, without knowing
24	where you are in the probabilities space of all those
I	1

	48
1	potentials, you can run into not really knowing how to
2	interpret what the hypotheses are.
3	MR. HILL: We don't need a probability to
4	evaluation the significance of alternative conceptual
5	models.
6	CHAIRMAN RYAN: But you do need the
7	probability to know which one is real.
8	MR. HILL: Conversely, you can start with
9	a reasonable range of uncertainty, let's say one to
10	ten undetected events. Let's analyze that in the
11	models and see whether it is significant.
12	And it may a lot easier to gain a
13	reviewable consensus that says, we think if there are
14	undetected volcanoes, there's less than ten of them,
15	or less than five of them in the region.
16	When we can all agree to that to develop
17	a basis for it, rather than trying to come up with
18	probability distribution function that is going to be
19	by it.
20	CHAIRMAN RYAN: I appreciate the fact that
21	you are trying to that's different than being risk
22	informed. So, I just want to clarify these two
23	different lines of thought.
24	MR. MARSH: I think this is one way to
	I

	49
1	kind of justify adding events in. But, it might be
2	actually a more illustrative calculation. You just
3	started with the probability basis itself and just
4	kept adding until we became alarmed.
5	In other words, we may have to add 5,000
6	to actually make it. So, we're basically wasting each
7	other's time down at this level. And that also
8	answers Mike's question a little bit, in that it puts
9	uncertainty on this in terms of saying how much
10	seriousness do we have to put into actually adding and
11	comparing to these other fields up there that are
12	basically very homogenous in age fields that we can
13	interpret very simply and whether this field here, as
14	Dr. Hill mentioned, is.
15	We're looking at stat data over time, and
16	so forth. It might even to the chase. Just look
17	at the numbers, add them in directly, justify them
18	later, worry about it after.
19	MR. HILL: The talk is we're around the
20	first corner, and we're cutting to the chase. I think
21	I'll address your comment in a few slides here.
22	Let's go on. Okay, and this is just a
23	very quick summary of our view of current spatial
24	uncertainties in probability. The addition of the 11

	50
1	anomalies that are well recognized by ourselves and
2	the U.S. Geological Survey would increase
3	CHAIRMAN RYAN: Shut the microphone off,
4	I think we can hear you.
5	MR. HILL: Well, will that affect the
6	recording.
7	COURT REPORTER: I have a back-up here.
8	MR. HILL: Okay. Can everybody hear me
9	now, without the feedback? Excellent. Okay, we're
10	looking at, with the addition of the magnetic
11	anomalies that we have high to moderate confidence in
12	that increases the spatial recurrence rates for about
13	one volcano for 40 square kilometers, to one volcano
14	for 29 square kilometers.
15	Again, a comparison with the volcanic
16	fields, the point that we had made before about the
17	limited resolution of known features, the accounting
18	of basalt in 23E is the basis for suggesting that
19	there could be additional undetected events.
20	And, finally, for spatial uncertainty, if
21	we add one to ten additional events, the spatial
22	recurrence rate would increase form 29 excuse me,
23	one volcano for 29 and one volcano for 23 square
24	kilometers, a very modest increase in spatial density.

	51
1	So, let's move on from spatial, and go on
2	to the temporal uncertainty. Now, again, there's no
3	correct definition of an igneous event. And I know
4	there are people in the audience that have alternative
5	definitions of what constitutes an igneous event.
6	But, at the ousted I said, where is an
7	igneous event definition that's each individual vent
8	is an igneous event, a cinder cone event, very simple.
9	What we've done is plotted out the number
10	of cinder cones, and cinder cone remnants that we have
11	in the region against their ages. The points that are
12	in gray are the ones that just to be honest are
13	altitude interpretation that sometimes lump them all
14	together as a single event.
15	But, again, to be consistent, these are
16	the 24 individual events that we are using for the
17	purposes of this talk. And these are the basic data
18	that we have for when have past igneous events
19	occurred in the Yucca Mountain region for the past 11
20	to 11.4 million years.
21	Next slide, please. So, our base case, if
22	you take a longer 11 million year average, we have the
23	24 events for 11 million years, to give you a temporal
24	recurrence rate of two volcanoes every million years.

52 But now, we somehow have to address what's 1 2 the age of these magnetic anomalies? We have higher 3 confidence in the buried basalt. We don't have any 4 dates on these anomalies. 5 look at alternative So, have to we 6 hypotheses on what these dates could be, based on our 7 interpretations of past patterns of activity in the 8 Yucca Mountain region. 9 So, let's just say in the first hypothesis 10 that these anomalies represent basalt that have ages 11 that are randomly distributed between two million years and 11 million years. 12 13 You don't think, by the way, that any of 14 these anomalies are younger than two million years 15 They are too far below the subsurface to be two old. million year old or younger basaltic features. 16 17 But, if we just say that they represent 18 randomly aged events, we would add in up to 35 19 volcanoes, 11 million years, temporal recurrence rate 20 goes from two volcanoes per million years, up to three 21 volcanoes per million years, not a really large increase in temporal recurrence rate. 22 23 Next slide, please. We also have to 24 consider that maybe these are related to a younger

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	episode of volcanism, something that's no younger than
2	five million years old and has nothing to do with the
3	past five to 11 million years.
4	So, if we just look at the available data,
5	we have 19 events in the past 5 million years of
6	temporal recurrence of four volcanoes per million
7	years.
8	Add in the 11 anomalies, and again, assume
9	that they are randomly distributed ages between two
10	million and five million years and you end up with a
11	recurrence rate of six volcanoes per million years
12	that you could use in a sensitivity analysis.
13	One of the things that you may have
14	noticed in the basic data is that the past events are
15	not uniformly distributed in time. They tend to form
16	temporal clusters.
17	Some of these clusters aren't very
18	intense, maybe three events in a couple of million
19	years. But, some of these clusters a little bit more
20	intense than that.
21	Next slide, please. And here are what
22	we're seeing, is that we have this one temporal
23	cluster of about four million years ago where we know
24	by these definitions we have 13 volcanoes in about

(202) 234-4433

	54
1	point six million years.
2	That would give us a recurrence rate in
3	that period of time on an order of 20 volcanoes per
4	million years. Obviously that recurrence rate didn't
5	occur for a long period of time.
6	But for a geologically short interval of
7	time, roughly a half million years, there was an
8	elevated volcanic occurrence rate in that interval.
9	So, these anomalies also could represent part of that
10	pulse of past activity, four million years.
11	If they were related to that period of
12	activity, we would see the recurrence rate for a small
13	interval say half million years in time come up
14	to a rate of about 40 volcanoes per million years for
15	a short duration.
16	Next slide, please. So, there's three
17	altitude hypotheses you can use to evaluate the
18	temporal uncertainty represented by these magnetic
19	anomalies.
20	Now, depending on the time interval used,
21	these hypotheses of the age uncertainties, you have
22	about one and a half of the factor two increases in
23	temporal recurrence rate.
24	So, we have to consider the possibility

	55
1	that our temporal recurrence may have range from two
2	or three volcanoes per million years if you make a
3	long-term, uniform recurrence rate assumption.
4	Also, clusters of activity that they
5	have been as high as on the order of 40 volcanoes per
6	million years. Now, with that, we can use analog
7	volcanic fields to gain a sense of perspective for
8	what those recurrence rates mean to volcanic fields in
9	the western U.S
10	And you can see, for Quaternary fields,
11	and again, I'm restricted to the last two million
12	years of data, because those are the only intervals
13	that have good dating in these analog volcanic fields.
14	But, with the available information in
15	Cima, your recurrence rates are 26 volcanoes per
16	million years per a period of a billion, billion and
17	a half years.
18	That would be 22 volcanoes per million
19	years. And, up at Lunar Crater, it can get as high as
20	50 volcanoes per million years. So, you can see the
21	upper bound on the range of recurrence rates that we
22	would consider in sensitivity analysis for Yucca
23	Mountain.
24	That upper bound doesn't exceed known

56 recurrence rates in the Western Great Basin. And, the 1 2 lower bound also would be representative of a much 3 longer lived volcanic field at the time. 4 The question really that we have to answer 5 is what is the appropriate recurrence rate for the 6 next 10,000, 100,000 or million years, not what is the 7 absolute recurrence rate to some arbitrary period of 8 time in the geologic past. 9 You have to forecast the future. And we 10 believe that we have to evaluate multiple hypotheses 11 in that evaluation of probability and not focus on a 12 single interval of time in the past. 13 Next slide, please. How we are doing the 14 sensitivity analyses. This is a familiar figure for 15 This is the published NRC probability many people. model that uses clustered event locations and uniform 16 17 temporal recurrence rates to calculate the probability 18 estimates. 19 What we're seeing in this figure is the 20 recurrence rate based on the clustering spatial 21 algorithms that we used, normalized to the gravity 22 outline of the Amargosa Trough. 23 And, again, for our probability estimate, 24 believe that the controlling structure we that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	57
1	localizes magma in the region is that crustal
2	extension zone in the Amargosa Trough.
3	So, in our models it would make no sense
4	to say that there's a probability of volcanism in Bare
5	Mountain, even though the statistical clustering might
6	say that there is some likelihood in that area.
7	We believe we should pool that geologic
8	information and normalize that controlling geologic
9	structure, the Amargosa Trough, rather than allow for
10	volcanism to occur to the incredible places.
11	We agree that the structural weighting
12	that we use is subjective. But, it does account for
13	the available data and does provide a transparent
14	basis for review of that analysis.
15	The other good thing about the models
16	we're using is we can accommodate the spatial and most
17	of the temporal uncertainties that we're seeing in the
18	currently available information.
19	We can evaluate the significance of those
20	uncertainties using the probability analysis. Next
21	slide, please. What we're using to evaluate the
22	uncertainty is a tool called PVHA_YM, which is a
23	series of JAVA applets that on anybody's web
24	browser.

(202) 234-4433

	58
1	This is readily available from the Nuclear
2	Regulatory Commission on all basic data sets. This is
3	a screen snapshot. We put in the area of extent
4	assumptions about recurrence rate and clustering
5	functions.
6	The figures that I'm going to show on the
7	next couple of slides come from screen snapshots from
8	PVHA_YM. Next slide, please. Here is our basic
9	example for the purposes of this talk.
10	Again, I'm just trying to give you a sense
11	about how we can go about uncertainty analysis based
12	on the current uncertainties in the age, location, and
13	number of features in the Yucca Mountain region.
14	This isn't mean to be our position on what
15	probability is or is not at Yucca Mountain. So, for
16	this base example, I'm taking the 24 events that we
17	previously defined, given a long-term average
18	occurrence rate of two volcanoes per million years,
19	and a simple Epanechnikov kernel that uses gravity
20	weighting at a 90 th percentile.
21	So, we're re-normalizing gravity by 90
22	percent, allowing a little bit of slop around the
23	margins of the gravity anomalies and a simple

clustering algorithm is the plain English way of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

	59
1	looking at that.
2	So you can see, by those basic
3	assumptions, we have come up with a probability of a
4	cone or a volcanic event intersecting the current
5	compository footprint of essentially one times ten to
6	the minus eight per year.
7	So, this is our starting point for this
8	talk. Next slide, please. What do we do if we add in
9	the 11 high to medium confidence magnetic anomalies,
10	which are shown as additional black dots?
11	And so, I can explain that the black dots
12	represent vent locations in the Yucca Mountain region.
13	So, we add in the 11 high to medium confidence
14	magnetic anomalies.
15	And let's just look at the mid-point of
16	the uncertainty, when we are going between two and 40
17	volcanoes per million years. For illustration
18	purposes, let's say the recurrence rate with those
19	anomalies is not 20 volcanoes per million years.
20	You can see our base probability would
21	increase from ten to the minus eighth, to one times
22	ten to the minus seventh per year for those
23	assumptions.
24	We can also use PVHA_YM to calculate the

probability of a subsurface intrusion intersecting the potential repository. Given these assumptions for guidelines that vary between one and ten kilometers long, that probability of subsurface intersection would be on the order of seven times ten to the minus seventh per year.

If dikes were shorter, it would be down
around four times ten to the minus seventh per year,
given these 11 magnetic anomalies represented here.

Next slide, please. Now, we have some questions about present undetected volcanoes and how significant could that be. What I've done in this example -- and believe me, there are many examples you can run with this -- I have added five randomly located volcanoes in Jackass Flat.

Hit the spacebar please. There should be a pop-up. There we go. Five anomalies in Jackass Flat. This is randomly located to try to look at sensitivity for undetected events east of the potential repository site.

And you can see that, if we have the same recurrence rate -- 20 volcanoes per million years -our probability only increases from one times ten to the minus seventh, to two times ten to the minus

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	61
1	seventh by adding these five locations into the
2	dataset.
3	And, again, a similar increase would occur
4	by saying that these are we also would have igneous
5	dikes and subsurface diversions. We go from seven
6	times ten to the minus seventh, to eight times ten to
7	the minus seventh.
8	So, here is one of many possible examples
9	that show that adding five events that have been
10	undetected adding those undetected events into the
11	probability dataset, it doesn't have a very large
12	effect on the probability estimate.
13	And, again, if you want to do some
14	additional analyses, you can use your own locations,
15	own number events, and see how these models are
16	sensitive or insensitive to the addition of
17	potentially undetected events.
18	Next slide, please. So, what did we learn
19	from all of this? First, kind of interestingly, the
20	addition of the anomalies into the dataset doesn't
21	really change our spatial recurrence patterns very
22	much.
23	In other words, the anomaly locations are
24	following the known event locations, and not having a

	62
1	profound re-alignment of our spatial patterns in the
2	Yucca Mountain region.
3	More volcanoes are located toward the
4	existing locust of activity than they are distributed
5	in areas away from that known locust around
6	Southwestern Crater Flat.
7	We also see, by running a number of these
8	simulations, that clusters of more than five
9	undetected volcanoes appear to be meeting with a
10	change our spatial recurrence rates have is
11	significant.
12	We already thought patterns that are
13	pretty well established by the existing data,
14	including the magnetic anomalies. So, to perturb
15	those patterns in a way that would grossly affect the
16	probability of potential repository site, you have to
17	create a pretty intense cluster of undetected events
18	on the east side of the potential repository site.
19	That cluster would have to have more than
20	about five volcanoes located within a couple of
21	kilometers of one another in order to create that
22	spatial recurrence based on our models.
23	Also, we are seeing that the uncertainties
24	in the temporal recurrence rate for short periods of

	63
1	time and by short, I mean 10,000 to 100,000 year
2	periods those variations are not really captured by
3	the existing uncertainties that we have in long-term
4	recurrence rates.
5	In other words, the million year average,
6	the variations that we see in the million year
7	averages really aren't capturing the potential
8	variations for shorter intervals of time when we could
9	have higher recurrence rates than the long-term
10	average.
11	Finally, the cluster of past events gives
12	short-term recurrence rates that are comparable to
13	other Western Great Basin volcanic fields. Again,
14	those recurrence rates don't exist continuously
15	through time.
16	But we're not looking for 11 million years
17	in the future. We're looking for some shorter
18	interval of time in the future, time to forecast
19	what's the likelihood in that future time of volcanic
20	eruption.
21	And, finally, evaluate the large
22	uncertainty anomaly ages and anomaly locations by
23	testing alternative conceptual models and looking at
24	the sensitivity of those models to the resulting

	64
1	probability estimate.
2	So, to wrap it up, next slide, please. In
3	looking at the current uncertainties in the number,
4	age, and location of past events in the Yucca Mountain
5	region, we have concluded that our conceptual basis
6	for the probability estimate has not been affected by
7	those uncertainties.
8	We're not seeing anomalies outside of
9	areas that previously we had defined as the structural
10	basis for probability or clustering effects that we
11	can't account for in the current probability model.
12	We can evaluate the effects of the
13	existing spatial and temporal uncertainties on the NRC
14	probability estimate. And we had questions before
15	about what are reducible uncertainties.
16	One of the key areas for reducible
17	uncertainty is the potential for undetected events, I
18	believe is a very reducible uncertainty. And I'm
19	optimistic that the new data that are being collected
20	by the Department and the high resolution magnetic
21	survey will help to resolve that uncertainty more than
22	the current data can do.
23	Our best estimate of the effect of these
24	current uncertainties it can get a factor ten increase

	65
1	in the NRC probability estimate relative to these base
2	models.
3	That kind of a factor on the probability
4	estimate gives us a high significance to performance
5	calculations. So, we are going to need to have a good
6	basis to review those uncertainties and a traceable
7	basis to document those uncertainties during our
8	potential license application review.
9	Finally, we also can conclude from doing
10	this work, that the potential effects of current
11	uncertainties on the number, age, and location of past
12	events really can affect some of the assumptions in
13	the conceptual basis used in many probability models,
14	the key interpretations of past spatial and temporal
15	patterns.
16	And finally, these uncertainties can also
17	directly affect parameter ranges used in any
18	probability model for the Yucca Mountain region.
19	Thank you for your attention.
20	CHAIRMAN RYAN: Thank you. I guess we'll
21	start with any questions from the members. Allen?
22	MEMBER CROFF: In going back into this, I
23	look at your slide 15, which shows, I think, your
24	basic probability contours. I think the high being to

	66
1	use all the exponents above 18 or 20.
2	And the Yucca Mountain site being I'll
3	call it eight roughly. But then, when I go back and
4	look at the diagram say, on page seven, which shows
5	the magnetic anomalies, it shows, to me, sort of a
6	clustering of these anomalies in certain areas.
7	And in other areas, such as the bedrock,
8	where the Yucca Mountain site are, and other areas of
9	bedrock, essentially zero recurrences over all time.
10	Whereas, the probability model you end up
11	with has about a factor two probability difference.
12	And that intuitively doesn't seem right to me. Am I
13	missing something.
14	MR. HILL: There are a few points that I
15	can clarify for you. First, there is an event located
16	about 200 meters from the northwestern edge of the
17	repository site.
18	That's our roughly ten million year old
19	basaltic canyon dike and eroded vent complex. It's a
20	very small feature, but a very significant feature.
21	So, given these past events, like the
22	models have consistently said, the highest likelihood
23	for the next event would be in that southern part of
24	Crater Flat, not in that potential repository site.

But, through time, there has been an event coming very close to that location. And, that would scale as about the order of magnitude reduction in recurrence rate given the number of events that we have -- 20 events, 30 events, one out of 30, as opposed to the two orders of magnitude or continues. Second, the probability map isn't really a probability map. The contour lines are spatial

9 recurrence rate. And then you have to multiply 10 spatial recurrence rate by the chemical recurrence 11 rate by the area of intersection, which is about five 12 square kilometers for the current.

So, to translate in figure 15, those contour lines in the probability, you have to define probability in what area. We're using, of course, the five square -- in this case, the seven square kilometer repository footprint.

So, to calculate the probability, you have
to average some spatial recurrence over that interval
times the temporal recurrence, times the area.

So, these contours are volcanoes per square kilometer using that specific kernel function. MEMBER CROFF: Okay, so what is approximately the difference in the probability of a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	68
1	volcanic event in your base case, between the peak in
2	the middle of the valley, and the Yucca Mountain site?
3	MR. HILL: It would be about if we were
4	saying ten to the minus seventh at the potential
5	repository site, it would be approximately ten to the
6	minus sixth at the center of the locust of activity in
7	Crater Flat.
8	And it would be about ten to the minus
9	eight when you get to the edge of the Amargosa Trough
10	out there just at the western edge of Jackass Flat.
11	MEMBER CROFF: Okay, thank you.
12	CHAIRMAN RYAN: And, again, that's average
13	per year?
14	MR. HILL: Yes, probability per year.
15	CHAIRMAN RYAN: If I could follow-up just
16	quickly, you talked about the spatial aspects. I'm
17	real interested in the temporal aspects. When I look
18	at the temporal distributions as a math problem in
19	trying to predict, you know, recurrence or a look at
20	recurrence interval, can you think of any strategies
21	to address?
22	The aeromagnetic survey updates will do
23	the spatial work. But, how do you attack the
24	uncertainties in the temporal distribution?

	69
1	MR. HILL: Well, again, it's do we
2	evaluate this as a homogenous or non-homogenous
3	process? And, in the absence of data, you just have
4	you hypothesize.
5	So, we can take a rigorous statistical
6	approach to evaluate what is unconstrainable in terms
7	of the age uncertainty. What we need are the data,
8	which would be the proposed drilling program that will
9	look at some of these anomalies, drill down and sample
10	whatever is causing those anomalies.
11	It may be a welded tuff that's been
12	faulted. It may be basalt. If it's basalt, we need
13	to get those data. I think that's a very
14	straightforward process.
15	CHAIRMAN RYAN: So really, the drilling is
16	how you get at the age distribution and prove your
17	temporal
18	MR. HILL: Right. And, if we have that
19	age information, we can factor that into the
20	uncertainty estimate. Again, this is not our view of
21	how things will be.
22	But, it's an attempt to present to the
23	committee how we can evaluate the currently available
24	uncertainties with currently available information.
	1

	70
1	And then, of course, as new information
2	comes in, you can use these methods to evaluate that
3	new information for the licensing process.
4	CHAIRMAN RYAN: That's coming through
5	well. And I appreciate you clarifying that again.
6	Ruth, a question?
7	MEMBER WEINER: Is there a microphone?
8	CHAIRMAN RYAN: Oh, sorry.
9	MEMBER WEINER: I think John's first of
10	all, I'd like to congratulate you on making the PVHA
11	model available. I did play with that, and it works
12	very nicely.
13	And I think you all aught to be commended
14	for that.
15	MR. HILL: Our consultants Laura Connor
16	and Chuck Connor were the real
17	MEMBER WEINER: Well, convey to them my
18	congratulations.
19	MR. HILL: I will.
20	MEMBER WEINER: I have what's probably a
21	very simplistic question about the spatial density.
22	And that is, you outlined very carefully the area that
23	you were looking at for the Crater Flat, Jackass Flat
24	volcanoes.

	71
1	How does that area compare with the
2	comparisons where y have volcanic fields that have a
3	higher density of events, higher spatial density of
4	events?
5	MR. HILL: I think we're looking at fairly
6	comparable. I would want to check on that. But,
7	we're not comparing huge fields or microscopic fields
8	compared to the area that we're dealing with for
9	Crater Flat, Jackass Flat.
10	The entire basin, the Amargosa Trough,
11	that contains the volcano is bigger than the
12	Quaternary part of a number of these fields. But I
13	think it is comparable to area for Lunar Crater field,
14	which is a bit more extensive. Is that addressing
15	MEMBER WEINER: It does address it. The
16	thing that is of concern that I picked up on is, if
17	you define the area differently, how differently do
18	you need to define the area to make a significant
19	difference in the spatial density?
20	MR. HILL: On all of these definitions,
21	the area is defined by the extent of mass not
22	connected on the margin, but pretty close to the
23	margin of that, and also accommodating the very
24	obvious structure.

	72
1	Like Bare Mountain, we wouldn't include
2	that potential area. And the same thing in a place
3	like Lunar Crater. You're not going to expand the
4	area out into the alluvial basins just to get a bigger
5	area.
6	You define it right around where the
7	mapped volcanoes are. And so, in the scale on order
8	of magnitude, these are comparable. In detail there
9	is going to be some variation. But we're not taking
10	a comparison with a huge volcanic field to come up
11	with spatial densities.
12	MEMBER WEINER: Okay, thanks.
13	CHAIRMAN RYAN: Let me open it up for
14	questions from our panelists and participants and
15	consultants. Bruce?
16	MR. MARSH: Yes, it's a very interesting
17	presentation. One of the things I've always been
18	amazed over in the Western United States and in
19	volcanic terrains themselves is that, if you actually
20	look at the solid rock areas, where we know the
21	geology the best, you don't see much signs of
22	volcanism compared to what we see in valleys, for
23	example.
24	Our discussion today, for example, is all

mostly concerned about things that perhaps we don't know what's going -- buried in these valleys. And, it would be interesting, I think, in some ways, to adopt a different view, in other words, build a probability model that didn't use anything in the valleys, but only used solid rock data information. The repository, for example, the mountain

8 ranges are all solid rock. We know the geology there 9 We can see what happened there. And, if we well. built up, for some reason, for example, there aren't a lot of cinder cones up in the mountains on the solid 12 rock areas where you see the geology very well.

13 It would be very interesting, as an 14 alternative to build a probability model using only 15 the areas of solid rock in the mountain and say, okay, we know we can see the dike, maybe a cinder cone, and 16 17 build up a model like that, and then use that for the 18 whole region.

19 In effect, now we are doing the reverse. 20 We are actually taking all the stuff in the valleys, 21 the alluvial fill and things we don't know, and we're 22 putting a model forward that we're pervasively using 23 the regions where we have the best geologic in 24 control.

1

2

3

4

5

6

7

10

11

	74
1	And it's odd that, in many ways, you know,
2	volcanoes just don't seem to appear ever in some
3	areas, regardless of what's going on nearby. And, so,
4	have you thought of this in trying to build a model
5	like this?
6	MR. HILL: We thought about this a lot.
7	And, while maybe true in some areas, we see in other
8	areas the fact that volcanoes do erupt, which are
9	characterizing as solid rock.
10	It depends very much on what are the
11	controlling structures in the region, and what are the
12	areas of local extension, versus local compression, to
13	put it very simply.
14	In places like the Big Pine field, you see
15	them coming up the range of the Sierra. Some of them
16	are in the valley, and some are buried in the valley.
17	But other volcanoes come up and are
18	essentially sitting there in the foothills of the
19	Sierra Nevada. In the Yucca Mountain region, we see
20	not only Solitario Canyon Dike, but also up around
21	Thirsty Mountain we see the hidden cone sitting all on
22	a bedrock bottom.
23	You know, there are plenty of alluvial
24	basins sitting around there. The reason it's all that

	75
1	high is structural control, not anything to do with
2	whether the bedrock is above surface or below the
3	surface of baseline alluvial.
4	One of the reasons well, I'll back up
5	for a minute. The existing pattern of volcanism
6	already reflects that control. We have no basis to
7	say that Yucca Mountain is somehow a zone that magma
8	physically cannot get into.
9	The current patterns show that, while it's
10	less likely for it to go there, it still can go there.
11	MR. MARSH: Well
12	MR. HILL: The greatest likelihood is down
13	where we are seeing the most volcanoes. But, at a
14	process level, the controlling structure is not
15	whether a couple hundred meters of bedrock sticks up
16	above the alluvial or is below the subsurface.
17	It depends on those structural elements
18	that are important for mobilizing the magma and
19	allowing breakout at certain points.
20	MR. MARSH: Well, I mean, that sounds
21	interesting. But, in fact, it is the numbers and the
22	effects in the model that we really need to put in.
23	For example, we know that the regional
24	stress fields direct the localization or the local

	76
1	dispersal of magma. So, when a cinder cone is
2	erupting, for example, these what we see
3	reinforced yesterday, for example, is that there's an
4	extreme north-south predilection for the magma being
5	dispersed.
6	So, one of the things that missing, I find
7	in this probability model, is the detailed local
8	characteristics of the structure that you're
9	mentioning.
10	Structural integrity is expressed on a
11	local basis, let's say on an area that involves, let's
12	say, you know, 10,000 square kilometers, 5,000 square
13	kilometer area.
14	That detail, that granularity in the model
15	where you need to put those details in this regional
16	stress field and how that influences it, is extremely
17	important.
18	Instead of having a very dispersed line
19	sampling kernel like this, it spreads as an umbrella
20	over the whole area. It doesn't have any granularity
21	in it for the integrity.
22	For example, in a big earthquake we know
23	we built buildings on areas that are alluvial areas
24	that may undergo basically quicksand. How do you

	77
1	stabilize a building?
2	You build a big sub-structure on it. You
3	put basically a boat in the earth's crust there. And
4	this building will sit there and sway back and forth
5	and be perfectly fine.
6	If you don't know anything about that
7	granularity and detail of structure, you would predict
8	that everything would just collapse into the earth
9	when, in fact, it actually has this integrity built
10	into it to make it survive.
11	I'm worried that we're looking at detailed
12	numbers. And these numbers are so uniformly spread as
13	kind of a wide umbrella here that we're missing very
14	important granularity in this.
15	And, as you're mentioning, there are areas
16	where we cinder cone things spread up on sides of
17	in the Sierra's, for example. We see it in
18	Antarctica.
19	We see other places. But, we don't see it
20	here. And that's something that's special to this
21	area. And I'd like to see that somehow evaluated or
22	built into the model, because we do have a lot of
23	variations that's due to the stress fields, for
24	example.

	78
1	But, that is a particular characteristic
2	here that doesn't seem to be in the model.
3	MR. HILL: Do you think that we have the
4	science that would allow us to make that sort of
5	deterministic approach that certain areas are
6	structurally or mechanically facilitating?
7	MR. MARSH: Absolutely.
8	MR. HILL: What do you think those would
9	be.
10	MR. MARSH: I mean, we worry about it all
11	the time. We can see things even using the models
12	that developed. For example, for years and years,
13	looking at stress fields around volcanoes and knowing
14	where the dispersal is going to be.
15	MR. HILL: But you're talking about around
16	a volcano, you know, gross perturbations in the local
17	and regional stress field. Here, at Yucca Mountain,
18	we're talking about first characterizing the stress
19	field in the alluvial subsurface, which would be a
20	very challenging thing to do with the available
21	information.
22	Second, the pattern as best we can tell
23	really doesn't change from in the alluvial part of
24	the basin, out into Yucca Mountain. Those variations

	79
1	are continual.
2	We're trying to, in the first order,
3	represent a continual variation in deviatory stress.
4	So, what I'm really getting at is, in some areas I
5	agree, that there are profound changes in the local
6	stress field that could be used.
7	In this particular condition, though,
8	we're not dealing with huge or large variations of
9	deviatory stress. They are very subtle.
10	MR. MARSH: Well, let me get down to
11	actual some detail here. For example, this area is
12	heavily fractured in the north-south direction. So,
13	if a magma is coming out, since there are so much
14	availability to run in north-south direction, the
15	probability, for example, if we were to look at the
16	propagation of dikes, the probability is very large
17	that it would go in a north-south direction, rather
18	than in east-west Director, for example.
19	MR. HILL: Yes.
20	MR. MARSH: So, that should be built in in
21	great detail. In other words, these cones, for
22	example, in terms of setting off a dike that would be
23	off east-west in any of these would be a very low
24	probability event relative to a north-south event.

(202) 234-4433

	80
1	MR. HILL: When we talk about the dikes in
2	a probability estimate, we have a variation from zero
3	to 20 degrees that reflects both the regional
4	structure as well as the deviatory stress in the
5	region.
6	We're not considering the probability of
7	east-west dike, because it just wouldn't occur in
8	this.
9	MR. MARSH: Right. I know. But those
10	ripples do no appear here. For example, if we have an
11	eruption at one of these centers, when we look at in
12	detail with exactly the same space, we should be able
13	to predict in great detail, in terms of the volumes
14	involved.
15	And that would also give us some limit on
16	the dikes, but also where the dikes are going to go.
17	We should then have a much different basic umbrella
18	probabilities than we see here.
19	MR. HILL: Well, this is the spatial
20	recurrence pattern
21	MR. MARSH: Right.
22	MR. HILL: for the volcanic event.
23	It's treated as a point source, not a line source. So
24	this model was not intended to try to represent the

81 distribution function of a linear event. 1 2 It's a point. That's the whole thing with 3 this probability. I can't really extemporize on how 4 you go about making a linear event probability model 5 in that sense and then look at the variations in three 6 dimensions of the regional stress field and pull that 7 in to a normal function. 8 But, my personal review is that we don't 9 have the data or ability to resolve this on scale or 10 kilometer at the Yucca Mountain region to say that, if 11 we move over one kilometer, that we can grossly characterize this 12 as favorable for magnetism or 13 unfavorable for magnetism. 14 All we're seeing is what's right there at And the magma isn't coming up from a 15 the surface. very shallow inter-volcanic magma field. It's coming 16 17 up from depth that is controlled by the regional structure as well as the local structures in the near 18 19 surface. 20 CHAIRMAN RYAN: John, you had a comment? 21 MR. TRAPP: Yes, this is John Trapp. Is 22 this on. This is John Trapp of the NRC. I would just 23 like to make a couple comments. Number one, it is not 24 the NRC's job in licensing to provide the probability

	82
1	model.
2	It is our job to evaluate the probability
3	models that are presented by the Department of Energy.
4	Second point, if you want a north-south model, there
5	already is one.
6	Smith, from the State of Nevada, had
7	published models in which they have basically taken a
8	north-south structure and used this and compared the
9	results of their models with the models in another
10	direction.
11	You will find a tremendous up to a
12	couple orders of magnitude in the results of the
13	probability. Third, if you want to go into the detail
14	that you are talking to, again, this would be
15	something that should be directed at the Department of
16	Energy as far as characterization studies that should
17	be taken.
18	There are a lot of things that would be
19	nice to put in a deterministic patter. But we just
20	don't have them.
21	CHAIRMAN RYAN: Other questions. John
22	Garrick had a question.
23	MR. GARRICK: I wanted to talk a little
24	bit about the probability calculation itself. One of

the great difficulties is getting our arms around the issues of uncertainty and the issues of igneous event scenarios and thresholds of concern.

4 On the uncertainty issue, Rick, you 5 articulated very well a number of scenarios that 6 resulted in different volcanic frequencies. As one 7 way of getting some additional insight into the 8 uncertainties involved, have you, in getting to your 9 bottom line probability numbers, have you embedded 10 those frequencies in probability distributions to 11 reveal how the uncertainty varies with respect to the 12 different scenarios that you presented?

In other words, it lends itself very nicely to doing that. And, you developed some probability frequency curves that would really give some illumination and insight as to the uncertainties for the different categories of events that you described.

19 Right. I agree we could. MR. HILL: We 20 have not done that. We could do that to look at a 21 distribution given these parameter ranges, parameter 22 uncertainties, what would be the resulting effect. 23 Essentially, the same as I presented a 24 very deterministic sense here, you can do a more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

Í	84
1	stochastic analysis that would give the full range.
2	And it could then be integrated into another
3	distribution. We have not done that.
4	MR. GARRICK: I just see it as another
5	opportunity to get additional insight into where the
6	uncertainties are as a function of the igneous event
7	scenarios that you should be worrying about.
8	MR. HILL: I want to make sure I
9	understand. When you talk about the igneous event
10	scenarios, are you talking about a different
11	consequence scenarios or evaluating different
12	probabilities for different
13	MR. GARRICK: Well, yes. I have trouble
14	separating the probability calculation from the
15	consequence calculation. And, when I think scenario,
16	I think from initial condition to the consequence.
17	And, with the underlying assumptions
18	associated with the consequences because there's some
19	certainty associated with them as being part of the
20	makeup of the probability.
21	So, my is different than the way it has
22	been presented.
23	MR. HILL: Right. But, in a very simple
24	sense, what we're looking at is the igneous event is

	85
1	the initiating event in the event sequence.
2	MR. GARRICK: Yes.
3	MR. HILL: And then we have two branches
4	in the event, one for volcanic disruption, one for
5	intrusive disruption. But the probability of both of
6	those branches still comes back to a singular issue.
7	We don't have a discrete probability for
8	those the way we are treating the performance
9	assessment. And, within the sub-branches of volcanic
10	or intrusive, we don't have the data to begin to say
11	that we have a probability distribution for this class
12	of initiating event gives us this sub-class on a
13	volcanic event consequence.
14	MR. GARRICK: But I suspect you have some
15	sort of evidence that would allow a certain level of
16	discrimination between your supporting evidence for
17	these different frequencies.
18	And that might turn out to be very
19	important to characterizing the overall uncertainties
20	of the probability. That's just a thought.
21	MR. HILL: Yes. It's certainly something
22	that we've thought about from day one of the program,
23	because this does appear different from how you would
24	do a seismic hazard analysis where you have a large

	86
1	variation in the magnitude of the initiating event.
2	A large volume data to characterize the
3	frequency have this large range of initiating
4	events. And a hazard that is directly related to the
5	magnitude of the initiating event.
6	But this comes back to the point that John
7	Trapp was talking about earlier. We're not looking at
8	a range of initiating events like you're doing in
9	seismic where you go off the magnitude seven and half
10	down to maybe magnitude three.
11	Our hazard and earthquake space would
12	pretty much be about a magnitude four. So, we're not
13	sampling that entire magnitude range using this
14	analogy.
15	Our initiating event is restricted to a
16	kind of earthquake analog that would be only about a
17	magnitude of four. So, we don't have to consider
18	large changes in the hazard because the initiating
19	event has a small range in consequential hazard,
20	unlike the earthquake scenario.
21	But, it's again something that we continue
22	to look at. We hold in a lot of the variability
23	within that narrow initiating event. We still have
24	variations in eruption size, eruption duration,

	87
1	etcetera that reflect a lot of the uncertainty in the
2	event.
3	But, we're not using a strict probability
4	linkage between the larger volume range having one
5	probability to the smaller volume range having another
6	probability, for example. The data just don't support
7	that.
8	MR. GARRICK: Thank you.
9	CHAIRMAN RYAN: We'll go to George
10	Hornberger and Bill Hinze.
11	MR. HORNBERGER: I'd like to perhaps
12	approach Bruce Marsh's first question from a slightly
13	different approach angle. So, Rick, I think if I can
14	loosely summarize here, you said that you're base case
15	temporal recurrence rate at Yucca Mountain would be
16	something like ten to the minus seventh or eighth.
17	And then if you add in the potentially
18	hidden features, it goes up to ten to the minus
19	seventh. And then your sensitivity study said it
20	could increase another order of magnitude.
21	Okay, now, my question is, with any of
22	those estimates of temporal recurrence, and now if we
23	restrict our knowledge to the hard-rock geologic
24	features where we have the best information, are any

	88
1	or all of those temporal recurrence rates consistent
2	with the observed features within the hard-rock
3	portion of the area that you're considering?
4	MR. HILL: By hard-rock you mean the
5	surface exposures at Yucca Mountain? I'm not quire
6	sure what you mean?
7	MR. HORNBERGER: Again, Bruce was
8	suggesting his question, why not build a model just
9	based on features not in the valley. Now, my question
10	is, turn it around. You've estimated frequencies at
11	Yucca Mountain.
12	And, presumably, we can take Yucca
13	Mountain to be not in the valley. And so, we have
14	observation throughout the region of dikes, like you
15	said, the Solitario Canyon being the closest to Yucca
16	Mountain.
17	We can count up the number of observations
18	we have that are not in the valley. Do the number of
19	observations we have over 11 million years, are they
20	consistent with your estimate that is ten to the minus
21	seven or with your estimate that is ten to the minus
22	eight, or your estimate that's ten to the minus six?
23	MR. HILL: I think, if I understand
24	first, I would just want to go on the record as saying

	89
1	that I don't believe that there is a controlling
2	difference between a couple hundred meters of bedrock
3	versus bedrock being a couple hundred meters below
4	alluvium that changes head just isn't significant
5	in the sense of magma.
6	But, to answer your question very
7	directly, if I was to outline the bedrock exposure of
8	Yucca Mountain and say, how many events have occurred
9	there in the past 11 million years?
10	Again, I want absolute certainty of if you
11	include Lathrop Wells in that dataset or not. But,
12	let's ignore Lathrop Wells. We just have one in the
13	past 11 million years.
14	That would be the Solitario Canyon Dike.
15	If you believe that they are discrete probability
16	issues, which I do not believe, between Yucca Mountain
17	and the adjacent part of Crater Flat and Jackass Flat
18	valleys.
19	MR. HORNBERGER: I just want to restrict
20	it to just the footprint of Yucca Mountain because we
21	have this whole area.
22	MR. HILL: Okay.
23	MR. HORNBERGER: And you have bedrock
24	exposure across the whole area. So, don't restrict to

	90
1	Yucca Mountain. How many events do we count in your
2	database that are in the bedrock exposure.
3	MR. MARSH: Let me interject one thing
4	here. I think you do believe that exactly, Britt,
5	because you put a emphasis on the Amargosa Trough
6	region.
7	The way that's drawn and the basis of that
8	is extremely important. You're using that as a guide
9	to bring magma. If we actually exclude the mountain
10	ranges to the east, including Yucca Mountain, of that
11	in other words, we did detailed gravity, and maybe
12	did the isostatic correction a little differently, the
13	Amargosa Trough would be defined in such detail that
14	the regions that we're talking about are outside of
15	it.
16	So, you actually do believe this, without
17	realizing it, because the Amargosa Trough you're
18	saying is the preferred area to go. And things that
19	are happening that that's a heat transfer zone.
20	So you're actually believing it without
21	realizing it.
22	MR. HILL: No, I don't believe we do. We
23	have seen many other people's interpretation,
24	including many of the U.S. Geological Survey. We have

	91
1	looked high and low to find what it is.
2	Is there a change in structural domain
3	between the dirt in Crater Flat and the Rock in Yucca
4	Mountain. So, we don't see a crustal structure there.
5	This is just part of a continuous
6	extensional basin that's in with maximum extension
7	on the west and extension on the east. And Yucca
8	Mountain is part of that continuum of extension.
9	So, I'm not going to agree that somehow
10	there is a large or significant or controlling
11	difference between the structural domain at Yucca
12	Mountain versus what occurs to the west, except that
13	this is an extensional basin, and you have a base
14	level alluvium that is covering part of that basin.
15	But, in terms of what controls the ascent
16	of magma, it's not the upper couple hundred meters of
17	dirt. It's that large scale structure.
18	CHAIRMAN RYAN: Bill, you had a question.
19	MR. HINZE: Well,
20	MR. HILL: Let me go back to George.
21	Within this structural basin, we have 24 events. One
22	of those events has been within a couple of hundred
23	meters of Yucca Mountain, on that bedrock exposure.
24	So, one out of 24 in 11 million years.

	92
1	CHAIRMAN RYAN: Thank you. Bill?
2	MR. HINZE: Why don't we have this 15^{th}
3	illustration? If we set ourselves back 80,000 years
4	ago, I assume that this spatial temporal clustering is
5	impacted by the presence of Lathrop Wells, which you
6	pointed out there.
7	But, I suspect much greater. Have you
8	tried it out?
9	MR. HILL: Yes, we have.
10	MR. HINZE: And, how was the probability
11	changed the contour changed between Yucca Mountain
12	and Lathrop Wells? In other words, I read eight times
13	ten to the minus eight at the repository and eight
14	times ten to the minus eight at Lathrop Wells.
15	If I was back there 80,000 years ago, I
16	would expect that to be eight times ten to the minus
17	eight.
18	MR. HILL: Well, certainly this is
19	something that anybody can do using the PVHA tool
20	go in, edit the volcano dataset, go out, take Lathrop
21	Wells out of the dataset, run the model, use your
22	preferred assumptions and see.
23	This is a general guide. The addition or
24	subtraction of one event doesn't change the spatial

93 patterns significantly. So, you would see that you'd 1 2 have the same basic spatial pattern about, like you 3 were saying, eight per square kilometer or -- I forget the exact unit -- volcano per eight square kilometer. 4 5 I think that was the spatial recurrence of 6 that particular point per square kilometer. And that 7 would be about the same recurrence rate -- eight of 8 ten -- that you would have before Lathrop Wells 9 existed. 10 So, in the end result, it is really 11 comparable to Lathrop Wells. It is important, Lathrop 12 Wells did form in the most intense part of the field. 13 14 It was out there out around the eight to 15 ten, not 18 or 15 in terms of simple recurrence, 16 similar to what we see at the potential repository 17 site. 18 CHAIRMAN RYAN: We're getting close to the 19 end of the session, so let's --20 MR. HINZE: Another brief question, or I 21 want to make sure that we're together on nomenclature 22 And I'm stepping into Bruce's space here. here. 23 The PVHA expert elicitation had this 24 hidden event factor of 1.1 to 1.5, something like

	94
1	that. These are your undetected events? That's a
2	question.
3	MR. HILL: I'm afraid we're getting into
4	an area that I really can't speak to in this meeting
5	in commenting on the Department of Energy's
6	MR. HINZE: Is your definition of
7	undetected event and hidden event factor in the PVHA
8	the same thing?
9	MR. HILL: No, they are not. What we mean
10	by undetected events is events that slight
11	characterization has not detected in terms of volcanic
12	features, not dike eruptions or dikes that haven't
13	gotten to the surface.
14	MR. HINZE: Okay, so it's not fair to
15	compare the hidden event factor effect upon the PVHA?
16	MR. HILL: Not always. Sometimes it is,
17	sometimes it isn't. It depends on whose definition.
18	MR. MARSH: I just have something brief.
19	CHAIRMAN RYAN: Yes.
20	MR. HILL: Yes please.
21	MR. MARSH: Getting back to the issue,
22	your reason on how you count events and what is event.
23	I think that's a salient issue to be worried about.
24	And, one of the things is that, an event,

	95
1	for example, if you look at those flows out there at
2	Lathrop Wells, for example, and you've been around
3	volcanoes that are erupting, you can see that these
4	things have these big you know, there are small
5	lobes and there are tractor tread type things.
6	And they're kind of pushing towels ahead
7	of them. And they're moving along maybe at meters per
8	days some places, maybe meters per hour other places.
9	But if you live there let's say you
10	have a little hut nearby you'd be worried about
11	hour-to-hour. An event would be a boulder falling off
12	and rolling over your house.
13	That would be an event. So you would call
14	that an event. But, if you're actually concerned
15	about you live, you know, five miles away, and
16	you're concerned about a dike coming out and hitting
17	your house or hitting your farm, that's a different
18	kind of thing to think about for an event.
19	For example, because when, as you know,
20	centers establish themselves, most of the destruction,
21	most of the dispersal of the dike's warmth is early.
22	It concentrates down to something more.
23	So, maybe we actually should think about counting
24	events in several different ways. For example, the

	96
1	outpouring itself would be one event.
2	We would think about each one of these
3	things as a just event, no matter how many small
4	effusive cones it had near by. That would be one
5	extreme.
6	And that would be for, let's say, a
7	disruptive event up through Yucca Mountain. On the
8	other hand, we could have another one that sent out
9	dikes.
10	And we worry about then the radial
11	component of sampling kernel I was talking about
12	before in the stress field. And that would be a
13	different kind of event we'd talk about.
14	So, these are different ways to calculate,
15	instead of lumping them all in and saying, you know,
16	there are going to be hidden things that are you
17	know, 24, 40, whatever.
18	We would actually classify these kind of
19	in a category that John was mentioning earlier, in a
20	hierarchical structure and based somewhat on outcome
21	in their potential destructiveness in terms of what
22	their potential capabilities are.
23	So, have you thought about this or tried
24	to build this up.

	97
1	MR. HILL: I'm not sure I really
2	understand the comment, the event. First, we don't
3	have a minimum threshold event below which igneous
4	activity would not create a potential hazard if it
5	intersected.
6	Second, these are all for direct
7	disruption. In other words, the dike or the volcano
8	would have to penetrate the footprint of the
9	repository.
10	And that's the only conditional
11	probability to worry about because that's really the
12	only hazard. For the volcanic event, we're not
13	worried about the lava flow, because encapsulation of
14	a lava flow is not going to create a potential hazard
15	at a location 20 kilometers down range.
16	It's only that part of the eruption that
17	produces the dispersed tephra that truly caused the
18	hazard for the RMEI who isn't living at the volcano.
19	We're not worried about rolling rocks on the RMEI.
20	We're worrying about penetration of
21	potential repository site. So, I think a number of
22	these assumptions are already built into the basic
23	probability model.
24	The thing with event that's, I think, a

	98
1	bit more important to you is you can also define
2	events as like the Crater Flat center. That could be
3	little cones, Black Cone, Red Cone, and Northern Cone
4	as a single event, depending on how long you want the
5	event to last, the same way Sunset Crater has multiple
6	vents and discrete hiatuses and activity.
7	The reason I chose this particular
8	definition is not because it is the correct
9	definition, but it is the simplest definition. Here
10	is a cinder cone, here is an event.
11	Here is an anomaly, here is an event. I
12	don't have to make assumptions about the nearest
13	neighbor is a part of that event in defining
14	distribution of event sizes or event areas.
15	Because, once you start say an event is a
16	series of points, then the point has an area term that
17	has to be tracked as well. Here, because the point
18	the vent is small relative to the area of interest,
19	the footprint five square kilometer it is
20	treated as a simple point-source and not worry about
21	the area itself.
22	MR. MARSH: My point is that this is a
23	pretty serious issue in that getting at one question
24	earlier people were saying what's your uncertainty

	99
1	in your definition of these?
2	This is a way to get at those things. And
3	it's worth, I think, taking the time to actually look
4	at them.
5	CHAIRMAN RYAN: That's probably
6	MR. HILL: ponder a paper about the
7	sensitivity of the probability estimate in event
8	definitions.
9	CHAIRMAN RYAN: Let me ask that we
10	continue the discussion after we take a break and hear
11	from the other speakers. I'm sure we'll more into the
12	details of this as the next two days go on.
13	Britt, thank you for a wonderful
14	presentation and answering all the questions. I think
15	the dialogue is wonderful. So, thank you very much.
16	We'll take a break now. It's ten o'clock.
17	We'll reconvene sharply at 10:15.
18	(Whereupon, the above-entitled matter went
19	off the record at 9:59 a.m. and went back on the
20	record at 10:20 a.m.)
21	CHAIRMAN RYAN: We had one request for a
22	brief question from Mike Sharpton, the University of
23	Buffalo. We'll go ahead and catch that question now.
24	PARTICIPANT: Okay, thanks a lot for

	100
1	allowing this. This question is for Britt. In your
2	reply to some of the questions from the panel, you use
3	this as an example of a volcanic event in bedrock as
4	the Solitario Canyon dike.
5	And that's ten million years old. Now, in
6	the analysis of the PVHA panel and the probabilities
7	that we've been using, we only considered volcanism
8	from four million years to the present.
9	What is the reasoning for using these
10	older rocks, because the tectonic regime was probably
11	different at ten million years from one million years.
12	MR. HILL: The simplest answer is that we
13	don't believe the tectonic regime was that much
14	different ten million years ago as to a comparable
15	current tectonic regime.
16	One of the papers by some reports on
17	paleomagnetic direction data for this data. It shows
18	that most of the extended and rotation that accompany
19	the end stages of have been accomplished by the
20	time and in the place of a basalt, for example
21	Canyon in the southern part of Crater Flat.
22	So, the tectonic regime had been set by
23	that, which is comparable to the tectonic regime that
24	we see in the present. It doesn't mean it's

	101
1	identical.
2	But, it's near an episode of tectonic.
3	Second, the petrogenesis of those lavas fit the
4	Dikes are preserved, Solitario, the Miocene rocks that
5	are in the drill, the southern Crater Flat basalts.
6	The petrogenesis in the variations that
7	you see in the basalts is the same petrogenesis
8	variations that you see in the Pliocene and rocks
9	in Amargosa Trough.
10	They have a common petrogenesis. In
11	contrast, if you go out to places like Skull Mountain
12	and look at basalts there, you will see a very
13	different characteristic.
14	The vapors there's a lot of this
15	equilibrium. There's a lot of quartz, zenecris and
16	the white elements are floating around. These are
17	giving all the signals of magma that sat in the
18	salicic crust in response to that larger tectonic
19	regime associated with the calderas.
20	So, we believe that the Miocene within the
21	Amargosa Trough is relevant to understanding past
22	patterns of igneous activity, because the petrogenesis
23	of that basalt and the tectonics within that basin has
24	been a continuum of a similar process for the past 11

	102
1	million years.
2	In contrast, outside the basin represents
3	a separate sort of event that doesn't give us any real
4	insight on what's happening in recent.
5	PARTICIPANT: Thank you, I appreciate it.
6	CHAIRMAN RYAN: Moving to our next
7	speaker, Dr. Bruce Crowe is here. He's going to talk
8	about the 1996 probabilistic volcanic hazard analysis,
9	one subject matter expert's perspective. Dr. Crowe,
10	welcome. Thank you.
11	MR. CROWE: I like to stand by my slides
12	and walk around with it. So, if people can hear me,
13	I would prefer talking from there.
14	CHAIRMAN RYAN: Okay, we have a pointer.
15	1996 PROBABILISTIC VOLCANIC ANALYSIS: ONE SUBJECT
16	MATTER EXPERT'S PERSPECTIVE
17	MR. CROWE: Okay, the reason I call this
18	an out-of-touch look is I left the program in '96, so
19	I want to just make clear that I have time. I reached
20	the point where I told Frank just not to talk to me.
21	So, this is defining a cobweb. So here's
22	what I'm going to try to do. I'm going to focus on
23	how the logic and the assumptions and particularly the
24	framework geology I used to construct my PVHA model.

103 And it was fun to be in the PVHA because 1 2 we were allowed to say, okay, what is your best guess 3 as an expert at how you think is the best way to do 4 these calculations. 5 Mike Sheridan was involved. He can keep 6 my honest when I deviate. But, it was fun to do it 7 where we actually could inject some personal opinion 8 and some personal biases into the program. 9 So, I present that. I also put that 10 together for a book chapter that I wrote that was 11 supposed to come out two years ago. I never know when 12 it's going to come out. 13 I put together an influence diagram that 14 I tried to assemble the logic of how you do these 15 probability calculations. I'm going to step through 16 that and kind of use that as a framework for my 17 presentation. 18 And then I kept some new perspectives. 19 I've been doing a lot of probabilistic PA modeling for 20 the Environmental Management Program. And I've been 21 working with Bayesian statisticians who have educated 22 me a lot. 23 I've really learned that the best way to 24 do is -- a geologist can do the prior, but let the

	104
1	Bayesians do the posterior and handle all of those
2	messy curve fittings and those sort of problems.
3	And then, I have to interject some biases.
4	I'm going to talk where I think that you can put some
5	fairly logical arguments together whether there might
6	be some bounds on the probability limits for these
7	calculations.
8	And then we may be approaching the limit.
9	We're getting down. And I think it is time to move
10	on. But, again, it's a distant perspective. They
11	gave me a whole bunch of handouts.
12	And I looked at them and stole a few
13	slides from them. But, I don't profess to understand
14	everything that was in all those handouts.
15	Way back in 1978-1979 when we started on
16	this probably, when they were kind of focusing in on
17	Yucca Mountain, after they looked a number of sites at
18	the test site, I made the mistake agreeing.
19	I was told by the USGS to go look at these
20	basalt volcanoes. It would just take you a couple of
21	months and then you can move on to something more
22	interesting.
23	Here we are in 2004. But, anyway, what we
24	always pointed out was that, rather than use risk

	105
1	I probably should be saying hazard you have a
2	fairly low hazard of disruption.
3	And ten to the minus seven and ten to the
4	minus eight numbers are low numbers. But, what we've
5	always pointed out is because you have a small number
6	of volcanoes, you're always going to have a lot of
7	uncertainty.
8	There's just no way of getting around that
9	uncertainty. You have a lot of irreducible
10	uncertainty by virtue of a limited geologic record. If
11	you had a lot more volcanoes, you would have the
12	luxury of having less uncertainty.
13	But you would have much higher risk. And
14	so, clearly you want the trade-off. But it means that
15	there are some limits to how well you can define this
16	probability.
17	And so, what we always argue at that
18	point, and I think it carries on today, is that you're
19	going to have multiple permissive models. And, in my
20	opinion, you don't have the dataset to resolve those
21	models.
22	So you really shouldn't get too caught up
23	into what is the correct model. But instead, you
24	should look at what are the impacts of a whole

	106
1	spectrum of models and then use that to guide your
2	intuition on the significance of the problem.
3	Okay, so here's starting out. This is
4	basic probability that I first worked out in the late
5	70's. It still kind of holds. And, basically, just
6	as the probability that for a disruption to occur
7	the repository has to be an event somewhere in the
8	region or in a volcanic zone.
9	And that event has to intersect or hit
10	near the repository to be an issue. When we first put
11	this probability together, we argued that these were
12	independent events.
13	But, there are some couplings in these
14	that I'll be talking about that I think are important,
15	that affect how you assemble the probably
16	calculations.
17	So, this represents an influence diagram.
18	And I did the program and each box is set to show
19	the different types of variables that go into this
20	equation.
21	The square boxes represent either decision
22	uncertainty or decision assumptions that you have to
23	make in order to do the calculations. They are like
24	boundary assumptions or modeled assumptions.

	107
1	And you really can't treat those
2	stochastically. They're basic fundamental assumptions
3	that you have made. Or, in the case of the
4	repository, this is a decision variable that the DOE
5	controls.
6	It is changed dramatically every year. I
7	always have to go look up what the new repository
8	footprint up. But, it has no uncertainty whenever the
9	DOE finally firms up what that repository area will
10	be.
11	These ovals that are here represent things
12	that you can treat as stochastic variables, or you can
13	treat them as a PDF and calculate them as stochastics.
14	And then you actually couple those
15	together to calculate the recurrence rate. And then
16	that feeds into the repository intersection. I'm
17	going to stay out of this area.
18	I don't want to go there at all. So, I'll
19	just be talking about these two things, E1 the
20	recurrence rate, and E2, the probability of repository
21	disruption.
22	Okay, so what we have to start out with
23	with the experts was they said, given the conceptual
24	model of why you think volcanoes are out there. And

	108
1	so, I kind of stepped back.
2	This is a diagram I borrowed from one of
3	Frank's papers. And I said, what's interesting, if
4	you look at the base the Great Basin, the Southern
5	Basin range, the Colorado Plateau, most of the
6	activity is volcanic activity, is concentrated on the
7	active margin.
8	But there's kind of an interesting
9	tendency that you get small bits of volcanism in the
10	interior parts, both the Great Basin, the Mohave, and
11	the Southern Basin.
12	Basalts in this probably seem to like to
13	pop out occasionally in places where you have to
14	wonder why they are popping up there. Certainly their
15	rates are much lower than these very active provinces.
16	And so, our challenge is to try to
17	understand why these basalts are occurring where they
18	do. I've given up tracing the petrogenesis models
19	because they've changed so much in my 30 years or so
20	of looking at them that I give up.
21	I think they are permissive and they don't
22	tell you a lot. And people go back and forth on what
23	they think is driving these things. But what you see,
24	as Britt described, is fields like Lunar Crater, Cima,
	I

	109
1	which are kind of big, high density volcanic fields.
2	But you also see phenomena where you have
3	down to just individual separate cones, like the
4	Crater, or in Death Valley, where just one single cone
5	can occur.
6	Crater Flat is interesting I think because
7	you have to call it a volcanic field. There has been
8	enough recurrence of events there. But, it's toward
9	the low end of the spectrum of volcanic fields that
10	you see in this whole province.
11	So that's fundamentally the conceptual
12	model. I don't think anybody can say we understand
13	why magma is either generated or comes up exactly
14	where it does.
15	So, I'm going to focus a little bit more
16	on what I think is a critical part of this part of the
17	Great Basin that's unappreciated. And it's Basin
18	Range.
19	But, toward the southwestern edge of the
20	Basin Range there's a very strong overprint of what's
21	been called the Walker Lane structure zone. And that
22	overprint is an overprint of stripes of faulting.
23	And what you see with all the basins
24	when we've looked at them in more detail, they show a

	110
1	component of stripes of faulting associated with
2	extensions open the basins.
3	Crater flat has been proposed to be the
4	stripes that we have new data at Frenchman Flat
5	that suggest it's left step pulpar associated with
6	this left step movement zone through here.
7	So, when you look at the structural
8	controls of volcanism, you really should factor in
9	this Walker Lane structural overprint that's basically
10	overprinted on top of the basin range in the caldera
11	models and the caldera cycles.
12	So, let's see. This doesn't show up very
13	well, does it? What I did is I just borrowed this
14	slide from one that I found in an NRC paper. I just
15	wanted to show that what you're faced with, if you
16	take a big zone is, how do you choose a record that is
17	representative for doing your probability calculation?
18	And we wrestled with this for decades.
19	Everybody has a slightly different opinion. And it's
20	kind of fun to read to the PVHA because you see how
21	each expert assembled them in a somewhat different
22	way.
23	And I think the most important thing is
24	not which one is right, but what's the range of

	111
1	answers that you get out of a sampling. I wanted to
2	point out one thing right down in here that I think is
3	important.
4	That's the formation and basalts at the
5	green water range, because, at the end, I want to say
6	a little bit about it. I think there's a big four
7	million year event that you see associated with the
8	opening of Death Valley or the one of the phases of
9	the opening of Death Valley.
10	And it may have been responsible for this
11	big event here. And I'm kind of wondering whether the
12	Amargosa Valley record that we see is responding to
13	that event.
14	There's a different tectonic event than
15	what's going on in Yucca Mountain. Next slide. Okay,
16	so here's how I put together the record that I think
17	is relevant to the problem.
18	And it is a bit different from the NRC's
19	approach. I basically if you look at this, there's
20	a major phase of basaltic volcanism associated in the
21	stage of the Timber Mountain and Oasis Valley caldera.
22	What you see is bi-model basalt roulades
23	with a large volume of basalts. And then you also see
24	another pulse of larger volume basalts when you look
ļ	

	112
1	at the origin of each of these basins.
2	They opened up a fairly extensive as
3	best we can time the extension. We can't time as well
4	as we like. But it does appear that, associated with
5	the opening of the basins, there were large volume
6	basalts.
7	And these tend to be in the range of say
8	nine to ten, maybe eleven or twelve million years in
9	very basin to basin. What you see is they show up
10	mostly in the subsurface, like at Frenchman Flat,
11	Yucca Flat, Crater Flat.
12	And we now we drilled some holes in 9.5
13	caldera. What the typical thing that you see with
14	these is these are big volume basalts. They tend to
15	be one to ten cubic kilometers in volume.
16	And I think we're associated with this
17	pulse of tectonics. What I think we now know is that
18	that tectonism is weighing. We certainly know that
19	extension rates are much lower.
20	Although, we're still debating those, but,
21	what you see is, with the later stage basalts, is a
22	switch-over to what I call small volume, post-caldera,
23	post-extension basalts.
24	And they tend to have volumes in the order

	113
1	of about a tenth to a cubic kilometer. And this is
2	the episode that I think is the most important thing
3	to look at for Yucca Mountain.
4	It's the most current what I think is
5	a current tectonic regime. Okay, next one. So, how
6	would I assemble what I think is important? Again,
7	here's a familiar map.
8	My argument that I use in my PVHA was,
9	take a look at the volcanoes in Crater Flat. We also
10	looked at the hidden cone, Thirsty basin units and the
11	aeromagnetic anomalies in Crater Flat and Amargosa
12	Valley.
13	But you have to be careful that some of
14	those are probably associated with this older phased
15	extension. We know from the dates that some of them
16	are in the nine plus age range.
17	And, again, I mentioned that I don't think
18	that the origin of the basalts are well known.
19	There's been a constant debate over cause and effect
20	between structure and the basalts themselves.
21	I think it's absolutely clear that local
22	structure plays a role in the basalts. And whether
\sim	
23	that's simply that it's the guiding pathway for the
24	that's simply that it's the guiding pathway for the last few kilometers or somehow that these waning

	114
1	tectonic systems can trigger episodes is a big debate
2	that I don't think is going to be resolvable in the
3	time of Yucca Mountain.
4	Okay, next. So, getting back to here,
5	here's how I went to assembling this. What we found,
6	one of the interesting thins in PVHA was Kevin
7	Coppersmith was the person who led the elicitation.
8	He's a seismologist. And he kind of
9	guided us to think of a new way of starting. And
10	seismologist, when they go to a problem, they come up
11	with a seismic zone.
12	And they look for typical seismic
13	characteristics of that zone and then apply recurrence
14	rates for seisicity events to those recurrence zones.
15	And that having convinced us that that's
16	probably the way we should be starting. Before we
17	always did event counts. And then we looked at zones.
18	And then we tried to combine them. But,
19	what we found out is, when you start with the zones,
20	it does constrain you on how you use your recurrence
21	event, because, depending on the structural definition
22	of your zone, you may include or exclude some events.
23	And so, it's not fair to have a maximum
24	recurrence rate but then apply it to a zone that isn't

115 1 relevant to those recurrence rates. And I think Bruce 2 is getting to the question that you are asking, that 3 want to bring as much geologic record and you structural intuition into this problem that you can. 4 5 So, what I did was, I said, okay, let's 6 start with zones and look at different ways to define 7 zones. And then you also have to make some decisions, 8 which are modeled assumptions about the distribution 9 of events within those zones. 10 I think my next slide starts into that. 11 Yes, what I did was, I said, okay, I'm going to take two approaches. One is I'm just going to say, let the 12 geologic record be your guide and then see what the 13 14 geologic record tells you. 15 And then the other was I said, I'm going 16 to try to look at what I think are structural 17 controls. So this is what I have that I call spatial 18 models, which this represents in structural models. 19 So, what I started off with in the spatial 20 models, I just said, okay, take the events and then 21 draw areas around those events and see how those 22 evolve through time. 23 And so, what you see if you just look at 24 the record that I think is critical -- which is the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	last five million years, as Mike pointed out what
2	you start off with is the oldest event is Thirsty Mesa
3	at about 4.7.
4	And then you jump down. We did date this
5	one anomaly in Amargosa Valley in 3.8. And you have
6	a 3.7. So we see a northwest trending zone that you
7	can then draw around these events.
8	It's going to change a little bit now when
9	we see some more anomalies in there. But, basically,
10	I would call this event on spatial zone. The one
11	interesting next step is that, up toward Mesa up here,
12	at three million years, it jumps up to the it's in
13	the interior.
14	It's in the red tractor zone in the tephra
15	mountain caldera. So, I would just draw the zone in
16	that. And then you added the 1.1 million year event
17	and then the Sleeping Butte that I think erupted
18	around 300,000.
19	And then, finally, I can't forget Lathrop
20	Wells. Lathrop Wells at 80,000 is then down here. So
21	what you see that I think is kind of interesting is,
22	if the space defined by the first couple of events
23	kind of stays in there and doesn't get modified with
24	the exception of one event out here.

	117
1	So, what I did is I just said, okay, I'm
2	going to use these spatial zones and I'm going to
3	define my recurrence rates based on simply the
4	spatial.
5	I'm making no structural interpretations.
6	I'm just using the geologic record. Next one. The
7	second step that I did I said, okay, I'm going to look
8	at what I think are structural models.
9	And I had a range of structural models.
10	I'm influenced by the Walker Lane that I first pointed
11	out. You have that strong overprint in the Walker
12	Lane.
13	And you see, when you look at the patterns
13 14	And you see, when you look at the patterns just looking at spatial patterns you see a
14	just looking at spatial patterns you see a
14 15	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not
14 15 16	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend.
14 15 16 17	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend. The local trend is following local
14 15 16 17 18	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend. The local trend is following local structure. So, I came up with like a Walker Lane
14 15 16 17 18 19	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend. The local trend is following local structure. So, I came up with like a Walker Lane structure. And I had several different definitions,
14 15 16 17 18 19 20	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend. The local trend is following local structure. So, I came up with like a Walker Lane structure. And I had several different definitions, depending on whether I looked at the District Attorney
14 15 16 17 18 19 20 21	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend. The local trend is following local structure. So, I came up with like a Walker Lane structure. And I had several different definitions, depending on whether I looked at the District Attorney record or the Attorney record.
14 15 16 17 18 19 20 21 22	just looking at spatial patterns you see a northwest trend to the distribution of volcanoes, not the local trend, but the broader trend. The local trend is following local structure. So, I came up with like a Walker Lane structure. And I had several different definitions, depending on whether I looked at the District Attorney record or the Attorney record. And then I had a Crater Flat pull-apart

	118
1	Walker I'm sorry, the Amargosa Valley.
2	So that changes there. I think I had
3	seven or eight. And then I included Jean Smith's
4	northeast trending zone. But notice, when you draw
5	these zones, you are including an excluding events.
6	And so, again, you have to be careful to
7	make sure that you sum your recurrence rates based on
8	how you do your zones. Okay, next one. So what was
9	really interesting with PVHA was, you know, I had done
10	this for years.
11	In sitting down with a panel I was amazed
12	with how many different ways people came up with
13	different models. Mike can testify to that. We all
14	almost every expert had a different model that he
15	liked.
16	And each one seemed to have there was
17	a spectrum of similar models. But each expert had one
18	model that he would basically beat on the table and
19	say, this is the right model.
20	All the other ones are wrong. And this
21	comes back to well, what I wrote here. Many models
22	are possible. There is limited data, so none can be
23	disproved.
24	And nearly every expert had preferred

	119
1	models. So, why get into a debate over which model is
2	right? Look at what the impacts of the alternative
3	models are.
4	So here's just a diagram out of the PVHA
5	which shows all kinds of different ways. Basically,
6	here's Yucca Mountain. These boundaries represent
7	different ways the experts drew their zones and then
8	applied their spatial models to those zones. A wide
9	range, it was impressive.
10	MR. HINZE: Could I ask a questions about
11	that?
12	MR. CROWE: Sure.
13	MR. HINZE: What effect did topography
14	have on the we've been talking about here. What
15	effect does topography have upon the decisions here?
16	MR. CROWE: That's a good question. I
17	could tell you, in my model, topography had a major
18	effect. I mean, basically, I agree with Bruce Marsh's
19	assumption.
20	Our observation that you look at the set
21	things in general. A few places they lap into
22	bedrock. But, most of the places, the concentration
23	is particularly Quaternary cone, let's say.
24	The Old Great Basin region tends to be an

	120
1	alluvial valley. And, if you go talk to the
2	structural people, they say alluvial valleys is where
3	the extension is occurring.
4	That's where the basalts are going to
5	occur.
6	MR. HINZE: That's where the action is.
7	MR. CROWE: Right. And that's how would
8	I use in my model. Now, we had different ways of
9	doing that. What we ended up go back to that just
10	one more time.
11	What we ended up with is what became
12	really important was we had kind of a boundary. I
13	think they drew this in the PVHA. And there was this
14	raging debate over could things go in there.
15	The way I tried to resolve it, as I will
16	point out later, was I said, okay, I'm going to locate
17	my centers within my zone, but allow the dikes to
18	extend out of there.
19	So, the dike lengths, the dike orientation
20	will dictate whether or not they can result in a
21	structural eruption. Okay, next one. So now here's
22	just some interesting things I wanted to point out
23	that I think the record tells you.
24	Again, I'm focusing on the younger ages

(202) 234-4433

	121
1	here. And this is what I call the small volume, the
2	point one to one cubic kilometer. And what I did
3	here, because I fought with geochronologists for so
4	many years, I hate to see histograms of ages where
5	they are based on the number of ages.
6	What I did is I tied them to an age and an
7	event. So, every place that I had an event and I knew
8	the age. In some cases I had to guess the age. I
9	called that one count.
10	And then I histogrammed this out. What
11	you see is some interesting patterns there. There was
12	a cluster of events in the seven to ten. These are
13	the small volume events.
14	There was a hiatus here and then another
15	cluster of three to five. And I think this represents
16	this Amargosa to Death Valley event. And then another
17	cluster just happens to have been the two really is a
18	cluster of one and right here.
19	So, I think the record is showing you that
20	there may have been three discrete pulses of activity
21	possibly associated with pulse of extension.
22	And the question is, what's relevant to
23	the future hazard. All the experts debated it. The
24	majority of them used a five million years and

	122
1	younger.
2	Some only used one million years and
3	younger. Some also included everything. But not many
4	did it. Now, here's the second thing. What I did
5	here was I just plotted the locations of these.
6	They are color coded in red as the younger
7	group and blue is the older group. Then I just
8	plotted an ellipsoid and the centroid of the
9	distribution.
10	And what you see is there are two
11	different spatial distributions. All the older ones
12	occurred mostly toward the northeastern parts of the
13	Nevada Test Site.
14	And then you see this centroid here
15	located, not surprising, down in Crater Flat. And
16	here's the anomalies of Yucca Mountain. So, to me,
17	the record is telling you that there are some clear
18	patterns here and you should incorporate those
19	patterns in your probability models.
20	Next one. So here's a real interesting
21	thing I did just before I left. And it has been
22	buried in the paper I wrote, I doubt if anybody has
23	even read.
24	What I did was I said, okay, let's look at

	123
1	an interesting exercise. Let's just go through the
2	geologic record and let's say, where did each volcano
3	occur and what's the sequence?
4	So, basically, these lines that I've drawn
5	is I've covered both of these. I went to I started
6	with the oldest events were up here. And then I just
7	drew a line where the next event was.
8	And then I continued through that. Then
9	I jumped down to here and repeated the process here.
10	And what you see is this remarkable oscillation. And
11	it tends to like a few spots.
12	But it oscillates back and forth. And, in
13	fact, if you look at Crater Flat, the first event at
14	is Thirsty Mesa, as I talked about. Then it jumps
15	down to here.
16	And then it jumps up here. Then it comes
17	back down here and goes up here and comes back down
18	there. To my mind, there's a lack of predictability
19	there.
20	Well, let me rephrase that. There's a
21	tendency for things to cluster in groups, here and
22	here. But, when you look at it in detail, the last
23	event is a poor predictor of the next event.
24	It looks like magma will come up wherever

(202) 234-4433

	124
1	it feels like coming up. You have to be very
2	cautious. That's why I went to a random model. I
3	just felt like we just don't have enough information
4	to really say, why is it coming up where it is?
5	And so, what I did from my zones, I'd see
6	this is a random distribution of event. But let me
7	point out that there are two scales of clusters. And
8	I worked with some spatial experts to look at this.
9	There are the clusters where, when you
10	have an individual event let's take the 1.1 million
11	year that clusters as a group of four things.
12	But that's clustering like one event that
13	forms in probably a fairly narrow period of time. As
14	best we can tell, it's largely synchronism. I gave up
15	arguing with the geochronologist of whether there's
16	any differences there.
17	But, the best we can date, we don't see
18	any difference. Now, that's what I call an event
19	cluster. And then there's a spatial cluster, which I
20	think is just where you see patterns through time.
21	So, I distinguish those too. Okay. So
22	now let's come back here. So what I did is I did my
23	two types of zones and then I used a random
24	distribution of events.

	125
1	So now we come down to event counts. And
2	anybody who had been around Yucca Mountain knows that
3	this got debated for so many years and there have been
4	so many different models that I got tired of even
5	talking about them.
6	But, here's the parameter. You have to
7	come up with an event definition. And Britt gave you
8	one event definition. And that's basically it's a
9	model assumption of how you chose your events.
10	And what I think is important is to make
11	sure each expert defines that, because you can end up
12	kind of muddying the waters using different event
13	definitions and come up with recurrence rates that are
14	variable and are confused because you haven't

16 You have to choose a time interval. Т 17 covered that. I'll talk a little about time 18 distribution. But we argued that one -as I 19 understand it, I think both the DOE and NRC agree on 20 a steady state of vent rate that they have been using 21 for their probability models.

clarified your event definition.

22 And then this undetected events I'll talk 23 about in a little bit. But, those are the parameters 24 you have to come up with when you do your event

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

15

	126
1	counts.
2	And here's one. I borrowed this one out
3	of one of the things that the ACNW sent out because I
4	thought it was really neat. The vent areas show up in
5	red in this particular spectrum.
6	And what you can see is, if you take like
7	phases of volcanism, they have a discrete event
8	geometry to them. And it ranges. Britt described in
9	some detail the 3.7, what you see.
10	When I originally mapped it I thought
11	there was about fiver or six centers so that I could
12	reconstruct. So, we had a cluster of five or six
13	centers.
14	Now, are there five or six events there?
15	Or is that one event that has an event geometry that's
16	spread over an interval here. What's important really
17	is that you can look at it almost both ways.
18	But, they have different consequences.
19	So, if you're going to assign the maximum
20	consequences, which would be a large event, you have
21	to go back to the recurrence rate and treat it as a
22	single event.
23	So, you can't over count it and then come
24	back and weight it. So, what would happen is the

	127
1	consequences go up but the recurrence probability goes
2	down.
3	So, if you look at the record, what you
4	see is that there was about five here. We think
5	there's about four here. We've got long debates about
6	what counts as one or two.
7	And I don't think it's worth arguing over.
8	Thirsty Mesa up there, I think I mapped three distinct
9	event. Sleeping Butte has two way up here.
10	Lathrop Wells and the Mesa up here, we're
11	just thinking they had one single event. So what you
12	see is you have the record is telling you there's
13	a spectrum of behaviors.
14	And I think you should just treat it
15	probabilistically as probably as a uniform from one to
16	six. And that's a nice way you can treat how you do
17	your events.
18	But you have to be very careful to make
19	sure that how you do your events is tied to the
20	consequences. And then I mentioned that you have to
21	do your event counts specific to the zones.
22	And, I mean, I made the mistake in my
23	first calculations. I treated them independently.
24	And you end up coming up with combinations that have

	128
1	no possibility, because they don't exist in the
2	geology realty space.
3	Undetected events, to the best of my
4	memory, Bill, to answer your question, was, the way we
5	handled it in PVHA was most of the experts thought
6	that if magma is going to ascend all the way up to
7	repository depths of about 300 meters, it's going to
8	make it to the surface.
9	So they felt like it's going to be
10	unlikely to have an event that comes up into the
11	shallow crust and just stops, that you're in the depth
12	range.
13	We're starting to volatile. It should
14	be the driving force that's going to push it to an
15	eruption. But they felt that there could be an event
16	geometry of more undetected events with that.
17	So say at Lathrop Wells there might have
18	been some intrusions to the southeast of it. So they
19	were adding that's what they call undetected
20	events.
21	And that's different from having an event
22	that came up and never reached the surface and created
23	something in the volcanic record. So, you know, I
24	completely agree with how Britt was describing that

	129
1	there.
2	You have to be careful on how the
3	different PVHA looked at undetected event
4	associated with known surface volcanoes. And there
5	was a fundamental dispute over whether or not you
6	could have an intrusion pausing in the very shallow
7	crust.
8	Okay, now here's the these diagram I
9	hate putting up because I get in trouble every time I
10	talked about them. But, let me start with a simple
11	one first.
12	If you look at this is just cumulative
13	volume versus the time. What you see is a four
14	million years event where larger volume has inversed
15	slope.
16	And then the younger events have a
17	different slope. And I think these are probably
18	telling you that fundamentally they are different
19	parts of the record, that they're probably responding
20	to, I think, different tectonic regimes.
21	And, you aught to make some choices about
22	which one you think is the most relevant to the
23	future. The second one was this is kind of an
24	exotic plot that I labeled.

	130
1	What I calculated was, I took the time
2	from the previous event, which I called the reposed
3	interval so, in other words, like this is between
4	Thirsty Mesa and I think the anomaly in Crater Flat.
5	That would represent this reposed
6	interval. And then I plotted that versus time. First
7	I fit a nice little linear regression. So what you
8	see is a slight tendency to a decrease in that reposed
9	rating.
10	Again, your dataset is pretty limited.
11	Just for fun, I did a distance weighted square fit
12	which shows an oscillation. When I put this in a
13	paper, a reviewer said, oh, he just predicted the next
14	eruption is going to happen any time now.
15	And, I don't know if I'd go that far.
16	But, we used to have negative ages on Lathrop Wells.
17	And we used to argue, there's your next event. Okay,
18	next slide.
19	So, okay, coming back to then we summed
20	all these event counts in different ways. And I did
21	it for spatial and structural models. That then feeds
22	into the recurrence rate.
23	And then that recurrence rate goes into
24	the probability of repository intersection. And let

	131
1	me show you the way that I've ended up kind of liking
2	to do it.
3	But there's a whole bunch of different
4	ways to do this. Let me point out the variables that
5	go with this repository area, the dike ledge, which
6	you can treat as stochastic, and dike orientation, and
7	then the probability of an eruption are an intrusion.
8	So, the next one. Okay, this again is
9	just a reminder. This is how I assigned these to my
10	individual structural zones. So what I said is I
11	allowed these to have a random distribution of events
12	within each of these zones.
13	Then go to the next one. Then I worked
14	with Goulder and we used the code. And we run
15	simulations where we assign the dike height, a dike
16	length, and a dike orientation.
17	We just did simulations of the repository
18	block that's buried down under here. And we just let
19	them run. This one happens to be for the Yucca
20	Mountain region.
21	And, because we find that the outer domain
22	of our models, we put a lot of dikes in this one to
23	extend past the model domain. But, in the other ones,
24	we just basically gave a dike dimension, randomly

	132
1	located them within that.
2	And then we summed up three things two
3	things, the number of intersections in the volume
4	intersection, and then calculate that as our
5	disruption probability.
6	It's very comparable to the way most
7	experts did it in the PVHA where a geomatrix helped
8	them use kind of a geometry of intersection. They
9	treated dike length as a stochastic.
10	They treated dike orientation as
11	stochastic. And they ended up you have a
12	trajectory of only certain areas will actually project
13	into a disruption.
14	So they brought that geometry of dike
15	directions into an intersection. So, if you go back
16	so, if you go to different centers, some of them
17	are capable of a repository intersection, some are
18	not.
19	So, disruption ratio becomes we
20	basically are very influenced by the modern stress
21	field, which says that dikes should be entering in a
22	north-northeast direction, basically.
23	And the stochastic was centered about
24	that. So, when you locate your events, you assign

	133
1	that to it. So, some events are going to occur in
2	that zone.
3	But they have a virtually zero probability
4	of intersecting the repository because either the
5	orientation of the dike length takes them out of the
6	ability to intersect.
7	So, okay, that's what I did. I want to
8	say just a little bit about I did this right at the
9	last minute before I left Yucca Mountain. I think
10	it's also been buried and nobody has read it.
11	It's something that I didn't do until
12	after I finished my probability calculation. I came
13	up with a simple logic that says, I think there's some
14	somewhat firm bounds you can put on this probability
15	of repository disruption.
16	Here's the argument I went through. In
17	the basin and range there is a background recurrence
18	rate. Basalts tend to keep coming up. And so, I
19	said, well, if you located a repository away from a
20	defined volcanic zone or in this background, you
21	should calculate the probability of it being in a
22	background setting.
23	And, that's what I did. My particular
24	well, I'll get to that in a second. And then I said,

	134
1	the other so that would define your minimum value
2	for your probability.
3	So, in other words, the distribution
4	shouldn't get less than background, or maybe you have
5	to go back and question your assumptions. And then,
6	on the other end what I said is, let's just take the
7	repository and put it right in the middle of one of
8	these zones that I defined.
9	And that should give you the maximum at
10	the other end. It says, we think Yucca Mountain
11	this is open to great debate, of course sits
12	outside of the volcanic field, but close to it.
13	So, logically, Yucca Mountain the
14	probability of disruption should be greater than
15	before but less than putting it right in an active
16	volcanic zone.
17	And this becomes the big debate. How far
18	away from a volcanic zone is Yucca Mountain. And I
19	don't think that's resolvable. So, okay, let's see
20	what happens if you make those assumptions, what you
21	come up with.
22	I use the Southern Great Basin. And I use
23	this thing that was very popular during the PVHA
24	called the Amargosa Valley Isotopic Province, or AVIP.

135 It's an area where there's a unique 1 2 isotopic composition to most of the basalts. I'll let 3 I'd like to stay out of that Frank talk about that. 4 area. 5 But, basically, the AVIP defined this area 6 of unique isotopic compositions of basalt. And so, 7 what I did is I said, okay, let's take a 4.5 kilometer 8 repository footprint, put it into these two provinces. 9 And Ι used event counts from the 10 combination of expert judged in my own regional field 11 studies where there wasn't any data. And I used that 12 -- I used the recurrence rate and then the disruption 13 ratio was simply the ratio of the area to the 14 repository area. 15 And here's what you come up with numbers of what I would call background. Somewhere down in 16 17 the low one to three times ten to the minus nine. So, 18 what I would say is, anybody that calculates a number 19 less than that, you should question how you assembled 20 your probability calculations.

21 So, let's go to the next one. So then 22 here's what I did if I plugged into my zones. And the 23 numbers range from almost two times ten to the minus 24 seven.

	136
1	Two is low for this at the Jean Smith
2	Northeast structural zone. And it's interesting for
3	this one because there is a restricted number of
4	events that that encircles.
5	The recurrence rate goes down. And so,
6	the probability of disruption is lower. So, actually,
7	this is the zone that includes Yucca Mountain.
8	And yet it has the lowest of the
9	calculated. So, somewhere in this range, you would
10	argue and I put the number up around one to one
11	point two times ten to the minus seven would be a
12	maximum bound.
13	So, what I would argue is, if you're
14	getting much higher than that, you basically aren't
15	paying attention to the geologic record and you should
16	look at your probability calculations.
17	So, let's go to the next one. So, here's
18	what I did. I love this phrase that basically you
19	have to cut off the maximum, which is the uniform
20	distribution between your min and the max.
21	Basically I'd like an uninformed prior is
22	they way I like to look at it. So, my uniformed prior
23	was the min and the max I calculated. So, I used on
24	times ten the minus nine and one times ten to the

	137
1	minus seven.
2	That gives you a mean value of about five
3	times ten to the minus eight. And, interestingly
4	enough, our numbers everybody's numbers comes
5	around pretty close to that.
6	I mean, in my opinion, some of the fights
7	I've been in and I think are still occurring are
8	you're just modeling noise around some numbers. It's
9	probably unresolveable.
10	So, why not just kind of look at it that
11	way. So, I went back and I looked at the PVHA
12	disruption, which is here. So, this is ten to the
13	minus ten, ten to the minus seven.
14	What I argue is they have a fair amount of
15	detail that goes down below the ten to the minus nine
16	range. So I'd argue that we probably should have
17	truncated that and said that those are just a little
18	bit too low.
19	And so, what you do is you reduce some of
20	this huing on this distribution. You probably shift
21	the mean a little bit over here. And then, going to
22	the NRC model, they've been talking about a ten to the
23	minus seven, ten to the minus eight for most of the
24	data they interpret.

	138
1	And I would just argue that, instead of
2	using ten to the minus seven value which they do in
3	their PA calculation treat that as a uniform and
4	sample that distribution.
5	If you do that, the difference between
6	this uniform and about there is not enough to get
7	excited over. And I would argue it's getting time to
8	move on to consequences, where all the uncertainty is.
9	So, next one. So, the final overview
10	comments, I just want to comment a little bit about
11	where I was when I thought I left with the
12	aeromagnetic anomalies.
13	I haven't looked at the new data. So, it
14	would be very interesting to look at it. As I
15	mentioned, we did drill the one anomaly. And the fact
16	that as Britt pointed out these anomalies are
17	buried.
18	If there was surface basalt at the
19	centers, they have to be fairly old. He used two. I
20	would argue that I bet they are going to come out
21	around four, because that's the one that we drilled,
22	at about four.
23	And it also matches a regional Death
24	Valley event that I think you see as an overprint in

	139
1	this region. So, if these things are about four, and
2	they're mostly located down in the Amargosa Valley,
3	the dike lanes and the dike orientations are not going
4	to lead them any intersections.
5	So, you don't want to just look at the
6	recurrence rate. You want to look at both the
7	recurrence rate and the likely hood of an intersection
8	with these new events.
9	I don't think that it's going to change
10	the relationships as much as people have been saying
11	in a new era. There's going to be a range of change.
12	But, when you take into effect the
13	recurrence rate and the likelihood of disruption, I
14	don't think the numbers are going to change that much.
15	Here's the only thing in fact, before
16	I left go to my current program with the DOE to do
17	this. This is the anomaly near little cone. It has
18	a normal polarity, which doesn't match anything we see
19	in the record.
20	Everything else is reversed out there. We
21	need to find out what that is. Because, if it is
22	something in the record that we don't know of, then we
23	really need that data.
24	And I had also argued that let's explore

	140
1	some of the anomalies in Crater Flat that are close to
2	Yucca Mountain that might have a higher potential
3	intersection.
4	And that should influence I mean, those
5	are just so important. And my opinion is it's
6	probably so important that you really should gather
7	data on those.
8	We have the potential, so let's just go
9	gather it. But, I would argue that, for Amargosa
10	Valley, drill one or two of them. But, if they all
11	come out at about the four million range, I think I'd
12	walk away and feel pretty confident that you know what
13	you're doing.
14	MR. HINZE: Before you leave that, if I
15	might, the limited impact, is that based upon an
16	assumption about where these aeromagnetic anomalies
17	will be found? Could you expand on that a little bit?
18	MR. CROWE: Yes. It was based mostly on
19	what I saw in '96 with the aeromag data, which was
20	mostly Amargosa Valley. They have some new data in
21	Crater Flat that I'd want to look at.
22	So, I should cavy out that. That's a '96
23	profile that I'm presenting. But, if you looked at
24	what Britt was presenting, most of the anomalies are

	141
1	down in Amargosa Valley.
2	I'm guessing that a lot of the ones in
3	Crater Flat are probably very tough, since it is so
4	magnetic. You can fault it and get a pretty good
5	signal.
6	MR. HINZE: How about in Jackass Flats?
7	MR. CROWE: I'm biased. But, I looked at
8	Jackass and I was doing some work. There actually is
9	a drill hole that penetrated the south in Jackass.
10	Way back in the nuclear rocket program in
11	the 60's they drilled three holes, J11, J12, and J13.
12	And one of them hit a basalt at, I think about 1,100
13	feet.
14	I looked at the cuttings from it, and I
15	think it matches what we call a basalt of EMAD, which
16	you see at the surface, which we date at about 11
17	million years.
18	I walked the sections and looked at we
19	have dates through all the basalts surrounding that
20	valley. And they're all in the nine to 11 million
21	years.
22	I think it's unlikely you're going to see
23	a shallow anomaly there. But I want to see the high
24	resolution data to see if anything shows up. But, I

	142
1	don't think I would get really excited about it.
2	The record seems to show that not much has
3	been happening in Jackass Flat. Let's see, where was
4	I? Okay. Here's on last thing I wanted to point out.
5	I really think that the Crater Flat pull-
6	apart is where the active extension is. And the
7	record is telling you that that's where the basalts
8	are coming up.
9	And that's the major part of the record we
10	should be looking at. And I think it's the critical
11	thing to calculating future probability. I think
12	people have neglected this.
13	I worked with Will Carr here originally.
14	And he always pointed out what he called the Minot
15	Spotted range system, which is a series of left
16	slip faults.
17	And we now know that one of those control
18	the extension of Frenchman Flat. What's really
19	interesting is, in this basin I guess I would argue
20	by inference the Jackass Flat Basin you probably
21	have strike components to them in this left slip.
22	And most of the basalts that you see
23	occurred primarily at the time of extension, as best
24	we can tell. And what you see is fairly large volume

	143
1	basalts.
2	We know we have penetrated basalts in
3	Frenchman Flat. In multiple cases, the testing
4	dated down the maximum plug buried up in the
5	bedrock to the west, dated five.
6	And, they are voluminous enough that they
7	look like they probably are marking the major
8	extensions. Similar arguments could be made for
9	what's in Yucca Flat.
10	In fact, I now think going this bedrock
11	that we dated 86 here is probably part of this
12	extension of that basin. What's kind of interesting
13	is most of the basins except Crater Flat and Frenchman
14	Flat have one major phase of basaltic volcanism
15	associated with extension.
16	But, in Frenchman, there was the later
17	stage of about 7.2 million years later. What's
18	interesting is that this has been a persistent site of
19	volcanism.
20	I think there's a little bit of anomalous
21	for all the other basins here in that, not only was
22	the older stuff that floors the basin we
23	penetrated 11.5 million year basalt at 1,100 feet
24	below the surface here.

(202) 234-4433

	144
1	We see it in the south exposed to the
2	surface. But then there are these multiple pulses of
3	younger. And that's where Crater Flat is a little bit
4	unusual.
5	I personally think it may be a combination
6	of Amargosa and Crater Flat is in the intersection
7	of this spotted range Minot Mountain system.
8	And it has been influenced by a part here,
9	and possibly might be influenced by the proximity to
10	Death Valley. But, that's very speculative. And I'm
11	just going there because I can get away with it
12	because I don't go to the program.
13	CHAIRMAN RYAN: Okay, we have time for a
14	few questions. Any questions? Yes?
15	MR. HORNBERGER: Bruce, you mentioned that
16	when you did this you had a bound, and you said that
17	less than ten to the minus nine is not credible. And
18	you didn't think that higher than ten to the minus
19	seven was credible.
20	MR. CROWE: Yes. I would go into maybe
21	three times ten to the minus seven range, but
22	somewhere in there. You might have to you might
23	take all the expert judgment and assemble them to see
24	how you are bound to compare. I just did my set of

(202) 234-4433

	145
1	models.
2	MR. HORNBERGER: Right. I realize that.
3	Can you think of any way consistent with your
4	knowledge of the geologic system that you could say
5	get to five times ten to the minus six?
6	MR. CROWE: No, I can't. I mean, you'd
7	have to have some preferential mechanism for focusing
8	events at Yucca Mountain. I think the geologic record
9	says.
10	Since you can go back ten million years,
11	there is that one Solitario Canyon event. But, I
12	think that's associated with the maximum extension. If
13	you go back and look at the ash record of Yucca
14	Mountain, it was a basin when the eruptions occurred
15	that formed most of the mass of Yucca Mountain.
16	And it was elevated between the two sheets
17	of Timber Mountain. You can see this huge forming
18	in the geologic record there. So, most of the
19	tectonism that elevated that mountain, occurred about
20	11 million years ago.
21	And Yucca Mountain de-coupled from Crater
22	Flat in my opinion at that point. If it didn't, it
23	would still be a basin. But, it's a high standing
24	range.

	146
1	And, again, I believe the model that
2	extension in the record all over the Great Basin shows
3	that, with seismicity, that where the extension is
4	occurring the valleys.
5	And that's where the basalts tend to
6	occur. But they can spread a little bit. That's not
7	to say it excludes penetration. But I would say our
8	best guess from the record is in the valleys of where
9	all the action is.
10	MR. HINZE: Even including the 10 million
11	year old events, you still fall within the ten to the
12	minus seven, ten to the minus eight?
13	MR. CROWE: You do, exactly right. Yes,
14	I mean, I really have the only plea I would like to
15	make is get on to consequences. I mean, that's where
16	your uncertainty is.
17	And you're going to just be fine-tuning
18	here. I mean, I really think you should drill these
19	anomalies. I mean, I would like to see the new
20	dataset.
21	But, the expectations are that it's not
22	going to change it too much. And, if you look at your
23	bucket of uncertainty, the consequences are so much
24	more significant.

	147
1	CHAIRMAN RYAN: Thank you very much Bruce.
2	That was an interesting talk. Any last questions?
3	(No response.)
4	CHAIRMAN RYAN: All right, we'll press
5	onto our next speaker. Mr. Neil Coleman of the ACNW
6	staff will be talking about alternative views on the
7	likelihood of an igneous event in the Yucca Mountain
8	region.
9	And, while Neil is getting ready, let me
10	recognize Dr. Charles is in the audience, a member of
11	the ACNW. Thank you for your participation, for being
12	with us.
13	ALTERNATIVE VIEWS ON THE LIKELIHOOD OF AN IGNEOUS
13 14	ALTERNATIVE VIEWS ON THE LIKELIHOOD OF AN IGNEOUS EVENT IN THE YUCCA MOUNTAIN REGION
14	EVENT IN THE YUCCA MOUNTAIN REGION
14 15	EVENT IN THE YUCCA MOUNTAIN REGION MR. COLEMAN: This talk represents
14 15 16	EVENT IN THE YUCCA MOUNTAIN REGION MR. COLEMAN: This talk represents background research in support of the ACNW's review of
14 15 16 17	EVENT IN THE YUCCA MOUNTAIN REGION MR. COLEMAN: This talk represents background research in support of the ACNW's review of volcanism. I thank my co-authors, Bruce Marsh of
14 15 16 17 18	EVENT IN THE YUCCA MOUNTAIN REGION MR. COLEMAN: This talk represents background research in support of the ACNW's review of volcanism. I thank my co-authors, Bruce Marsh of Johns Hopkins University in Baltimore, and Lee
14 15 16 17 18 19	EVENT IN THE YUCCA MOUNTAIN REGION MR. COLEMAN: This talk represents background research in support of the ACNW's review of volcanism. I thank my co-authors, Bruce Marsh of Johns Hopkins University in Baltimore, and Lee Abramson of NRC's office of Research.
14 15 16 17 18 19 20	EVENT IN THE YUCCA MOUNTAIN REGION MR. COLEMAN: This talk represents background research in support of the ACNW's review of volcanism. I thank my co-authors, Bruce Marsh of Johns Hopkins University in Baltimore, and Lee Abramson of NRC's office of Research. I thank them for their contributions.
14 15 16 17 18 19 20 21	EVENT IN THE YUCCA MOUNTAIN REGIONMR. COLEMAN: This talk representsbackground research in support of the ACNW's review ofvolcanism. I thank my co-authors, Bruce Marsh ofJohns Hopkins University in Baltimore, and LeeAbramson of NRC's office of Research.I thank them for their contributions.Thanks to John Trapp of the Staff for providing NRC's
14 15 16 17 18 19 20 21 22	EVENT IN THE YUCCA MOUNTAIN REGIONMR. COLEMAN: This talk representsbackground research in support of the ACNW's review ofvolcanism. I thank my co-authors, Bruce Marsh ofJohns Hopkins University in Baltimore, and LeeAbramson of NRC's office of Research.I thank them for their contributions.Thanks to John Trapp of the Staff for providing NRC'sPVHA code and Center for Nuclear Waste Regulatory

	148
1	Hazard Assessment. I should add at this point, this
2	talk represents our views, the author's views, but
3	does not necessarily represent vies of the Commission,
4	NRC Staff, or the ACNW.
5	We suggest that our work be considered in
6	evaluations of volcanism at Yucca Mountain. I will
7	briefly describe the technical issues for volcanism
8	and provide a brief summary of volcanism in the
9	region.
10	Previous estimates of the probability of
11	volcanism will be discussed. And I will show the
12	results of our statistical and PVHA analyses. And we
13	will compare Yucca Mountain to other volcanic fields.
14	Finally, I will present conclusions and
15	recommendations. Next slide, please. A special topic
16	in the earth sciences is using geologic data to
17	evaluate very low probability events such as volcanic
18	eruptions and earthquakes, and evaluating how these
19	could potentially have significant consequences.
20	Now, of course, the technical issue here
21	is the potential for inter-igneous activity very much
22	like the repository. Here we are looking south from
23	Yucca Mountain.
24	And, in fact, some of us from the Staff

	149
1	were on the crest of Yucca Mountain and had that exact
2	view just yesterday. You can see the 80,000 year old
3	Lathrop Wells cone in the distance.
4	Geologically, this is the youngest known
5	volcanic event in the Yucca Mountain region. Next
6	slide. On the left is a pan view of the underground
7	repository.
8	On the right is a close-up of the waste
9	placement drift showing the potential horizontal
10	storage of alloy 22 waste packages. If the probability
11	of an igneous dike intersecting the repository is less
12	than one times ten to the minus eight per year, it may
13	not be considered in licensing.
14	However, regional studies do suggest that
15	the probability is just high enough that the
16	Department of Energy must evaluate the consequences of
17	dike intrusion.
18	Potential consequences will be discussed
19	in the next session of this working group. Next
20	slide. I want to take a moment to just put geologic
21	time in perspective.
22	We toss these terms around, Quaternary,
23	Pliocene, Miocene. Here's a timeline that compares
24	volcanism in the Yucca Mountain region to other

	150
1	events.
2	This figure shows the last two million
3	years. The tuffs that form the surface of the
4	mountain are quite a bit older. They erupted between
5	ten and 13 million years ago.
6	So they are off the left end of this
7	chart. Not all the basaltic events in the region are
8	shown. Here are some examples. The X axis here is in
9	millions of years before present.
10	The last 1.8 million years represents the
11	Quaternary. You can see the if I can find the
12	button here the time frame on the bottom. 1.8
13	million years is the break between Pliocene and
14	Quaternary.
15	And there's a Miocene-Pliocene boundary of
16	5.3 million. Older events are Miocene in age.
17	Approximately 11 ice ages appear since the late
18	Pliocene time.
19	Only once volcanic event at Lathrop Wells
20	cone has erupted since the advent of modern humans on
21	earth, that's the Homo sapiens sapiens. That was
22	about 120,000 years ago.
23	The million year old cones in Crater Flat
24	pre-date all the pieces of the Homo sapiens, including

151 the Neanderthal. The famous hominid fossil Lucy, 1 2 right here, (Australopithecus aphaeresis), dates back 3 to the Pliocene time around the time that those guys were occurring in Crater Flat, the Pliocene. 4 5 At the far left is the Solitario Canyon dike that was mentioned, around 10 to 12 million 6 7 There are two dates for that one. The key vears. 8 thing to point out at the top of the figure is that 9 the uncertainty in the actual number of volcanic 10 events greatly increases as you go back in time, 11 because you had more time to erode basaltic events 12 that occurred then. 13 Also, you had more time to cover them up 14 with younger volcanic, like sevens. Next slide, The large surface exposures in the region 15 please. outside of the basin data is a tuff produced between 16 17 nine and 13 million years ago, the huge caldera formed 18 eruptions, pyroplastic eruptions, some of it. 19 The largest pyroplastic eruptions that we 20 anywhere. You see a series of these know of 21 overlapping calderas north of the blue star, Yucca 22 Mountain. 23 Calderas are large areas of collapsed 24 terrain that form during and after large volcanic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	152
1	eruptions. There are extensive Miocene and Pliocene
2	basalts that erupted in and near these calderas, which
3	represent kind of a unique structural.
4	Next slide. Dr. Crowe showed this slide.
5	I'll just mention the repository shown in blue here.
6	The black areas here are Pleistocene basalts. There
7	are eight of them, including two up in the upper left
8	hand corner, that Black Mountain vicinity.
9	Of course on the sort of black pattern
10	sort of classing basalts, and the grades in the
11	Miocene basalts, which occurred all over this area.
12	After Miocene time, volcanism clustered to the west
13	and south of Yucca Mountain.
14	There are no known Pleistocene or Pliocene
15	basalts on Yucca Mountain or to the east in Jackass
16	Flats. Next slide. Here is a satellite image. I
17	think John Trapp showed this one also.
18	The Yucca Mountain site is, again, in the
19	blue star location. The DOE has conducted
20	aeromagnetic surveys. And we saw some initial results
21	from that in an appendix.
22	They have plans to drill and date a number
23	of suspected buried basalts. The latest drilling
24	results show that the basalt penetrated at Nye 23P,

	153
1	they didn't encounter basalt.
2	What was sort of interesting, the
3	impression that the DOE contractors had is that this
4	may not be basalt, it may be a boulder zone that was
5	penetrated.
6	But, I would suspect that if these were
7	large boulders, they wouldn't come from very far. So
8	that probably does represent an insidious basalt
9	somewhere here nearby.
10	But the key is that this is not
11	particularly surprising to find this. There is no
12	magnetic anomaly associated with it. It is very deep,
13	400 feet deep in alluvium.
14	And the age that has been determined, the
15	Miocene age is consistent with the ages of other
16	basalts in Jackass Flats. Next slide. There have
17	been approximately four known pulses of basaltic
18	volcanism in the area.
19	And this is a different way of showing
20	what Dr. Crowe showed with changes in the estimated
21	magma volume over time. What you're seeing is volumes
22	of magma erupted in cubic kilometers that are on the
23	bottom scale.
24	The X axis is a million years before the

	154
1	present. The vertical axis is volume and cubic
2	kilometers. The large bar, A, represents the Miocene
3	eruptions, B, the Pliocene events, C and D the
4	Pleistocene events.
5	The tiny bar under D is the Lathrop Wells
6	cone. This figure shows the volume of volcanism was
7	basaltic and the were constant. Support in an
8	uncertainty increases a lot as we go back in time
9	right to about the big bar A.
10	It is most certainly too small, because
11	those Miocene results were probably buried by younger
12	basalts and alluvium in Crater Flat. Likewise, the
13	Pliocene events in B may similarly be too small.
14	The magnetic data that we saw yesterday
15	gave a preliminary look shows that is indeed the
16	case. The Pleistocene volumes shown by C and D are
17	much more reliable because little time was available
18	to erode or conceal those deposits.
19	Next slide. Here are estimates for
20	volcanic disruption of a repository, some of which
21	claim the probability could be much higher than
22	previously thought ten to the minus six per year or
23	higher.
24	That is on average one penetration of the

5 Now, the rest of this talk considers some 6 simple tests of whether the highest probabilities are 7 realistic. We look at past volcanic -- four time 8 scales, the 13 million span, the total length of time 9 that the surface rocks have existed at Yucca Mountain. 10 One million years is the to the last four 11 million years. 100,00 years, and then some inferences 12 about present day conditions. We'll look at present 13 day. 14 One impetus for a higher probability would 15 be unusual crustal activity. In 1998 Brian Wernicke, et al reported in the Journal of Science that Yucca 16 17 Mountain has tried to pull apart. 18 This claim is countered by Savage, et al 19 1999 and in 2001 papers in the Journal for in 20 Geophysical Research. They used a larger GPS network 21 to show that the extension rate is not anomalously 22 high for this region.

And, therefore, present day strain ratesdo not indicate conditions favorable for the infinite

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 155

	156
1	triggering of volcanism. Next slide. The rocks that
2	make up Yucca Mountain record an integrated tectonic
3	volcanic history since the 13 million year old tuff in
4	the repository.
5	Yucca Mountain is one of the most
6	intensively studied places on earth. Over 20 years of
7	studies have included detailed surface and sub-surface
8	mapping, geophysical surveys and construction more
9	than ten parameters of tunnels.
10	DOE drilled more than 450 surfaced bore
11	holes depths. It seems unlikely that multiple
12	dikes could exist in the repository footprint and
13	escape detection.
14	We examined whether dike penetration rate
15	was greater than two times ten to the minus seven per
16	year are realistic given that no dikes have been found
17	in or above the 13 million years old repository block.
18	Now, it was mentioned earlier that there
19	is one event, a dike 10 to 12 million years old, that
20	was a near miss. And you can see it. There we go,
21	just to the west of the site and located within the
22	Solitario Canyon.
23	You can see the expression of fault in the
24	topography in this area. And here is a north-west

	157
1	extension of it as well. Although it is close, it is
2	a near miss.
3	As far as we can tell, it did not
4	penetrate the repository block. And, DOE does use
5	certain criteria for set-back from faults for tectonic
6	reasons, for earthquake reasons.
7	I should mention that, because of the age
8	of this unit, we know that in true to these upper
9	faults, during the ancient period of caldera
10	formation, when basaltic volcanism was very
11	widespread.
12	And, caldera formation had not ceased at
13	the time that this dike was in place. There was still
14	activity to the Northwest, Thirsty Canyon tuffs are
15	younger than this unit.
16	The image on the right shows this Miocene
17	dike is very close to the site. Exposures are small.
18	The whole thing is maybe about 10 to 15 in length.
19	It's about a meter across, less than one meter thick.
20	And it is highly eroded. What you see is
21	most of what is there. It is possible that other
22	features like this exist but have been undetected on
23	the mountain.
24	Geophysical methods would be poor tools

158 for finding dikes like this. And, in fact, that was 1 2 presented in the appendix 7 yesterday, that low 3 altitude magnetometer passes over this dike did not 4 detect it. 5 This is the last high resolution work that 6 Although, that was a very preliminary was done. 7 result, and there were numerous other passes. But, 8 yet, it is an extremely -- dike. 9 It was found in the geologic method. And 10 the geologic method is the best tool. And the 11 emphasis that was placed on mapping out fault traces 12 maximize the possibility of finding this kind of 13 feature. 14 Of course, the best way to locate any kind 15 dikes in the mountain, is in the underground of tunnels. They have been mapped in great detail. 16 No dikes have been found in them more than 10 kilometers 17 18 of tunnels. 19 I should also mention that, on this trip 20 when the photograph was taken, an NRC hydrologist was 21 the one who located this, an individual with almost no 22 mapping experience. 23 So, next slide. We could use the apparent 24 absence of basaltic dikes to detect -- in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	159
1	intrusion probability. Assuming a constant recurrence
2	probability rate, the number of penetrating dikes in
3	time, T, has a Poisson distribution with a mean of ëT.
4	The probability of no penetrations is the
5	exponential of minus ëT for two times ten to the minus
6	seven per year. The expected number of penetrating
7	dikes is 2.6.
8	The probability of at least one
9	penetration is .93. For a recurrence probability of
10	one times ten to the minus six per year, that is a
11	very high intersection probability claim, the expected
12	number of dikes would be 13 and the probability of at
13	least one penetration, as you can see, 0.999998.
14	These results are not consistent with the
15	exploration evidence because no dikes have been found
16	in the footprint. Claims of high intrusion
17	probability failed as test over the 13 million years
18	time scale.
19	Next slide. Let's look at some younger
20	basalts. One the left is a vent complex in Pliocene
21	H in Crater Flat. At right is Black Cone, which is a
22	Pleistocene volcano dated around one million years.
23	And this series of cones Northern Cone,
24	Black Cone, Red Black, Blue Cones, these are all dated

	160
1	around one million years. No features like these
2	exist on Yucca Mountain.
3	An important point to make is that
4	preservation of exposed basalts in southern Nevada
5	depends on their age and topographic setting. Miocene
6	and Pliocene basalts have been found in local basins
7	buried by alluvial basins.
8	Partial burial has been reported for
9	Pleistocene basalts. But they are too young to be
10	completely buried, even in basins. Next slide. Now,
11	you've also seen this slide before.
12	To further analyze the probability of
13	volcanism intersection we require NRC's PVHA code,
14	version two. And we analyzed the ten datasets that
15	have been published with that code.
16	Here's an example graphic from Connor et
17	al., 2000 in the Journal of Geophysical Research.
18	This slide shows the spatial recurrence rate contoured
19	for the Yucca Mountain region.
20	It's based on event cluster modeled that
21	uses a kernel function. It has built in either the
22	use of Gaussian or Epanechnikov code kernel function
23	that produce similar results.
24	It's also based on locations of Quaternary

	161
1	volcanism for this particular case and information
2	about the density of the earth's upper crust. To
3	learn more about the code, I would refer you to that
4	JGR paper in 2000, also to a report by CNWRA by Laura
5	Connor et al., 2002.
6	Next slide. This slide summarizes our
7	results using all ten datasets. And they are
8	described briefly in the left-hand column. These
9	datasets represent various patterns and ages of
10	volcanism.
11	The top file, all 64 events, you can see
12	that in the back, covers a region that includes parts
13	of Death Valley. It also includes some magnetic
14	anomalies that are assumed to be buried volcanoes.
15	The bottom dataset includes just the eight
16	known Pleistocene events. Eight of the datasets will
17	include five to 15 magnetic anomalies that are
18	assumed, generally without proof, to be volcanoes.
19	This makes for a robust analysis. This
20	incorporates a lot of uncertainty about the
21	possibility for buried volcanoes. For each dataset we
22	evaluated the recurrence rates in the Yucca Mountain
23	region that were required to produce repository
24	intersection rates of ten to the minus eight, ten to

	162
1	the minus seven, ten to the minus six per year.
2	As shown in the far right column, a mean
3	rate of ten to the minus six per year prevailed in the
4	last billion years, 42 to 96 volcanoes would have
5	erupted in the Yucca Mountain region.
6	In reality, only eight events occurred
7	during all the Pleistocene, which is 1.0 million years
8	long. That's a recurrence rate of just 4.4 per
9	million years.
10	Now, if we divide these numbers by ten to
11	reduce a time scale to the last 100,000 years, at ten
12	to the minus six per years, the expected number of
13	volcanoes is four to nine.
14	But there's only one, Lathrop Wells,
15	event. We can see that claims of high probability of
16	intersection, fatal tests of volcanic recurrence, and
17	time scales with million years and 100,000 years.
18	Now, something more should be said about
19	this because PVHA results shown here are based on a
20	Gaussian model modified to include crustal density
21	effects.
22	And you heard the discussion about that.
23	This approximately doubles the dike intrusion
24	probability at Yucca Mountain. However, gravity

	163
1	weighting isn't limited.
2	The number shown here would double, which
3	is an extraordinary number of volcanoes. And, in
4	fact, we do recommend not using this weighting factor
5	of several reasons.
6	It is highly subjective. No basis has
7	been demonstrated for including it. Also, the kernel
8	estimator has already quantified the degree of
9	clustering of the volcanoes.
10	The crustal density information simply
11	provides a partial geologic explanation as to why the
12	clustering occurs where it does. Finally, it should
13	be said that the seismic tectonic regime represented
14	by the density map, based on gravity, probably
15	reflects the much higher extension and volcanism
16	rates, both Miocene time and into part of the Pliocene
17	time.
18	Present day extension rates are
19	significantly lower. In other words, the primary
20	effects of the lower crustal density probably
21	manifested themselves long ago when the density
22	contrast was created.
23	The decline in volcanism over time
24	supports this interpretation. Next slide. The very

	164
1	large recurrence intervals in the previous slides in
2	40 to 96 volcanoes per million years or four to nine
3	in 100,000 years or 80 to 192 in the last million
4	years without gravity weighting.
5	And perhaps the answer lays somewhere
6	between the sets of numbers. Let's look at other
7	volcanic codes that have this level of activity. And
8	the source of the slide is Chuck Connor, University of
9	South Florida.
10	Also, one of the developers of the NRC
11	PVHA code. If ten to the minus six per year were true
12	at Yucca Mountain, then Crater Flat would be as active
13	as many of the volcanic fields in this table,
14	approaching one times ten to the minus four events per
15	year.
16	The volcanic field at Cima, California,
17	falls in this branch. Next slide. Cima is located
18	south of Las Vegas. Here's Las Vegas Valley. Here's
19	the location of the Cima field, to the south.
20	This volcanic range has more than 50
21	events and approximately 65 or more blows, covering an
22	area above 150 square miles. Next slide. Here we
23	have three panoramic views.
24	Crater Flat is at the top. And then there

	165
1	are two views of the Cima field. About 30 of the
2	cones at Cima are Pleistocene in age, which means less
3	than 1.8 million years old.
4	Yucca Mountain and Crater Flat have not
5	experienced anything like this level of activity. If
6	they had, probably the best view for you to look at to
7	compare Cima is the bottom view, the widest panoramic
8	view.
9	You can see that the horizon is covered
10	with cones. You simply to not see your eye tells
11	you this level of activity has not existed in
12	Quaternary time.
13	But, if it had, what should Yucca Mountain
14	look like? Next slide. This is a projection taking
15	roughly 35 to 40 events and placing them approximately
16	where they would arise.
17	A very high rate of volcanism had
18	occurred. You will see that there was, in this case,
19	a hypothetical impact at Yucca Mountain just once per
20	million years.
21	But what, in fact, do we actually see?
22	Next slide, please. Back to this figure. There were
23	eight events in Quaternary time. Only six of which
24	are here.

	166
1	If you flip back and forth between those
2	two, just for a second, it is a dramatic difference.
3	I would say, where are all the volcanoes that should
4	exist if these very high rates had prevailed through
5	the last million years?
6	In arid to semi-arid climate of southern
7	Nevada is very hard to obliterate the evidence of
8	these very young volcanoes in Quaternary time. Next
9	slide.
10	What agree with comments made in the paper
11	Connor, et al. in JGR. Rates of basaltic volcanism
12	comparable to those in Cima or also seen the Colorado
13	Plateau volcanic fields, approximately 30 volcanoes
14	per million years have not occurred in the Pliocene
15	and Quaternary in the Yucca Mountain region.
16	And it is reasonable that the probability
17	estimates we calculate for the volcanic eruptions be
18	substantially less than those estimated for the
19	larger, more active fields.
20	Next slide, a recommendation. We would
21	recommend using the Quaternary recurrence rate to
22	estimate the frequency of repository intersections.
23	This has three advantages.
24	We are, of course, still in the Quaternary

	167
1	period now. Compared to Pliocene time and certainly
2	compared to the Miocene time, the Quaternary best
3	represents the present day seismo-tectonic regime.
4	Also, the Quaternary fully captures the
5	most recent volcanism cluster of one million years.
6	This cluster represents five events or less. But we
7	consider also the maximum number that is somewhat
8	conservative.
9	The biggest advantage, it is a more
10	reliable recurrence rate. The uncertainty about the
11	number of Quaternary events is greatly diminished
12	compared to Pliocene events, certainly compared to
13	Miocene.
14	There has been insufficient time to erode
15	or bury Pleistocene basalts. Next slide. Our
16	estimate from this review, we use the PVHA code and
17	the dataset of eight Quaternary events.
18	A Pleistocene recurrence rate that's
19	4.4 events per million years and zero gravity
20	rating. We estimate the intersection frequency at
21	five point four times ten to the minus eight per year.
22	Since the result is based on eight events,
23	you can get upper confidence bound, in this case 95
24	percent, using the Poisson distribution. Upper bound

	168
1	is approximately one times ten to the minus seven per
2	year.
3	Next slide. Conclusions our analysis
4	raises doubts that a potential repository could be
5	penetrated by a dike once every million years. We
6	evaluated four time scales, as discussed.
7	And, at the 13 million year scale, non-
8	detection of basalts suggests an upper-bound
9	penetration rate of two times ten to the minus seven
10	per year, on an average over 13 million years.
11	At the one million year time scale, using
12	the PVHA code, it suggests 40 to 96 events to have
13	erupted in the region in the last million years.
14	Without gravity weighting, that number goes up to 80
15	to 192.
16	But, only 80 events are known of all the
17	Pleistocene. Next slide. The results are especially
18	interesting for the 100,000 year time scale.
19	We contest a hypothesis that was discussed
20	by the expert elicitation in 1996. Is it possible
21	that the 80,000 year old Lathrop Wells cone was the
22	start of a new pulse of volcanism.
23	For a dike penetration rate of ten to the
24	minus six per year, the PVHA results indicate four to
ļ	I

	169
1	nine events would have been expected in the last
2	100,000 years.
3	Without gravity weighting, we do dispute
4	the degree to which gravity you would expect eight
5	to 18 events. Only one is known. Our best estimate
6	for dike intrusion is more than ten times smaller than
7	the highest probability claims.
8	The future volcanism follows the
9	Pleistocene pattern. The probability of intersection
10	is 5.4 times ten to the minus eight per year using the
11	PVHA code.
12	Claims of greatly increased probability
13	failed the simple test of reasonableness of four times
14	scales. Spatial temporal models predicting intrusion
15	probabilities greater than two times ten to the minus
16	seven per year in the potential repository footprint
17	are overly conservative.
18	Along with ongoing work by the Department
19	of Energy, ongoing site investigation, our realistic
20	models will be developed by considering non-detection
21	of basaltic dikes in the potential footprint, and also
22	known patterns of Quaternary volcanism.
23	I have one item that's probably best taken
24	up in the discussion panel session. Listening to the

	170
1	presentations earlier today, I see some evidence that
2	the NRC Staff approach to volcanism is not risk
3	informed.
4	In the presentations by Tim McCartin over
5	the years on performance assessment and the risk
6	informed evolution of that work, you have seen what
7	that can accomplish in other areas of the program.
8	The volcanism work that was done is not
9	part of the overall performance assessment. Numbers
10	were fed into performance assessment from that group.
11	And, particularly slide 13 Dr. Bill's, is
12	one that we may want to discuss in more detail. That
13	concludes our talk. Thanks for your attention.
14	CHAIRMAN RYAN: Thank you very much, Neil.
15	Any questions? Ruth, you had a question.
16	MEMBER WEINER: Any chance that Neil can
17	partly answer the question that I have. And that is,
18	how does your estimate compare with what the
19	presentation of can you?
20	MR. COLEMAN: I believe it was mentioned
21	that the Staff currently have an assessment of
22	probability around ten to the minus eight to ten to
23	the minus seven.
24	But, with consideration of varied events,

	171
1	they feel the probability could be as much as an order
2	of magnitude beyond that. However, that I would
3	just add that is not consistent with the record of
4	the last 100,000 years.
5	The simple tests may be enough to reject
6	this extreme tail of the probability distribution.
7	But it does not seem to be any evidence for events for
8	probabilities of intersection greater than two times
9	ten to the minus seven per year.
10	MEMBER WEINER: So, just to simplistically
11	repeat what you just said so I understand it, what
12	you're saying is the tail of their distribution is not
13	supported by the record.
14	MR. COLEMAN: Right, we do not see that
15	extreme. We do not see any evidence to support that
16	extreme end.
17	MEMBER WEINER: Thank you.
18	CHAIRMAN RYAN: Just one quick question.
19	And I guess I'm actually asking this out of ignorance.
20	Why did you pick a Poisson distribution over any other
21	to use as your model.
22	MR. COLEMAN: There were other
23	distributions that could be used. That one has long
24	been used in earth sciences for evaluating events,

	172
1	including clustered events of low probability.
2	It has been used in earthquake analysis,
3	as well as volcanism.
4	CHAIRMAN RYAN: It's used in radioactive
5	too. But, I mean, is it a standardized model of how
6	to model these geologic events, is that what you're
7	saying?
8	MR. COLEMAN: Yes, it is commonly used.
9	CHAIRMAN RYAN: Thank you. Okay,
10	questions from the panel members or other
11	participants?
12	(No response.)
13	CHAIRMAN RYAN: Other questions from
14	Staff, or the audience? Yes?
15	MR. HINZE: A quick question. If I
16	understand you correctly, you are suggesting that, in
17	the Connor and Hill paper 2000, that the idea of an
18	Amargosa low, gravity low, is due to decompression
19	that is because of lower pressures involved.
20	It is not a viable hypothesis for the
21	concentration of volcanic activity. Is that what
22	you're saying?
23	MR. COLEMAN: I don't think that's quite
24	what I said, but

	173
1	MR. HINZE: But, you were suggesting that
2	the use of the gravity weighting was inappropriate.
3	MR. COLEMAN: That's absolutely right.
4	MR. HINZE: And, the reason that they use
5	the gravity weight was because they had to had did
6	hypothesis if I'm understanding it correctly
7	that it speed compression effects that are localized
8	in that area.
9	So you're being complacent too
10	insufficient to cause volcanic activity.
11	MR. COLEMAN: No, I would not suggest that
12	at all.
13	MR. HINZE: What do you suggest.
14	MR. COLEMAN: I essentially agree with the
15	decompression modeling. There are a lot of discussion
16	and debates about relative depth, the rise of the
17	magmas in this region.
18	But, the idea is that the density map that
19	we see today most of it was created long ago, in
20	Miocene time and into part of Pliocene time, and
21	represents these crustal deformation effects produced
22	by the very high rates of extension.
23	Then, to use it to modify the distribution
24	for trying to project future volcanism, in the current

	174
1	Quaternary period, makes no sense. What does make
2	sense is it's a partial explanation for why the
3	continued volcanism is there at much lower rates.
4	Have I answered that for you?
5	MR. HINZE: I understand where you're
6	coming from now. Let me ask you another thing about
7	your comments about using only focusing on the
8	Pleistocene events to achieve a more robust analysis.
9	One of the reasons why I very much like to
10	see us extend the area of volcanism that is involved
11	is because, in this extrapolation, you need a large
12	number of events, and, if you're going to have a
13	robust analysis.
14	And, by including the Pliocene, what
15	you're doing is you're increasing the robustness of
16	the determinations. Is that not correct?
17	MR. COLEMAN: I believe that is correct.
18	But there are reasons why we would suggest using the
19	Quaternary grid. From a regulatory point of view
20	something for the Staff, the Committee, and others to
21	consider there is great power in approaches that
22	can dramatically reduce some of the uncertainties.
23	And the whole question about buried events
24	and their effects on the probability essentially

	175
1	vanishes. If the events that we're looking at in
2	Quaternary we have a very high confidence in what
3	that recurrence rate is.
4	But this other point, which I actually
5	read about in the reports from the CNWRA folks, that
6	the Quaternary events actually yield a somewhat higher
7	probability because, as a group, they are somewhat
8	closer to Yucca Mountain.
9	So, I would submit that it is the robust
10	analysis in that sense. And, in a way, it partly
11	responds to the model that has been submitted by Jean
12	Smith, a model that talks about the pollution in
13	volcanic fields and where new events might occur in
14	the periphery of others.
15	This actually allows for somewhat of a
16	migration slightly closer to the sight. And that is
17	the reason that you see slightly higher probability,
18	but still very low and far below the extreme tail that
19	was presented earlier.
20	MR. COLEMAN: Thank you.
21	CHAIRMAN RYAN: Any last questions? Yes,
22	please.
23	MR. MELSON: Yes, Bill Melson, can you
24	make any comments about how low the probability is?

	176
1	You sound pretty clearly talking the tail off the high
2	end. What do you do at the other side?
3	MR. COLEMAN: I don't have the figure here
4	with me. But, when we take our central result and use
5	the same Poisson the test for determining
6	confidence intervals I will get that for you.
7	I suspect that the number will be slightly
8	below ten to the minus eight per year. But, the
9	results from the results shown on my slide fifteen
10	would suggest that ten to the minus eight per year is
11	too low, that we had more events than that in the last
12	million years.
13	So, regardless of I think the best way
14	to answer your question is, I still see evidence that
15	the probability is somewhat higher than ten to the
16	minus eight per year.
17	So, therefore, the consequences of low
18	would need to be considered, as they will be in the
19	next session.
20	CHAIRMAN RYAN: We'll convene if there are
21	no other comments or questions. Oh, yes, Tim
22	McCartin.
23	MR. McCARTIN: Yes, Tim McCartin, NRC
24	Staff. I would like to clarify something for the

	177
1	Committee, the performance assessment effort, as well
2	as the development of risk insights and risk informing
3	the NRC process.
4	It has been a team effort. And, in my
5	opinion, the igneous activity is not a separate
6	activity that was done offline.
7	CHAIRMAN RYAN: Thanks. Any other
8	questions or comments? We'll reconvene our afternoon
9	session promptly at one o'clock. Thank you very much.
10	(Off the record for a lunch break.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

	178
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	SESSION ONE WORKING GROUP ROUNDTABLE DISCUSSION
3	CHAIRMAN RYAN: Okay. The first thing
4	this afternoon is a panel discussion with five
5	individuals, Dr. William Melson, Dr. Bruce Marsh, Dr.
6	William Hinze, Dr. David Johnson, and Dr. Robert
7	Budnitz.
8	Let me take them in reverse order of
9	what's on my agenda. We'll start with perhaps Dr.
10	William Melson. Can we have your comments, your
11	thoughts?
12	What have you heard? What should we
13	listen to?
14	MR. MELSON: Well, as Michael said, I'm
15	Bill Melson. I'm a curator at the Smithsonian. I've
16	worked with the TRV since about 1889, the volcanic
17	CHAIRMAN RYAN: Since 1889?
18	MR. MELSON: I'm sorry, 1989.
19	(Laughter.)
20	MR. MELSON: My comments on the morning
21	session are generally that I thought it went very
22	well. Quite frankly, it's not adding a lot to what we
23	already know.
24	But, I think we've come along further.

	179
1	And yet, I do wonder about what we can learn by
2	examining some of the PVHA issues again. I think
3	Bruce's comments about you have a small dataset that's
4	been looked at in many different ways and, if it is
5	change, will it really see the uncertainty limits on
6	what we've already done.
7	So, for better or worse, I would think we
8	aught to look at that very carefully if it's not too
9	late about going ahead with it, and be sure there's a
10	very strong feeling and rationale as to why it needs
11	to be redone.
12	I was very gratified by the comment or
13	presentation by Neil Coleman and actually using the
14	repository as an experimental body to look for to use
15	it to look at the big frequencies or likelihood of
16	dike injection repository.
17	That was new. And, it certainly is
18	consistent with staying fairly low probabilities of
19	intersection. It doesn't, to me, raise any new flags
20	that we need to be concerned about.
21	I think Bruce Crowe's comment son drilling
22	and sort of finishing up some of the work of the
23	anomalies very near the site would be well worthwhile.
24	I think, for now, that's about all I have

	180
1	to say.
2	CHAIRMAN RYAN: Okay. Well thanks, that's
3	a great start. We appreciate your comments. Dr.
4	Bruce Marsh, sir?
5	MR. MARSH: Yes. I was very pleased with
6	the morning's presentations. And one of the things I
7	was particularly struck by also was the fact that it's
8	always a big problem in geology.
9	We look at layers upon layers and layers
10	of things that have happened in sorting through those.
11	But that's really not our firmament. That's really
12	what we have in the record, the historical record, the
13	geology when we look at it.
14	So, one of the things that I don't think
15	has been emphasized enough it came up in Bruce
16	Crowe's comments is that the tectonic development
17	in the area, the history of that, can be read pretty
18	carefully because we have ash loads and we have
19	erosional surfaces, and we have fault histories and
20	things, and questions, for example, of whether or not
21	this block that Yucca Mountain's on, and that whole
22	area, is still structurally attached to what's going
23	on in the basin to the west of it.
24	It is a very important issue. And there's

(202) 234-4433

	181
1	a lot of cogent things that can be said about that. A
2	lot of the style of what caused the tectonic style
3	that basically encouraged the volcanism and gave rise
4	to what see today was set up in the Miocene, 15
5	million years ago or something.
6	And yet, when we look today at these
7	things, it's like looking at the heat flow. The heat
8	flow of the surfaces is reflecting the thermal
9	conditions in the crust ten million years ago.
10	We can become confused a bit by that in
11	thinking that, you know, we're in the middle of an
12	onslaught of something new. So, it's very nice to
13	carefully sort out that and realize what kind of
14	environment we are in today and to look at that in
15	terms of the last one million years, two million
16	years.
17	And so, it's very important to put the
18	geology into the models carefully topography,
19	what's in the basins, what structural units are
20	talking to each other, and which ones aren't.
21	The deeper we go there's an interesting
22	phrase by I believe it was Francis Birch who
23	said that it's interesting, the deeper we go in the
24	earth, we know less and less, but our description of

(202) 234-4433

	182
1	it becomes more and more exact.
2	And, this is what happens a lot. We
3	actually go down in the mantle and say, well, we're
4	melting the mantle, and we have fertile mantle,
5	depleted mantle.
6	We have a thermal pulse here. We have a
7	small plume. We have thermal convection. Really,
8	objectively speaking, I mean, we have a hard enough
9	time understanding how a volcano that's about to erupt
10	is going to erupt.
11	And we have no chance of actually using
12	any of that deeper information. So, in other words,
13	in putting we tend to use that Poisson distribution
14	for time and for spatial events.
15	If we go down deeper in the crust we know
16	that basically we have an exponential decay of what we
17	understand. In only using the geology of things, we
18	understand very little to be used in a predictive
19	model as we go deeper into the earth.
20	And so, there's a cut-off. We should use
21	that. We should put stuff, and model it, we really
22	know something about, and ignore stuff that's pretty
23	below the horizon in terms of being able to
24	scientifically say cogent things about it.

	183
1	So, the other thing that's an interesting
2	thing is that, I think, you know, at least we're all
3	in the same room, in terms of we don't have there
4	are disparities.
5	But I think they can be brought into line.
6	And I think the interesting thing about it is that
7	there is sort of a common sort to Socratic element
8	here that can be used to adjust each other's points of
9	view or to convince one another whether or not we
10	should take certain bounds seriously or not.
11	The idea of looking at things between ten
12	to the minus eight and ten to them minus seven, and
13	just agreeing that that window not worrying about
14	so much where we are in that window, would be a very
15	interesting way to approach these problems. Thank
16	you.
17	CHAIRMAN RYAN: Thank you. Dr. Hinze?
18	MR. HINZE: I enjoyed this morning
19	because, one of the reasons I think is that, as a
20	result of this morning, your job is going to be less
21	difficult than perhaps it could have been.
22	There's a certain amount of unanimity in
23	the conversations that we heard, that we don't have
24	all the answers. Bruce added on that very well. We

	184
1	don't have all the answers.
2	We're not going to have all of the
3	answers. And, Bruce Crowe and Britt Hill both
4	commented on the fact that we're not going to mover
5	people very far from their models.
6	But the point is that the models aren't
7	making the difference in the models are not making
8	that much difference. Now, I think, in terms of the
9	probability, ten to the minus seven, ten to the minus
10	eight, and 1.1 times ten to the minus seven or two
11	I don't think we are smart enough to worry about those
12	type of things.
13	I think we have to keep a pretty broad
14	swab here. Let me say a few things about the
15	recurrence rate. What we're dealing with here is a
16	science where we're dealing with a situation where we
17	don't have precursors that are in the right timeframe.
18	We have only the very basic knowledge of
19	the Bruce we only have a very fundamental
20	knowledge, basic knowledge of the physics or the
21	geological control.
22	I'm sure that was said several times here
23	today. And so, what we have to do is we have to
24	extrapolate from what we do see. And extrapolation

	185
1	means that we're going to need to deal with
2	probabilities, which we are.
3	We have uncertainties and certainly we
4	do have those. How do we cut down on those
5	uncertainties? Where are the points where we can go
6	in and cut down on those uncertainties?
7	I don't think there are many points that
8	we can go to to cut down on the uncertainties, the
9	definition of igneous event or the length of the dike,
10	etcetera.
11	And it turns out, as Bruce and others have
12	suggested, that this is not making much of a
13	difference in the results. But one thing that can
14	make difference is the number of igneous events that
15	have occurred within the last timeframe.
16	I personally would like to see a timeframe
17	that extends to four or five million years. And I
18	think that's backed up by the ten independent
19	scientists that worked in the PVHA.
20	And, we have been saddened with inadequate
21	way to look at these past events. The 1999 survey of
22	the USGS solved the purpose of not accounting, and
23	perhaps some others.
24	But it didn't solve at all the problem of

	186
1	the events that may be hidden in the beneath the
2	alluvium in particular. And so, the DOE, I think very
3	appropriately, has set embarked upon this new
4	magnetic survey, which we've just seen the first light
5	of.
6	You have to realize that there are I
7	hope I'm not duplicating what Britt said this morning.
8	But, there are basically three types of magnetic
9	anomalies that we are observing in the area.
10	First we are dealing with long wavelength
11	anomalies that are derived from rather massive
12	structures within the rocks and pre-cambiam rocks.
13	And those are long wavelength and should
14	be able to be discerned pretty well. But, they are
15	going to overlap in spectrum with the magnetic
16	anomalies that are buried within the rather deep
17	alluvium.
18	The second type of anomaly is the anomaly
19	due to the permanent and susceptibility, magnetic
20	susceptibility, permanent magnetization and magnetic
21	susceptibility of the tuffs.
22	These will produce anomalies that
23	particularly where they are faulted or whether it's
24	been structural disruption or some variation. And,

	187
1	finally, we have the basaltic rocks that we are
2	interested in.
3	The problem is one of the problems is
4	that the latter two types of anomalies may give
5	somewhat the same signatures. And so, we have to be
6	smart enough in analysis.
7	And we must have the right data in order
8	to differentiate that. Ideally, the specifications of
9	the magnetic survey were such that we could make great
10	strides.
11	Due to an unfortunate set of
12	circumstances, some of the data is going to be
13	degraded is degraded from what the DOE wished to
14	have.
15	And that's going to have a serious impact
16	on the results. The DOE has very correctly attempted
17	to or is going to attempt to differentiate between
18	these two types of magnetic anomalies that have
19	somewhat the same spectra.
20	That is the tuffs and the basalts. By
21	feeding them against the electromagnetic response, and
22	in this way attempt to identify the higher
23	susceptibility basaltic rocks.
24	I'm going through this because I want to

	188
1	make it clear at least in my mind that the
2	results of this new survey are going to have an
3	impact, could have an impact.
4	But it isn't guaranteed at all that it's
5	going to have an impact. There are many problems in
6	interpreting these data. And one of them is
7	especially the above mean terrain clearance, which has
8	been degraded some bit, especially in the rich areas.
9	But, also, there is an overlap in the
10	susceptibilities between the tuffs and the basalts,
11	which may make the EM impossible to differentiate. In
12	addition to that, there are some conductive zones,
13	alteration zones, and fault zones where there's
14	alteration as well, that are going to complicate the
15	interpretation by trying to differentiate basalt from
16	the top using the EM data.
17	My own very quick review of the data is
18	that there's nothing that comes out and bangs you in
19	the face and says this is obviously going to change
20	the probability, the recurrence rate, in a quick look
21	at the data.
22	But there are a lot of very interesting
23	anomalies. And there are a lot of interesting
24	anomalies, particularly to me in Jackass Flats that I

(202) 234-4433

	189
1	think could have an impact upon the PVHA if the PVH
2	goes in, as I understand it is.
3	But, it's going to take time, and it's
4	going to take some effort. I think that prejudging
5	the aeromagnetic results based upon the quick look
6	that we had yesterday morning and yesterday afternoon
7	is very it doesn't give credit to the DOE, nor
8	their efforts to come to resolution on this.
9	So, the recurrence rate, which is the
10	major way we can get an uncertainty in that
11	probability factor, was going to be able to decrease
12	with the new set of the interpreters will do that.
13	But, it's going to be a difficult process.
14	And it's going to take some time, some effort, some
15	resources. I guess I'll leave it at that.
16	CHAIRMAN RYAN: Okay, thanks Bill. Dr.
17	Johnson?
18	MR. JOHNSON: Thank you. I think first I
19	should say a few words about my background. I'm not
20	a geophysicist. My field is in developing
21	probabilistic formats and methods to support the
22	decision making.
23	So, from that point of view, I hear the
24	presentations about whether or not the frequency of

	190
1	intrusion is ten to the minus eight or ten to the
2	minus seven, or even six.
3	From my background, my experience, and
4	again not knowing much about the chronological issues,
5	those tend to be in violent agreement in my mind.
6	That said, I think it is important. I
7	think it was said earlier that it would be a useful
8	exercise to have the experts go and try to present
9	their findings, if you will, in a format of a
10	probability of frequency format so we understand what
11	their key assumptions are and how they affect their
12	results.
13	This is obviously would be useful for
14	more fundamental understanding of what's going on, but
15	also as new information is derived in the future and
16	issues pop up.
17	It might provide a pretty sound basis for
18	quickly reacting to those sorts of events. I am kind
19	of waiting for the so what to all of this. I am
20	anxious to see what the scenarios look like from an
21	initial condition to the final end states of the
22	analysis.
23	I think once we have that in hand we can
24	then go back and make judgments from judgments on

191 whether or not our understanding of the frequency of 1 2 volcanic intrusion is something we need to focus more 3 on. 4 I do think that there is some -- for 5 investigations of some of the near field anomalies 6 that would make a lot of sense to resolve. I think 7 I'm waiting to see what the big picture looks like 8 before I go on any further. Thank you. 9 CHAIRMAN RYAN: Thank you very much. Dr. 10 Budnitz? 11 MR. BUDNITZ: I'm Bob, Budnitz. I'm 12 Lawrence Livermore Laboratory. But I'm on detail to 13 the Yucca Mountain project DOE. So I'm here with a 14 DOE hat on. 15 But, I need to give you some background. I'm not an earth scientist at all, never mind a 16 17 volcanologist. But, you know, it comes in by osmosis, so I now know about ten to the minus four about these 18 19 other stuff, which is a hell of a lot more than ten to 20 the minus eight. 21 I want to tell you something about the 22 status and explain why DOE is in here. The Department 23 has written the license application. We're sending it 24 in December.

	192
1	I imagine you will have it by then. It's
2	only three months away. And right now it is an
3	intense review, everything, not just the igneous
4	piece, everything.
5	It is an intense review for consistency
6	and to make sure that we do the validation and the
7	quality assurance checks, and make sure everything
8	that we're going to send in in December hangs together
9	into a coherent application.
10	I'm sure you understand that. And,
11	because that process is right now in its final stages,
12	we found ourselves not in a position of being ale to
13	talk too much about the details because it's just now
14	coming together into something that's final.
15	But, I insist on December 15 th it's going
16	to go in, as we say. And we're going to put it in.
17	And, when that's true, it's going to be a public
18	document.
19	And anybody in the public can read and
20	review it. Certainly if you were submitting it the
21	regulatory Commission, the Staff and ultimately the
22	Commission for a review for to get a construction
23	authorization.
24	But, it will be in the public domain.

	193
1	And, at that time, anybody who wishes to review it
2	will be able to do so. I have two or three things to
3	say about the license application that are relevant to
4	what we heard about this morning.
5	First off, everything we've done in the
6	license application is risk informed and, in parallel,
7	responsive to the Yucca Mountain review plan, which is
8	the NRC's you know, the Staff review plan.
9	We know they are going to review it again
10	some time. And so, which means because we have to be
11	responsive with the Yucca Mountain review plan, some
12	of the stuff that is in the license application isn't
13	risk informed because the review plan isn't
14	necessarily risk informed, although our criteria in
15	the end is.
16	You know, the part 63, individual dose
17	based criteria is, of course, dose informed. It's not
18	risk informed, it's risk based. So, because of that,
19	the license application analysis is intrinsically
20	probabilistic through the because our regulation is
21	probabilistic.
22	So, what you're going to see is a
23	probabilistic analysis intrinsically that's just
24	the way it is modified by the fact that, of course,

	194
1	we do have to respond to the Yucca Mountain review
2	plan, which means a whole lot of stuff is in there
3	that is supportive or in some cases we review other
4	things that aren't.
5	You can imagine what that means. And, of
6	course, we have to be attentive to the technical
7	issue, you know, the agreements that we made. And, I
8	guess, in that sense, we just look forward to
9	submitting it.
10	And, somewhat later, the ACNW along with
11	the Staff will have a meeting like this in which we
12	can discuss what we've done, which we've just
13	position to talk about here.
14	A couple of other things that are very
15	important to say. And that is, although the work to
16	support license application is done by definition
17	we have not stopped work in the igneous area.
18	People know that. The aeromagnetic work
19	that was done from March until June is just now being
20	analyzed, and will be available perhaps the next six
21	to eight weeks for public review.
22	We'll let the NRC review it at that time.
23	And, after that, there's a plan which was discussed at
24	yesterday's NRC meeting, to do some drilling of

	195
1	several of the sites.
2	Exactly what drilling will be done hasn't
3	been decided yet. We're going to have to sort out
4	exactly which targets and we don't have enough money
5	to drill a thousand of these things.
6	We're just going to drill a few of them.
7	And, how to select those, is a difficult choice
8	between different agendas. Secondly, and I suppose
9	many of you know, but I should tell the rest, we are
10	beginning a new PVHA, probabilistic volcanic hazard
11	analysis.
12	The first meeting to kick that off is in
13	the second week in October. It's the data needs
14	workshop in which the data needs for the PVHA are
15	going to be discussed amongst the experts.
16	And that will kick that off. The PVHA,
17	the new or revised, is due to be completed in the
18	first half of the fiscal year '06, a year and a half
19	away.
20	And, both of those and, of course, PVHA
21	is supposed to integrate a whole lot, both of those
22	are confirmatory in nature when we do. That is, we
23	believe the license application is strong enough as it
24	is, but we're doing confirmatory work because, as we

	196
1	must, we are going to continue to do that work over
2	the years.
3	You never know whether you find something
4	that doesn't confirm with the expected. And we're
5	going to proceed on that basis, and challenge the data
6	and assumptions and so on.
7	And, as other work may emerge that needs
8	to be done over the future years, we will consider
9	doing that too. We just don't know what that would
10	be.
11	So, I'm just here to tell you that we're
12	very close to having something that everybody will be
13	able to look at and review. It will be a public
14	document with the license application, with all the
15	supporting data and everything else that supports it.
16	We are proceeding with more technical work
17	now. And, whether more than that is going to be
18	needed, we just don't know yet. We're going to let
19	those chips fall where they may as time goes on.
20	CHAIRMAN RYAN: Thanks very much. Any
21	comments from the Committee or the panel? Ruth?
22	MEMBER WEINER: Just a brief comment on
23	Dr. Budnitz's last comment. If you're beginning new
24	PVHA, and I assume that means the new expert
	I

	197
1	elicitation
2	MR. BUDNITZ: Yes.
3	MEMBER WEINER: What kind of differences
4	do you expect to happen?
5	MR. BUDNITZ: We have no idea until it is
6	done. We just don't know. The nature of this is it's
7	a scientific investigation, like they all are. And,
8	how it comes out will depend on how it comes out.
9	I'm not ducking that question. I
10	literally couldn't say, because we have an open mind
11	as to what the data will how it will be understood
12	and what models will be used.
13	And who's going to argue with who about
14	what?
15	MEMBER WEINER: What was the primary
16	driver for this? I mean, I'm just curious, because
17	it's late in the day.
18	MR. BUDNITZ: The last one was seven years
19	ago. And a lot more is understood now than then. And
20	so, we believe that we will be in a better position
21	than we would otherwise be by doing it.
22	Otherwise, we would have nothing but that
23	old thing and some patches here and there. Instead,
24	we're going to have a how should I say it a

	198
1	coherent, consistent PVHA that is intended to
2	integrate all of this into a framework that we believe
3	the community will participate in and endorse.
4	CHAIRMAN RYAN: Thank you. Yes, sir?
5	MR. MELSON: Bill Melson. Bob, will the
6	DOE's volcano assessment be close to what you've put
7	out in, I think, January 9 th of this year? We have
8	gone through that and it seems like a pretty strong
9	document.
10	So, is that, to your knowledge, what's
11	going to go ahead?
12	MR. BUDNITZ: You're asking me to part
13	with something that I'm not willing to do?
14	MR. MELSON: Well, I'm just wondering,
15	because that gives us a preview, I suspect.
16	MR. BUDNITZ: You can peak if you want.
17	You'll know on December 15^{th} . I'm not ducking. It's
18	just that it's hard to respond.
19	MR. MELSON: Yes.
20	MR. BUDNITZ: Whether something is close
21	to, of course not to be completely different, how
22	close it is? You know what I mean?
23	CHAIRMAN RYAN: Questions from the Staff,
24	other comments? I guess I want to try and summarize

	199
1	a bit if I can. I know it's a daunting task,
2	particularly for a non-geologist.
3	My geology mentor on the ACNW, Dr.
4	Hornberger told me geology is easy. They always want
5	to dig one more hole. That seems to be the case
6	today.
7	I guess that's one of two important
8	elements. The aeromagnetic data seems to be a
9	critical issue. I think, Dr. Crowe, you suggested
10	some drilling and some value that could be acquired
11	through that drilling.
12	I've heard three or four folks endorse
13	that idea, that that might actually help reduce some
14	uncertainties. And then I think the theme that we
15	really haven't touched on, and I would like the other
16	panel members to talk about, is except for David
17	who mentioned kind of a more formal probabilistic
18	assessment here.
19	I think Dr. Garrick mentioned that earlier
20	in the morning, that a more rigorous treatment of
21	probability analysis or a probabilistic approach,
22	maybe a Bayesian approach to the event side of things,
23	maybe in line with some of the things that Neil
24	Coleman presented, might be crucial.

200 It's kind of the third leg of the three 1 2 major components I heard this morning. It might be 3 different or enhancements, or improvements to what we 4 know now. 5 Is there any reaction to that? I mean, 6 could any of you talk a little bit more about the 7 probabilistic approach? 8 MR. GARRICK: Well, I want to follow-up 9 with you said, because it might what make а 10 difference. I was curious about the new PVHA. And 11 Bob said that we've learned a lot more now, and we'll 12 want to incorporate that. 13 And, I had a couple questions. One, is 14 the same team that did the PVHA one going to do PVHA 15 two? MR. BUDNITZ: Eric Smithstead from the DOE 16 17 Staff in Las Vegas, I think, can an answer that 18 question. 19 CHAIRMAN RYAN: I'm sorry, John, maybe you 20 can repeat your question so everybody can --21 MR. GARRICK: Yes, I was very curious 22 about the second time around. Bob indicated that 23 we've learned quite а bit. And that's one 24 justification for the second time around.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	201
1	I wondered if the same team that did the
2	PVHA one is going to do PVHA two.
3	MR. SMITHSTEAD: Right. Eric Smithstead
4	at DOE, that's what we're looking at right now, is
5	trying to reassemble the same team. We won't get
6	everybody back. But we'll have the majority of them.
7	MR. GARRICK: Thank you. While I have the
8	microphone, I wanted to ask Bill Hinze a question.
9	Bill, are you awake?
10	MR. HINZE: With you talking, John, how
11	can I help it?
12	(Laughter.)
13	MR. GARRICK: You mentioned a couple of
14	categories, some things that you thought aught to be
15	done, but probably wouldn't make much of a difference
16	with respect to the probably and some things that you
17	think aught to be done that will make a difference.
18	Can you elaborate on that a little bit as
19	to why we want to do the things that aren't going to
20	make a difference? How would you prioritize what we
21	should do?
22	MR. HINZE: Well, we wanted to decrease
23	uncertainty. And I think that's one of our functions.
24	And, the major uncertainty in the PVHA was recurrence

	202
1	rate.
2	And that very well typifies the fact that
3	in reducing uncertainty, that we want to look at the
4	number of volcanic events in the last million, two
5	million, five million years, six and seven.
6	And so, that has to be done or the
7	process of being done. I also pointed out that and
8	this is not my original thought that there are some
9	particular areas on that map that are interesting in
10	the surrounding area.
11	And one of those is Jackass Flat. And the
12	reason for that is that if we had the Quaternary
13	volcanism jump across the ridge on Crater Flat to the
14	other side of the repository, we would be I think
15	this would cause contemplation on the part of any
16	analyzer of the data.
17	I am reminded of Mike Sheridan's comment.
18	At the last appendix seven meeting on the aeromagnetic
19	that July of last year, as I recall Mike was the
20	only one at that meeting that was part of the PVHA.
21	And Mike stood up and paraphrasing him,
22	he can speak for himself usually if we knew
23	volcanic sediments were found to the east of the
24	repository and extension to the south, that he would

	203
1	need to reanalyze his PVHA position.
2	MR. GARRICK: I always find that
3	MR. HINZE: Did I do it correct Mike?
4	MR. SHERIDAN: Correct.
5	MR. HINZE: Did I read it right?
6	MR. GARRICK: I was trying to get at what
7	you would consider to be the biggest action that would
8	give us the biggest bang for the buck.
9	MR. HINZE: Exactly.
10	MR. GARRICK: Yes. And I want to take the
11	opportunity to indicate that, in the category where
12	you said it wouldn't change the probability much, but
13	it would change the uncertainty, it certainly changes
14	the risk.
15	And we want to make that distinction. So,
16	both categories have substantial impact on risk.
17	MR. HINZE: Yes.
18	CHAIRMAN RYAN: Any other comments from
19	participants? Yes, Dr. Marsh?
20	MR. MARSH: One that that's a little bit,
21	I think should be of some concern is that DOE submits
22	its application, the way that they've assessed, or
23	estimated, or come to grip with the probability
24	hazards for volcanism, is basically using panel

	204
1	experts.
2	And they have built into it their
3	knowledge, geology background, exhibit with volcanism,
4	etcetera, a series of series of estimates.
5	And that's really a substantial amount of
6	experience. But, it's not a computer program. On the
7	other hand, what we've heard this morning, the Center
8	and the NRC has a program, Connor et al.
9	And that has built into it several things
10	on various premises. And, that's almost a different
11	language than the other. So, we're going to use one
12	set of principles to evaluate another set of results.
13	It's almost passing in the dark. It could
14	be. In other words, you could be speaking different
15	languages. And so, I think the in-between land
16	worrying about where all the geological influences
17	that the various experts would use to modulate their
18	results, where do those exactly fit into a computer
19	program or a program that someone would have?
20	Where are the analogs? Where do these
21	things go in, you know, in layers that we can put in
22	and take out? And, I think, to do an effective
23	evaluation, you really need to have that expertise
24	built in or you have to have that flexibility in the

	205
1	evaluation.
2	For example, this focus on putting
3	topography in and out, but, the mantle in and out
4	slide these filters in. Otherwise, I really wonder,
5	you know, how will anybody do an effective evaluation
6	in the DOE program.
7	CHAIRMAN RYAN: Dr. Budnitz?
8	MR. BUDNITZ: I just want to be sure to
9	point out that the PVHA, the structure, if it is
10	executed properly, will do just that, as it is
11	intended to be, by structure, a form for such
12	explorations among the experts who bounce some things
13	off of each other, and considering literature that
14	isn't in the room.
15	And they arrive at a common understanding
16	of all the underlying data and all the different
17	models that explains those data, in order to deduce
18	what is sort of the best you can do.
19	I don't know of any better structure than
20	that to do that. In the end, there are that is, to
21	structure such a way to pull out what the community's
22	knowledge is and the different approaches to it.
23	And, if it is successful, why there won't
24	be any stone left unturned. Although, of course, the

experts themselves are the ones that have to sort out which are the important and which are the less important issues, which models may -- while they fit the data -- don't make sense for another reason, whatever comes to mind. I know something about this because the methodology used in the PVHA is called the SSHAC

7 methodology used in the PVHA is called the SSHAC 8 methodology. SSHAC stands for the Senior Seismic 9 Hazard Analysis Committee that developed methodology 10 the probabilistic seismic testing analysis.

11 And I plead guilty to having chaired the 12 SSHAC committee for three years. So I think I 13 understand how all that works. And, if it is 14 successful, it will, in fact, not only allow, but 15 require the consideration of all the different models 16 and data we've got there.

17 CHAIRMAN RYAN: Thanks. I guess I'd like 18 to maybe turn a question to the NRC presenters from 19 this morning. And, you know, I took note on, Dr. 20 Trapp, your comment that you're on the vote of 21 reviewing an application.

22 So, you don't have the burden to come up 23 with the answers to all these wonderful questions we 24 thought up today. But, I wonder if maybe you could

	207
1	talk about the following things, or Dr. Hill, either
2	one.
3	You know, we've heard a lot about
4	deterministic values, about bounding analysis, and now
5	a little bit of discussion about probabilistic
6	analysis and so forth.
7	Could you talk a little bit more about how
8	all that fits together in your mind from your
9	reviewing of potential application? Or is that too
10	broad of a question to dive in on?
11	MR. TRAPP: If you take a look at part 63,
12	it does require a risk informed analysis. It does
13	require that you go through the whole probabilistic
14	analysis to get to the end.
15	I'm not really sure how to answer your
16	question.
17	CHAIRMAN RYAN: Well, I guess I'm reacting
18	to a couple of comments that Britt made where you had
19	deterministic kinds of thinking in the structure of
20	your presentation.
21	How does that fit when you're trying to
22	assess a probabilistic assessment?
23	MR. TRAPP: That normally is used to get
24	some kind of value, etcetera. And a lot of times it
	I

	208
1	is used when you do not have a good handle or can't
2	resolve some of the underlying scientific basis.
3	CHAIRMAN RYAN: But isn't that a risk that
4	you'll either include or miss something when you just
5	decide on the deterministic value for a key parameter?
6	MR. TRAPP: I'm sure Dr. Garrick would say
7	yes.
8	MR. HILL: This is Brittain Hill from the
9	Center. The hope is to the licensing interaction,
10	is to come up with especially for the conceptual
11	models.
12	Now, at this stage, I don't think we're
13	gaining a lot of information by trying to an
14	artificial distribution on the limited range of
15	alternative conceptual models because, ultimately,
16	we're trying not to find the simple tendency and
17	cluster of models, but look at, given the current
18	uncertainties, and given the current testable
19	hypothesis, what is the potential significance and the
20	risk calculation from these alternative hypothesis.
21	So, this really is more of a testing
22	methodology than trying to arrive at the mean value
23	that we use to make a regulatory decision. So, that's
24	why we haven't gone through the exercise.

	209
1	We're trying to come up with a
2	distribution function using alternative conceptual
3	models for both the probability itself, and some of
4	the probability parameters. Does that help?
5	CHAIRMAN RYAN: It helps.
6	MR. GARRICK: It helps. Well, before we
7	leave this probability discussion, I wanted to get a
8	couple of licks in. I think that one of the things
9	that the regulators are faced with always is how to
10	make the analyses we've performed as transparent, as
11	understandable as possible.
12	We talked a little bit this morning about
13	how to, and at the same time how to reveal what's
14	really going on, how to reveal the truth. And we
15	talked about these igneous event scenarios, these
16	categories, and the volcanic frequencies that you had
17	associated with these categories, and how
18	characterizing those and embedding those frequencies,
19	because there's uncertainty in those frequencies and
20	uncertainty in probability distributions to kind of
21	convey with time and with conditions with aging and so
22	forth, how the uncertainty changes depending on those
23	conditions.
24	It can be very illuminating. Another

	210
1	thing that I think would be very illuminating, to pick
2	up on Dave Johnson's comment and Mike Ryan's earlier
3	comment, would be to more deliberately manifest the
4	value added of new evidence systematically.
5	And, of course, Bayesian application are
6	perfect for that kind of thing. And there's very
7	little of that that's been done in the past in any
8	truly systematic and constructive way.
9	And I think that, if we could somehow
10	create a map of what value is added in terms of our
11	knowledge about the risk as a function of pieces of
12	evidence, I think that would be enormously beneficial
13	in aiding the whole process of what the probabilistic
14	analysis is telling us.
15	I would hope the second time around
16	advantage would be taken not only of what we have
17	learned about the earth and about Yucca Mountain and
18	its geology and the rock, but also what we've learned
19	in practice with respect to how to characterize risk
20	in our analyses.
21	And much has changed in the last few years
22	about that. I hope that we take full advantage of
23	that, especially with respect to the transparency
24	issue.

	211
1	CHAIRMAN RYAN: Thanks, any other
2	comments? Yes?
3	MR. JOHNSON: Just to add something, what
4	I meant by saying that the model builder talked to
5	embrace the uncertainty in the models as much as they
6	can and then try to articulate it.
7	For example, if we're saying that there's
8	a zero chance of these relatively recent volcanoes to
9	occur in Jackass Flat, your belief is that's
10	absolutely zero.
11	But, we aught to go look to see if any
12	better. So, what we're really saying is we're not 100
13	percent certain of the fact that volcanoes from
14	that particular source.
15	So, if that model were to express that
16	level of uncertainty, it might be very certain, but
17	not 100 percent. Then, as new evidence arrives, then
18	the model can accommodate that, or we can look at the
19	model.
20	It can tell us how important that new
21	evidence can be. I think it's just a more robust
22	explanation of our experts.
23	CHAIRMAN RYAN: Any other comments in the
24	audience? Yes?

	212
1	MR. MELSON: Yes, Bill Melson. I just
2	want to comment that I've heard a little bit of the
3	rumors going on about the appointment of the PVHA and
4	who is going to be on it.
5	And I think Bruce's concern can be
6	lessened somewhat. And that will include someone who
7	the core of a lot of the NRC's contract work. So,
8	I think they will not pay us in the night, these
9	things will be.
10	That's the intention, I think, of some of
11	the planning.
12	CHAIRMAN RYAN: Yes, in the audience.
13	MR. REITER: I'm Leon Reiter with the
14	technical review board staff. I have a question about
15	the PVHA. I guess the first is to NRC. Weren't there
16	any methodological concerns with the other PVHA that
17	DOE had to take into account?
18	And, if there were, did DOE take that into
19	account?
20	MR. TRAPP: The PVHA actually was started
21	a little bit before the Nureg PVHA or this time of
22	elicitations. Two areas that really were of concern
23	with the original PVHA panel was the criteria,
24	documentation of the criteria, selection of it, and

	213
1	then, basically, the total documentation of the
2	analysis itself.
3	These are areas that we thought could be
4	improved and were areas that, in this panel would be
5	better.
6	CHAIRMAN RYAN: Yes, a question.
7	MS. KEEFER: Susan Keefer, University of
8	Illinois. I'm an incoming member of the NWTRB, but
9	I'm sitting here until I master my acronyms. My
10	question, Lathrop Wells, my reading of the literature
11	was that there was water interaction indicated both at
12	the beginning and the end of that sequence.
13	Am I misunderstanding it, or has that been
14	considered?
15	CHAIRMAN RYAN: Do we have someone who can
16	answer that question.
17	MR. CROWE: There is some controversy over
18	the height of volcanic features. But they probably
19	occur about midsection in Lathrop Wells. And then
20	there always is the cone itself is an unusually
21	large the ration of pyroplastics to lava is unusual
22	for a typical cinder cone fields.
23	But, I think there's strong evidence that
24	it's hydro-volcanic. But, I mean, Leon was on many

	214
1	field trips. We had maybe, eight or ten people at an
2	outcrop that I thought was unequivocally surged.
3	And we had two or three people who swore
4	up and down that it wasn't. So, there is some
5	uncertainty in identifying those deposits. I think
6	the majority of people feel that there was a hydro
7	volcanic component, probably predating the main final
8	cone that we see out there.
9	MS. KEEFER: I'm a consultant to the
10	NWTRB.
11	CHAIRMAN RYAN: Any other questions or
12	comments in the audience. I want to thank all of the
13	I'm sorry, is there a question.
14	MR. KESSLER: John, Kessler, EPRI. Two
15	comments, both from a performance assessment
16	perspective, surprise. One is a specific comment, and
17	then the another a more general comment.
18	The specific one was on the discussion
19	this morning and Britt Hill's talk about the temporal
20	variability in the number of volcanic events that
21	occurred and how one might deal with that performance
22	assessment space.
23	And, Britt talked about, well, you could
24	have maybe as many as something like 40 some events

	215
1	per million years if you look at the right million
2	years, and then, maybe look at the mid-point between
3	that and the long-term average.
4	Well, I would argue that, if you're going
5	to look at the maximum, the mid-point isn't with the
6	long-term average, but it's with the other end. It
7	might be something like zero events in a million
8	years.
9	And, from a performance assessment
10	standpoint, you could say, sure, I'll show you
11	everything that I see. I'll show you, for any million
12	year interval, I'll show you a table of zeros, maybe.
13	And then I'll show you one where you have
14	something when you get a higher dose risk for that
15	particular million year interval. So, it comes back
16	to what is it that's the compliance number you can
17	use.
18	And I'd still say come back to whatever
19	the scientists agree is the right number of years to
20	average over. But you're still going to take the
21	average, unless you have anything that suggests you
22	know what's going to happen in the next million years
23	or in the next time period, or whatever.
24	If you don't have any way of

	216
1	distinguishing that, to me, the long-term average,
2	whatever the long-term you choose to use, is what
3	seems to be the right course of action to take.
4	You can go ahead, of course, and add
5	sensitivities on any particular variability around
6	that, from zero up to forty some. But, in the end, I
7	would think that, from the compliance standpoint, that
8	would probably be what you would want to do.
9	Now for my general comment. It really
10	falls right along the lines about what John Garrick
11	was talking about, which is, I felt that a lot of the
12	discussion this morning, where we're talking about
13	maybe changing probabilities by factors of five, maybe
14	ten, is interesting and all.
15	But the uncertainties in just the volcanic
16	dose risk assessment, when you look at the risk
17	triplet, what can happen, you know, what are those
18	probabilities, and then what are the consequences, it
19	seems that, you know, we should be focusing on a lot
20	of other aspects, given the kind of changes we are
21	talking about.
22	So, why are we talking about this? I
23	mean, a lot of money, and a lot of time have been
24	spent. Well, why is that? That's because assumptions

(202) 234-4433

	217
1	have already been made about what the consequences
2	are.
3	For example, in John Trapp's talk, he had
4	one line where he said, well, we've had some analysis
5	that said the containers are going to fail, which is
6	assuming they go poof and that's it.
7	Okay, that's why the numbers come out the
8	way they do. Those kinds of assessments were done, I
9	don't know how much thinking went into that part of
10	the assessment, but it's just as important in terms of
11	coming up with the dose risk numbers, as getting this
12	probability that we're talking about that may change
13	by a factor of two, ten, something like that.
14	So, my point is that one can do a lot of
15	expert elicitations on all kinds of aspects of the
16	system. I just don't know, if I was king for the day,
17	I'd spend my money on redoing the PVHA, versus some
18	other aspect of this problem or something else in
19	terms of getting at reducing uncertainties.
20	The uncertainties that are being looked at
21	here are ones that, it could increase the uncertainty
22	because we've already made all these other
23	conservative assumptions.
24	That's why this one is being looked at.

218 I think if we looked at what can happen and shouldn't 1 2 just look at what can go wrong, but what can go right. 3 If we're looking at a best estimate assessment, if there are possibilities that we can 4 5 replace the model that's conservative with maybe 6 something else that's less so that could dramatically 7 affect the dose risk numbers, perhaps that should be 8 looked at just as strongly -- things towards what 9 could go wrong. 10 CHAIRMAN RYAN: Thanks John. Any other 11 last comments before we finish up the session. Yes, sir? 12 13 PARTICIPANT: My name is John. I'm a 14 consultant. I have point of clarification and comment of concern, if I may. My point of clarification is 15 16 with respect to our early warning drilling program, 17 23P, where we first talk about intercepting the 18 basalts there. 19 Our geologists have taken a look at it. 20 And they do not believe that they basalt below. They 21 believe that they basalt boulder. Their reason for 22 that is because, in looking at the cuttings, they saw 23 roundings on the upper portions of it. 24 And they saw a rounding of the cuttings.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	The second thing is, they saw no alteration or
2	difference in the sediment of any of the above and
3	below.
4	So, we're not sure that we had basalt
5	flow. I'll tell you, in terms of a comment, I don't
6	think that enough time is being spent in looking at
7	the structural relationships between these existing
8	volcanic centers and flows, and what we're trying to
9	get at here.
10	One thing that really jumps out to me in
11	one of the presentations, Dr. Crowe put at the basin
12	range and showed how the big activity was on the
13	margins of it.
14	When we look at the magnetic math from
15	yesterday and the previous work that commissioned
16	back in 1999, we saw major magnetic east-west
17	liniments being transected with north-south ones.
18	And, when you look at where these recent
19	volcanics are, they are at the intersection of these.
20	We think there needs to be more work done like this
21	gentleman talked about in looking at the structural
22	aspects of it.
23	And then, finally, on the concern, and
24	this came out yesterday, the new magnetic work is

	220
1	exquisite. We can see some really good things in
2	there.
3	We can see our EWDP wells, where we put in
4	deep steel cases. Those show up on that survey quite
5	clearly. My concern from yesterday was, when we're
6	laying it out at the workshop, I pointed to one
7	anomaly.
8	And I said, well, what's this one? And
9	the response was, oh, we hadn't noticed that one. And
10	that's a concern to us. We're not volcanologist.
11	We're not probabilistic people. We have
12	to rely on other people to do these things. But, when
13	we look at something after ten minutes and say, what
14	about this one?
15	Then we think there's a concern there,
16	that maybe there's a method that needs to be looked at
17	to make sure that all the anomalies are indeed
18	identified.
19	And the County doesn't have to come along
20	after the fact and say
21	CHAIRMAN RYAN: Thanks. I'll just add
22	that I think many of us here, me in particular,
23	weren't at yesterday's meeting. So, we're a little
24	bit blind.

(202) 234-4433

	221
1	And we didn't have an appreciation for
2	what you have in those. But, thanks for sharing it
3	with us at this point.
4	PARTICIPANT: Again, they're doing a
5	terrific job. It is a repressed timescale. People
6	concentrate on what they want.
7	CHAIRMAN RYAN: Thanks very much. Any
8	other questions or comments? Yes?
9	MR. MELSON: Mike, I'm wondering if an
10	integration of changing the PVHA at this time, and it
11	does examine as well a probability for canister
12	dysfunction, and that the membership be changed the
13	attitude, so there are experts of the type that we'll
14	be hearing from some of the work that's been done this
15	afternoon to really try to go after some of these
16	volcanological issues quantatate.
17	PVHA has updated. It remains what it was.
18	But it also
19	CHAIRMAN RYAN: I think that is an
20	interesting suggestion, Bill. If we can maybe hold
21	that in our minds as we hear the second two pieces of
22	the parts that go into the risk triplet, maybe we'll
23	come to a better appreciation of how to answer your
24	question.

We can sure think about it, because that's 1 2 a great segway to our next segment, which is the 3 repository interaction with the magma, and then on to 4 the dose consequence aspect of it a little later on 5 tomorrow. We are scheduled at the moment for a 6 7 public comment period. Do we have any other comments 8 that folks would like to make? Yes? 9 MR. McCARTIN: This is Tim McCartin, the 10 NRC Staff. In relationship to the previous comment, 11 for the record, I would like to state the appendix seven meeting between the NRC and DOE is a way for NRC 12 13 to get information from the Department as quickly as 14 it is available. 15 not that I have to defend And, the Department, it's not my role, but, in the spirit of an 16 17 appendix seven, we got this information. And DOE has barely looked at it. 18 They 19 have not spent a lot of time analyzing it. And so, 20 the fact that they may not have seen everything there 21 is, we did press them to get this information as 22 quickly as possible. 23 And so, there's a lot of analysis time 24 with the information that we have that is yet to come.

	223
1	But, this meeting was held before they had done this
2	analysis.
3	CHAIRMAN RYAN: So, a further study of
4	their's and NRC's will be underway. Is that a fair
5	comment?
6	MR. McCARTIN: Yes.
7	CHAIRMAN RYAN: Thank you. I appreciate
8	the clarification. Any other comments or questions?
9	(No response.)
10	CHAIRMAN RYAN: That being said, and it
11	being just slightly after two o'clock, we are
12	scheduled for a 30 minute break. I'm going to propose
13	that we limit our break to perhaps 20 minutes.
14	Let's come back at, say, 25 minutes after
15	two. And that way we'll have continuity with our
16	presentations for the rest of the afternoon on
17	discussions thereof.
18	(Whereupon, the above-entitled matter went
19	off the record at 2:03 p.m. and went back on the
20	record at 2:25 p.m.)
21	CHAIRMAN RYAN: We'll begin our afternoon
22	session with a presentation again by Dr. Britt Hill
23	entitled NRC Review Capabilities for Evaluation of
24	Potential Magma Repository Interaction Processes.

	224
1	I might make a note at this point that the
2	next talk that's on the agenda will not be held. The
3	speaker and the other members of that panel were not
4	available to be here today.
5	They all had other prior commitments. But
6	the consequence review panel is documented. It has
7	been presented previously to the ACNW and to the
8	NWTRV.
9	And that is a matter of public record.
10	Those records will be available. Mike Lee will help
11	anybody that wants to find those references. He will
12	help them get the identity of those records.
13	So, that presentation will not be held.
14	And then, after our first presentation by Dr. Hill,
15	Dr. Kozak, with introductory remarks by John Kessler,
16	will follow-up with the EPRI alternate views on the
17	modeling of magma repository interactions.
18	After that, we will have a closing working
19	group roundtable sessions with panel members to talk
20	about that second part of the igneous event. Thank
21	you, without further ado, Dr. Hill, welcome back.
22	NRC STAFF PERSPECTIVE ON THE MODELING OF
23	MAGMA/REPOSITORY INTERACTIONS
24	MR. HILL: First I want to make sure that

we recognize a number of people who have made the key 1 2 contributions in this work on developing our review 3 capabilities for potential magma repository 4 interactions. 5 They are essentially the lead authors on 6 a lot of this work, O. Bokhove, Anne Marie Lejeune, 7 Steve Sparks, and Andrew Woods. Notice they are all 8 from the Netherlands. 9 Unfortunately they couldn't be here today 10 to help with these presentations. Next slide, please. 11 What I'd like to do this afternoon is give a brief 12 overview of why these potential magma/repository 13 interactions can be significant to do performance 14 calculations. 15 I'll set the stage a little bit for why we I'll talk for a few 16 are doing some of this work. 17 minutes on some recent developments that have come 18 about in understanding the water contents of Yucca 19 Mountain basalts. 20 This been done from direct has 21 experiments that I think provides real interesting 22 insights on some of the important physical conditions 23 that we have to consider in any sort of numerical 24 model for igneous processes in the Yucca Mountain

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	region.
2	I will give a fairly brief overview of
3	some of our previously focused models for initial
4	magma interaction processes, but not spend too much
5	time on that, and then discuss some of the newer work
6	we've done in the past year or so on modeling magma
7	flow in conduits that have elastic wall-rock problems,
8	sort of looking at some of the relationships between
9	fluid pressure and wall-rock response, but building up
10	the initial models we presented several years ago.
11	And finally, I'll give a pretty quick
12	summary of where this current information is leading
13	us. Next slide, please. Why does this matter? Why
14	do we care about potential magma repository
15	interaction processes?
16	The simplest answer is these processes
17	control the source-term for igneous intrusive and
18	extrusive events that we're modeling in the
19	performance assessment.
20	Very simply, you can think of this in
21	terms of three very basic conceptual models. The
22	first one would be that the rising magma would come up
23	along a dike.
24	And we're looking kind of down the plane

	227
1	of the dike. It would vertically intersect the
2	repository with the probabilities that we've been
3	talking about this morning, and then continue to rise
4	to the surface, and, during the course of an eruption,
5	form a vertical conduit.
6	And, the expansion of that conduit through
7	time is the one that could waste packages in the
8	conduit footprint. Now, alternatively, sort of a
9	model that was first developed in the Woods et al
10	paper in 2001, we are looking for the potential for
11	developing a breakout at some place distant from the
12	point of initial interception of the dike.
13	This could be for a variety of reasons.
14	But, basically, we're looking at a zone of weakness
15	that was easier for magma to propagate along a
16	secondary plane than along the initial plane of
17	intersection.
18	And, again, we have no real good
19	historical analogs or any geologic analogs for how
20	rising magma would come up to 300 meters below the
21	surface, interact with a void that extend for hundreds
22	of meters laterally and are five meters in diameter.
23	So, we have to take a conceptual model
24	approach that looks at information that we can use for

	228
1	historically active volcanoes, experimental analogs,
2	and numerical models.
3	And, one of the insights that we can gain
4	from the historical basaltic volcanism, is this third
5	option, or third thing that we have to consider.
6	During the course of an eruption, you get
7	very simply the breakouts that can occur from the main
8	magma system and rise at some distance away from the
9	central volcanic system.
10	I'll talk in a little more detail about
11	that later in the presentation. Basically, before we
12	start to talk about any numerical modeling or
13	experimental modeling of these potential conceptual
14	models, we have to constrain some of the physical
15	characteristics of the magma system that we're trying
16	to simulate.
17	One of the most important model
18	uncertainties, really just about any model that we do
19	for all of the buried basalts, is understanding what
20	are our magnetic water contents.
21	Those of you that aren't really familiar
22	with the geology of this area, you can dissolve
23	certain amounts of water into the molten rock. This
24	dissolution of water isn't from groundwater.

	229
1	It occurs very deep in the mantle where
2	the basalt originates from. There are minerals in the
3	mantle and in the crust that contain water in them.
4	And, when these minerals melt, they
5	release water into the melt. That water stays
6	dissolved until you depressurize the metal at some
7	point.
8	Then the water and other volatiles, like
9	carbon dioxide, come out of the solution and form a
10	gas base. Is this expansion of the gas base as the
11	magma rises up to shallow depths, say on the order of
12	a kilometer or so, that governs a lot of the eruption
13	characteristics that we're trying to understand.
14	And these, in effect, are mass flow
15	characteristics as well. So, we have to kind of give
16	that language between volatile contents and the mass
17	flow characteristics.
18	And, in addition, some of the
19	uncertainties that we're going to have to address
20	include the crustal properties, things on the order of
21	the elastic properties of the rock as it goes down
22	deeper into the crust, as well as the distribution of
23	stress within the crust, not just at the surface, but
24	with increase.
	l

	230
1	Next slide, please. Okay, the basaltic
2	magmas that we see out here in the Yucca Mountain
3	region are characterized by about three to five
4	percent of larger crystals of olivine to small amounts
5	of the mineral amphibole.
6	There's a little bit of the mineral called
7	plagioclase and pyroxene. We're not going to worry
8	about that at the moment. Amphibole is a hydra-
9	silicate mineral.
10	It is unusual in basalts, but does occur
11	in the basalts in the Yucca Mountain region. The
12	reason we are concerned about amphibole is it's a
13	mineral that has water in the crystal lattice.
14	So, obviously, if you have a hydrated
15	mineral in this basalt, you have to have some activity
16	of water in order to format the mineral in the first
17	place.
18	Previously we had looked at some
19	experiments that were done in basalts that weren't
20	directly related to Yucca Mountain, but had some
21	analog characteristics to the basalts that we see in
22	Yucca Mountain.
23	Based on those analog experiments we would
24	say that you would need probably greater than two

	231
1	weight percent water in order to crystallize this
2	amphibole mineral you can see in the picture in the
3	basalts in the Yucca Mountain region.
4	But, it was a very loose correlation, and
5	we didn't have a good sense for two percent, three
6	percent, etcetera, for these specific basalts. About
7	two years ago, Jim Luhr of the Smithsonian Institution
8	and Tom Housh at UT Austin had done some measurements
9	with a very high powered microscope, as well as some
10	work where they take a look at inclusions in the
11	mineral.
12	When these minerals form, they trap glass
13	in part of the when the basalt cools, turns into a
14	glass. That trapped glass traps the amount of magma
15	and dissolved volatiles in it at the time of
16	crystallization.
17	So, we're capturing processes that are
18	fairly even in the crust. When Luhr and Housh
19	analyzed these glass inclusions, what they found was,
20	for the ones that hadn't leaked, there was anywhere
21	from three and a half to four and a half weight
22	percent water in these cracked melt inclusions in the
23	minerals in places like Little Cone in the Yucca
24	Mountain region.

They also were able to measure anywhere from 600 and 900 parts per million of a dissolved carbon dioxide in these math conclusions as well. So, this is the first really direct measurements that we had that looked at what did the volatile contents be in Yucca Mountain type results.

7 And they're a bit higher than the two 8 weight percent estimate that we had from the 9 experimental analogs. Next slide, please. We were 10 really lucky that this year there some experiments 11 that were published in the Journal of Geology by Nicholis and Rutherford, where they had gone out and 12 13 evaluated some direct experiments, all basalts 14 collected at Lathrop Wells volcano and Little Cone 15 volcano.

Essentially they are the same basalt composition. Now, what we see is, at Little Cones, they have done these experiments. Let me just take a moment to explain this diagram.

20 What the lower axis we see on is 21 temperature increasing from left to right, and 22 pressure increasing from the base up to the top. Now, 23 this pressure is the total pressure in the 24 experimental system.

(202) 234-4433

1

2

3

4

5

6

	233
1	They've also added water into this
2	experimental system. So, the total amount of water,
3	the pressure of that water is equal to the total
4	pressure in the system.
5	For a comparison, these pressures here
6	from anywhere from 60 to 220 megapascal, corresponds
7	to dents in the crust about five kilometers deep down
8	here at 100 megapascal, up to roughly ten kilometers
9	deep at 220 megapascal.
10	So, we're still dealing in the brittle
11	crust, down there around ten kilometers or so beneath
12	the Yucca Mountain region. What these experiments are
13	showing is that, in order to form the mineral
14	amphibole, which is occurring in this shaded area
15	right here, and olivine, you need to have water
16	contents of about four weight percent.
17	In other words, you have to have pressures
18	with total water pressure of about eight kilometers
19	depth in order to stabilize that amphibole at about
20	980 degrees centigrade, because this is the mineral
21	assemblage that we see at little cone.
22	It is olivine with a bit of amphibole.
23	Now, if we only have three weight percent water in the
24	melt, that saturation would be here at about five

	234
1	kilometers depth.
2	Three weight percent would correspond to
3	about 100 megapascal of pressure. If we have three
4	weight percent water, what we would see as that magma
5	cools, is first olivine, then plagioclase, and then
6	this mineral pyroxene would come in.
7	And, only have you crystallized a large
8	amount of plagioclase and pyroxene in addition to the
9	olivine, would you being to see the amphibole. The
10	fact that we consistently see olivine plus or minus
11	amphibole and don't see any plagioclase in pyroxene,
12	is telling us that the water pressures had to be high,
13	and on that order of four weight percent water to get
14	the observed mineral assemblies.
15	So, we have all the lines of evidence from
16	these direct experiments on Yucca Mountain basalt, as
17	well as the glass inclusions in Yucca Mountain basalt.
18	They are saying, in general, we are
19	looking at four weight percent dissolved water when
20	the magmas were down at a depth of about 10
21	kilometers.
22	This is a really important number when we
23	talk about numerical modeling of the eruption
24	processes, because we don't have four weight percent

	235
1	water in these magmas. Gas bubbles begin form at
2	about eight kilometers depth.
3	When you start rising that magma up,
4	whether it's simple solubility models, simple bubble
5	models, you begin to form bubbles when that magma is
6	about eight kilometers below the ground.
7	By the time you get to within one
8	kilometer depth, under an equilibrium sort of descent,
9	when you're at one kilometer with this amount of water
10	in the meld, you've got a very large volume of gas,
11	something on the order of 70 percent of the total
12	volume of material that's rising up, is going to be
13	the gas phase.
14	You have so much gas, that you're
15	beginning to break apart the magma in a very simple
16	way of looking at things. In contrast, if you had
17	only a couple of weight percent water, you wouldn't
18	have a lot of bubbles, maybe 40 percent bubbles, by
19	the time you got below one kilometer.
20	So, this difference in volatile content or
21	water content makes a real important distinction in
22	how you model a gas magma mixture at depths that
23	correspond to the potential repository.
24	Next slide. Okay, I've been going on and

(202) 234-4433

236 one about volatiles. I need to shift gears now on how 1 2 we're going to evaluate the potential magma-repository 3 interactions. 4 I think the easiest way to do this is 5 start with the simplest models. When we evaluate 6 experimental analogs in fluids that lack volatiles, --7 sorry about that, but that's just the easier way of 8 explaining it. 9 What we're using first is at an 10 experimental system that looks at potential 11 interactions between a volatile-absent magma -- in 12 this case a volatile-absent golden syrup fluid --13 interacting with a subsurface drift. 14 What we're using is a golden syrup, 15 essentially a sucrose syrup that has viscosities on the order of one to 100 pascals. A real plain English 16 17 way of looking at that is it's kind of like a stiff 18 syrup all the way down to a very weak syrup. 19 So, these are very sticky kinds of syrups. What 20 we're doing is we're setting up an experiment lab 21 where we have a reservoir just off the plain of the 22 pitcher. That reservoir is under pressure, and we 23 24 have a pressure in this horizontal tube, and a little

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	gate down here. So, we have the fluid come up into
2	this vertical cell, which simulates a dike, a gate,
3	and then a different pressure in this drift.
4	We open up the gate and wash the fluid
5	response across different pressure gradients between
6	the reservoir system and the tunnel system, and also
7	for different viscosities.
8	And we could go into a lot of these
9	experiments. They are documented in a report that's
10	available from the Center by Lejeune et al, 2002.
11	But, basically, the goal of all this work is to
12	develop a numerical model on how volatile-absent
13	fluids could flow into a potentially intersected drift
14	and scale those experiments to repository conditions,
15	and try to get a first-order feel for the flow rates
16	and kinds of flow that you would see for volatile-
17	absent flow.
18	This lower slide just shows a very
19	simplified simulation where you have a different
20	pressure to measure and measure the flow front through
21	time.
22	The shape of the flow front is going to
23	change depending on viscosity and the pressure
24	gradient, and whether or not you develop a

	238
1	gravitational front on this so it looks more like a
2	lava flow, versus more of a pressure driven flow, that
3	doesn't have a gravitation front to it.
4	This could affect our understanding of how
5	this would interact with structures in the potential
6	drift. Next slide, please. One of the things we see
7	from these experiments is that the viscous drag in the
8	dike system is a much more important process than any
9	sort of drag effects in the tunnel.
10	So, the dissipation of pressure in a magma
11	system is really going to be controlled by friction in
12	the dike, not really tunnel interaction effects. The
13	controlling process that we have to worry about is the
14	pressure gradient, which we need the pressurized fluid
15	that's rising in this simulate the dike system, and,
16	of course, the drift system pressure.
17	What we're looking at here are a series of
18	open tunnel experiments where we're allowing the end
19	of the experimental apparatus to be opened at the
20	sphere.
21	So, we're not getting any air compression
22	effects as the syrup flows in the tube system. And
23	this could be similar to a permeable drift wall
24	scenario where you have a lot of gas escape as magma

	239
1	would flow into the open system.
2	What we're seeing is that the flow
3	velocities that you would expect in these simulations
4	really is controlled by the overpressure in the magma
5	system.
6	And here we're looking at pressures of
7	five megapascal pressure drops, with the drift and the
8	dike, up to ten megapascal pressure drops, and seeing
9	of change in flow velocity on that order of eight to
10	twelve meters per second.
11	A real simple way of thinking of these
12	experiments is, if we have volatile-absent model
13	coming up into this potential drift system, and we
14	have a pressure differential that corresponds to
15	lithostatic to maybe five megapascal over hydrostatic
16	or lithostatic in this system.
17	We should expect to see magma flowing into
18	the drifts on that order of around ten meters per
19	second, which isn't a huge flow rate. But, again, we
20	have to remember that this is for a volatile-absent
21	flow.
22	Next slide, please. We also have known
23	some numerical models on volatile-rich interactions in
24	each trip. And I know there's been a lot of

	240
1	discussion of these models.
2	Some of them are documented in the Woods
3	et al, 2002 reports. But, basically, we looked at a
4	very simplified model for initial magma repository
5	interactions.
6	Some of the simplifications you get with
7	this first order model, assuming we had no gas loss in
8	the magma system, that the dike would instantly open
9	into the drift, there were no elastic effects, there
10	was no feedback between magma pressure and wall
11	opening, and also that we have a closed drift, no gas
12	loss, and the drift was completely smooth.
13	The important point of these experiments
14	or these numerical models is that, if you optimize the
15	system for rapid decompression, you would get a flow
16	acceleration on the order of about 100 meters per
17	second and potentially generate some sort of a shock
18	as that accelerated flow reacted with the end of the
19	drift wall and started to bounce back.
20	The important point is not whether or not
21	a shock would develop, but, by using these optimized
22	modeling conditions, the magnitude of that shock is
23	still very low compared to the strength of a waste
24	package.

So, we are not worried about transient 1 2 overpressures from potential initial interactions between bubble bearing magma and an open drift. 3 One 4 of the concerns that arose from these sort of models, 5 though, was the potential to generate fractures along 6 the drift, especially at the end of the drift where we 7 would have reflection phenomena, because, at this 8 depth of about 300 meters below ground, it only takes 9 about five megapascal to hydrofracture the rock at 10 this depth. 11 So, the question was, even though we 12 weren't disrupting the waste package, couldn't we be 13 creating fractures during this initial stage of

14 interaction that would then be exploited at some time 15 by rising magma during the course of eruption.

16 Next slide, please. So, again, even 17 though we're not looking at this happening initially, 18 of the magma shooting out through a fracture, we still 19 have to consider that, although we have more likely 20 scenario where the rising magma continues along a 21 plane of vertical ascent, there still appears to be a 22 possibility of exploitation, all these secondary 23 fractures at some time during an eruption.

Now, the reason we're concerned about

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

	242
1	this, and why we still have residual uncertainty about
2	this alternative flow path, is that we know, from the
3	numerical modeling that we've done, as well as the
4	modeling of others, in shallow magma systems, you can
5	have variations in the overpressure and underpressure
6	that occurs within the conduit system.
7	This is, again, just a very simple
8	numerical model in the Woods et al, 2001 paper that
9	shows more steady state conduit assumptions. And, by
10	the way, this assumes a rigid conduit wall.
11	There are no elastic effects built in on
12	this conduit. You can see that, in these assumptions,
13	the conduit would be under pressure until we got to
14	around 300, 200 meters below ground surface.
15	And then, because of choking effects in
16	the event, we would have some overpressure in the
17	system on the order of several megapascals. Again,
18	this is just a snapshot representation of a moment in
19	time of an eruption.
20	During the eruption, because of variations
21	in mass flow, and variations in conduit response these
22	over and under pressures can be much more dynamic than
23	you get from a standing model.
24	And, again, we're trying to look at, not

	243
1	just in any one instant of time, but what could
2	happen, what needs to be considered in our risk
3	assessments for the duration of an igneous event?
4	And one of the reasons we're still looking
5	at this as a potential concern is that, in some cinder
6	cone volcanoes, we see these secondary breakouts
7	occurring at various stages during an eruption.
8	Next slide, please. Here's two examples
9	of these secondary breakouts. We volcanologists
10	commonly call them boccas. One of these that we're
11	looking down on Paricutin Volcano, this is a big
12	from Luhr and Simkin's book on Paricutin.
13	We're looking down from the air on
14	Paricutin Volcano. And what we're seeing are these
15	series of fractures that went from the southwest to
16	the northeast, that represent some of the intial
17	fracturing at Paricutin.
18	The main volcano localized, the main
19	cinder cone formed at Paricutin right through here.
20	But, during the course of the eruption, we have a
21	secondary breakout occur, one of these boccas occur
22	along the plain of initial intersection.
23	And this vent was active for only part of
24	the eruption, but still effused lava and had an effect

	244
1	on the eruption characteristics for some time.
2	These are the most common kinds of
3	breakouts that you see at these volcanoes, ones that
4	are along the initial plane of intersection. They are
5	not ubiquitous.
6	But, certainly, it's very common to find,
7	along the direction of dike propagation, these sort of
8	secondary breakouts. Another example is shown on the
9	right, a very simplified geologic map of the cinder
10	cone eruption in Russia in 1975.
11	We're seeing three main cinder cones that
12	formed along a generally north, north-east trending
13	fissure system. And there's a number of these boccas,
14	the diffused lavas, that are localized pretty much on
15	trend with this main fissure system.
16	These are not what we're concerned about.
17	We're concerned about these sort of secondary
18	breakouts that occurred over a kilometer and a half
19	from the plane of initial intersection.
20	I don't think any of us really understand
21	the details of how the magma system is forming these
22	breakouts from the main magma system. But, it does
23	appear that, some time in some eruptions, you get
24	these lateral breakouts from the system, away from the

	245
1	plane of initial intersection.
2	So we need, in our conceptual models, in
3	our uncertainty analyses, to consider the likelihood
4	of this kind of a condition occurring at the potential
5	repository site.
6	Okay, next slide. What I'd like to do now
7	is just provide a real quick summary of some of the
8	newer work that we've been doing on modeling magma
9	flow in elastic wall conduits.
10	Now, the results of these analyses are in
11	the woods et al 2004 report that I believe was
12	distributed before the meeting. Again we're starting
13	off with building on previous models in which we've
14	used rigid conduit walls.
15	And one of the criticisms and concerns
16	that we had received on those models is that there
17	really was no linkage between pressure in the system
18	and wall rock response.
19	Because we can model some of this wall
20	rock response in the simple elastic process, we know
21	there's going to be deformation on the wall rock as
22	the magma rises through time, and also as the volcanic
23	conduit responds to pressure variations through time.
24	So we need to develop some sort of a basis

	246
1	to evaluate how this feedback between elastic
2	properties of the rock and fluid pressure in the
3	system can affect the eruption characteristics.
4	In here, we're using the base assumption
5	I think is very generally accepted that fractures
6	dilate from magma pressures that are going to be
7	greater than the minimum principle horizontal struts.
8	So this model is going to be sensitive to
9	the assumptions its stress ratio, in other words
10	minimum stress to maximum stress in the horizontal
11	domain.
12	What we're doing is assuming a two
13	dimensional elastic conduit wall, and allowing that
14	pressure to have a feedback in the elastic response of
15	the conduit with the total pressure in the system.
16	These are essentially basic flow dynamic
17	models that use mass in the land of conservation to
18	evaluate this response with some different assumptions
19	regarding magma pressure, horizontal structure ratio,
20	and also taking a look at variations in volume
21	content.
22	Next slide. For Yucca Mountain type
23	ascent rates and magma viscosities, and dike
24	geometries, we're ending up with buoyancy driven flows

	247
1	that have fairly low Reynold's numbers.
2	These are not very turbulent forms. We
3	see Reynold's numbers on that order of two to 20. So
4	we can make a number of simplifying assumptions in
5	numerical models.
6	What we see in the model, and again these
7	are models in the Woods et al 2004 paper, where the
8	conduit width is going to be controlled by the
9	difference between the pressure in the magma and what
10	we're calling simply the pressure in the rock.
11	Where this rock pressure integrates the
12	density variations, the stress ratios, and the elastic
13	properties in the rock as well, we're seeing that the
14	viscous drag in the system is much more important than
15	the turbulent drag.
16	But again, this is only for the model with
17	poor magma conditions. And what we're doing in this
18	example is looking at a stress ratio of .7, in other
19	words the minimum horizontal stress is 70 percent of
20	the maximum horizontal stress.
21	And a magma viscosity on the order of 100
22	pascal seconds, which we think is pretty
23	representative of the bubble-absent, crystal-poor salt
24	in Yucca Mountain region.
	I

	248
1	And for these different mass flow rates,
2	and the units here are meters squared per second,
3	that's flow rate per unit length of a dike, anywhere
4	from .3 to about 10 meters per second along a meter of
5	dike.
6	We're seeing an opening in that dike from
7	that depth around two and a half, three meters wide,
8	narrowing up to on order of one, one and or one to
9	a half meter wide as we approach the surface.
10	As the pressure in the system is
11	dissipated by frictional losses against the dike as
12	well as the variation in the duction in magmatic
13	pressure as we increase distance away from the source
14	region.
15	Now we're assuming in these calculations
16	that the viscosity remains constant. We know as we
17	bring volatiles out of solution and have a little bit
18	of cooling to the magma, we can be varying the
19	viscosity.
20	And also, as we have bubbles come and
21	appear in the magma, the viscosity is much more
22	dynamic than the assumptions that were made. Again,
23	we're not trying to realistically model with this
24	stage the full range of magma set processes, but gain

(202) 234-4433

	249
1	some understanding of how feedback between the wall
2	rock and the magma system can affect flow processes in
3	the shallow sub-surface.
4	Next slide please. And the reason this
5	model becomes more important is when we starting
6	adding bubbles into the volume. We have the volatiles
7	in there. We model the exsolution of gas and start to
8	account for the compressibility affects of the magma.
9	When you don't have bubbles in the magma,
10	you don't have the volatile phase, that magma is very
11	difficult to compress. It's essentially a big
12	compressible fluid.
13	So its density doesn't change in
14	compression. But once you start adding bubbles in to
15	the system, it's much more sensitive to the density
16	with pressure variations because a porous gas can be
17	compressed much more easily than a fluid.
18	Here, when we add this volatile phase into
19	the magma, again we're assuming the constant
20	viscosity, we have to account for laminar, as well as
21	the turbulent drag effects by having this volcanic
22	fluid.
23	But we're still modeling this as a single
24	phase flow. We're not trying to get into modeling

250 different velocities between the gas phase and the 1 2 magma phase. 3 So again, it is a simplified model, but 4 getting into two dimensional, or two phase flow is a 5 much more complicated step. Within those limits 6 though, what we're seeing is that when this magma 7 system is allowed to reach the surface and vent, we 8 impose a condition of choke flow. 9 In other words, the flow velocities can't 10 exceed the local velocity of the speed of sound at the 11 It's a common modeling assumption in volcanic vent. 12 processes. 13 Because of these choke conditions; we end 14 up very simply getting an overpressure in the system 15 that inhibits qas So because exsolution. of 16 accounting for these compressibility and pressure 17 effects, we end up suppressing a lot of the bubble 18 growth and gas exsolution in the shallow subsurface. 19 That. different gives us а very 20 understanding of how bubbly these mixtures would be 21 under a steady choke flow condition. Then if we made 22 just a simple equilibrium ascent like I was talking 23 earlier, here in this model again from Woods et al, 24 we're seeing depending on the assumptions you make in

251 a set velocity you'd have anywhere from about ten to 1 2 20 percent bubble fracture, in this case void fracture the melt, once you fully realize the choke 3 in 4 conditions and elastic effects in the conduit model. 5 For comparison if you didn't account for 6 those effects, at 300 meters depth you'd have over 70 7 percent void fractions for a simple lithostatic 8 pressure model, again using about two weight percent 9 volatiles in the melt. 10 So this qives us а very different 11 understanding of the kind of decompression effects 12 that we may have to consider if we talk about 13 decompression at 300 meters into an atmospherically 14 pressure filled drift. 15 Next slide please. Now we haven't just done these simple flow models. A terrible effort's 16 17 been gone -- has been undertaken by O. Bokhove and his 18 colleagues at the university. some 19 non-linear invective He used 20 diffusion equations. At the stage that I can record 21 we've only been using non-compressible flows for these 22 models, but the advantage is by using these non-linear 23 equations, we can evaluate non-steady flow. 24 In real simple language terms, is that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	252
1	can look at the variations in these flow processes
2	through time, rather than previous models which are
3	pretty much a snapshot in time.
4	We're looking at a single equilibrium sort
5	of ascent, or equilibrium ascent and flow in the Woods
6	et al models. And here we're using a full dynamic
7	realization of the evolution of the system through
8	time.
9	One of the reasons one of the ways we
10	can gain some confidence in this approach is take our
11	non-linear equations and set it to a steady flow
12	condition.
13	In other words, make it kind of similar to
14	the model I was just showing. When we make a steady
15	flow assumption, we end up getting the same sort of
16	variations in dike width with depth that we saw in the
17	Woods et al 2004 model.
18	So, very simply, this alternative approach
19	using the invective diffusive equations when we set it
20	to the same flow conditions of steady flow gets you
21	the same basic dike width depth relationships that you
22	get from an alternative approach using the maximum
23	interval versions to the Woods et al.
24	Now the value isn't in duplicating this

253 figure, but in the next slide. On the left hand side 1 2 we're looking at a time history of how dike width 3 would evolve from a reservoir located simply three kilometers away from the surface. 4 5 Each one of these lines represents a time 6 step that's about three minutes in the simulation. 7 And so depth is increasing from these meters below a 8 surface to up to the surface here. 9 And dike width is going from one meter 10 wide down to about a tenth of a meter wide. So, in 11 the first step in the simulation at the reservoir, the dike would be around .7 meters wide, with decreasing 12 13 depth, the dike gets narrower and narrower. 14 As the simulation progresses through time, 15 in other words if the magma is rising, the dike width increases near the reservoir but also increases with 16 17 decreasing depth. 18 Until finally you get an equilibrium 19 condition right before it vents to the surface, to 20 where you get a small variation from .9 to .8 meters 21 width as the dike goes from three kilometers up to the 22 surface. 23 Now, again, we're not using any eruption 24 at the surface in this first simulation. And it's a

	254
1	non-compressible, non-volatile bearing basaltic magma.
2	
3	The minimum stress assumption that we're
4	using is that the minimum stress is again 70 percent
5	of the maximum horizontal stress for the elastic
6	response in lava rock.
7	On the right-hand figure, we're taking the
8	same basic model in black and then allowing it
9	excuse me, the same basic model in the red dash lines,
10	and then allowing the dike to vent to the surface, and
11	allow conditions of flow.
12	And what we see from faintly see the
13	red lines that correspond to this figure here, but
14	once break out occurs into the surface, there's this
15	drop in dike width, and then dike width reappear
16	re-widens until it becomes a steady condition of flow
17	out to about a meter to about a meter to a meter and
18	a half wide as flow to the surface is established.
19	So we're seeing a nice dynamic realization
20	here for the non-volatile barium melt that shows that
21	once we have eruption at the surface we get a pressure
22	drop that transmits through the surface, the dike
23	closes and then reopens, but forms a conduit that's
24	going to be wider than a condition for no flow.
I	I

233
Next slide. So what did we learn from all
this modeling? A lot of things, but putting at the
top level points, we're seeing that models are pretty
sensitive to our assumptions on magma viscosity,
volatile contents, and our assumptions of minimum to
maximum horizontal stress.
Even though the model's apparently
sensitive to the assumptions, I think we have a pretty
good technical basic to evaluate the range of
uncertainty in these different parameters, and
evaluate the sensitivity of those parameters and
models.
models. One of the things is that flow choking at
One of the things is that flow choking at
One of the things is that flow choking at the vent can cause pressure variations in the magma
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase.
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase. So, when we look at the course of an
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase. So, when we look at the course of an eruption and try to simulate potential interaction
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase. So, when we look at the course of an eruption and try to simulate potential interaction processes for the duration of the event, we need to
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase. So, when we look at the course of an eruption and try to simulate potential interaction processes for the duration of the event, we need to consider feedback between choke conditions at the vent
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase. So, when we look at the course of an eruption and try to simulate potential interaction processes for the duration of the event, we need to consider feedback between choke conditions at the vent and flow conditions in the sub-surface, and how those
One of the things is that flow choking at the vent can cause pressure variations in the magma system that really affect the characteristics of the gas phase. So, when we look at the course of an eruption and try to simulate potential interaction processes for the duration of the event, we need to consider feedback between choke conditions at the vent and flow conditions in the sub-surface, and how those conditions of flow in the vent can influence bubble

	256
1	down into the sub-surface as well.
2	What we're seeing from the models is that
3	the model eruption rates for a one kilometer long
4	dike, which are on that order of 100 to 3,000 cubic
5	meters per second, those eruption rates correlate
6	pretty well with the eruption rates that you'd measure
7	historical basaltic cinder cone eruptions, which again
8	are on that order of 100 to 1,000 cubic meters per
9	second.
10	So the mass flow relationships that we're
11	using in the simplified model excuse me, we're
12	deriving in the simplified models to the first
13	order correspond to the kind of mass flow
14	relationships that we see at typical basaltic scoria
15	cone eruptions.
16	And finally what we're beginning to
17	understand is that the model dike or conduit system
18	can respond to changes in pressure on the order of
19	minutes to hours.
20	So when we start talking about dynamic
21	pressure variations in the course of an eruption, we
22	can be looking at pressure variations that are
23	transmitted through the magma system with velocities
24	on the order of excuse me, on time periods of order

	257
1	of minutes to hours of response throughout the system,
2	to these overpressure and underpressure conditions
3	related to potential interaction processes.
4	So to conclude, as a summary of our
5	current information, we see that the available
6	information is supporting that water contents on the
7	order of four weight percent appear characteristic of
8	the one million year old and younger basaltic magmas
9	in the Yucca Mountain region.
10	If the rising basaltic magma also
11	intersects non-backfilled drifts in the potential
12	repository, that magma may flow into the drifts on
13	that order of a hundred to ten meters per second.
14	Again these aren't fast enough velocities
15	to report any chemical damage, we think, to the waste
16	package, but represents a fairly rapid infilling of
17	flow into the drift system on the scale of minutes to
18	hours.
19	Continued vertical ascent following
20	potential interaction appears to be the more likely
21	scenario following intersection with the drifts. So
22	we think that the available information would favor
23	continued ascent along the plane of initial
24	intersection during the early stages of the eruption.

However, we're still concerned about the development of these additional breakouts which sometimes are referred to as doglegs that may occur for short periods during an eruption the same way that we see these breakouts occur in some basaltic scoria cone eruptions that have been observed historically. And finally I don't want to leave you with

8 the impression that these are completed models. There 9 is still a lot of work that is ongoing to evaluate 10 specific conditions and uncertainties that are 11 appropriate for the potential repository site.

We have that work or unfortunately have not gotten it to the stage of reports that are in public domain just yet. So with that I'd like to thank you again for listening to a fairly raspy voice, and open it up for discussion.

17 CHAIRMAN RYAN: Thank you Britt. Any18 questions from members? Allen? Okay.

MEMBER CROFF: I'm going to take a try at a question and I'm not sure I can articulate it very well, but given the statement earlier this morning that the NRC was assuming that there would be waste package failures from you know when magma interacts with the package, I'm sort of struggling to relate

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

259 what you've said you know sort of this relatively 1 2 abstract modeling of magma flow to the conclusion that 3 the packages will fail, and that radionuclides will 4 presumably be released to the magma. 5 Can you or anybody sort of elaborate a 6 little more on the underpinnings of this assumption 7 which seems to be fairly critical? 8 Okay. This isn't really an MR. HILL: 9 assumption. There is a lot of the work that underlies 10 that basis has been presented in like the 1999 issue resolution status report. 11 It considers the -- well let me back up 12 13 for a minute. We had two scenarios that we have to 14 make sure we're talking about. One is for the waste 15 packages that would remain in а potentially 16 intersected drift. And we have waste packages that 17 would be entrained in the erupting conduit. Part of the situation that we have to 18 19 consider is that we're not instantly developing the 20 conduit and throwing a waste package into the erupting 21 volcano. These conduits that we've interpreted from 22 23 a lot of geologic information, some of this work again 24 is documented in a publication by -- conduits open

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	260
1	through time gradually.
2	So we have a scenario where the rising
3	magma intersects a drift, it goes up to the surface,
4	and then in the course of days to potentially weeks
5	the drift the dike opens from a one meter wide
6	conduit to essentially a cylindrical conduit that
7	could be on the order of meters in diameter to tens of
8	meters in diameter, that widens gradually through
9	time.
10	But while it is widening you still have
11	waste packages in the intersected drift that are
12	exposed to the molten magma, or the thermal effects
13	form that magma.
14	So first we have to talk about
15	incorporation into an eruption conduit of a waste
16	package that is at essentially magmatic temperatures.
17	One of the things that we've been
18	frustrated by is that there have been bits and pieces
19	of mechanical analysis but we haven't really been able
20	to develop the full mechanical analysis of waste
21	package response to the range of conditions that would
22	occur in a potential igneous event.
23	For example, we know that there's going to
24	be gas overpressure in a system as in the waste

	261
1	package as the temperature rises up to and over 1,000
2	degrees C.
3	We also know that the C22 out of the
4	way, and the stainless steel innerpack have different
5	thermal expansivity. This innerpack is 30 percent
6	more expansive than the outerpack.
7	We have done some sculpting analysis that
8	show that for the small gap and don't quote me but
9	I think it's on order of half a millimeter between the
10	innerpack and the outerpack, that's not enough to
11	accommodate different thermal expansion between the
12	stainless steel and C22.
13	So, as it comes up the temperature, you've
14	got differential expansion and significant radial and
15	hoop stress on the waste package itself. So, by the
16	time we talk about a waste package potentially getting
17	to see the vertically erupting conduit, it is already
18	at temperature and has a significant material stress
19	from internal pressurization from both gas expansion
20	as well as differential expansion in the alloys.
21	We're then taking that material and
22	putting it into a very complex pressure regime, where
23	material is flowing by anywhere on the order of tens
24	of meters per second to 100 meters per second under

	262
1	this dynamic pressure variation.
2	Our waste package people and I'm not
3	going to speak for anybody but our waste people at
4	this stage have concluded that given the kinds of
5	mass that we have in an eruption volcano, and the
6	condition of the waste package at the time of
7	incorporation, that we would not see resiliency of the
8	waste package when it is thrown into the conduit of an
9	active erupting volcano.
10	That's been documented in, for example,
11	our issue resolution status report in 1999.
12	MEMBER CROFF: So I should take from your
13	talk that that part of it is assumed, and you're
14	trying to better understand the rate at which the
15	conduit forms, widens and intersects waste packages?
16	MR. HILL: We're trying to understand,
17	yes. Some of the ultimately we want to understand
18	better the mechanics of magma flow in a conduit when
19	we have this drift system in the subsurface.
20	There is a number of effects that we have
21	to consider that we never really have considered
22	before in volcanology, because we're having this
23	horizontal tube full of a volume of magma that is a
24	bubbly magma.

(202) 234-4433

	263
1	Where are the bubbles going to go in this
2	tube? We're going to have segregation of the gas
3	phase and the liquid phase, and the possibility of
4	return parameters.
5	In addition, we have this unusual
6	geometry, and unusual stress distribution, that you
7	normally wouldn't see around a volcanic conduit where
8	you've got this drift system sitting here.
9	We need to understand at a better level
10	the uncertainties in the mechanical response in rock,
11	and of the conduit given this perturbation in the
12	system, because we can't use a simple analog which
13	doesn't exist.
14	So the first part of your question is this
15	has been a long standing series of analyses and
16	information that's been in the issue resolution status
17	report, and in many of the performance assessments.
18	It's not a new assumption in that sense.
19	And second, the reason that we're looking at these
20	sort of flow models is really to understand this
21	perturbation in the system that arises from the
22	presence of the engineered system in the subsurface,
23	not to better understand the volcanoes themselves.
24	MEMBER CROFF: Does the experience from a

	264
1	reactor accident analysis and the experiments that
2	offer any insights for the two phase flow in this
3	case?
4	MR. HILL: I don't really think it's
5	analogous for the two phase flow dynamics. There is
6	a good body of literature and a lot of work that's
7	gone on to understanding volcanic eruptions.
8	One of the reasons we're working with the
9	consultants that we areAnne Woods and Steve Sparks
10	in particular - is they're some of the worlds leader
11	in understand mechanics of eruption dynamics, fluid
12	dynamics of molten rock systems.
13	It's more a matter of trying a lot of
14	the uncertainty really is trying to understand what's
15	going on in the subsurface from very indirect
16	evidence.
17	You know, we can't really observe physical
18	conditions in the eruption volcano. The eruption
19	products that we see have been highly modified by the
20	time we see them from their condition in the
21	subsurface.
22	So some of the work, some of the modeling
23	that was initially developed to understand volcanic
24	flow processes, did arrive from basic fuel cooling and

	265
1	basic thermal fluid dynamic relationships.
2	But we're not trying to derive from first
3	principles these models. They're already from a
4	fairly established volume of literature.
5	CHAIRMAN RYAN: I appreciate the modeling
6	effort you have underway to improve the modeling of
7	magma, but I'm sitting here thinking of the question
8	how did any of these variations of your modeling
9	impact your basic assumption, which was the packages
10	entrained, and if I understood John Trapp earlier
11	correctly, that the package offers no confinement or
12	containment so all the radioactivity is in the magma?
13	MR. HILL: There are two three ways
14	that this affects the source for the igneous
15	scenarios. I can't demonstrate this yet because we
16	haven't finished the modeling.
17	But the potential here is to understand
18	conduit widening processes in this disturbed geologic
19	settling excuse me, disturbed geologic setting.
20	Right now we're making an assumption that
21	the diameter of the volcanic conduit is completely
22	unaffected by the presence of repository grips. We
23	want to understand the stress distribution and flow
24	response in this disturbed regime to say whether or

	266
1	not that assumption is supportable, or should have a
2	larger variation of uncertainty because of these
3	conduit drift interaction processes.
4	In other words could the conduit be larger
5	or elongated, or have a larger source-term for
6	volcanic eruption because of these flow interaction
7	processes that we're currently assuming?
8	CHAIRMAN RYAN: Let me ask you to follow
9	up on that point. If all the radioactive material in
10	a package or a number of packages is entrained, isn't
11	the source-term constant?
12	The concentration will vary based on how
13	much magma you have but the amount of that's
14	involved is cut down constant.
15	MR. HILL: For one waste package.
16	CHAIRMAN RYAN: Well for any pick a
17	number I mean one, ten or 50. But what he's saying is
18	that one package or ten. Okay. I think I'm
19	understanding a little better.
20	MR. HILL: All right. I'm sorry I didn't
21	make that clearer.
22	CHAIRMAN RYAN: Okay.
23	MR. HILL: That as the conduit widens, the
24	number of waste packages intersected would also

	267
1	increase.
2	CHAIRMAN RYAN: Okay. And then of course
3	there's the complicating feature of is it entrained or
4	is it sequestered in the end of some tunnel or
5	something. That's what I'd imagine.
6	MR. HILL: That was the second part of
7	this story, of the three part story.
8	CHAIRMAN RYAN: Okay.
9	MR. HILL: Is we have we're talking
10	about the direct volcanic release but we also have
11	what was called the indirect release scenario. Where
12	all the waste packages that remain in the drift.
13	Now we want to understand a better
14	mechanical approach to how these igneous events, for
15	the duration of event and afterwards, can affect the
16	waste package performance.
17	We believe there is sufficient information
18	to show that as the magma was in place, and cooled,
19	and the stresses involved, would cause breeching of
20	the waste package for these waste packages that are
21	left within the drift.
22	By understanding the variations in
23	pressure through time and temperature through time, we
24	have a much better mechanistic basis to evaluate

	268
1	potential waste packages response to the physical
2	conditions of magnetism, and evaluate the conservatism
3	or non-conservatism of the assumption of damage extent
4	in an intersected drift, as well as waste form
5	behavior following a potential intrusive event.
6	So even though we're not getting those
7	damaged waste packages out during the igneous event,
8	we're still following the even at the resumption of
9	normal hydrologic flow and transport.
10	And so the scenario here, the risk
11	significance, is that the conditions don't cause waste
12	package failure. Then we don't have a large number of
13	waste packages fail following an igneous event, and
14	there's no increase in the hydrologic source-term.
15	Conversely, if we're intersecting a number
16	of drifts, and the contact of magma with the waste
17	package is sufficient to cause failure of the waste
18	packages in those drifts, we have a large source-term
19	that has to be considered in performance assessment
20	given the condition of the igneous event.
21	CHAIRMAN RYAN: I guess one friendly
22	amendment I'd ask you to think about is that it's
23	really not a source-term yet. It's an available
24	inventory.

(202) 234-4433

	269
1	MR. HILL: Okay. I'm using that
2	CHAIRMAN RYAN: Are we on the same page
3	here?
4	MR. HILL: loosely. There are many
5	steps to go between disruption
6	CHAIRMAN RYAN: Okay.
7	MR. BRITT HILL: or potential
8	disruption of a package, and the release mechanism.
9	CHAIRMAN RYAN: I just wanted to make that
10	point that's fine. And the third one?
11	MR. BRITT HILL: The third one was these
12	horizontal doglegs and breakouts. We have it as an
13	alternative hypothesis in the Woods et al 2002 paper.
14	I think it's fair to say that we are less
15	concerned about that condition occurring during the
16	initial stage of the event, but still need to think
17	out, and get a good basis for evaluating, developing
18	these breakouts at any time during an eruption.
19	And, of course, if we had a horizontal
20	flow path away from our existing conduit, that could
21	also entrain and potentially eject more waste packages
22	than we're currently assuming in the performance
23	assessment calculations.
24	So there's the three risk significant

	270
1	impacts for the work that we're doing in this area.
2	MR. GARRICK: I just wanted to follow up
3	what Allen Croff said about the and the accident
4	aggression analysis
5	CHAIRMAN RYAN: Turn that up please.
6	MR. GARRICK: That'd be a good ides. I
7	wanted to follow up Allen Croff's question as to
8	whether or not the technologies that have developed in
9	accident compression analysis of reactors have any
10	impact on the source-term development, particularly
11	with respect to entrainment, because there have been
12	enormous amount of work gotten done in this area, and
13	in some cases some major surprises as to the
14	confinement capability of the debris.
15	And it seems to me that this could have an
16	impact on the form and of the material that eventually
17	is in the cloud. And I just was curious, I wanted to
18	press on that point a little bit, has this technology
19	been examined at all?
20	MR. HILL: That's one of the areas of
21	ongoing investigation. I'm hoping we're going to get
22	some insights today or tomorrow from some of the other
23	presentations, but I'm afraid that it's not at the
24	stage that I can really comment or report on.
	I

(202) 234-4433

271 We haven't had any major breakthroughs in 1 2 that area, and one of the major limitations is trying 3 to relate the physical conditions of those scenarios with the physical conditions of an igneous event. 4 5 They're not very comparable, but still 6 trying to look at the -- how difference in physical 7 conditions may or may not affect our understanding. 8 It's not very straight forward. 9 And that's why we haven't been able to 10 make a lot of rapid process in that area. But 11 certainly this was something that Dr. Weiner had 12 mentioned earlier in the year. 13 We have been following up on that area all 14 -- a lot of other areas. I'm just afraid at this 15 stage it hasn't come to fruitition. 16 CHAIRMAN RYAN: John, do you want to make 17 a comment? 18 MR. TRAPP: Just one comment. I did state 19 this morning that yes, we are making this assumption on a waste package. Now, in order to understand how 20 21 a waste package is going to respond to this type of 22 environment, you have to better understand the 23 environment. 24 This is what this work is doing. It's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	272
1	getting us a better handle of the mechanical thermal
2	environment than we have to put the waste package in.
3	And therefore there may be a possibility
4	that there could be some say to use Dr. Garrick's
5	terminology, a more realistic model that maybe does
6	say that some of a package can survive.
7	But unless you understand what is really
8	happening form a mechanical and thermal response in a
9	volcano you're just and there's more.
10	CHAIRMAN RYAN: And I have been looking at
11	the volcanology and flow of magma in it's purest form
12	to understand that. I appreciate that, but at the end
13	of the day it is important only in the context of a
14	waste package and its interaction with it, and then
15	what happens down the line.
16	And again I apologize for jumping ahead a
17	bit, but I'm trying to keep a whole range of parts and
18	pieces of this question in my head at the same time.
19	I appreciate your comment. Ruth?
20	MEMBER WEINER: Well I have should I
21	use the mic? I have a couple of possibly unrelated
22	questions. First one is, your talk is titled NRC
23	Review Capabilities for Evaluation Potential Magma
24	Repository Interactions.

	273
1	Could you expand a little bit on how
2	you're going to use this model to review what DOE has
3	done? Are you going to say well I'll let you
4	respond to that question.
5	MR. HILL: All of us are faced with an
6	extraordinary challenge in trying to evaluate this
7	process. It's unprecedented in trying to look at the
8	interactions between a volcanic system and an
9	integrated system.
10	We have no good natural analogs, we have
11	no objective basis of comparison to use the part 63
12	terminology. So really about the only way that we can
13	try to look at eventually the risk significance of
14	this is by doing some of this actual work.
15	It's very typical to review something
16	that's state of the art if you're not actually doing
17	some things that are kind of state of the art. We
18	don't use this modeling as the correct way.
19	This is one insight of many possible ways
20	to approach this problem, but it does give us a
21	knowledge base to kind of understand in doing this
22	model, what's important, what's not important to
23	process level, and how this would affect our
24	understanding of the downstream risk impacts for this

	274
1	challenging problem.
2	But again I want to emphasize, we're not
3	viewing this as setting the baseline for a comparison
4	of whether we're right or wrong or any other group is
5	right or not. Is that answering
6	MEMBER WEINER: It does.
7	MR. HILL: Indirectly?
8	MEMBER WEINER: That's a partial answer,
9	and one of my questions was, well suppose DOE comes up
10	with an entirely different model, are you going to say
11	well ours is right and yours is not or ours is not and
12	yours is?
13	MR. BRITT HILL: Well
14	MEMBER WEINER: But
15	MEMBER WEINER: I would just very
16	speculatively say if there's the two conditions.
17	DOE comes up with a model for magma flow, and it
18	completely disagrees with our model, and we have a
19	completely different risk insight from it.
20	Were going to have a challenge in
21	evaluating who is right in that sense, or how we're
22	going go. And it may be we just have to let the
23	licensing process take care of that.
24	But, conversely, we have alternative

(202) 234-4433

	275
1	modeling approaches, and they could be very close in
2	approach. We could be getting the same basic
3	insights.
4	And I think that would be a useful thing.
5	To we have no proof. We have no basis to say it's
6	right or wrong, unlike some other things. So we've
7	done an independent effort. The department has done
8	an independent effort.
9	And all these answers appear to be
10	conversing in about the same risk difference. And we
11	can evaluate the differences, and they could be
12	insignificant.
13	I think we've all done the best job we can
14	in that case. So I'm going to hope that we're going
15	to be successful in this. Unfortunately I can't
16	comment on ongoing reviews.
17	But I'm optimistic that this approach that
18	we're that using is not completely out in left field.
19	And let me leave it at that.
20	MEMBER WEINER: Thank you. That's a very
21	comprehensive answer. My totally unrelated question
22	is, your slide six has a rather elegant experiment
23	analog, elegant in its simplicity.
24	And I commend you for that. Is there any

	276
1	way to take your experimental setup and add analog
2	waste packages to it? You would face some difficulty
3	in scaling the scale up.
4	MR. HILL: Yes.
5	MEMBER WEINER: But is there some way that
6	you cam do that because it seems to me that would give
7	you some insight at least into the pressures and gas
8	bubble interactions.
9	MR. HILL: This apparatus is designed to
10	look at the initial fold. I think the state of fluid
11	modeling is sufficient to show that, given these
12	conditions of flow for simple geometry, you know we
13	couldn't make an analog that was anything more than a
14	simple waste package anyway.
15	Whether or not these conditions are
16	sufficient to entrain or bump things around, and even
17	I'll fall back on the Woods 2002 paper even
18	under the conditions of optimized accelerated flow,
19	there may be slight movement but nothing that was high
20	enough velocity given this very simple geometry to
21	really pick things up and move them around.
22	So I think we have the insights we need
23	for the risk assessments that, with this apparatus and
24	those conditions, we're not really concerned about low

	277
1	impacts on a waste package.
2	We do have ongoing experiments that are
3	looking at sustained flow and circulation. And some
4	of those will be considering experimental analogs for
5	engineered systems, again, trying to gain insight and
6	model verification for the simplified calculations on
7	how these circulation effects may of may not affect
8	material located in various parts of the analog
9	system.
10	MEMBER WEINER: Is there a fluid dynamics
11	model that could help you model entrainment better?
12	MR. HILL: Yes. There's a number of them.
13	MEMBER WEINER: Yes.
14	MR. BRITT HILL: And again we are doing a
15	lot of work. This is why we're doing the basaltic
16	work at the University of Bristol crew, who have Steve
17	Sparks.
18	One of the people who's currently working
19	with us is Dr. Jerry Philips. He's not in the current
20	or presentation but he's another one of the leading
21	experimentalists fluid dynamics people for magma
22	repository interactions, also a parallel reference
23	going at Cambridge University, with Professor Andrew
24	Woods, and some of his colleagues, to really come up

	278
1	with solid fluid dynamic basis to evaluate these
2	processes to the best of our ability, and without
3	uncertainties.
4	MEMBER WEINER: Thank you.
5	CHAIRMAN RYAN: Panel members, any other
6	questions, comments? Bill?
7	MR. HINZE: A couple of quickies. The
8	ICPR, the Igneous Consequence Peer Review Panel
9	certainly made it clear that they felt I think the
10	words are most unlikely that there is a dogleg.
11	And I gather that your work suggests that
12	that's not the case, that a dogleg this possible. Or
13	are you talking is the difference here related to
14	of preexisting zonal weakness?
15	How do you rationalize what you're saying
16	with what the ICPR has come up with?
17	MR. HILL: I'm afraid I can't comment very
18	much on the DOE's peer review comments. What I can say
19	is that there have been we have at a subjective
20	level, and like I said in this presentation, we don't
21	believe that this is a likely scenario.
22	However, all the assessments have been
23	very qualitative and subjective about well it seems
24	less likely, but we're not have not received a
	l

	279
1	input that says it cannot happen.
2	And we have to be careful in
3	distinguishing between what may or may not occur in
4	the initial stage of potential interactions, versus
5	what may or may not occur for the duration of an
6	event.
7	And I think it's fair to say that none of
8	us have presented a model or an analysis that truly
9	looks at the evolution of the system for the duration
10	of an event.
11	Most of the work is focused on the initial
12	stage of interaction. So I can't go too much farther
13	with that.
14	MR. HINZE: Do we have a an explanation
15	for the current boccas in nature? Is this a chocking,
16	rocking of the main conduit? What causes this?
17	
	And how do you get at the likelihood that
18	And how do you get at the likelihood that this may happen as you say in, in to carry it up?
18 19	
	this may happen as you say in, in to carry it up?
19	this may happen as you say in, in to carry it up? MR. HILL: I certainly my personal
19 20	this may happen as you say in, in to carry it up? MR. HILL: I certainly my personal opinion is we don't have a great understanding. But
19 20 21	this may happen as you say in, in to carry it up? MR. HILL: I certainly my personal opinion is we don't have a great understanding. But what we can see from observation is especially I
19 20 21 22	this may happen as you say in, in to carry it up? MR. HILL: I certainly my personal opinion is we don't have a great understanding. But what we can see from observation is especially I used as the best example right now, just because

	280
1	what we would expect in Yucca Mountain. And there
2	were a number of boccas that formed during the course
3	of this event.
4	There wasn't really a hiatus in activity
5	in the central cone, and a shift to the bulk. What
6	you saw was simultaneous eruption of lava and tephra.
7	Sometimes that eruption is occurring from
8	the central cone itself. Other times the diffusion
9	rate of lava may decrease slightly from the central
10	vent, but increase at a bocca.
11	But it's not really a straight forward
12	thing where you shut down the main conduit and have
13	everything coming out of the bocca. It's a much more
14	complex plumbing system than that.
15	So I'm drawing a cartoon in a cartoonish
16	view that's a great simplification. But I'm in that
17	intermediate position of here's what happens in
18	nature.
19	This could potentially affect our risk
20	understanding, but I know there's a lot of
21	complexities. And it's not a one for one for one
22	scaling relationship either. So we're working on
23	that.
24	MR. HINZE: Speaking of the natural

	281
1	conditions, I remember forty years ago going on a
2	field trip to Kings Fall, and the Snake River plains,
3	and seeing the basaltic dikes which obviously had
4	backwash.
5	MR. HILL: Correct.
6	MR. HINZE: And where are you in modeling
7	or could you be in modeling that considers backflow
8	and how do you approach it, and so forth?
9	MR. BRITT HILL: What I san say is this is
10	part of our ongoing work at the University of Bristol.
11	We are looking at circulation and flow effects for
12	steady and non-steady flow conditions in a conduit
13	system.
14	Now, again, it's very hard to get people
15	to climb up to the center cone to look down when
16	there's a hiatus in the eruption. I had a colleague
17	in Nicaragua that did this, and he was very lucky, but
18	he didn't see too much because you get a lot of rubble
19	coming in.
20	The cinder cone conduits, it's very hard
21	to say whether you're going to get a hiatus in the
22	eruption, that would cause to rain to hundreds of
23	meters below the surface.
24	It seems kind of unlikely, but I can't

	282
1	eliminate the possibility. But it is a very different
2	kind of conduit system than what we would see at these
3	rift dominated systems like Craters of the Moon, which
4	are very Hawaiian.
5	And you've seen drain back and cessations
6	of eruption as a very typical feature in those kind of
7	systems.
8	MR. MELSON: Yes, but I think certainly we
9	it should be happening here. It's one of those models
10	that I think should be considered, at least just
11	proven that it can happen.
12	MR. BRITT HILL: And I think with the
13	ongoing work, we will be able to evaluate whether that
14	kind of drain back phenomena would have an effect or
15	no effect on the engineered system.
16	MR. HINZE: Let me ask a last question.
17	The last bullet of your summary of current information
18	continues to refine these models. Where are you?
19	How much do you have left? Do you have a
20	feel for this at all? What are your plans?
21	MR. HILL: Well, what I think it's pretty
22	obvious that we haven't presented anything that looks
23	at the specific geometry. So, obviously we're going
24	to be applying that through a complex geometry that

	283
1	would represent potential dike drift systems.
2	That's why the first step if, of course,
3	makes your numerical, gain confidence in the model.
4	Start simple, build upon that, and then apply it once
5	we have an understanding that we're not just modeling,
6	but modeling something in a reasonable way, and then
7	apply that to the complex system as the final stage.
8	That is ongoing work.
9	MR. HINZE: I understand how research
10	works and how we can keep solving more problems, but
11	if we leave this problem out and have a duration.
12	Are you writing this proposal for two years, four
13	years?
14	Where are we now from zero to ten, in this
15	whole understanding of the intersection of the magma
16	with the repository? Where are we, from zero to ten?
17	Give me a number and I'll give you what
18	percent we need.
19	CHAIRMAN RYAN: That's a so odd question
20	Bill?
21	MR. HILL: The goal is to have the work
22	completed and of course written by December 15^{th} .
23	MR. HINZE: Okay.
24	CHAIRMAN RYAN: Bruce, you had a question?

	284
1	MR. MELSON: I sat through as a number of
2	people did here, the Igneous Consequence Peer Review
3	Panel, where much of it dealt with the Woods paper,
4	which I assume was contracted by your group and what
5	not.
6	And a lot of interchange went on there of
7	a very substantive nature. I don't know if you've
8	ever gone through the documents that came out of there
9	or not but I'm just I mean it's so construct in the
10	sense of allowing you to look at your work, and you
11	said you couldn't talk about that.
12	And so I was just wondering because you
13	never did mention it, as if it never even happened.
14	But I assure you it did happen. And I'm wondering, is
15	it a license thing or something?
16	Is there some legal reason you can't deal
17	with people who are feeding what I hope is
18	constructive criticism into your work.
19	MR. HILL: I thoroughly appreciate the
20	desire to be able to have open communication and open
21	interchange on topics all over the map. Unfortunately
22	we are approaching a very complex legal arena.
23	And we have to be very sensitive on what
24	we communicate in terms of publicly available

	285
1	information and the format in which we communicate
2	that information.
3	It is unfortunate that we have not
4	documented the results of our review and our thoughts
5	of the DOE's Peer Review Panel. We have not done
6	that.
7	And so, in this format, I unfortunately
8	can't give extemporaneous feedback on our thoughts
9	that are not in the and, again, this is solely
10	because of the approaching license application
11	deadline, and a concern about Staff's independence,
12	and the various roles that different groups are going
13	to need to maintain during this complex legal
14	proceeding.
15	So that is why there are very obvious gaps
16	in this presentation. I am not commenting on our
17	views of the current DOE models, or anybody's models.
18	I can't, not at this stage.
19	CHAIRMAN RYAN: John?
20	MR. TRAPP: Just one thing I can say is
21	there is a document that is currently in review at the
22	Nuclear Regulatory Commission. It's called the
23	Integrated Issues Resolution Status Report, revision
24	two, or one.

	286
1	It's the revised issue resolution status
2	report. I think will be issued in the next couple of
3	months.
4	PARTICIPANT: Sooner than that.
5	MR. HILL: Sooner than that. Well, we're
6	hoping to get it out as soon as possible. That will
7	have the staff's current view of many aspects of the
8	DOE program, including some of the comments, and major
9	process level concerns that came about from the peer
10	review meeting.
11	So, I guess a delicate way of putting it,
12	a lot of those comments from the DOE Peer Review have
13	been incorporated into the latest DOE documents as
14	well.
15	So, while we may not be commenting in the
16	integrated Issues Resolution Status Report directly on
17	the peer review conference, we will be commenting on
18	the Department of Energy analysis and lava reports
19	that have already incorporated those comments from the
20	review.
21	So we're not just leaving these comments
22	out of the vacuum. They will be addressed. But
23	unfortunately I can't do that today.
24	CHAIRMAN RYAN: Britt, thanks for your

	287
1	detailed explanation of that. I think we can get a
2	clear picture of where you are and why, so
3	MR. BRITT HILL: Sorry to be
4	CHAIRMAN RYAN: It's all right. John, you
5	want to make a comment?
6	MR. TRAPP: I just want to carry on with
7	what Britt was saying, because when we got into this
8	whole thing and talked to our lawyers, what did you
9	see?
10	CHAIRMAN RYAN: You know what, I'll tell
11	you. We're really here to discuss technical issues,
12	and the position that you're in with regard to all of
13	that we kind of understand that
14	MR. TRAPP: I just want to say that we
15	cannot discuss a lot of these things that we'd like
16	to. And I'm sorry, but that's
17	CHAIRMAN RYAN: I think we all appreciate
18	that very clearly. And you have both done a nice job
19	of explaining that to us so I want you to realize that
20	it's, from at least the Committee's viewpoint, not
21	negative.
22	We understand that. So we appreciate the
23	position you're in. Neal you had a comment?
24	MR. COLEMAN: Yes. Neal Coleman, ACNW

	288
1	staff. At the spring AGU in Montreal, I had the
2	pleasure of hearing a lecture by Michael Menga, who's
3	a leading authority on behavior of magmatic conduits.
4	I noted from your slide eight, under the
5	assumptions in your simplified model, no gas losses.
6	He stressed in that talk that it is very critical how
7	much gas escapes.
8	It has a very key role in determining the
9	power the energy of an eruption. So you this
10	isn't a question it's a suggestion. You want to
11	include that kind of information, and also recognize
12	that the tuffs at Yucca Mountain are highly permeable.
13	And I've given you something to start a
14	range of say 10 to the minus 10, to ten to the minus
15	12 meters squared.
16	MR. HILL: What's the diameter of the
17	drift? About 20 meters square. So yes there is the
18	permeability, we agree. But it's not completely
19	permeable.
20	In relation to the area there isn't that
21	much permeability, if you're talking about
22	compressibility.
23	MR. COLEMAN: What I'm giving is
24	MR. HILL: These assumptions aren't

289 clearly stated. It is not meant to be a realistic 1 2 representation of all things. Now to address your 3 second or first comment. 4 We've done also some very simple 5 calculations that anybody can do about bubble rise 6 speeds in magma and the magma that would be ascending 7 on the order of a tenth of a meter per second or a 8 meter per second, in the crust. 9 And bubble rise speeds are orders of 10 magnitude below the magma ascend speed. So, when you 11 want to talk about bubbles escaping from the magma system, you have to come up with a mechanism to 12 13 segregate the bubbles beyond just simple buoyant rise. 14 While I agree that, yes, there are gas 15 escape effects, there isn't that much gas escape in the rising magma until you get to very shallow levels. 16 17 And again when you want to talk about a 18 fully realistic realization and simulation of magmatic 19 process, that's great. We all know that these are not single phase flows. 20 21 But to try to model them as two phase 22 flows is a heck or a challenge. It takes a lot of 23 computational resource. We're just trying to gain 24 first order insights on this, not think that we're

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	290
1	going to come off with a fully four-dimensionally
2	realistic model. That's not our role.
3	CHAIRMAN RYAN: I hate to cut off the
4	exchange but we are running long on this talk. So if
5	we can perhaps finish up with perhaps, Neil, one last
6	comment. And then I think Dr. Marsh has a question
7	and we'll finish there.
8	MR. COLEMAN: There may be a lot to learn
9	in the work that we're finishing up from a world
10	expert on this topic.
11	MR. HILL: That's why we're involved in
12	world experts.
13	MR. MARSH: This is very interesting,
14	Britt. And these kind of calculations are very
15	difficult to do in a single phase. The problem with
16	a lot of calculations is in the earth for example
17	is that especially in these type of calculations
18	and all of our sciences that initial conditions are
19	always a problem because, in general, in the earth we
20	don't know any initial conditions.
21	And yet, to solve the problem we need
22	initial conditions. And we don't know initial
23	conditions when the earth formed. We don't know the
24	initial conditions for how any single crystal is

	291
1	grown.
2	We don't have initial conditions for how
3	a volcano starts out.
4	But so what do you do? Well you
5	actually impose the problem so that the solution does
6	not depend heavily, entirely on the initial
7	conditions.
8	Now, if you go back to the conduit
9	experiment there, your horizontal could you show
10	Britt.
11	MR. HILL: I don't have control.
12	MR. MARSH: Okay, Bruce, could you go back
13	to the experimental level? Six. So, for example,
14	just to use this as an example, Britt was saying
15	himself about how things start up.
16	They start off very gradually and open
17	very small. In fact you can see arrested sills and
18	arrested dikes in places and you can actually see way
19	out a kilometer two kilometers in front of them.
20	It's a tiny little one centimeter or even
21	just a millimeter crack that starts out and enlarges
22	maybe up to a couple hundred meters or so. So, in a
23	situation like this, you have to start the problem
24	somewhere of course.
I	1

292 And so they start the problem at 1 the 2 nozzle, give it overpressure. And suddenly you open 3 And so if you actually tweaked it open this thing. 4 just very, very slowly, you would get a different 5 solution than if you just open it up, or if you 6 puncture a membrane or something like this. 7 So the initial conditions are verv 8 important. Also the pressure drop is enormously 9 important. And you can see that the ensuing 10 velocities that you get -- and this is a flow that has 11 no volatiles in it. 12 But it has -- you know the meters per 13 second. So in other words that flow would be in Las 14 Vegas in a few hours, and -- from Yucca Mountain for 15 example, the volumes would be enormous. do you actually temper these 16 So how 17 You temper these kinds of calculations by things? 18 looking at the geological record of what you actually 19 see in terms of how fast the lava is actually --20 emerge, how fast the flow field gets larger and 21 larger. 22 And I think, for example, Lathrop Wells 23 and things like that you actually have some control 24 over looking at how fast these things advanced. When

	293
1	you actually use two faces flow and tephra shooting
2	out it's a little bit different.
3	But the other factor another assumption
4	of course is they all start out at one meter wide
5	dike in the calculations and you more from that. Now
6	that's an initial condition assumption also.
7	The other thing is that there's no
8	solidification whatsoever in depressurizing. The
9	volatile is coming out of solution. What is does it
10	changes the entire phase.
11	If you want to go up to the phase diagram
12	five. Let's go to five. So this phase diagram for
13	example, up in the left hand, the dashed or shaded
14	area there, if the magma starts in that region it
15	starts to ascend to the surface.
16	So you have pressure on the left, so it
17	has to some to the surface. And so, what happens is
18	it can't hold its a magma's like a diver, it gets
19	the bends. This stuff comes out of solution, and as
20	the bubbles can't escape, Britt talked about it drives
21	the whole eruption and you get this back and forth all
22	through.
23	But never the less it has to come out in
24	solution so with the phase diagram it starts going to

	294
1	a low water content and the whole thing shifts to the
2	right.
3	And at those temperatures, 980 degrees
4	it actually starts out at that by the time it gets to
5	the earth's surface, it wants to be solid, entirely
6	solid more or less.
7	Something at 55 degrees 55 percent
8	crystals can't erupt because it's at maximum packing.
9	It's a solid and chokes and conduit, becomes
10	explosive, for example.
11	But it will actually shut down the whole
12	system. That's what volcanoes are in many ways.
13	They're like they're trying to shut down so they
14	build and pile on top of it until they actually shut
15	themselves down and they degas.
16	So the suffocation effects are enormous,
17	in terms of loosing just loosing volatiles. And
18	that's a way that the volatiles actually get trapped
19	out of the system, partitioned out.
20	And this is like many have talked about
21	somewhat. You have an enormous solidification effects
22	and they start eating out this stuff.
23	What happens in fact the volatiles are
24	richest where the solidification is the greatest of

	295
1	course, because the amount of melt is low, and there
2	is excess melt of fluid around it?
3	So not only here is it very important and
4	this is coming out, but in a volatile free
5	environment, any time the magma rises up into conduit,
6	a major problem is it starts undergoing thermal death.
7	In other words the solidification is at
8	right angles to the flow. So heat loss is at right
9	angles to the flow field. So, no matter what the flow
10	does, it cannot actually impede solidification it just
11	starts growing and growing and growing and trying to
12	stop the conduits.
13	And the conduit either has to overpressure
14	itself, keep opening itself to offset this
15	solidification. But these effects can be enormous. So
16	the thing that I would like to see in this these
17	kinds of this kind of work you know an
18	investigation of initial conditions, as related to
19	what kinds of things we see on the surface, in terms
20	of related to the volumes of output and the times, of
21	course big time duration effects.
22	Systems start out it's like puncturing
23	a balloon and then you pressurize and affects its
24	solidification of the reoccurring viscosity. These

	296
1	are really big factors that I'm sure you agree that
2	they're very hard to model, but they these are
3	critical issues.
4	And it would be nice to see that kind of
5	approach in here somehow.
6	MR. HILL: Well again, the approach we've
7	been taking is trying to build in the realism if we
8	can. You know, certainly I agree that the effect of
9	volatiles is very profound in fully thermal mechanical
10	effects that is going to occur during a complex
11	depressurization.
12	But we do know, for example, with these
13	volatile contents, that we've erupted a number of
14	volcanoes in the Quaternary that have a cone phase, a
15	tephra phase, and a lava fall phase.
16	So there still is the ability of these
17	magmas for of descent to avoid the thermal death
18	and crystallization choking, because we see them at
19	the surface.
20	CHAIRMAN RYAN: I think we could go on for
21	a long time. I'd like to bring this to a close.
22	MR. MARSH: The real question is that, the
23	incorporation of these effects in the modeling. We
24	certainly see magma under the surface. That's not the

	297
1	question today.
2	But are you going to try to put these
3	kinds of serious issues in the modeling, that's
4	MR. HILL: We're trying to build in the
5	variable viscosity. We're trying to build in thermal
6	control as well. But you're again getting into, like
7	you're saying, very complex models.
8	But you know if you want to start building
9	in some sort of experimental apparatus that has
10	variable viscosity, variable openings, and variable
11	temperatures, that's quite a challenge.
12	We're starting with the apparatus, because
13	it's an established apparatus, and it would gain us
14	the insights that we needed in the initial state. So,
15	while I appreciate the desire like we all have to make
16	this as realistic as possible in our models, we do
17	have a limitation in the knowledge, and in the ability
18	to duplicate this unusual situation in the lab as with
19	a computer.
20	We're working on it. A number of people
21	are working on it.
22	CHAIRMAN RYAN: Thanks. Thank you for
23	your presentation and for the good discussion there
24	after. I'd like to move now to our next presenter, if

	298
1	we could. I think Dr. Matt Kozak will be making a
2	presentation on the Alternative Views of Modeling of
3	Magma Repository Interaction at Yucca Mountain.
4	And that you'll be handling all
5	comments?
6	MR. KOZAK: Yes.
7	CHAIRMAN RYAN: All right. Is John going
8	to make a comment?
9	MR. KOZAK: No John just said it
10	CHAIRMAN RYAN: Okay, Great.
11	MR. KOZAK: Now this is still
12	CHAIRMAN RYAN: No that's a lot easier.
13	MR. KOZAK: It's a lot easier. I don't need
14	to project from the diagrams.
15	CHAIRMAN RYAN: No. You can if you want.
16	ALTERNATIVE VIEWS ON THE MODELING OF
17	MAGMA/REPOSITORY INTERACTIONS AT YUCCA MOUNTAIN
18	MR. KOZAK: Well first I'd like to say thank
19	you very much for the opportunity to come here and
20	present this work. I'd like to emphasize that this is
21	the work of the project team.
22	Next slide please. Project team
23	contributors, a number of whom are here today, myself,
24	Mr. Apted, Mr. Bursik, Shane Findlan, Randy James,

	299
1	John Kessler, Frassier King, Mick Morrissey.
2	MR. MARSH: Excuse me, might I are there
3	handouts for us?
4	CHAIRMAN RYAN: You did not bring hard
5	copies for us.
6	MR. KOZAK: Yes.
7	CHAIRMAN RYAN: You did?
8	MR. KOZAK: Yes.
9	CHAIRMAN RYAN: They're on their way,
10	thanks.
11	MR. KOZAK: Before I really get into it I'd
12	like to remind you about the EPRI's role in this whole
13	process is. That is where federal agencies have we
14	look around us and we follow the work of the Federal
15	agencies and we try to fill in things that perhaps
16	they're not doing.
17	And so we looked at this and we looked at
18	some of the arguments related to the probability of
19	the event that we talked about earlier. And decided
20	that our time was really better spent, and we could
21	take a bigger impact by starting to look at
22	consequence side of things.
23	First and foremost was to look at the waste
24	package. We have this waste package that's one of the

toughest materials known to humanity. And really in and really in the DOE and NRC analyses up through TSPASR which is the most recent information that we have available to work on.

The waste package plays no role. Ιt 6 essentially disintegrates as soon as it's contacted by the magma, and is blown out to the top. So we 8 thought, that by looking a little bit more in detail 9 at that, we might be able to develop a more reasonable assessment.

11 Next Please. And to do that we're trying to 12 develop a reasonable expectation base. To give you a 13 heads up of where we're going with this, what we end 14 up finding out is that we can't get the material out 15 of the waste package when we start taking into account 16 the degradation processes that can occur during the 17 eruption cycle.

18 That's not to say that the igneous -- the 19 magma does not have an effect on the waste packages, 20 but during the time frame of the eruption, the waste 21 packages are not damaged sufficiently to cause 22 releasing during that period.

23 They may be sensitized so that as we heard 24 earlier that the ground water releases at later times

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

7

10

	301
1	would be affected. And we're going to be looking at
2	that more in a future report.
3	Next please. Let's just go through. It's
4	sort of instructive to look at it when we start
5	looking at the waste packages themselves, to look at
6	the sequence of the events of the eruption.
7	And the first is that this dike rises sort
8	of as a sheet to intersect with the repository. And
9	the as that rises through, there is significant
10	amount of degassing that goes on in there.
11	The surface area at that point that could
12	even take into account surface of the amount or
13	degassing what might have taken effect is very hard
14	because it's perhaps a kilometer long dike that's
15	coming up as a sheet through the zone.
16	And so there could be significant degassing
17	that's going on during that process. So the dike
18	eventually raises to the repository level. Next one
19	please.
20	We get perhaps an intersection if it
21	intersects with a drift, you get an intersection
22	perhaps with a single waste package. Meters meter
23	diameter meter with dike coming up make it a single
24	waste package.
	I contraction of the second

302 So we consider that to be an initially 1 2 impacted waste package, which is what we're thinking 3 of when we're talking about the initially impacted 4 waste package in this presentation. 5 And then over a period of time, that dike 6 evolves into these cylindrical vents. Next please. 7 And, at one or more places along the dike, it may 8 evolve into these vents. 9 Now, over a period of time those vents can 10 widen, so that initially impacted waste package, which 11 may or may not be on the center line of where a vent 12 would occur. 13 If it's not, then, when it evolves to the 14 vent stage, then that waste package is not going to be 15 contributing to releases up the vent. If it does happen to form a vent on the center line of a drift, 16 17 then that waste package and perhaps a few more to either side of that waste package can contribute to 18 the release that might occur coming out of the vent as 19 20 it heads toward the surface. 21 Now if you look a little bit further out 22 down the drift, down here, we have the magma is coming 23 up and it's going to start flowing out down the drift. 24 And the heat losses that are going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	303
1	happening as the magma flows down, would sufficient
2	that fairly quickly the magma's going to solidify and
3	we're going to get a basalt plugs down the drift.
4	So, the number of waste packages that can
5	contribute is the number that are actually actively in
6	this vent at that state of the eruption site. And the
7	ones that are further down there's really no driving
8	force for radionuclides, even if those waste packages
9	were breeched, there's no driving force for that
10	the radionuclides to come up a gradient of magma, to
11	think of it that way, to come back up and go up the
12	conduit.
13	So if you can identify the width of this
14	conduit, and the number of waste packages that could
15	conceivably be affected by that, and consider the fact
16	that there could be more than one conduit, then that
17	gives you an idea of the bounds on the number of waste
18	packages that could be affected by it that contributed
19	at this state in the eruption.
20	Next please. And then at that stage we have
21	to get this tephra plume to come out here 18
22	kilometers. One of the important things to recognize
23	is that as this initial dike comes up, the initial
24	dike intersects with the drifts at the drift level, at

	304
1	that stage, the type of eruption that comes up when
2	the dike hits the surface is fire and at lava
3	flows.
4	There's very little tephra production at
5	that stage. It's not until it evolves into this vent
6	stage that we start getting these significant tephra
7	plumes.
8	So we find that, if the waste package
9	initially were to just dissolve as soon as the magma
10	were to hit it, and the fuel were to just come up as
11	chunks which is in a way a conceptual model for
12	some of the DOE and NRC models, except the waste
13	package is just instantaneously gone that if it
14	were to come up at that point along with the dike
15	eruption, that it would be coming out in lava, and it
16	wouldn't come down and it wouldn't affect the record.
17	It's only if the waste package does not fail
18	at that initial stage, it fails at some intermediate
19	stage later on, so that whatever radionuclides are
20	released could come out during this period, then it
21	would be associated with tephra that could get down to
22	producing dose.
23	Next please. To look at this we broke the
24	system up again to initially impact the waste packages

305 and neighboring waste packages that might be in a 1 2 vent. 3 And what we did was go through sort of a logical diagram of what type of effects we need to 4 5 take into account at each stage of the eruption. And 6 the main thing to recognize in this initially impacted 7 waste package is, as you come down there, if the C22 8 and the stainless steel shells were to completely be 9 destroyed upon initial impact, again, if you come down 10 here to bottom, you have decision branch to say 11 whether or not it's actually going to get down to the 12 RMEI. 13 And, for these types of eruptions, as it 14 comes out, it's not getting to the RMEI to produce 15 zero dose if that were the case. So, but we did want to evaluate that. 16 17 We wanted to find out whether or not the 18 conditions at that stage of the eruption were severe 19 enough to cause this extreme damage. And we'll be 20 little bit later in talking about that а the 21 presentation.

We also have a logical diagram of how the waste packages can fail and the types of failure mechanisms that would come in for these waste packages

	306
1	that are not initially in the dike.
2	CHAIRMAN RYAN: You don't want us to read
3	that?
4	MR. KOZAK: No. The details of this are,
5	you know, we'll be going through each of the sort of
6	the phases of that as I go through the talk.
7	CHAIRMAN RYAN: Okay.
8	MR. KOZAK: One of the things that we wanted
9	to do was to look at this issue of magma down the
10	drift and the evaluation of this dogleg of magma that
11	could come down a drift and then go up someplace else.
12	We wanted to look at the waste package
13	failure mechanisms. Next please. I wanted to talk a
14	little bit about this Nicholis and Rutherford paper.
15	And I'll come back to it a little bit later
16	in a different context. But, when we look at the view
17	of the TSPASR conditions of which the initial dike
18	hits the drift, they're looking at magma temperatures
19	up to 1,200 degrees centigrade and on the order of
20	four centimeters per second for the upper end of that.
21	This paper by Nicholis and Rutherford, which
22	was referred to in the previous presentation, one of
23	the other implications of that paper is that the
24	temperatures that are consistent with the observations
	I

	307
1	of the basalt, would be much lower.
2	That's very important for waste package
3	performance. And it is very important for the
4	viscosity and the cooling rate of the magma as it
5	potentially flows down the drift, and also in terms of
6	the ascent rate.
7	If you have a much more highly viscous
8	fluid, it's going to be moving at much slower rate.
9	This actually the conclusion that Nicholis and
10	Rutherford came to said that it needed to be greater
11	than four centimeters per second.
12	But my argument here is that, we're probably
13	at the lower end of the magma ascent rates because of
14	the higher viscosity and lower temperature.
15	That's an interpretation of their
16	information. It's not from their paper directly. And
17	we actually did not use this information as part of
18	our evaluation of the extrusive scenario.
19	So, the results that we will be showing here
20	may actually be more conservative than they would be
21	if we were to have done it, including the Nicholis
22	Rutherford evaluation.
23	The first thing that we want to look at was
24	the rise of the magma into the drift, the flow of

magma along the drift, and to look at whether or not these shockwaves and the potential formation of a dogleg, a new pathway to the surface types of phenomena could occur as we show in the Woods et al model.

The evaluation that we did with using this computer code called SAGE -- and Dr. Morrissey is here to fill us in on the details later if we'd like to.

9 Essentially this is а code that was 10 developed for evaluation of underground nuclear it's fully coupled -- it's a big, 11 testing. So, 12 elaborate, fully coupled heat mass -- to transport, 13 and has a good deal of acceptability in certain very 14 exotic communities of subsurface flow phenomena.

In the SR, the DOE -- some of the initial temperatures on the order of 1,200 C and corresponding viscosities on the order of 140 pascal seconds.

18 If we look at the Nicholis and Rutherford 19 information, we are actually down in the much lower 20 temperature range and the viscosities are right near 21 a break point.

22 So, as soon as the temperature starts to 23 drop, the viscosity is going to go up very quickly. 24 And that's an important point because, as the dike is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	309
1	rising up to the repository level, if the magma begins
2	to flow down the drift, it's going to cool very
3	rapidly.
4	There's no other heat source around there.
5	And, as it starts to cool, that viscosity is going to
6	sky rocket. So, we're not going to get these huge
7	water-like flows going down the drift.
8	This is going to be more like the flow at
9	the surface at the ground surface where we see sort
10	of clinkers forming at very gradual lava-like flows
11	into the drift and solidifying and setting up as the
12	initial stages of basalt formation at anything offline
13	from where the drift comes up.
14	Next please. This is go back. Yes.
15	Could you back up one? There we go. Okay. This is
16	the first few seconds of the dike rising into the
17	drift.
18	If you squint very carefully, off to the
19	right in the drift you can see that it's a little bit
20	narrower. And that's the effect of the waste
21	packages.
22	The waste packages a re in this half of the
23	drift. And there's no waste packages in that part of
24	the drift. What this is a plot of pressure as a

	310
1	function of time just as the initial tip of the dike
2	hits the drift.
3	And, what we see is the formation of a high
4	pressure center immediately above the dike, and
5	relatively low pressure propagating out from there.
6	There is no indication of the shockwaves of pressure
7	moving up and down.
8	By the way, this is essentially a two
9	dimensional version of the Woods model that showed the
10	shock pumps.
11	MR. MARSH: What's the real time?
12	MR. KOZAK: This is on the order of a few
13	tenths of a second, I think.
14	PARTICIPANT: What it's showing you is you
15	take the Woods et al model of gas entering into the
16	tunnel. And, if you put the vertical dike into the
17	horizontal drift, what you're going to see is this
18	pressure concentration on top of the drift where it's
19	fairly high.
20	And so, that's what we really wanted to
21	show. You're not going to get these larger pressures
22	down the drift to the dogleg scenario. You're going
23	to have the continuation of any dike up through.
24	MR. KOZAK: And this very rapidly exceeds

the fracture stress limit for the rocks above the 1 2 drift. And so, the dike just continues going on the 3 way it wants to go, rather than coming down here and creating a dogleg. 4 5 Next, this is the temperature on the same 6 timescale, same space-scale. Here we're assuming no 7 heat transfer at the boundaries. You can see the heat 8 moving up here.

9 The main reason for putting this up is to 10 show that we can do fairly complex heat transfer 11 behavior in this zone and look at what the effect of 12 the heat on the waste packages is, and, to demonstrate 13 the behavior.

14 Next, please. So, the implication of this 15 modeling is that the down-drift pressure is much less 16 than the pressure above the drift. The pressure above 17 the dike rapidly exceeds the fracture stress limit.

18 So, the dike will continue straight to the 19 And we don't have a dogleg in that case surface. 20 because there is not these high pressures to create 21 them.

22 And that shockwave appears to be an artifact of their 1D model. 23 And, when we put it into the 24 similar kinds of conditions into the 2D model, that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

disappears.

1

2

3

4

5

Next please. The next thing we did was to look at the effect of this initially impacted waste package -- rising up, hitting it to a single waste package that just happens to be located over the dike.

6 We wanted to see what happened. So, what we 7 wanted to do was look at sort of a worst case on this. 8 And, what we did was to evaluate a -- even though 9 we're looking at the dike stage where this is a 10 plainer source of magma that was easier 11 computationally to look at something that's more like 12 a cylindrical jet coming up and hitting the waste 13 packages.

14 And so, this is a rising column of magma 15 with magma densities and treated as a -- space for the 16 purposes of calculations. The properties are 17 associated with the temperature of the magma and the temperature assumed to be of the repository early on 18 19 in the repository history for the intial conditions of 20 the waste package.

And, what we did was a collision calculation using this detailed finite element model with this code called ABAQUS/Explicit, which is an EPRI code, I believe.

	313
1	Well, it was developed to support EPRI
2	programs for different kinds of waste package and
3	other pressure vessel failures under collision
4	scenarios.
5	So, what we do is we model it as an impact
6	with very conservative conditions. Again, we consider
7	the 100 meters per second to be an absolute maximum
8	that you can see under these circumstances, for my
9	diagram width of the magma column, and then we're
10	going to look at what happens.
11	Next please. These are very early in the
12	collision. This is on the order of a 100^{th} of a
13	second. You can see the level of detail that goes
14	into the model.
15	We have the waste package internals are
16	modeled and the deformation of the shell is calculated
17	as a function of time. Move on to the next one.
18	This is a couple hundredths of a second
19	later. And you can see that, because of the
20	collisions, it is showing that the internals of the
21	waste package are being disrupted.
22	They are not completely filling the waste
23	package. So, it's talking into account all of these
24	things. This analysis, even though we're only showing

(202) 234-4433

	314
1	the first couple hundredths of a second, the analysis
2	was carried all the way through for the full
3	collision.
4	And actually, because of the extreme
5	conditions that we put on it, there was a second, very
6	substantial collision with the roof of the drift.
7	So, the magma comes up, it hits the roof of
8	the drift, and then we look at what happens and how
9	much damage there is. Next please. There is a cut-
10	away view of a sequence of what happens to the fuel
11	elements and the internals to the waste package.
12	Initially we've got it in pretty good shape.
13	By the end, there is a fair amount of damage to the
14	internals. And, just to summarize this without going
15	into the bloody detail of the calculations.
16	Our estimate is that the energy applied to
17	the waste package, if you look at the direct
18	coefficient kind of calculations, is on the order of
19	100 to 10,000 times what it would actually be
20	experiencing and the type of rise rate that we think
21	are reasonable.
22	So, it's extremely conservative. Based on
23	this paper by that I was talking about earlier, the
24	Rutherford paper, the rise rates may be on the order

	315
1	of centimeters per second rather than on an order of
2	tens of meters per second.
3	But, even under this very extreme condition,
4	it wouldn't break the package. We had a structural
5	dent, and possible minor tearing on the C22 shell.
6	There was damage to the internal elements.
7	But there was no rupture of the internal structural
8	shell, the stainless steel shell. And so, to
9	summarize, simply the impact, none of the other
10	failure mechanisms, but just from the impact, we don't
11	get any release.
12	PARTICIPANT: Is the weld as strong as the
13	container?
14	MR. KOZAK: The weld, I believe we'll get
15	out of my area of expertise pretty quickly. I think,
16	at high temperatures, the weld beings to lose its
17	strength faster than the material.
18	But, at the temperatures that we're at here,
19	which is at the repository temperature, they are of
20	comparable strength. So, that becomes more important
21	later on.
22	Then, as the temperature really elevates,
23	then we look at a little bit longer term effects.
24	But, even there, it's not the weld that's the critical

	316
1	failure or critical potential failure.
2	So then, if it doesn't fail because it has
3	been slammed by the dike, now we're going to look at
4	we still only have one waste package that is
5	affected, until the eruption cycle starts to go into
6	the conduit cycle of eruption.
7	That stage may last on the order of weeks or
8	longer. And we essentially took the information from
9	DOE from a TSPASR in terms of duration of eruption.
10	And we used that as a probability density
11	function. We used the DOE's information on that one.
12	But, over a longer timeframe, the failure mechanism
13	diagram that you guys couldn't read before we're
14	starting to get into what some of the other failure
15	mechanisms are.
16	There's a concern of erosion, that there is
17	a corrosive and abrasive material flowing past the
18	waste package. And the conclusion, this was from
19	Frazier King from Canada, who's been with waste
20	management business for a very long time, went through
21	an evaluation of what the effects of erosion corrosion
22	would be.
23	And, he came up with an estimate of an
24	erosion corrosion rate and put it together with the

	317
1	duration of the eruption. He came up with a maximum
2	on the order of two millimeters.
3	So, a failure or a stripping away of the C22
4	shell is bound to be very highly unlikely. Next
5	please. The second mechanism that we consider was
6	failure by this internal overpressure, which, in some
7	of the documents, this it the failure mechanism that
8	is used to justify the neglect of waste package from
9	the TSPA analysis.
10	And, essentially, the idea is that because
11	we've got the temperature going up in the waste
12	package, that we generate the stresses from the
13	differential between the expansivity of the steel
14	versus the C22.
15	And we also have internal overpressure from
16	the air pressure going up. And, you can think that if
17	the pressure exceeds some threshold value and
18	threshold value will be going down as a function of
19	temperature because the yield strength of the material
20	is going to go down with the temperature, if it
21	exceeds some threshold, you could get it popping open
22	like a can of soda bursting.
23	It's generally the concept of what we're
24	talking here by internal overpressure. So, material

strength is decreasing at an increasing temperature. But, one of the things that has not been taken into consideration in these evaluations, and I think we're the first ones to look at this, is that, whatever internal pressures and internal stresses are built up, they are offset by static pressure exerted by the column of magma over it.

8 We have the waste package sitting in the 9 column of magma, very dense fluid. As it rises to the 10 surface, we have hundreds of meters of this heavy 11 fluid sitting over the waste package, exerting a 12 positive pressure on the outside of the waste package.

And, going through some calculations, we can show that, after a very short time, the stress on the waste package becomes compressive, so the net stress on the waste package is not from the inside out, it's from the outside in.

And that's an important factor because the waste package is stronger than it is the opposite. Okay. So we consider a range of magma conditions. And our conclusion was that the waste package will not fail on overpressure.

23The next thing to consider was creep24failure. At the high temperatures, we don't have

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

	319
1	creep data for some of these high temperatures, so we
2	have to extrapolate from lower temperature.
3	So that is kind of an uncertainty in our
4	evaluation. The contact temperatures of magma on the
5	waste package are lower than has been considered by
6	DOE or NRC.
7	Based on the Nicholis and Rutherford paper,
8	if we were to do this analysis today, we would
9	actually consider even lower still. For creep rupture
10	to occur, we have to have some way of accumulating
11	strain.
12	In other words, there has to be a
13	differential stress across the waste package. And,
14	because of the geometric constraints of the waste
15	package in the drift and the C22 next to the stainless
16	steel inner shell, there is not enough space in the
17	different constraints for it to develop enough strain
18	to fail by creep failure.
19	The final I think we're up to the final
20	one. We have considered several failure mechanisms
21	now. Now we're up to corrosion. There is very
22	limited available data for nickel chromium alloys in
23	magma.
24	And so, what we did was we went and we

1 looked at -- we evaluated literature data on nickel 2 chromium alloys and a variety of electrolytes did some 3 probabilistic analysis of corrosion based on those 4 literature data.

5 And we were able to come up with some 6 initial estimates for what the corrosion rate would 7 be. But, not being satisfied with that, we decided to 8 do some experiments and to find out what the corrosion 9 rates that we could experimentally measure alloy 22 10 would be if it were immersed in magma.

11 Next. So, what we did was took samples of 12 alloy 22. We got samples of basalt, melted the 13 basalt, and put the alloy 22 samples into the magma. 14 And so, this is a picture of the alloy 22 sample being 15 removed from a graphite crucible.

This is from a one hour exposure. Once we take it out, the magma solidifies very rapidly. Here are some results from a one week test, doing some micrographs of what the surface effects were.

This was old magma used with an inert gas purge for a one week test. C22 remained intact during the test and showed some degree of surface voiding. There was no evidence of inter-granular attack, which actually was one of the primary

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

321 mechanisms that the metallurgists were concerned 1 2 about, the potential for inter-granular attack by the 3 type of contaminated materials that are in the basalt. 4 Next, please. Going on to two weeks, very 5 similar results to the one week test with a bit of an 6 increase in void/inclusion density, and still no 7 evidence of inter-granular attack. 8 Going out to a month, the surface voiding 9 was more extensive, deeper, up to 600 microns from the 10 surface and still no evidence of inter-granular or 11 other degradation attack. 12 The net result of magma contact is the C-22 13 shell was not breached by the mechanical impact. The 14 inner shell was not breached by the mechanical impact. 15 Essentially, here is a picture of C-22 samples, which you can think of as being C-22 waste 16 17 packages if you care to, embedded in the basalts after it has been sitting in molten lava. 18 19 And so, there is virtually no effect on the 20 -- little bit of surface attack, but not nearly enough 21 to -- the waste package during the time frame of an 22 eruption. 23 Now, what this may do, the metal may become 24 heat sensitized and corrosion rates may go up over the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	322
1	long term. So, once the eruption has ended and water
2	starts coming back down through, the long-term
3	corrosion rates may go up.
4	And that's something that we're evaluating
5	now. We've got some initial results on that. And, we
6	will be evaluating that as part of an intrusive
7	scenario of the evaluation.
8	We will be publishing more on that next
9	year. So, our conclusion is that we have reasonable
10	expectation, given all these failure mechanisms that
11	we've gone through.
12	And they have found no way to breach the
13	waste package under any reasonable conditions that we
14	apply to the waste package. We have reasonable
15	expectations that we will get no waste packages to
16	fail during the eruption.
17	And, again, that doesn't refer to the period
18	after the eruption when we haven't had the corrosion.
19	We may have effects that we can maybe look at then.
20	But, during the period of eruption, we were
21	not able to get radioactivity out of the waste
22	package. Thank you. So let me transition here for
23	just a minute, because up to now we've been building
24	our case solely by looking at the evaluation of the

323 eruption as it would affect the repository and as it 1 2 would affect the waste packages. 3 We wanted to do more than that because we wanted to look at the total system as a whole. So, 4 5 the remainder of the presentation is going to be an 6 assumption that, even though we think that within 7 reasonable expectation no waste packages would fail, 8 we're going to assume that the waste package fails 9 anyway. 10 So now we're going to take into account 11 effects if we haven't perhaps taken into account 12 extreme enough effects in the eruption or something 13 that we haven't taken into consideration. 14 What this allows us to do is look at the 15 other aspects of the system and see how much they 16 contribute to performance and to look at alternative 17 assumptions that we can put into other aspects of TSPA. 18 19 Next slide, please. So, what we're going to 20 look at is the ash dispersal modeling, biosphere 21 analysis, and we're going to do а series of 22 sensitivity studies. 23 And we call these conditional results rather 24 than just sensitivity studies, because all of them are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	324
1	conditional on the assumption that a waste package
2	fails, even though we don't think it will.
3	So, we're going to assume it fails anyway,
4	go through and come up with a credible release
5	mechanism for how radionuclides could get out of a
6	partly failed waste package.
7	Given how tough this material has proven to
8	be, we are going to take some credit into account of
9	the waste package itself. And, what we really want to
10	do is demonstrate defense in depth from each part of
11	the system.
12	So, we're looking at the multiple variables
13	now. The first part that I want to talk about is the
14	ash dispersal model that we did. We went through and
15	did an evaluation with multiple models.
16	We used the ASHPLUME code that is used by
17	NRC. There's a commercial version called TEPHRA. We
18	used that one. And we also compared that against
19	three other models that are common in the ash
20	dispersal literature.
21	Ultimately for the results I present in the
22	TSPA analysis, we focused on the results from TEPHRA.
23	And, what we found was that we had a lot of
24	realizations when we went through and did probably

	325
1	calculations using TEPHRA to look at a variety of
2	eruption magnitudes, eruption energies, column
3	heights, things like that that were all within a
4	credible range based on our range of analog eruptions
5	that we were looking at.
6	And what we found was that a very large
7	number of them had negligible deposition of tephra at
8	the point of the record. In fact, depending on
9	what you want to call negligible, it was between 60
10	and 80 percent of the realization produced no
11	deposition of tephra.
12	So, even though we don't think the waste
13	package fails, if it fails, probably 80 percent of the
14	time we get negligible accumulation and negligible
15	dose down wind.
16	The other thing to point out about this, is,
17	this may be a little bit hard to see just what it is.
18	But these are our tephra contours here, tephra iso-
19	depth contours coming from the TEPHRA model, from
20	ASHPLUME model.
21	This is compared to a different model, a
22	PUFF model. And what you'll see is the receptors
23	would be right down here. This is the point at which
24	the RMEI occurs.

	326
1	And so you'll see, even though 80 percent of
2	the realizations gave negligible accumulation, it's
3	still a very conservative model. The PUFF model
4	actually has most of the deposition going someplace
5	else.
6	And so, it would give a lower number of
7	realizations that would that you would calculate
8	using the ASHPLUME model.
9	MR. HINZE: When do you get a different
10	distribution?
11	MR. KOZAK: The PUFF model takes into
12	account variability. The ASHPLUME model assumes that
13	the wind blows toward the receptor through the
14	duration of the eruption.
15	There's a number of effects. One is the
16	wind distribution, the other one is that the PUFF
17	model takes into account the thermal circulation that
18	occurs around the eruption during the period.
19	So, that's why you have a lot it's kind
20	of hard to see here. But, the eruption is actually
21	right down there. So you actually have a lot of
22	deposition upwind.
23	In fact, it would be upwind from the volcano
24	because of these thermal cycles convective cycles

	327
1	into the air. And so it is moving it in every
2	direction.
3	It doesn't just move nicely down the wind
4	grade. The final point to make about this is that the
5	particle sizes, when they are deposited, aren't
6	respirable.
7	They are much bigger than respirable size.
8	In fact, the respirable size end up in Canada
9	someplace for some of these calculations.
10	(Laughter.)
11	And so, we need to take that into account
12	when we do this. We also have to do biosphere
13	modeling to convert this deposition of ash into dose.
14	And, one of the things that we wanted to
15	look at, I don't know if you guys have looked in depth
16	into the way biosphere modeling is done for this
17	scenario.
18	But, essentially, probabilistically, you
19	have to sum all of the previous volcanoes that may
20	have occurred, assuming that the ash stays around for
21	a very long period of time and you add up all the
22	previous potential volcanoes at the time that you want
23	to calculate the dose.
24	So, it's not just the dose that occurs

	328
1	during that year. It's the dose that occurred ten
2	years ago, that the ash is still sitting around that
3	you combine all these probabilistic.
4	It's a very complicated way of doing it.
5	And, so one of the things that we wanted to look at
6	when you look at past analogs, meaning how people
7	behave after an eruption, they clean up.
8	Here's an example of Mount Pinatubo. People
9	don't just sit there under several centimeters of ash
10	because it is nasty and awful, and it clogs up
11	machinery.
12	This is a significantly different way of
13	doing the dose calculation of the biosphere. We can
14	argue whether or not that's appropriate. In fact,
15	there are some interesting philosophical arguments we
16	can have over a beer about whether or not we should
17	take into account cleanup because it's not
18	intervention.
19	You're doing a radiological assessment for
20	this practice. But a point of fact, the cleanup is
21	going on, not because of the radiological content of
22	the ash, but because of the ash itself.
23	Even if people are unaware of the
24	radiological content of the ash, they will clean it

	329
1	up. They will clean it up to differing extents on
2	agricultural land as around their home and so forth,
3	but they will clean up.
4	CHAIRMAN RYAN: I just wanted to point out
5	the fact that there's actually radiological content in
6	the picture you showed us.
7	MR. KOZAK: That's right. That's a whole
8	different yes, you're absolutely right. So, the
9	implications of this in terms of a biosphere model is
10	that our dose is predominantly in the first year and,
11	to a lesser extent, comes from later years, depending
12	on what we assume about how quickly it is distributed
13	in the system.
14	As a result, we don't have to add up doses
15	over many years. I'm not sure quite how many years
16	the DOE and NRC assume that the radioactivity can
17	persist in the biosphere.
18	But, we assume that it goes over the so,
19	we have different important pathways in the first year
20	and in later years. And we wanted to look at this.
21	So, as one of our sensitivity studies, we
22	are going to look at this issue of consistence of
23	biosphere. But it's not part of our sort of base
24	case.

	330
1	The ash particulates, as I said before, are
2	not respirable. And, indeed, in the first year dose,
3	you could argue that a lot of people are going to be
4	acting like this guy right here.
5	They're not going to be going around and
6	just breathing the dust in or the ash in, because it
7	is going to be unpleasant, not because they are
8	worried about radiological content.
9	But there will be some degree of removal
10	using masks and things like that to reduce the amount
11	that they will inhale. Just normal behavior of
12	people.
13	I don't think it is reasonable to
14	incorporate human behavior that's not normal after an
15	eruption. So what we did was evaluate the biosphere
16	dose inversion factors for different particle size
17	ranges and differing deposition.
18	Of course, we want to look at that as
19	sensitivity right there. So, our conditional
20	analyses, again, are conditional on a release from the
21	waste packages that we don't think will occur.
22	So, what we did was we assumed that there
23	was some failure. And, in this case, we assumed that
24	the failure did occur along the weldment and split the

	331
1	waste package open to some degree.
2	And then we have diffusive releases from the
3	waste package into the magma as it goes by. There is
4	a whole series of things that have to go on for the
5	magma to contact the internals of the waste package.
6	There's sort of a whole series of events in
7	which magma needs to flow into it, contact the fuel,
8	dissolve the fuel, diffuse back out through the waste
9	package, and get to the outside.
10	By and large we're not looking at that
11	because we just didn't have the time. It was
12	complicated. So, what we did was look at a diffusion
13	layer across an opening in the external shell of the
14	waste package.
15	So, our base case assumptions are that we
16	have this type of release from the waste package.
17	Something that I haven't talked about that we discuss
18	in the report is that the thermal field around the
19	repository changes the stress field and has the
20	potential as the dike is rising up, that it could
21	divert.
22	The peer review panel discusses this concept
23	that has a potential to divert the dike because of the
24	changes in the normal stress field. And so, as part of

	332
1	our base case, we assumed, for lack of a better
2	assumption, that the higher the temperature was, that
3	the more likely the dike would be diverted.
4	So, if it were diverted, that lowers the
5	probability that the event occurs at all. So, at
6	early times, when the temperature is highest, you have
7	a lower probability of the event occurring at later
8	times.
9	At later times it ramps up until the year
10	2000, in which the thermal field is essentially gone.
11	At that point it reverts back to the normal pre-waste
12	placement probability of the event happening.
13	And we're going to look at that sensitivity
14	study too. So, if you don't like that assumption,
15	we'll work around that. Another one that we're going
16	to assume is that the waste package doesn't limit
17	releases from the fuel inside.
18	So we have sort of a dissolution mechanism
19	inside and a diffusion out of it. We have no cleanup
20	of ash occurring at compliance points. We have ash
21	fall respirable particles, even though we know that
22	that's not going to happen.
23	We have to take into account the fact that
24	the ash is breaking down in size or if there is some

	333
1	other mechanism. These are things that we have to
2	explore as part of it.
3	So, we're carrying these out in spite of
4	there being an initial assessment that we have a zero
5	release during the attack. Okay. So this is the
6	first conditional case.
7	We have between one and nine waste package
8	failures. This is based on geometrical considerations
9	of how big the vents are. A single vent could get us
10	up to three waste package failures.
11	If we have these multiple events that the
12	multiple events in a single event, that we could up
13	to three vents would give us up to nine waste package
14	failures.
15	In this one we have the temperature
16	dependent dike diversion. And what we find, we have
17	the 95^{th} percentile and a mean right here. We get
18	about nine orders of magnitude dose lower than TSPA-
19	SR.
20	Next please. One of the sensitivity cases
21	that we wanted to look at is persistence in the
22	environment. We didn't set up our analysis to do this
23	in the elaborate way that DOE does it.
24	So what we did was in an approximate manner.

334 We found, after going through the calculation, that 1 2 the doses in year two to about ten were about 3 constant. So we just took that constant and added that 4 5 for as many years as we wanted to. So, our worst case 6 particular assumption, analysis for this the 7 persistence in the environment, assuming that it stays 8 in the environment forever, and all it does is change 9 by decay, it would be this top curve up here. 10 So, it increases the doses over our sort of 11 nominal conditional case. We don't want to call it 12 nominal. But, our first conditional case that was 13 sort our base of assumptions. 14 It increased it by about two to three orders 15 of magnitude. But it's still very low doses. 16 CHAIRMAN RYAN: Let me just ask a very quick 17 question while we are --18 MR. KOZAK: Yes. 19 That no depletion case is CHAIRMAN RYAN: 20 the case where you're assuming the radioactivity 21 that's deposited is available at that same deposition 22 forever? 23 MR. KOZAK: That is correct. That no 24 depletion in the ground, it doesn't blow away, it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	335
1	doesn't redistribute, it just sits there.
2	CHAIRMAN RYAN: I'm going to ask the
3	audience a question. I want to peak around the corner
4	and see where that red graph flattens out. Can you
5	tell me when that happens?
6	MR. KOZAK: That's a million years?
7	CHAIRMAN RYAN: Oh, it's a million? I
8	thought it was ten thousand. I see, sorry.
9	MR. KOZAK: Based on the way we did the
10	calculation, it will continue going up because what
11	you're doing is adding in the consequences of all the
12	previous eruptions.
13	So, essentially this is the number of years
14	that have occurred prior to it.
15	CHAIRMAN RYAN: There are more and more
16	eruptions as time increases?
17	MR. KOZAK: Yes.
18	CHAIRMAN RYAN: I got it. All right.
19	MR. KOZAK: Exactly.
20	CHAIRMAN RYAN: Thank you.
21	MR. KOZAK: The effect of waste packages,
22	now we took out the waste package. And so we assume
23	that, when the dike hits it, it will disappear. And
24	we get on the order of five orders of magnitude

	336
1	increases over a base case.
2	We're still, because of just doing this one
3	parameter at a time, one sensitivity variable at a
4	time, we're still very low, six orders of magnitude
5	below the dose standard.
6	We looked at a whole bunch of other events,
7	some of them positive, some of the negative. The
8	effect of dike diversion, if we if the temperature
9	effect is really very strong in changing the direction
10	of the dike, we could get full dike diversion in 2,000
11	years, which means we couldn't get an event for the
12	first 2,000 years.
13	On the other hand, if this effect doesn't
14	actually occur, then we actually just increased the
15	dose of early times by less than an order of
16	magnitude.
17	Going and looking at respirable particle
18	sizes versus non-respirable particles sizes, it was
19	less than an order of magnitude increase in dose.
20	Now, the reason for that was we were looking at the
21	dose factors that we were looking at included the
22	nasal pharyngeal contribution to inhalation.
23	The increase in lung dose for the smaller
24	particle size wasn't that much. That actually

	337
1	surprises quite a bit that it wasn't that big of an
2	effect.
3	The other thing that we looked at that would
4	be a positive effect, that we didn't include, was the
5	conditional probability that the vent occurs in
6	between the drifts.
7	We assume that, for our basic conditional
8	analysis, the dike intersects it and we start to form
9	these vents, that they hit a waste package,
10	essentially.
11	This one we took into account the space in
12	between the drifts, which is quite a bit of space, and
13	drops it by about a factor of six. This one is where
14	we took all of the conservative assumptions, all these
15	different orders of magnitude, put them all together
16	in one analysis.
17	The interesting thing about this is that,
18	when we look at this early time, that's up where the
19	TSPASR dose level is. So, we can recover the orders
20	of management of dose that DOE dose by adding in all
21	these conservatisms.
22	So, the point of this is, by doing what we
23	consider to be a more reasonable analysis, we can show
24	the level of conservatism that's associated with each

	338
1	of those assumptions.
2	When we add them all back in, we still go up
3	to where the DOE dose analysis brings us, and we still
4	comply. So we can demonstrate the relevant fact that
5	each part of the analysis can provide conservatism.
6	CHAIRMAN RYAN: Is the next step of taking
7	this to a probabilistic approach, looking at each one
8	of these, considering each of these variables?
9	MR. KOZAK: I'm sorry, I wasn't clear
10	enough. This is a probabilistic calculation.
11	CHAIRMAN RYAN: This is a probabilistic
12	calculation.
13	MR. KOZAK: This is run using at risk
14	CHAIRMAN RYAN: Okay.
15	MR. KOZAK: with a thousand realizations
16	sample. And each of the distributions is laid out
17	in the report.
18	CHAIRMAN RYAN: Okay.
19	MR. KOZAK: They are subjective probability
20	distributions, so
21	CHAIRMAN RYAN: I understand. That's fine.
22	MR. KOZAK: So, to summarize, our reasonable
23	expectation approach has led us to a conclusion that
24	we would get zero release during the eruption.

We looked at multiple different kinds of 2 failure mechanism in the waste package. We couldn't really come up with a credible waste package failure mechanism for any of the circumstances that we looked at.

The key lines of evidence that lead us to 6 7 that, the conditions of the drift level are not as 8 extreme as has been assumed previous by the NRC and 9 DOE in our judgment, based on our evaluation of the 10 available data, based on our model.

11 The magma entering the drifts is much less 12 violent than has been assumed previously. The 13 conclusions by Woods et al -- we have shown that the 14 shockwaves and these extreme things that go on are not 15 going to happen when we take into account two dimensional flow of the magma. 16

17 The waste package provides а very 18 significant barrier to release. I think it is 19 extremely conservative. Our analyses show an order of 20 six orders of magnitude conservative to ignore it.

21 The magma entering the drifts is going to 22 cool and solidify pretty quickly to isolate dike and 23 event. And so, to conclude, we think that the 24 analysis that shows up in the TSPASR is extremely

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

340 conservative on the order of nine orders of magnitude. 1 2 But the thing to keep in mind is that, 3 despite all the conservatism, it still complies. So, 4 any potential changes that we could do -- you know, 5 when we start talking about pushing it in the 6 direction of being more conservative. 7 There's always the tendency when we do TSPA. 8 Everybody is always trying to think of a more conservative analysis. There's a lot of these things 9 10 that will drive it very strongly to being less 11 conservative. 12 And so, we were able to demonstrate the 13 amount of conservatism introduced by different parts 14 of the analysis. And, of those, the waste package is 15 by far the most important. 16 CHAIRMAN RYAN: Thanks very much. 17 MR. KOZAK: Thank you. SESION TWO WORKING GROUP ROUNDTABLE DISCUSSION 18 19 I guess I'm intrigued by CHAIRMAN RYAN: 20 your modeling of the -- the detonation modeling 21 capability that you mentioned. Could you expand on 22 that? 23 MR. KOZAK: I'm going to completely differ 24 that to Megan Morrissey. That's her specialty.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	341
1	CHAIRMAN RYAN: Could you come up here and
2	tell us who you are.
3	PARTICIPANT: Can't hear your question.
4	CHAIRMAN RYAN: I'm sorry. I asked the
5	question, if there could be a little bit of expansion
6	on the underground modeling and the use of it for this
7	magma modeling.
8	I just would like to know little bit more
9	about the model itself, how it is used, what it is
10	used for, and so forth.
11	MS. MORRISSEY: My name is Megan Morrissey.
12	I am in the Colorado School of Mines. The model was
13	developed at Los Alamos through the thermal nuclear
14	group.
15	They allow me to use it to do volcanic
16	simulations of flow-through cracks and whatever. So
17	I tied it to well, we first of all wanted to know
18	to interpret the Wood and other's pressure time group.
19	So, I was looking at that and said, okay,
20	let's really put it in a two dimensional, vertical and
21	horizontal. What it does is it is a compressible
22	fluid flow, multi-gas, multi-phase.
23	The walls there is some expansion to it.
24	But we used a rigid case in what we showed today. You

	342
1	can set it up with any geometric configuration you
2	like.
3	So what we did was formed a dike similar
4	geometry with analysis configuration. And we used
5	steam, increased the density a little bit to account
6	for ash.
7	And we allowed it to you know, just let
8	it go into an empty drift. And what you saw was the
9	actual actually what you saw was a shockwave did
10	develop, not the shockwave that they believe had
11	occurred in their simulations, which is a whole other
12	story?
13	CHAIRMAN RYAN: They?
13 14	CHAIRMAN RYAN: They? MS. MORRISSEY: The Woods et al. What
14	MS. MORRISSEY: The Woods et al. What
14 15	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan
14 15 16	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top
14 15 16 17	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top of the drift.
14 15 16 17 18	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top of the drift. At the same time it reflects off and you see
14 15 16 17 18 19	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top of the drift. At the same time it reflects off and you see these oblique shockwaves moving down the drift. But
14 15 16 17 18 19 20	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top of the drift. At the same time it reflects off and you see these oblique shockwaves moving down the drift. But those shockwaves are within the steam, the magnetic
14 15 16 17 18 19 20 21	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top of the drift. At the same time it reflects off and you see these oblique shockwaves moving down the drift. But those shockwaves are within the steam, the magnetic gas moving down.
14 15 16 17 18 19 20 21 22	MS. MORRISSEY: The Woods et al. What happens is you set up a shockwave, an expansion fan type that is large enough that it expands onto the top of the drift. At the same time it reflects off and you see these oblique shockwaves moving down the drift. But those shockwaves are within the steam, the magnetic gas moving down. You can see the front. And so that's just

	343
1	wanted to try and demonstrate was the fact that that
2	expansion fan with the shockwave on top creates a
3	pressure concentration right at the top of the drift,
4	right above the intersection of the dike into the
5	drift.
6	So that was essentially what we were showing
7	there. And we can use it for a full range of
8	pressures, different temperatures, different starting
9	conditions, and keep expanding on the complexity of
10	the problem.
11	So that's what we've done. But we just
12	showed you a fairly simple scenario to show what the
13	Woods et all model would look like in a true vertical
14	horizontal situation.
15	MR. MARSH: Was the dike open to begin with?
16	MS. MORRISSEY: It was open to begin with,
17	yes.
18	MR. MARSH: So you didn't open it with the
19	fluid flow.
20	MS. MORRISSEY: No, it was a little nozzle.
21	It started out at rest, and let the pressure
22	MR. MARSH: The fluid was there behind the
23	nozzle?
24	MS. MORRISSEY: Yes. The fluid was there

	344
1	behind the nozzle. It was a very, very narrow nozzle,
2	and let it open, just let it go. And that's the
3	thing is, we're not trying to do anything realistic.
4	We're just reproducing based on the Woods
5	model.
6	MR. MARSH: If you let the dike get out, it
7	would open gradually.
8	MS. MORRISSEY: Yes, something like that.
9	And that's what the DOE model were going in that
10	direction, showing, okay, here's the opening, it's
11	going to go straight up.
12	And one model I didn't show, the little
13	just a little pinhole above it, and a lot of the fluid
14	just goes straight up. And you do get diversion down
15	the drift.
16	But pressures are not lowered if you want to
17	use the same 10 to 20 megapascal reservoir pressure.
18	MR. MARSH: If you add solidification it
19	even
20	MS. MORRISSEY: Yes, this was a gas. So
21	we're going to the extreme of a compressible, high
22	discharge. But, if you considered a de-gassed lava or
23	magma, it is very viscous at the 980 degree C
24	temperature.

	345
1	It's going to start moving down. It's going
2	to have viscosity around 100 pascal seconds or higher.
3	And, as it decreases in temperature with
4	crystallization, that viscosity is going to keep going
5	up and up, really prohibit
6	MR. MARSH: Maybe choke the drift off.
7	MS. MORRISSEY: I don't like to use the work
8	choked. But, it will slow up the flow. It will
9	plug and let the rest go up, yes. Exactly. That's one
10	scenario.
11	CHAIRMAN RYAN: John, you had a question.
12	MR. GARRICK: Not necessarily for me. I
13	realize that your reference case here was the Woods
14	model. But, looking at it from a total system point
15	of view, of course, the consequence is very dependent
16	upon is it not the time at which the magma event
17	occurs.
18	For example, if your latent time where the
19	waste package started their degradation process are
20	degrading substantially, you're certainly going to get
21	a different result than if the waste package is still
22	at their full integrity.
23	And the other thing and you can comment
24	on that the other thing that's true here is that

	346
1	now you have to have a disruptive event. And, even
2	though there is zero release, you have disrupted the
3	total system performance in the sense that, number
4	one, you now have deformed and damaged waste packages.
5	And so, you've accelerated the mobilization
6	of the radionuclide process. And you may have
7	introduced and set the stage for other events, such as
8	downstream criticality or what have you. Would you
9	care to comment on those types of things?
10	MR. KOZAK: Yes, your first comment is very
11	well taken. We have not taken into account the long-
12	term degradation of the waste packages prior to the
13	event in this analysis.
14	If we were to do so, the worst case would be
15	the last one that I showed, where I assumed that the
16	waste package didn't contribute to the release. So, at
17	worst, it's going to increase it by some orders of
18	magnitude.
19	But, yes, you're right. Certainly after, on
20	the order of depending on who's model you believe
21	on the degradation, but, when you get out to the
22	100,000 year range, when the degradation is advanced,
23	it certainly won't have the structural strength that
24	we've assumed in this analysis.

347 That's completely correct. On the second 1 2 point, you're also absolutely correct. That does 3 affect the overall total system performance. And we 4 are going forward with that. 5 We have done some initial calculations on 6 the in degradation rate, increase increase of 7 corrosion rate that would be caused by the 8 sensitization of the material by the magma. 9 And we have incorporated that into some new 10 calculations. Right now all we have is sort of a very 11 conservative one where we assume that the eruption 12 occurs essentially at time zero. 13 And so then, that enhanced corrosion rate 14 applies to the rest of the duration of the facility. 15 To do it in proper ways, it would be very complicated because we have to assume that there's a certain 16 17 degree of corrosion up to -- if we're doing it for 18 30,000, if it corroded up to 30,000. 19 And then we have to hit it with magma and do 20 a different corrosion rate thereafter. So, it gets to 21 be a complicated analysis to do that. But, we're 22 looking into ways of doing that for next year. 23 And so, yes, you will have more rapid 24 failure of waste packages, and you will have increased

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

348 corrosion in that. The thing to remember is that 1 2 that's going to be increment over the nominal case, as 3 opposed to the relatively high doses that you get from 4 an extrusive case. 5 It's an increase in the sort of nominal dose 6 over the dose over the nominal case. But, the nominal 7 case is a probability of one. This has a probability 8 very low. And so, the net effect of that is probably 9 10 not going to be very large. The effects, you 11 mentioned criticality, and I have not thought about that. 12 13 I don't know where that can come from. Ιt 14 wouldn't be any -- it wouldn't really be that much 15 different to having this kind of event in terms of 16 flow and transport processes compared to the nominal. 17 Well, I'm only thinking that MR. GARRICK: 18 time you change the geometry of the fuel any 19 assemblies. I'm not thinking during the time of the event itself. 20 21 I'm thinking that you just changed the 22 vulnerability of the waste package to a -- issue, such 23 as criticality. That's all I'm saying. 24 MR. KESSLER: I'd like to address that, John

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Kessler of EPRI. We're not going to 1 look at 2 criticality in this particular case. We think, as 3 Matt has already explained, that the amount of 4 deformation due to this magma blast of this single 5 container is probably, you know, the maximum amount of deformation. 6

7 We already know that there are analyses out 8 there done by DOE that show criticality and how that 9 changes if you have collapse of the container 10 internals.

Our understanding is that the maximum criticality is probably about in the -- as original case, because you've got a near operable moderation. So, we're feeling that it's not an issue. But, we are not planning to look at it.

MR. GARRICK: Right, I'm not concerned about criticality. I don't think it's a major issue either. But, from the point of view of other people, you have changed the conditions of the fuel.

20 MR. KESSLER: We certainly get it on the 21 transportation side. And that's certainly the hottest 22 issue right now for transportation, fuel 23 reconfiguration.

MEMBER WEINER: I have a couple of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

24

	350
1	questions. When you model with ASHPLUME AND TUFF, how
2	does your plume go before it starts to move down?
3	MR. KOZAK: Mike, would you want to answer
4	that? That was worked on by
5	MR. SHERIDAN: This is Mike Sheridan from
6	the University of Buffalo. This work was done by a
7	colleague, Marcus Bursik, who is an expert in volcanic
8	ash plumes.
9	He did a lot of iterations, I think 30,000
10	or something.
11	MR. KOZAK: There was a range that was
12	considered based on the power of the eruption. And
13	the power of the eruption came back to Mike's work on
14	which eruptions were appropriate analog behavior.
15	So, there's a whole thread of logic that's
16	gone into answer that it's hard to answer.
17	MR. SHERIDAN: Regarding the height of the
18	plume, we can say all of the ranges of plume heights
19	in that diagram that Britt showed of say, VI4, three
20	and two, were replicated in the simulations.
21	MEMBER WEINER: Thanks. I asked because, as
22	it happened, I was in Washington State during and
23	after the Mount Saint Helens eruption. And I happened
24	to go hiking on Snoqualmie pass a year after the

	351
1	eruption.
2	And you could still see deposited fine
3	particulate on the vegetation there. And that's a
4	good long distance. I just wondered
5	MR. KOZAK: Well, yes, to address that,
6	Mount Saint Helens is not a good analog at all for
7	these eruptions. These are much smaller, much more
8	quiescent, and nowhere near Mount Saint Helens type of
9	behavior.
10	MEMBER WEINER: That was exactly the point
11	of the question. The other question I have is what
12	kind of particle size distribution or settling
13	velocity distribution did you have?
14	MR. KOZAK: That's in Marcus' report again.
15	MR. SHERIDAN: This has been a big concern
16	of ours concerning particle size distributions because
17	the question is, the total particle size produced by
18	volcanic eruption.
19	And that sort of data is difficult to
20	determine because, generally, we find the products
21	only at one location, which had been size sorted by
22	falling through to the atmosphere.
23	So, the compilations of total grain size
24	distributions are extremely hard to come by. But

	352
1	there have been some for these strombolian types of
2	eruptions.
3	And this is the particle size of the
4	volcanic particles. But we're also concerned about
5	the radioactive particles from the canisters. And
6	this is something that I don't think anybody knows the
7	answer to.
8	And it's a great puzzle to me of how the
9	material cane come from the canisters into the plume
10	and be transported in this very fine size, because,
11	within the canisters, it's in size of centimeter
12	scale. We're talking about micron size. So,
13	MR. KOZAK: Mike, let me
14	MR. SHERIDAN: Okay.
15	MR. KOZAK: Let me comment on that because,
16	one of things that you'll see is we are doing this on
17	a very tight time scale. And we weren't sure which of
18	these mechanisms would become important.
19	So, when you look at the report, you will
20	find that we have models for mechanisms that
21	ultimately don't show up very much in the TSPA. And
22	one of them is fracturing along ring boundaries in the
23	fuel and being transported out of these particulates.
24	I didn't present it here. But we did ash

(202) 234-4433

	353
1	plume calculations where the ash was represented by
2	${ m UO}_2$ particles and that ${ m UO}_2$ density. And so, it is
3	fallout of particulates.
4	The ones that I showed were for dissolution
5	of contamination into the ash so it's being
6	transported as dissolved in ash or dissolved in magma,
7	which then evolves as ash.
8	CHAIRMAN RYAN: Matt that's really important
9	assumption. The action is where is the radioactive
10	material.
11	MR. KOZAK: Yes, that's right.
12	CHAIRMAN RYAN: So you just offer the
13	radioactivity, the radionuclide content of fuel into
14	the ash?
15	MR. KOZAK: For these calculations, yes.
16	CHAIRMAN RYAN: The volcanologic of it,
17	nothing left behind in the chunks of fuel. All the
18	radioactivity is dissolved in the ash.
19	MR. KOZAK: Not all of it gets out during
20	the eruption.
21	CHAIRMAN RYAN: That's what I want to know.
22	What fraction get to the ash?
23	MR. KOZAK: The mean case, I mean, it's a
24	distribution, because it's all probabilistic. But,

	354
1	the mean was about ten to the minus fifth, I think, of
2	the inventory of a waste package would get out.
3	CHAIRMAN RYAN: Hopefully we'll address that
4	kind of question a little more in detail when we hear
5	about the perspectives on issues on aerosol and
6	modeling, etcetera.
7	MR. KOZAK: But, keep in mind, that was
8	based on our model of release from a waste package.
9	CHAIRMAN RYAN: Right.
10	MR. KOZAK: Which actually itself was
11	probably pretty conservative.
12	CHAIRMAN RYAN: Right.
13	MR. KOZAK: Because, it only accounted for
14	diffusion across the boundary of that opening. I
15	mean, something that's diffusing along the line of all
16	the reactor the waste package internals, that's a
17	very long diffusion path.
18	It has to come through all this magma as it
19	is solidifying, and all these other considerations.
20	We just didn't have time to develop something
21	CHAIRMAN RYAN: I don't agree or disagree,
22	but I just want to kind of establish in everybody's
23	minds the realism is not so much where the particles
24	or how to they get created, or where they go.

	355
1	It is where is the radioactive material.
2	And, it may or may not be distributed uniformly, non-
3	uniformly. And we need to understand how people
4	assume that.
5	I guess the models tend to put more of it
6	into the respirable particle size range for the longer
7	haul perhaps be a little bit aggressive in putting
8	the radioactivity in the air where it's, I think, less
9	might be in the air.
10	MR. KOZAK: Yes. See, our original thought
11	when we start putting the model together is we
12	expected that there would be at least some
13	circumstances when we were going to have blow chunks
14	of UO_2 out like a whole waste package, you know,
15	granularized and blow it out.
16	So, we did a lot of work on that and got a
17	really nice model in one of the appendixes that we
18	never ended up using. But we developed it, so we put
19	it in there, of how they react as they're going up the
20	vent.
21	You know, all these kinds of things are in
22	there. There reason they're in there is because we
23	had to develop a parallel. And then, once the
24	evidence started coming through on what was important,

	356
1	we found out some that we didn't need.
2	CHAIRMAN RYAN: If you're rating the dose
3	perspective is unimportant the plutonium an
4	americium.
5	MR. KOZAK: Yes, but it would all be I
6	mean, the majority of it is going to behave like
7	uranium particulates, not from a dose perspective, but
8	from the particulate perspective.
9	It is all associated with fuel. Just to let
10	you know, the report number, if you're interested, you
11	can either get it from Monitor or from EPRI.
12	It's an EPRI report number 1008169. And it
13	was published June 2004.
14	MEMBER WEINER:
15	MR. BRITT HILL: I just have two more. When
16	you calculated the inhalation doses did you include
17	resuspension?
18	MR. KOZAK: Yes.
19	MEMBER WEINER: What resuspension model did
20	you use?
21	MR. KOZAK: I believe it was let me
22	think. I'm pretty sure it was simply a resuspension
23	factor.
24	MEMBER WEINER: Yes, but, did you use the

	357
1	same resuspension factor that everybody has used
2	forever, which is basically the one
3	MR. KOZAK: I'd have to go back and check
4	the specific file.
5	MEMBER WEINER: Okay, thanks.
6	MR. KOZAK: I'm not sure. I think it was
7	probably a conservative value.
8	MEMBER WEINER: Yes, I didn't mean to put
9	you on the spot.
10	MR. KOZAK: So, even when we try to do
11	reasonable expectation, we find ourselves slipping
12	back into doing conservatism. It's just we fall into
13	it all the time.
14	MEMBER WEINER: Okay, my very last question
15	is, what has been the NRC and/or DOE response to this
16	contention that you just mentioned?
17	MR. KOZAK: This is the first time we have
18	presented it in this form. There has been no official
19	response.
20	CHAIRMAN RYAN: You are the response.
21	MEMBER WEINER: I am the response.
22	CHAIRMAN RYAN: Al?
23	MEMBER WEINER: Unless somebody from NRC
24	wants to comment.

	358
1	MEMBER CROFF: Well, I would
2	MEMBER WEINER: Tim is.
3	MR. McCARTIN: This is Tim McCartin, NRC. It
4	would be premature for the NRC to comment on this
5	information.
6	PARTICIPANT: My name is Sharon. Regarding
7	the internal overpressure temperature, is your
8	contention that, because of the static pressure due to
9	the magnetic forces on the waste package, that that
10	would offset the internal pressure?
11	MR. KOZAK: Yes, in part the analysis is
12	based on that, that is correct.
13	PARTICIPANT: And I would agree with that
14	for fully embedded case. Have you looked at scenarios
15	where you have a partially embedded waste package or
16	a waste package that's not impacted at all magma, but
17	is exposed to the high temperatures?
18	MR. KOZAK: We have not looked at that as
19	yet. We expect that to be more important for the next
20	part of the analysis, which is the influence on the
21	nominal scenario, essentially the intrusive scenario
22	where you're looking at ground water releases.
23	PARTICIPANT: Okay.
24	MR. KOZAK: Because, if it happens away from

	359
1	the vent, it's not going to contribute to what gets
2	back up in.
3	PARTICIPANT: Okay, so for intrusive
4	scenarios?
5	MR. KOZAK: Yes. We haven't looked at that
6	yet.
7	PARTICIPANT: Okay.
8	MR. KOZAK: That's going to be a complicated
9	analysis. And we haven't looked at it yet on how
10	important it will be.
11	PARTICIPANT: Okay.
12	MR. KOZAK: But it probably will play a
13	role.
14	MR. MARSH: Along those lines, what's the
15	thermal state of the canisters at the time before the
16	magma hits them?
17	MR. KOZAK: It is assumed to be the thermal
18	state of the repository at that time, which is it is
19	elevated in temperature, but it's not
20	MR. MARSH: They're not hot?
21	MR. KOZAK: They're not it's the hot
22	repository design. So, their temperature is from the
23	usual time history of the repository temperature that
24	you see.

	360
1	MR. MARSH: For example?
2	MR. KOZAK: Well, 176 Fahrenheit sticks in
3	my head.
4	MR. MARSH: So you might have to worry about
5	magma quenching against the canisters.
6	MR. KOZAK: Yes.
7	MR. MARSH: Magma can quench against the
8	canisters.
9	MR. KOZAK: Yes.
10	MR. MARSH: Then that actually makes a
11	bigger thermal
12	MR. KOZAK: And we are considering that.
13	The question would be how fractured that basalt would
14	be at the end of it. And we're looking at that.
15	We haven't really come to any but the
16	initial calculations that we did, because we didn't
17	know at that point, we assumed it was fractured.
18	MR. MARSH: Sure. But, in terms of
19	corrosion, it changes your corrosion because it
20	actually helps the whole corrosion probably because it
21	
22	MR. KOZAK: It will keep the water away.
23	MR. MARSH: Well, you don't have molten
24	magma right next to the thing at months at a time.

	361
1	MR. KOZAK: That's right.
2	CHAIRMAN RYAN: Allen?
3	MEMBER CROFF: A follow-up to John Garrick's
4	initial question. As the waste package degrades, the
5	radionuclide inventory is also going away.
6	So, to compensate in effect, I don't know
7	how it works out in longer times. You don't have too
8	many acronyms left. And then the question, I'm not
9	even going to try anything in a detailed technical
10	level. Has this report been peer reviewed?
11	MR. KOZAK: Within the team, yes. We went
12	over it very heavily. Outside of the EPRI team, no.
13	In answer to your first question, those curves that I
14	showed account for all the decay and in growth for the
15	entire inventory.
16	We worked based on the SR inventory, because
17	that's there's a screened SR inventory, which is
18	the best information that we have. It's the best
19	information that's publicly available.
20	CHAIRMAN RYAN: I guess at this point let's
21	open it up to any and all panel members and the
22	audience, or staff members, anybody.
23	PUBLIC COMMENTS
24	MR. McCARTIN: This is Tim McCartin, NRC.

	362
1	Your curves for the persistence in the environment, I
2	guess I'm somewhat puzzled by the no-depletion results
3	in getting a peak at 10,000 years, because radioactive
4	decay very significant for the main contributors to
5	the inhalation dose.
6	And I'm just not sure. When you have no-
7	depletion, what exactly are you doing? Or the mass
8	loading or the resuspension factor. Is there
9	something else going on there? Or is it just
10	persistence of the deposit?
11	CHAIRMAN RYAN: I guess can have that
12	back. Again, I'd offer it would be helpful to take
13	that out several more decades, the shapes of those
14	curves might, or at least a couple.
15	MR. KOZAK: Yes, which curve are you looking
16	at Tim?
17	MR. McCARTIN: Well, the title is
18	persistence in the environment.
19	MR. KOZAK: Yes.
20	MR. McCARTIN: And I'm assuming the largest
21	values are for the no-depletion.
22	MR. KOZAK: Yes.
23	MR. McCARTIN: And, it would appear that the
24	peak is at 10,000 years, at least the way I read it.

	363
1	MR. KOZAK: No, that continues to go up.
2	CHAIRMAN RYAN: That's what I asked about.
3	He said it was going up.
4	MR. KOZAK: Yes, because you have to sum all
5	the previous years. Each year that you add adds an
6	incremental dose to it.
7	MR. McCARTIN: Right, but radioactive decay
8	continues to go on. And, generally those disappear
9	for say the first couple thousand years. And what
10	exactly are the assumptions when you say no-
11	depletions?
12	Are you burying everything else in your
13	analysis except the deposit persist forever?
14	MR. KOZAK: Oh, I see.
15	MR. McCARTIN: Is that the only thing you're
16	doing when you say no depletion? I guess that's my
17	question.
18	MR. KOZAK: Yes, this is an approximately
19	way of doing this. There's no question about that. We
20	haven't set up our analysis to really take into
21	account the release at this year of decays in the
22	environment out to there.
23	What we found was, if you look at this right
24	here, after a certain point, it's approximately

	364
1	constant for the latter year doses. And so, all we
2	did was take that as a constant.
3	And we'll multiply that by the number of
4	years prior. It's just to give an indication of what
5	the doses are. And that's probably part of the reason
6	I don't remember why I cut it off at 10,000.
7	That's probably part of the reason why,
8	because you get more and more of the limiting
9	assumption to do that. This is definitely an
10	approximate way of doing it just to give an indication
11	of the orders of magnitude.
12	MR. McCARTIN: Okay. I think you'd get a
13	different result if you actually try to simulate
14	MR. KOZAK: Yes, absolutely.
15	MR. McCARTIN: events in multiple years.
16	MR. KOZAK: Absolutely. And that's a
17	complicated analysis to do. And we didn't have the
18	time to do it.
19	MR. McCARTIN: Okay.
20	CHAIRMAN RYAN: Other questions? Yes?
21	MR. HINZE: Just a quick question. I was
22	taken with Britt's suggestion that differential
23	thermal expansion would lead to stresses and other
24	stresses that might cause the canisters to lose their

	365
1	integrity.
2	And yet, I heard from you that these
3	differential thermal expansions were inconsequential.
4	Is that an overstatement? Or do we have where are
5	we?
6	MR. KOZAK: We did an evaluation of those.
7	I wasn't the one to do it. And I know the discussion
8	of those stresses is in the report. And I don't want
9	to speculate on what the answer to that is. I don't
10	remember.
11	MR. KESSLER: John Kessler, EPRI. My
12	recollection, again, I'll have to remember what it is
13	that Frazier did exactly, but, the arguments that he
14	included were how much creep he felt the alloy 22
15	could manage at temperature given its yield strength
16	at temperature.
17	I don't remember exactly whether there's a
18	specific analysis about thermal expansion and how much
19	expansion it is compared to the amount of creep that
20	he thought alloy 22 could manage at temperature.
21	I think we've got enough to piece together
22	an answer for you that would suggest alloy 22 can
23	manage that amount of creep very easily. But, we're
24	going to have to go back to look to get you a more
	I

	366
1	specific answer.
2	MR. HINZE: Let me ask another similar
3	question. In the initial contact of the magma with
4	the canisters, do I understand that you did not
5	consider a collision effect whereby you might have
6	impacts on succeeding canisters, essentially
7	MR. KOZAK: The train wreck kind of thing.
8	MR. HINZE: Where you might cause the
9	integrity of the canisters to be the acceleration
10	of the deterioration of the canister as a result of
11	the impact with effect. Is that taken into account?
12	MR. KOZAK: Acceleration of the
13	deterioration, if that becomes one package to the
14	next, no we didn't, because this initial impact one
15	was so much more severe than the secondary impacts.
16	In fact, we did a secondary impact on the
17	roof of the drift for that one waste package. But,
18	that secondary that secondary collision was not in
19	that analysis, the analysis of the finite element
20	analysis.
21	MR. HINZE: Right.
22	MR. KOZAK: No, we didn't because,
23	essentially, we're lifting it up and hitting it up
24	against the roof

24 against the roof.

	367
1	MR. HINZE: Yes.
2	MR. KOZAK: But, the increase in the
3	degradation rate may play a role in the longer term
4	release, but not during the eruption.
5	MR. HINZE: Another quick question, did you
6	take into account the geochemistry of volatiles in
7	terms of their impact upon the canisters?
8	MR. KOZAK: For corrosion?
9	MR. HINZE: Corrosive types.
10	MR. KOZAK: Yes. And, in fact, that was one
11	of the things we wanted to test by doing the
12	experiments, by looking at putting the C-22 in magma.
13	We weren't sure what some of the other
14	constituents of the magma were going to be.
15	MR. KOZAK: But, the basalt itself that you
16	melt might be quit different than the magma that
17	you're developing.
18	PARTICIPANT: Two comments and two
19	questions. Remember, this is a small diameter sheet.
20	I mean, this isn't a large your train wreck lava
21	coming down. We're looking at the initial micro
22	second, two tenths of a second of impact of a
23	relatively narrow sheet coming through.
24	So, we're only looking at one package. And,

368 know, gravitationally rising, there's not a 1 you 2 possibility for a train wreck during this sort of 3 initial impact analysis being done. 4 On your chemical question, one of the 5 reasons Matt put up sort of the old basalt, we 6 purposefully looked where basalt was loaded with a 7 number of these sort of chemical factors, phosphorous 8 and so on, in which we sort of tested at very adverse 9 types of basalts. 10 CHAIRMAN RYAN: Just for the reporter. 11 MR. MARSH: I didn't hear anything about 12 drip -- where's the drip --13 MR. KOZAK: We didn't consider it. 14 MR. REITER: Leon Reiter, NWTRB staff. A 15 couple questions, in your dip and dunk experiments, you didn't have any volatiles in the gas escape. 16 17 Wouldn't that -- symptoms of corrosion rate? assume the patches you get by magma 18 Ι 19 volatiles -- there could be gasses that could affect 20 the corrosion rate. 21 MR. KOZAK: It could. But, again, corrosion 22 over these time scales was insignificant. If you look 23 at --24 MR. REITER: Well, but that's based on what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	369
1	you assumed.
2	MR. KOZAK: But it was also based on
3	literature, data, and a variety of other evaluations,
4	which the experiments were consistent with.
5	There are multiple threads of evidence
6	there.
7	MR. REITER: And they also assume the
8	presence of volatiles?
9	MR. KOZAK: I would have to go back to the
10	report, I'm not sure.
11	MR. REITER: Another question. You have
12	five different mechanisms of waste package failure.
13	And you said that when you release those you increase
14	it by five orders of magnitude.
15	MR. KOZAK: Yes.
16	MR. REITER: Which of those are the most
17	important? Which of those could cause the most
18	damage?
19	MR. KOZAK: Do you mean which
20	MR. REITER: There was a creep failure,
21	there was magma contact with erosion by the magma,
22	there was impact do you have a ranking of those as
23	to which
24	MR. KOZAK: In terms of the amount of

370 release that they gave, they're all the same because 1 2 we couldn't get it out of any, no matter what we did. 3 But, in terms of -- I mean, we did the 4 impact analysis by such an extreme calculation, we 5 feel that that's -- any credible behavior in the 6 mountain -- you're going to have a hard time just 7 breaking it open and exposing the waste. 8 That seems to be completely out of bounds. 9 Of the ones that are left, I don't know. It's hard to 10 What we ended up doing the calculation on, we say. 11 based it on overpressure because the corrosion rates 12 were so low and the erosion rates were so low and 13 everything. 14 So we said, of the ones that are left, we'll 15 But it still wasn't -- we do it on overpressure. couldn't credibly get releases by that mechanism. 16 17 John, did you want to --MR. KESSLER: Leon, we didn't do an analysis 18 19 that way. And I would say though, the one I would 20 probably care about the most is the general corrosion 21 failure because, if we have creep failure or something 22 else, we have the small breach in part of the 23 container, we still have a container there that will 24 tend to do a lot of blocking.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	371
1	That's what Matt's next set of analyses
2	were, that that slow, diffusive pathway, or whatever
3	pathway you've got, really reduced the amount of
4	release that can occur.
5	Of course, if the container completely
6	disappears because it is completely corroded, then you
7	would expect that you would get more release. That
8	would make me think that maybe that's the one I care
9	about the most.
10	But, in terms of ranking them, in terms of
11	which one you think would go first, we didn't look at
12	that.
13	MR. KOZAK: Yes, and I wouldn't expect that
14	to happen during the eruption. If there was something
15	that was accelerated by the constituents in the magma
16	or whatever, it would be part of an intrusive analysis
17	of the impacts on something later on.
18	None of these things the duration of the
19	eruption is just too short like that. General
20	corrosion is just certainly that would be of
21	concern if it could happen.
22	But, over a couple of weeks, you can't get
23	it.
24	MR. REITER: One last question. You

	372
1	mentioned a lot a Nicholis and Rutherford article. It
2	seems to me that you've put a lot of importance in
3	what that's telling you about the background.
4	Is there any way that you can give us a
5	quantitative idea of what kind of impact, assuming
6	those kinds of temperatures, would have?
7	MR. KOZAK: Do you want to call it a
8	quantitative?
9	MR. REITER: You know, what kind of order of
10	magnitude, you know, if assume releases, let's say
11	with one temperature and with the of the
12	temperature, say with the Nicholis and Rutherford
13	temperature, or the velocities of them.
14	MR. KOZAK: Quantitatively, I don't think I
15	can do that without going through some more
16	evaluation. Qualitatively, I can certainly say the
17	alloy 22 is much stronger at lower temperatures.
18	The magma is at much higher viscosities, so
19	it's moving much slower. So, the dynamic effect are
20	a lot less. But, there's a lot of things. It's very
21	important.
22	There's a lot of implications, particularly
23	at the lower temperatures and the higher viscosities,
24	I think, are absolutely crucial. I can't give you a

	373
1	quantitative response to that.
2	MR. APTED: Leon, I think you have to look
3	at what we did in the report prior to that type so
4	we looked at tremendously adverse higher temperatures
5	and higher impact and so on.
6	Everything about that event would make our
7	calculations, which we find robustly defensive, in
8	terms of protecting the package during this impact,
9	weeks to months, to maybe a year or two years type of
10	event, absolutely even more conservative.
11	So, I mean, I think is more. As we're
12	doing our evaluation in an intrusive case, in terms of
13	looking at the sub-variance of how much basalt goes
14	down these drifts, the release of gas, and so on.
15	MR. REITER: Right.
16	MR. APTED: I'd like to sort of pose a
17	question maybe, that it strikes me always that sort of
18	like you juggle three balls and then somebody says,
19	can you juggle four balls?
20	And then you juggle four balls. And then
21	you juggle five balls. So, I think EPRI is juggling
22	about five balls here. NRC, DOE is maybe juggling one.
23	(Laughter.)
24	And so, I'd like to ask maybe somebody like

	374					
1	Dave Johnson what you know, we talked earlier about					
2	sort of the risk side adversity probability.					
3	And we find it there and in consequence.					
4	It's sort of after hearing these folks.					
5	MR. JOHNSON: Well of course, the two talks					
6	thank you, but the two talks were quite different.					
7	I had reaction to the NRC one kind of wondering how					
8	they were using risk information to direct their					
9	ongoing research and kind of concluded maybe there's					
10	not enough information there to really have a					
11	direction.					
12	So they're chasing the science there on its					
13	own. It may be unfair. I'm certainly surprised and					
14	a little bit overwhelmed by the EPRI presentation.					
15	It does go from the initial conditions, if					
16	you will, to the final end stage, which is what I and					
17	others have been looking for. I guess my initial					
18	reaction is, you know, how robust are the models?					
19	Can we visualize reasonable scenarios not					
20	included? And, again, I'll fallback on not being a					
21	geologist. But, a scenario that the initial dike					
22	doesn't intersect the drift, but only does so after it					
23	has grown wide enough can I transport a package up					
24	to the surface and not have this counteractive					

	375
1	pressure?
2	It may be a silly question, but, I think
3	maybe at you're at the time where a detailed peer
4	review would really benefit that. And maybe that, you
5	know, could involve NRC and come to some sort of
6	consensus here.
7	MR. KOZAK: We actually did think about
8	whether or not the waste package could be entrained.
9	First off, the buoyancy courses aren't high enough to
10	actually bring them up.
11	But, if they do, if the waste package were
12	to get all the way out, it's still zero dose. It's
13	got to get 18 kilometers further down before you get
14	a dose.
15	MR. JOHNSON: But it changes the scenario.
16	MR. KOZAK: The whole thing comes out, it is
17	deposited on the surface, which isn't going to happen.
18	But, if it did, it's still no-dose. There is a
19	multiple barrier existing.
20	So, some of those things we have tried.
21	You're right, it is conceivable, I suppose, that
22	someone could. That's what we all do in this
23	business, we look for the more conservative case and
24	say, well, have you thought about this and, you know,

	376					
1	try to push and prod at it. And that's got to happen.					
2	MR. JOHNSON: I'm not necessarily looking					
3	for the more conservative case. I'm looking for, are					
4	there reasonable, at least as credible scenarios that					
5	aren't in your model now?					
6	We certainly can't answer that today. But,					
7	it's an impressive amount of work. I can't speak to					
8	the science of it, though, I'll say that also.					
9	CHAIRMAN RYAN: To me there's a science in					
10	the probabilistic analysis part of it. I think that,					
11	at the end of the day, is what substantiates and					
12	brings together all the pieces of it.					
13	And, to be fair, I must say I think the NRC					
14	is juggling at least more than one, if not as many as					
15	everybody else. They're just presenting parts and					
16	pieces of it today.					
17	And I think it would be very fortuitous to					
18	think about the constraints in which they gave the					
19	presentations today. And, to be fair to them, I think					
20	there is a broader spectrum.					
21	They are addressing across the same					
22	spectrum. It's just that we heard the whole piece					
23	today. So, I offer you that to think about. As we					
24	conclude, I think, with any last couple of questions					

	377					
1	that we might have. Yes, I'm sorry.					
2	MR. MELSON: I just have a quick one about					
3	your immersion experiment where you put the wire in					
4	the magma. You said you put that in a gas					
5	atmosphere. Is that correct?					
6	MR. KOZAK: Yes.					
7	MR. MELSON: Well, you know that's reducing?					
8	MR. KOZAK: Yes.					
9	MR. MELSON: And so, that would give you					
10	more stability, unless corrosion and where you have					
11	a oxide buffer.					
12	MR. KOZAK: Yes. But, the conditions in the					
13	mountain are expected to be reducing, which is why we					
14	did that. The conditions of I'll let the chemist					
15	answer.					
16	MR. APTED: I think that the conditions					
17	the conditions in the basalt rising. The basalts are,					
18	you know, nickel oxide, something like that. That is					
19	very reducing.					
20	The activity margin is extremely low,					
21	probably than anything, doesn't achieve in reducing					
22	the conditions enough compared to those that would					
23	occur.					
24	CHAIRMAN RYAN: Las question, please.					

	378					
1	MR. MARSH: There is the possibility that					
2	you could actually do real experiment. I mean, we					
3	have canisters. And you do it just like this. And,					
4	the world is producing slag everyday lots of it.					
5	And, you can dig a pit, you can pour it on					
6	top of canister, and you can see what happens. It					
7	might be very interesting. And I've actually been					
8	involved in trying to actually make a small vat of					
9	magma.					
10	So I've actually been into this in some					
11	detail in talking to companies. Many of them think					
12	I'm crazy. Other ones are more open to this. So, if					
13	you want to, I have a foothold and can help you get					
14	into the system.					
15	MR. KOZAK: Well, I wish you hadn't					
16	mentioned the slag, because we were hoping that it					
17	would get transferred to Hilo.					
18	CHAIRMAN RYAN: Well, that's a great lead-					
19	in, Bruce, actually, to our perspective tomorrow on					
20	aerosol modeling issues. You know, I have a slag					
21	experiment.					
22	But it's a very small version of it. It's					
23	things like level gauges in steel mills that happen to					
24	get melt. It would be interesting to think about					

(202) 234-4433

	379
1	how much of that radioactive material stays in the
2	ball of steel that hits the floor and how much ends up
3	in the bag house.
4	That might be an interesting series of cases
5	to take a look at. So, we'll hear a little bit about
6	those kinds of issues from Dr. Fred Harper, actual
7	experiments in the aerosol generation area.
8	Resuspension modeling issues from Dr. Lynn
9	Anspaugh, a person who has written on this over the
10	years. And, of course, Dr. Keith Eckerman is going to
11	talk about dose modeling and perhaps give us some
12	insights on conservatisms and none conservatisms,
13	particularly for our radionuclides of interest
14	plutonium and americium.
15	So, we're kind of getting to the third leg
16	of this school on the igneous activity discussion,
17	which will be one of the aerosol generation
18	characteristics, resuspension and dose modeling
19	characteristics.
20	And we'll close out our approach to re-
21	examining this question. Let's see, our schedule is
22	that we'll convene at eight o'clock. We'll be in
23	promptly at eight o'clock and press on according to
24	the schedule.

					380
1	(1/	Nhereupon, at	5:44 p.m.	the above-	-entitled
2	conference w	vas concluded	l.)		
		COURT REPORT	R. GROSS	RIBERS	
	(202) 234-4433	1323 RHODI WASHINGT	E ISLAND AVE., N.V ON, D.C. 20005-37(vv. D1	(202) 234-4433

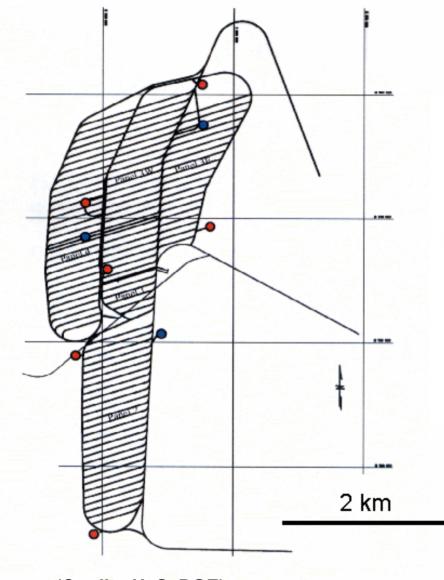
PRESENTATION SLIDES

Testing Claims about Volcanic Disruption of a Potential Repository at Yucca Mountain

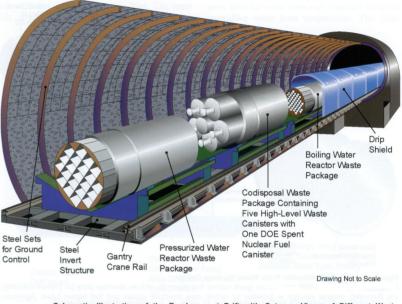
Neil Coleman and Lee Abramson, US NRC Bruce Marsh, Johns Hopkins University

ACNW Working Group on Volcanism at Yucca Mountain September 22, 2004

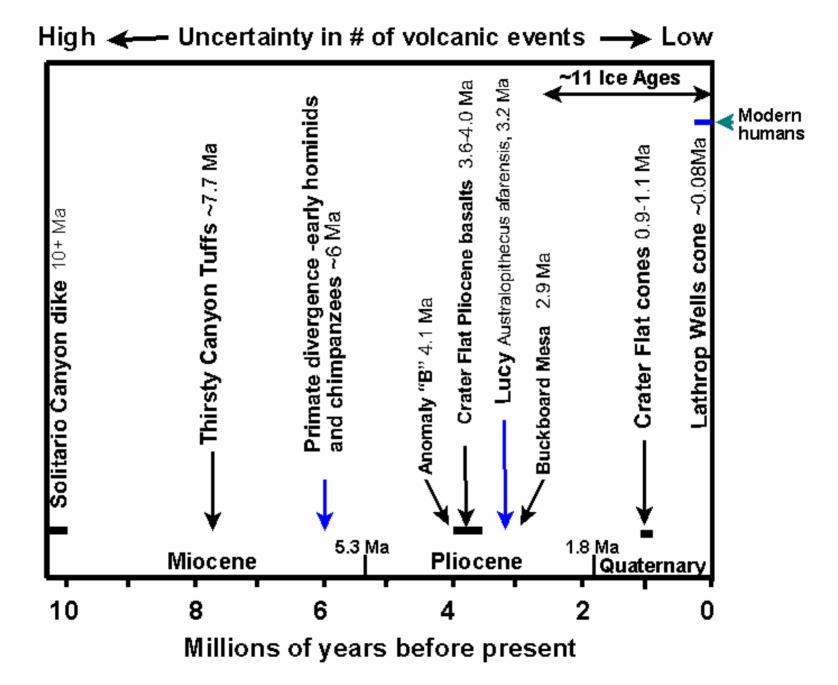
The views expressed are the authors'. They do not reflect an NRC staff position, or any judgment or determination by the Advisory Committee on Nuclear Waste or the NRC, regarding the matters addressed or the acceptability of a license application for a geologic repository at Yucca Mountain.


OUTLINE

- Statement of issue
- Summary of regional volcanism
- Previous estimates of the probability of volcanism intersecting a repository
- Our results based on statistical and PVHA analyses
- Comparison to other volcanic fields
- Conclusions and recommendations


Regional studies suggest the probability of future volcanism is sufficiently high that NRC has required DOE to evaluate consequences of dike intersection in performance assessments.

Currently proposed footprint (~6.9 km²)


Waste emplacement drift

Schematic Illustration of the Emplacement Drift with Cutaway Views of Different Waste Packages

(Credit: U.S.DOE)

(Credit: U. S. DOE)

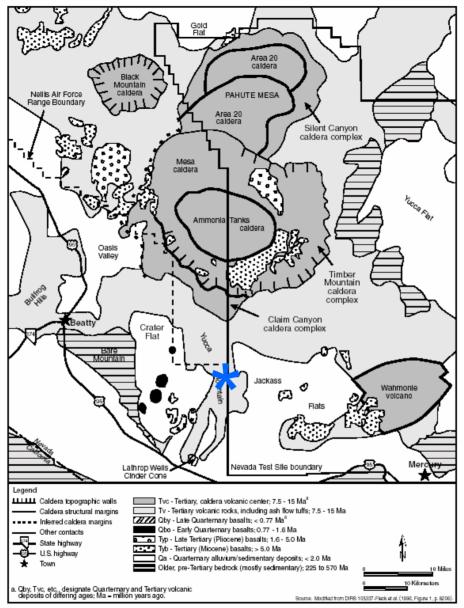
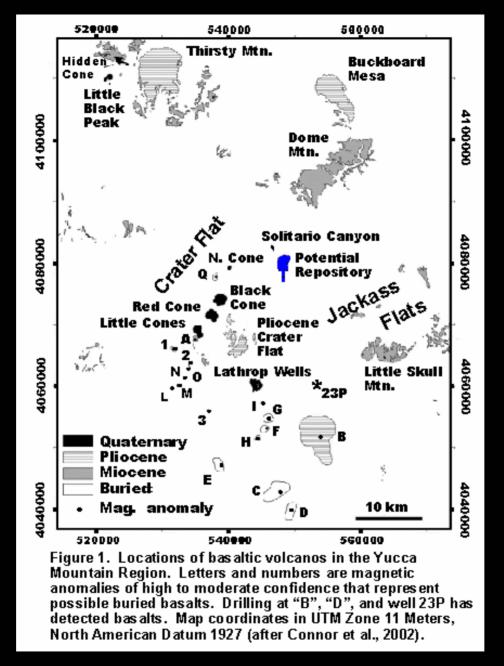
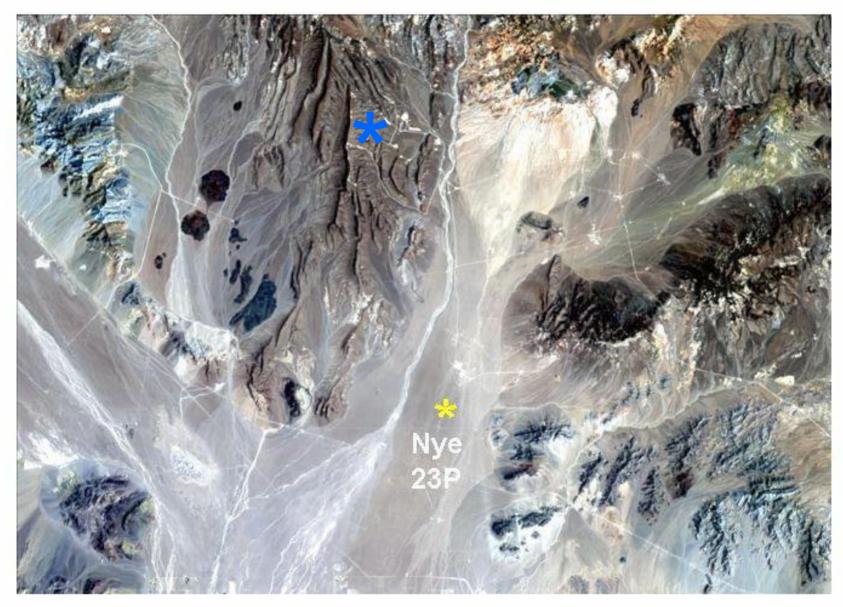
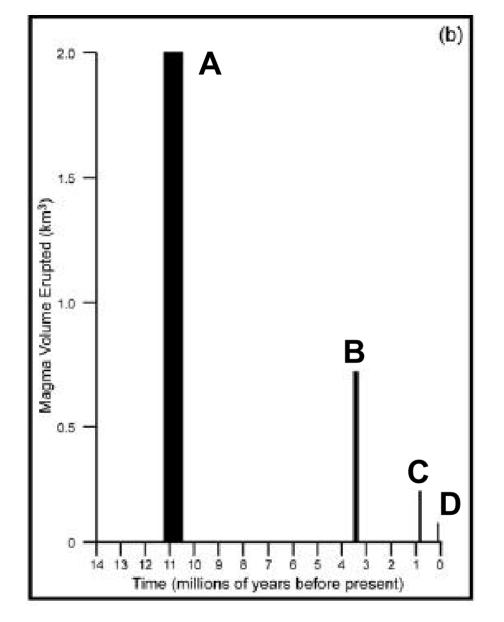
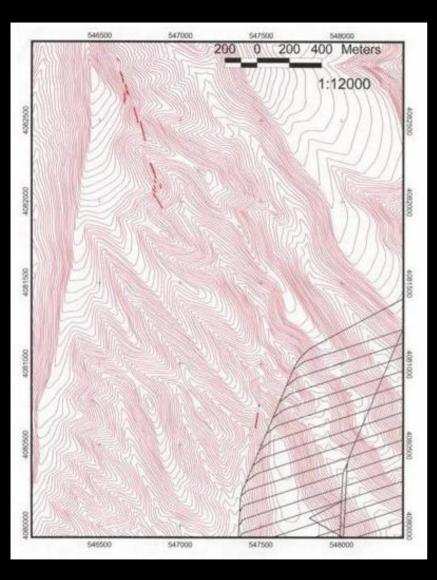




Figure 3-5. Simplified geologic map showing calderas of the southwest Nevada volcanic field in the Yucca Mountain vicinity.


(Credit: U.S. DOE, Office of Civilian Radioactive Waste Management, FEIS) 6

(after Connor et al., 2002, CNWRA rpt.)


(credit CNWRA)

Estimated magma volume erupted as a function of time in Crater Flat (after Fridrich et al. 1999).

Estimates of volcanic disruption of a potential repository at Yucca Mountain

- 1 × 10⁻⁸/yr 3 × 10⁻⁸/yr (Connor & Hill, 1995)
- 5.4 × 10⁻¹⁰/yr 4.9 × 10⁻⁸/yr (Geomatrix, 1996)
- 1.4 × 10⁻⁷/yr 3.0 × 10⁻⁶/yr (Ho & Smith, 1997)
- 1.1 × 10⁻⁸/yr 3.1 × 10⁻⁷/yr (Ho & Smith, 1998)
- 1 × 10⁻⁸/yr 1 × 10⁻⁷/yr (Connor et al., 2000)
- Up to 10⁻⁶/yr (Hill & Stamatakos, 2002)
- 5.6 × 10⁻¹⁰/yr 4.3 × 10⁻⁸/yr (DOE, 2003)

Miocene dike (10-11.7 Myr) in Solitario Canyon

(After Day et al., 1998)

Assuming a constant penetration rate (λ), the number of penetrating dikes occurring in time T has a Poisson distribution with a mean of λ T. The probability of no penetrations is exp(- λ T). For a penetration rate of 2 x 10⁻⁷/yr, the expected number of penetrating dikes in 13 Myr is 2.6 and the probability of at least one penetration is 0.93. For a penetration rate of 1 x 10⁻⁶/yr, the expected number of dikes is 13 and the probability of at least one penetration is 0.999998.

Because no dikes have been found in the footprint of the potential repository, these results are inconsistent with the exploration evidence.

Black Cone, Crater Flat (Pleistocene age, ~1 Ma)

Pliocene vent complex, Crater Flat

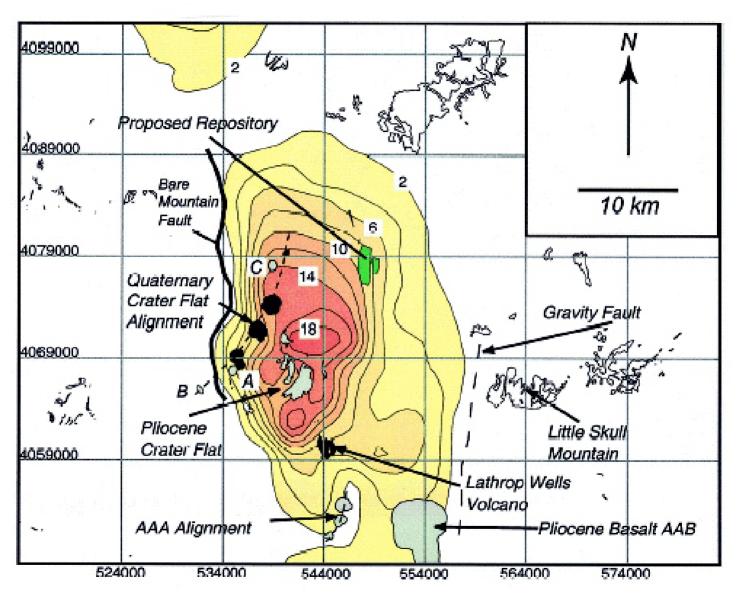
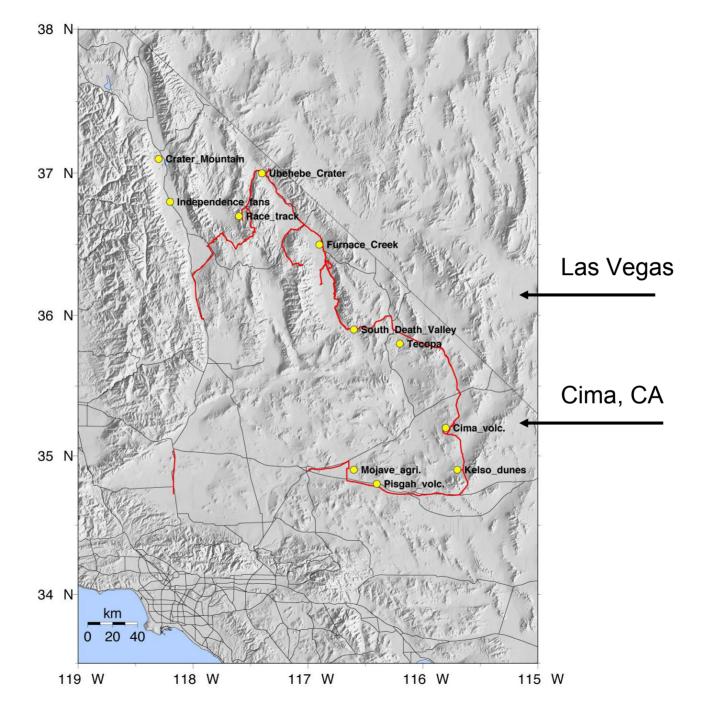
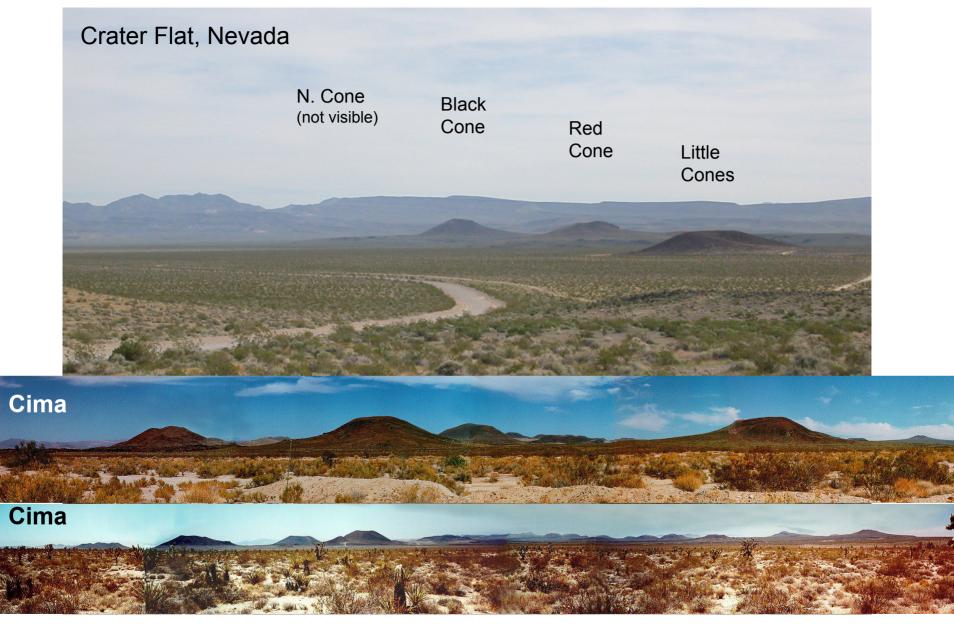


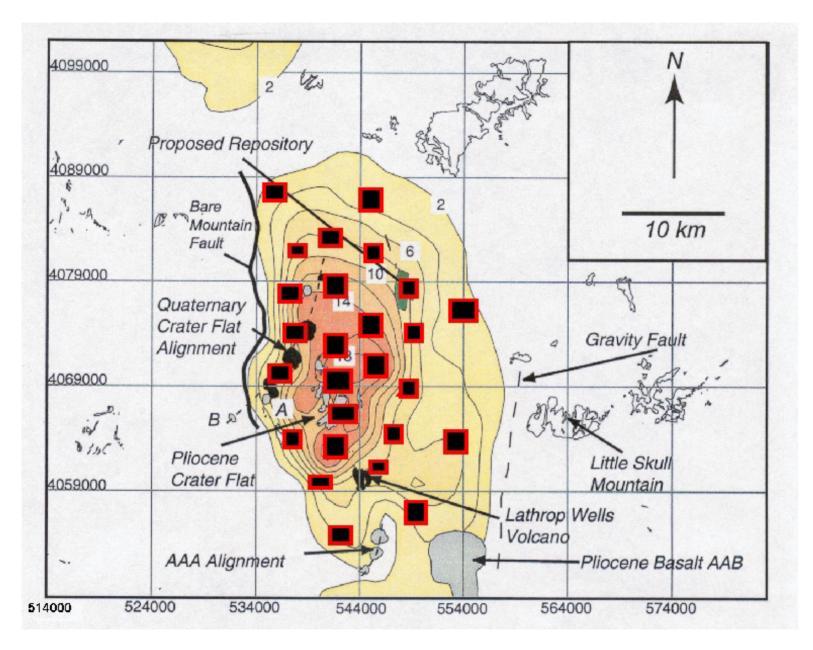
Plate 2. The spatial recorrence rate (volcanic events/km²) contoured for the YMR, based on the distribution of Quaternary volcanism and its relationship to the BMF (see appendix). The contour interval is 2×10^{-4} volcanic events/km².

(From Connor et al., 2000, JGR)


PVHA_YM Volcanic events/million yrs in YM region needed			
Data Files to produce repository intersection rates of:			
	<u>10⁻⁸/yr</u>	10 ⁻⁷ /yr	10 ⁻⁶ /yr
All_64events	0.95	9.5	95
CFB_16alignments	0.45	4.5	45
CFB_mio-quat-MAG	0.40	4.0	40
CFB_plio-quat-MAG	0.44	4.4	44
Crater_flat_align_3events	0.63	6.3	63
miocene-quat_47events	0.96	9.6	96
miocene-quat_57events	0.90	9.0	90
pliocene-quat_20events	0.50	5.0	50
pliocene-quat_30events	0.51	5.1	51
quaternary_8events	0.42	4.2	42


(Gaussian model + 100% gravity weighting + 1-5 km dike/event length. Similar results are obtained using an Epanechnikov kernel model. If gravity weighting is eliminated, the numbers of events in the table would DOUBLE.)

Recurrence Intervals


Volcanic Field	Vents/yr
Eifel, Germany	5 × 10 ⁻⁴
Camargo, Mexico	1 × 10 ⁻⁴
TransMexican Belt	3 × 10 ⁻⁴
Springerville, AZ	2 × 10 ⁻⁴
San Francisco, AZ	1 × 10 ⁻⁴
Coso, CA	3 × 10 ⁻⁵
Pancake, NV	1 × 10 ⁻⁵
Cima, CA	8 × 10 ⁻⁵
Yucca Mountain, NV	1 × 10 ⁻⁵

Source: C. Connor at http://www.norvol.hi.is/~thora/summer2003/notes/connor.pdf¹⁶

Cima, California (~70 vents)

Last million yrs should have looked like this given a penetration rate of 10⁻⁶/yr. 19

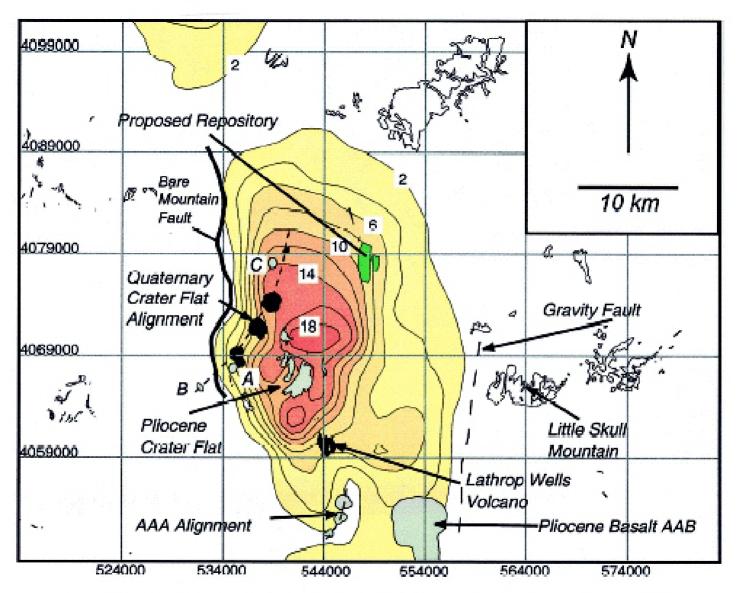


Plate 2. The spatial recurrence rate (volcanic events/km²) contoured for the YMR, based on the distribution of Quaternary volcanism and its relationship to the BMF (see appendix). The contour interval is 2×10^{-4} volcanic events/km².

From Connor et al., 2000, JGR. During the Pleistocene (1.8 Myr), only 8 basaltic events $_{20}$ (or fewer) are known to have occurred in the Yucca Mtn. region (6 are visible here).

Rates of basaltic volcanism comparable to those in the Cima, CA volcanic field or on the Colorado Plateau (i.e., 30 volcanos per million years) have not occurred near Yucca Mountain during the Pliocene-Quaternary (Connor et al., *JGR*, 2000).

"It is reasonable that the probability estimates we calculate for volcanic eruptions at Yucca Mountain be substantially less than those estimated for these larger, more active volcanic fields" (Connor et al., *JGR*, 2000).

Recommendation

Use the Quaternary recurrence rate to estimate the potential frequency of repository intersection. This has 3 advantages:

- 1. We are still in the Quaternary Period. Compared to Pliocene time, the Quaternary is more representative of the present-day seismo-tectonic regime.
- 2. The Quaternary fully captures the most recent volcanism cluster at ~1 Ma. This cluster represents 5 events (or less).
- 3. Biggest advantage: More reliable recurrence rate. The uncertainty about the number of Quaternary events is greatly reduced compared to Pliocene events. There has been Insufficient time to erode or completely bury Pleistocene basalts.

Estimate of Repository Intersection Frequency

- Our best estimate uses NRC's PVHA code and data sets, the Pleistocene recurrence rate (4.4 events/Myr), and zero gravity weighting.
- We estimate an intersection frequency of 5.4 × 10⁻⁸/yr.
- Since the result is based on 8 events, the 95% upper confidence bound (Poisson distribution) is 9.7 × 10⁻⁸/yr.

Conclusions

Our analysis raises doubts that a potential repository could be penetrated by a basaltic dike once every million yrs (i.e., 10⁻⁶/yr). We evaluated four time scales (13 Myr, 1 Myr, 100 kyr, present-day).

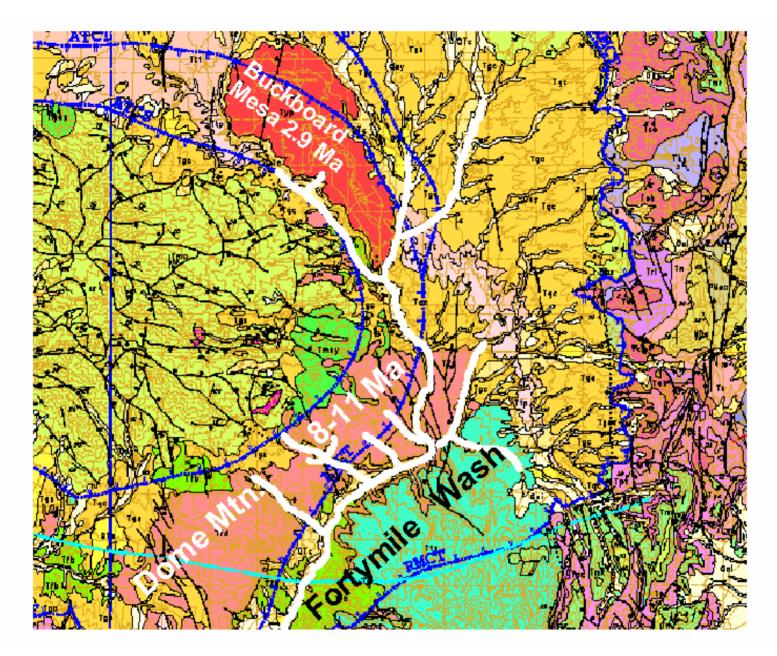
<u>13 Myr</u>: Non-detection of basalts in the potential repository footprint suggests an upper-bound penetration rate of 2 x 10^{-7} /yr averaged over 13 Myr.

<u>1 Myr</u>: For a penetration rate of 10⁻⁶/yr, using the PVHA_YM code & data indicates 40-96 volcanic events (80-192 without gravity weighting) would be expected in the region in the past 1 Myr. But only 8 Pleistocene events are known (1.8 Myr).

Conclusions (cont.)

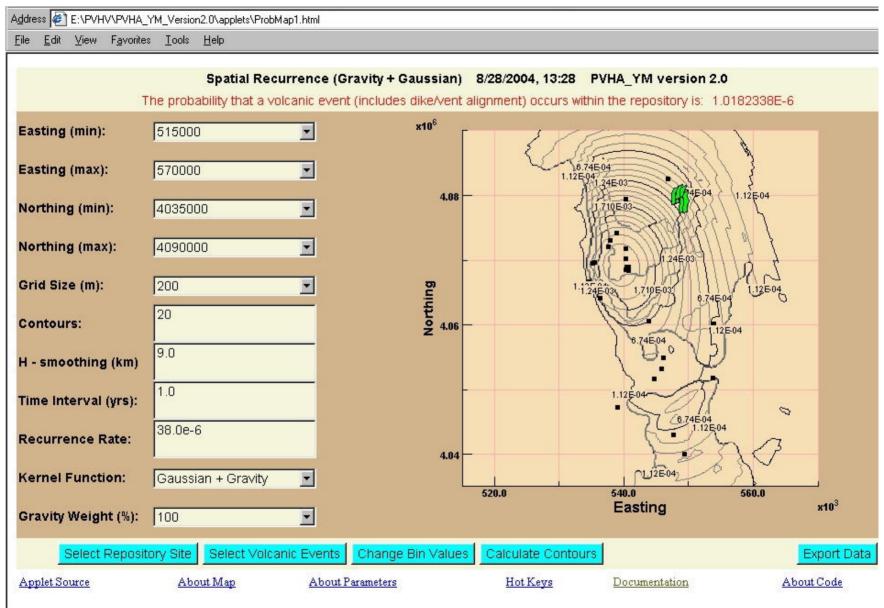
<u>100 kyr</u>: For a penetration rate of 10⁻⁶/yr, the PVHA_YM code & data indicate 4-9 volcanic events would be expected in the last 100,000 yrs. Only 1 is known (Lathrop Wells, ~80kyr).

<u>Present-day</u>: Previous claims of anomalously high crustal strain in the Yucca Mt. region, a condition that may enhance volcanism, have been contradicted (Savage et al., 2001).

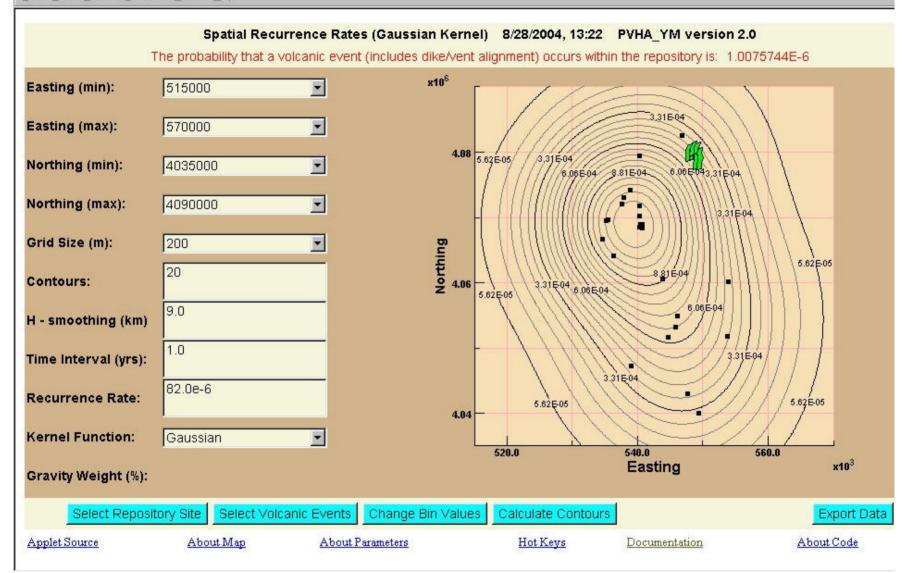

Using a Quaternary recurrence rate of 8 events in 1.8 Myr and the NRC PVHA_YM code, we estimate the frequency of future dike penetration at 5.4 x 10^{-8} /yr. The 95% upper confidence bound is 9.7 × 10^{-8} /yr.

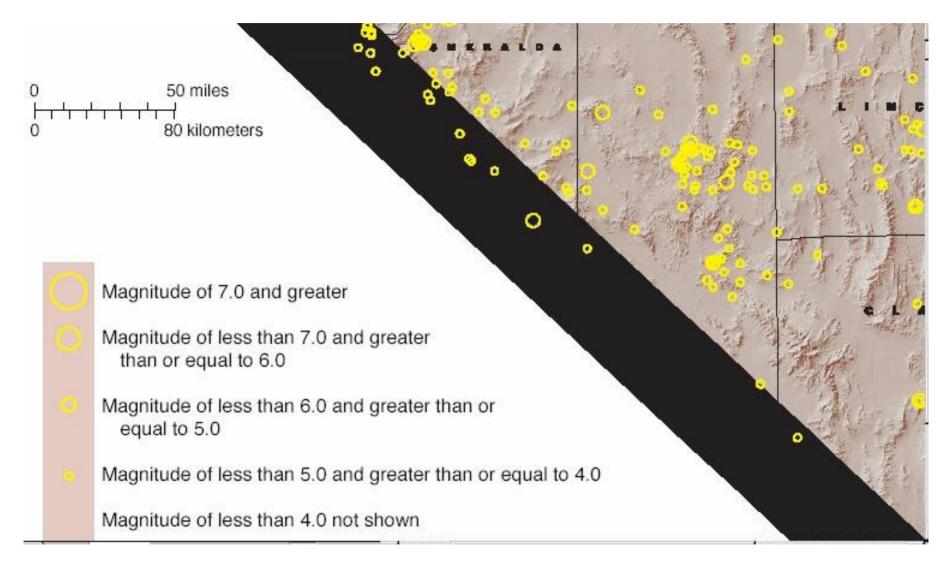
References

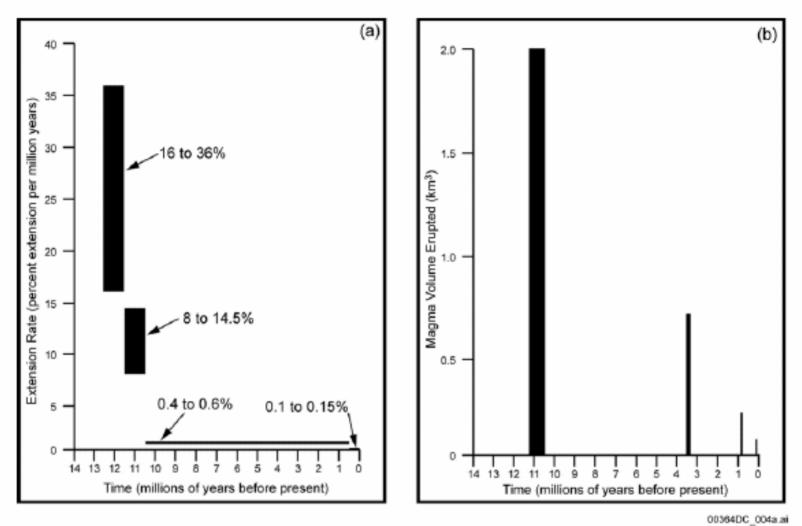
- Connor, C. & B. Hill, 1995. Three non-homogeneous Poisson models for the probability of basaltic volcanism....Yucca Mountain, JGR 100, p. 10107.
- Connor, C. et al., 2000. Geologic factorsvolcanic hazards assessment at Yucca Mt., NV, JGR 105, p. 417.
- Connor, L. et al., 2002. PVHA-YM Ver. 2.0 Probabilistic volcanic hazards assessment....Yucca Mt., NV.
- US DOE, 2003. Technical Basis Document No. 13: Volcanic events, online at: <u>http://www.ocrwm.doe.gov/documents/</u> <u>38453 tbd/index.htm.</u>
- Geomatrix, 1996. PVHA for Yucca Mountain, BA0000000-1717-2200-00082 (report for DOE).
- Hill, B. and J. Stamatakos, 2002. Evaluation of geophysical info to detect and characterize buried volcanic features in the Yucca Mt. region, CNWRA report.


References (cont.)

- Ho, C.-H. and E. Smith, 1997. Volcanic hazard assessment incorporating expert knowledge: Application to Yucca Mtn., Math. Geology 29, p. 615.
- Ho, C.-H. and E. Smith, 1998. A spatial-temporal/3-D model for volcanic hazard assessment: Application to...Yucca Mtn., Math. Geology 30, p. 497.
- O'Leary et al., 2002. Aeromagnetic expression of buried basaltic volcanoes near Yucca Mtn., NV,USGS OFR 02-020.
- Savage, J. et al., 2001. Strain accumulation near Yucca Mt., NV, JGR 106, p. 16483. Wernicke, B. et al., 1998, Anomalous strain accumulation in the Yucca Mt. area, NV, Science 279, 2096.


Slate et al. 2000 (USGS OFR 99-554)





File Edit View Favorites Tools Help

Source: Nevada Bureau of Mines and Geology

Source: Fridrich et al. 1999.

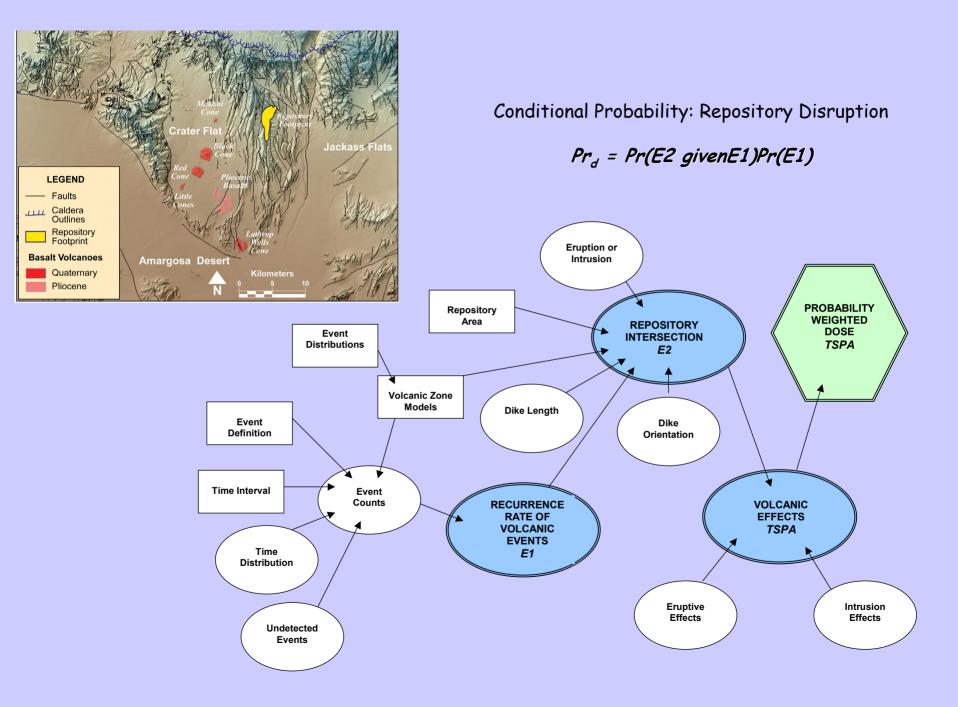
Figure 2-4. Estimated Extension Rates in Crater Flat Basin as a Function of Time and Magma Volume Erupted as a Function of Time

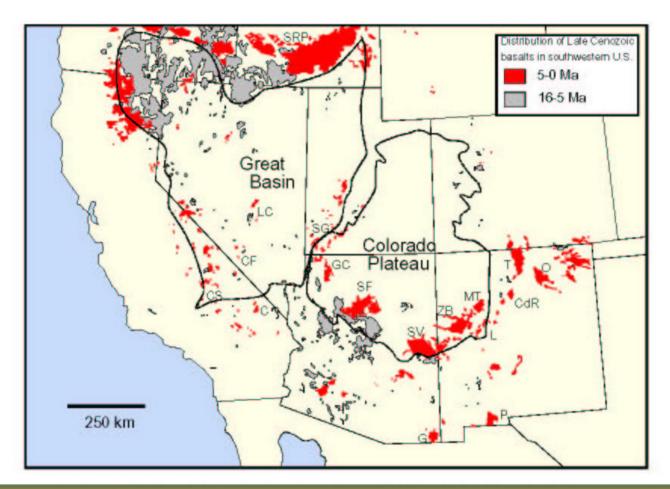
An Out-of-Touch Look at a PVHA Model for Yucca Mountain

Bruce Crowe Los Alamos National Laboratory Nevada Site Office ACNW Presentation September 22, 2004

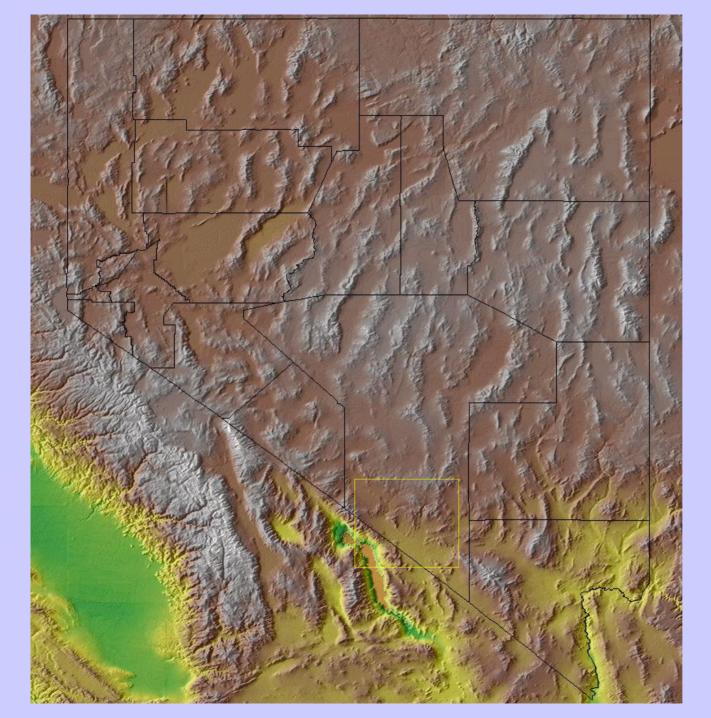
U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

Presentation Perspectives


- Overview of Presentation
 - Highlight geologic assumptions and logic for my PVHA model
 - Influence diagram of multiple steps assembling model
- Some New Perspectives
 - Probabilistic PA modeling; working with Bayesian statisticians
 - Tectonic/volcanic history of Frenchman Flat
- Logical bounds on probability of volcanic disruption of Yucca Mountain
- Distant perspective (doing other work)
 - Skimmed but did not carefully read handout material


1979 Perspective

- Small number of basaltic volcanoes, Crater Flat
- Low risk but significant uncertainty
- More volcanoes
 - Less uncertainty
 - Increased risk
- Multiple permissive models
 - Largely irresolvable
 - Emphasis on impacts of alternative models not the "most correct" model



Conceptual Model of Volcanism

Great Basin Walker Lane Structural System

Tectonically Active but Past Peak of Tectonism

Current Tectonic Activity

Between
 Death Valley
 and Sierra
 Crest/Owens
 Valley

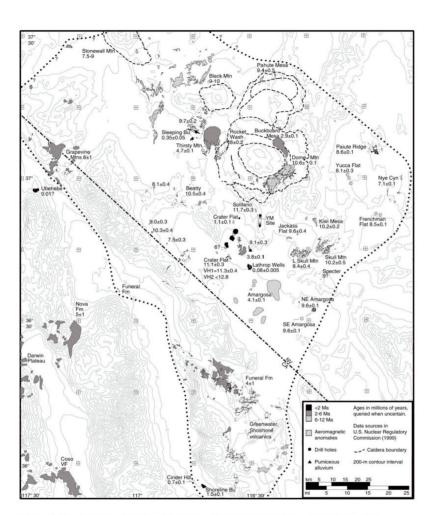
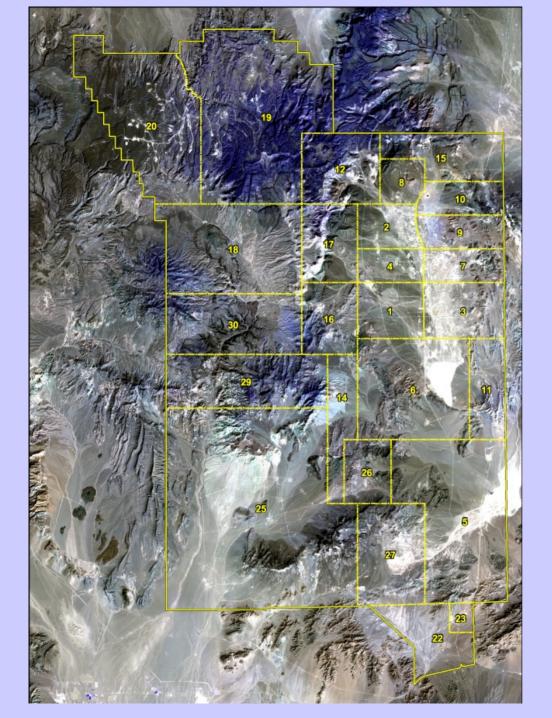
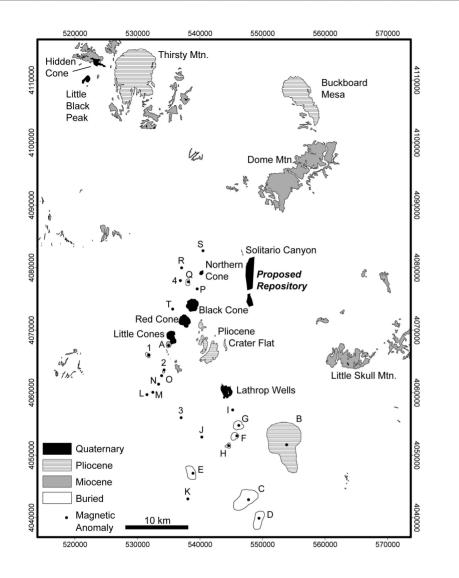



Figure 2. Basaltic volcanic rocks of the Yucca Mountain region since about 11 Ma. Data sources listed in U.S. Nuclear Regulatory Commission (1999). Dotted line represents the extent of basaltic volcanic rocks that potentially constitute the Yucca Mountain region magma system.



Post caldera basaltic volcanism

Two Phases

- 1. Contemporary with major extension/basin formation
 - Larger volume (1 to 10's of km³)
- 2. Post-dating major extension
 - Small volume (0.1 to 1.0 km³)

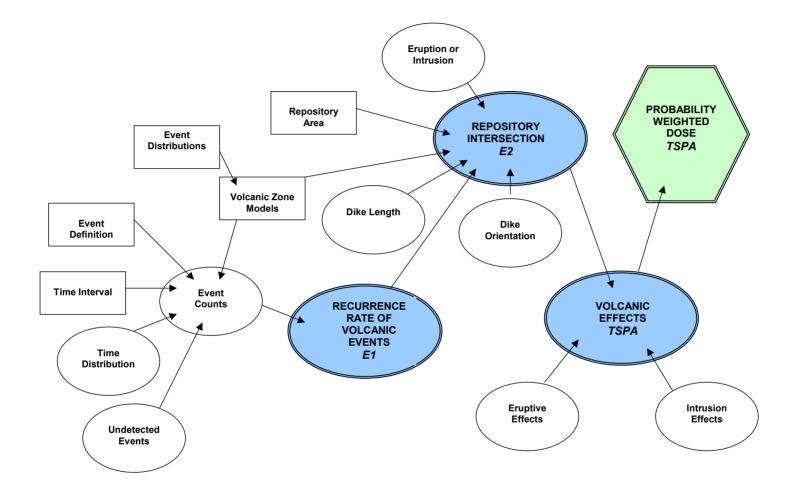
Small volume basaltic volcanism: focus of YM volcanic hazards

Volcanoes in Crater Flat

Hidden Cone-Thirsty Mesa

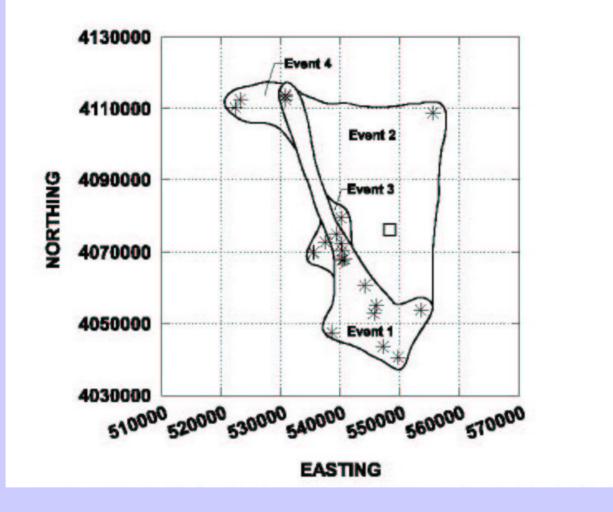
Aeromagnetic anomalies of Crater Flat and Amargosa

> Some associated with older phase of extensional volcanism

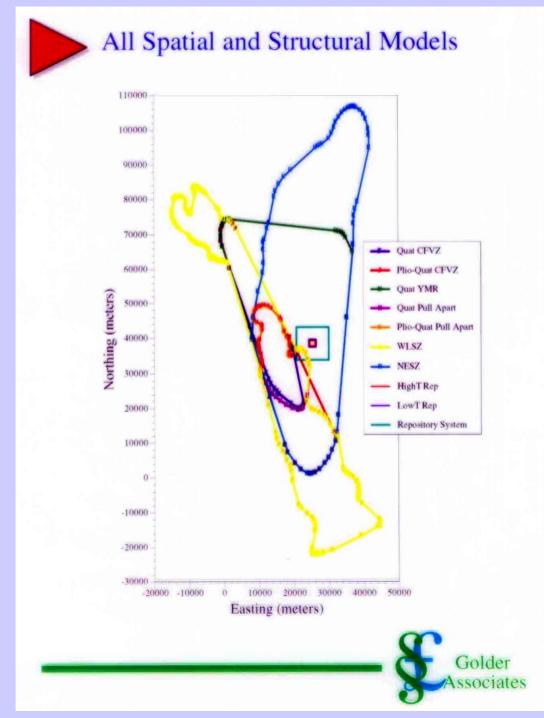

Origin of the Younger Phase of Small Volume Basaltic Volcanism

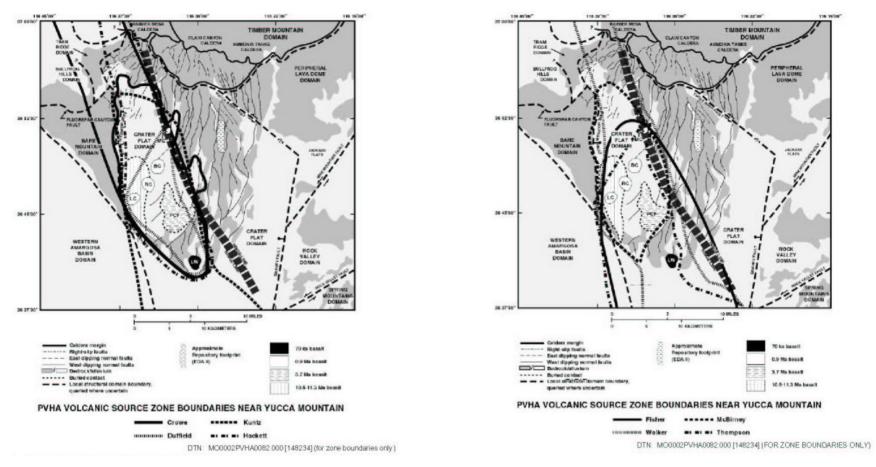
Changing perspectives and unresolved

Local structural controls but cause and effect unclear

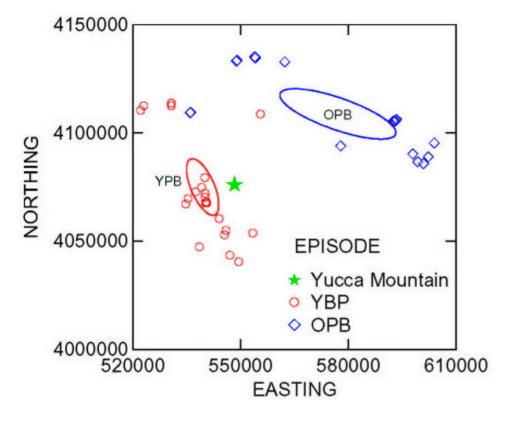


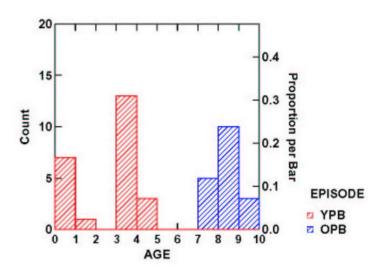
ENVIRONMENTAL MANAGEMENT PROGRAM



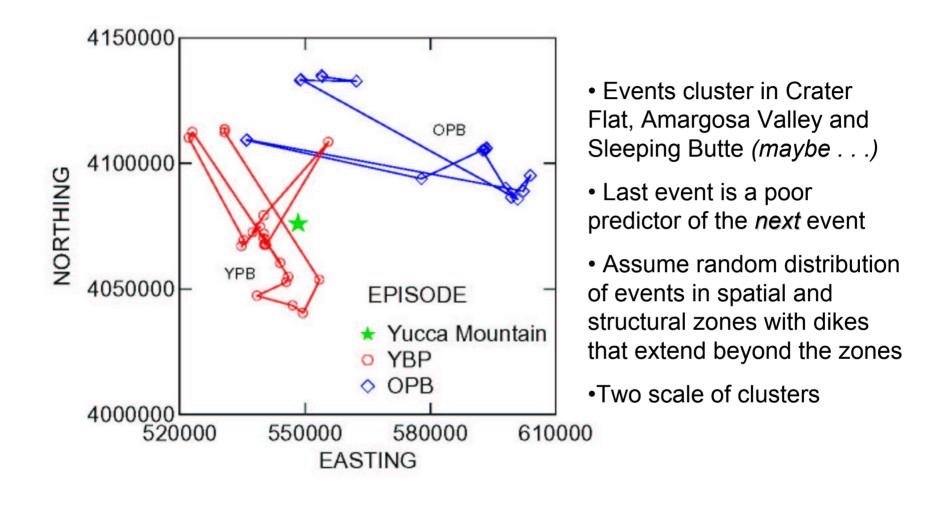


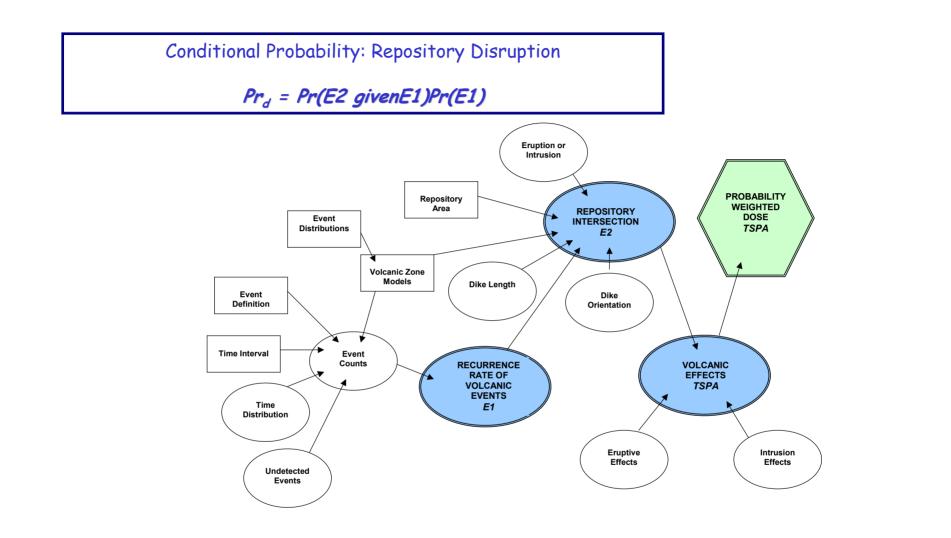
ENVIRONMENTAL MANAGEMENT PROGRAM

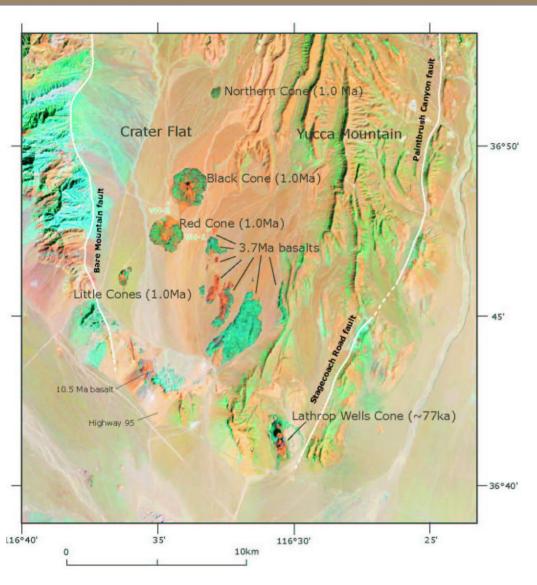




Many models are possible. . . Limited data so none can be disproved . . . Nearly every expert has a preferred model . . .


Impact of alternative models . . .





ENVIRONMENTAL MANAGEMENT PROGRAM

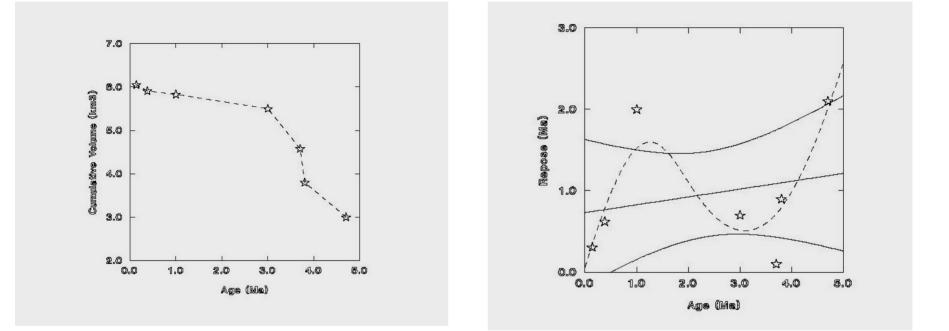
ENVIRONMENTAL MANAGEMENT PROGRAM

What is an event?

Adjust event counts for alternative definitions

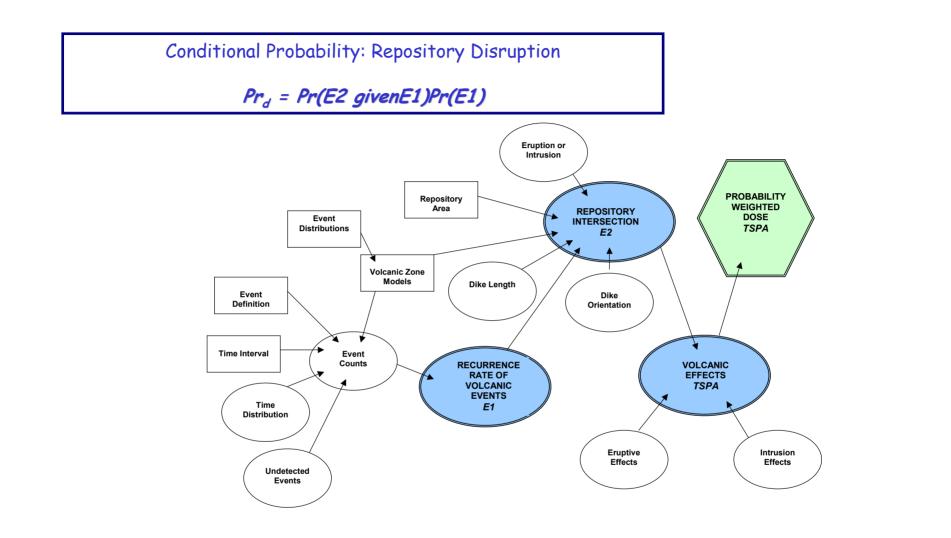
Different consequences

Event counts specific to volcanic zones

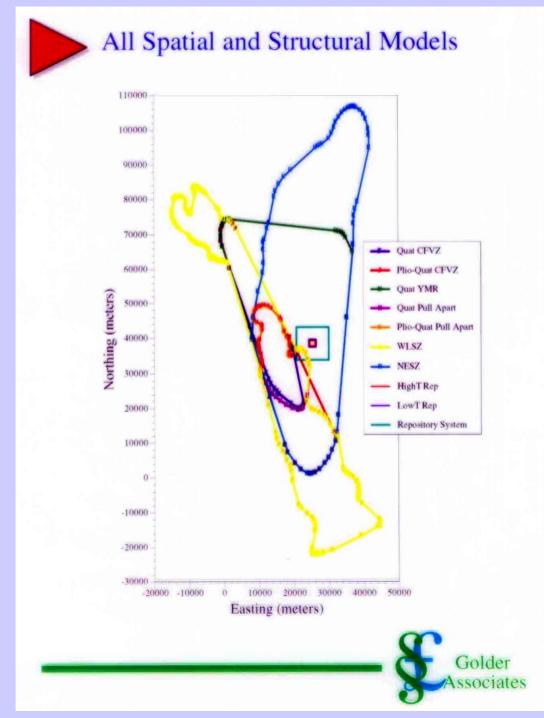

Not treated independently

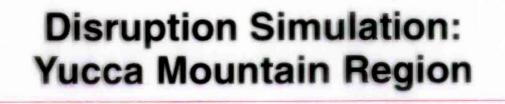
Aeromagnetic anomalies

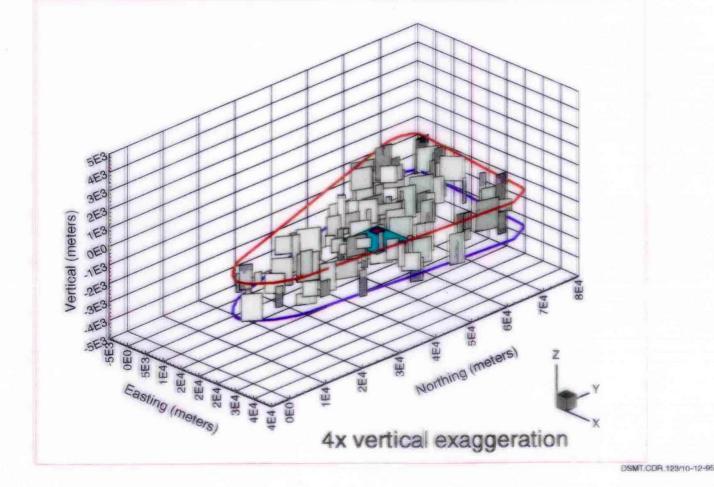
Undetected events



ENVIRONMENTAL MANAGEMENT PROGRAM






ENVIRONMENTAL MANAGEMENT PROGRAM

Probability Bounds

- Background recurrence rates/disruption ratios
 - Quaternary basalt centers
 - Interior of the southern Great Basin

Outside of a volcanic zone/field

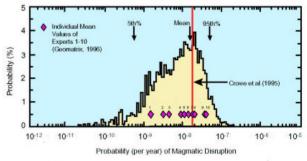
- Repository disruption ratios if the repository was located in a volcanic zone
- Logic:

Disruption probability must be > background and < volcanic zone

Bounding Estimates

- Minimum Estimates: Repository Disruption
 - Southern Great Basin (SGB), Amargosa Valley Isotopic Province (AVIP)
 - Event counts from combination of expert judgment estimates and regional field studies
 - 4.5 km² repository footprint
- Results
 - SGB = 1.4 x 10⁻⁹ events yr⁻¹
 - $\text{AVIP} = 3.4 \times 10^{-9} \text{ events yr}^{-1}$

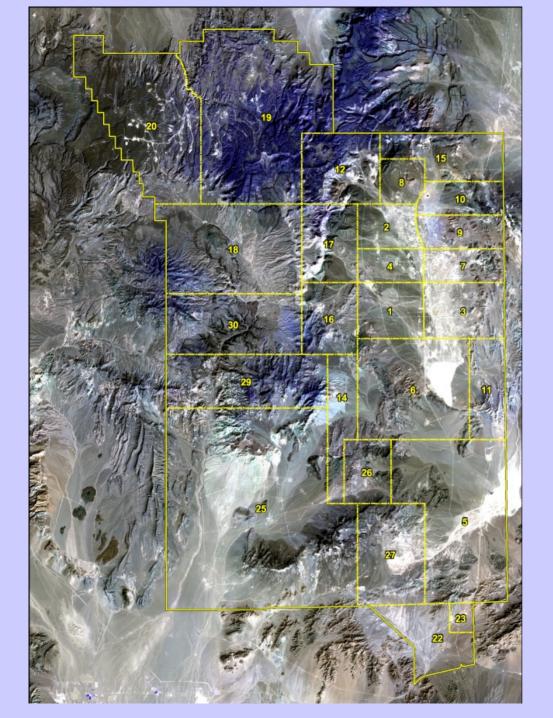
Bounding Estimates (cont.)


- Maximum Estimates: Repository Disruption
 - Seven spatial and structural zones (events yr⁻¹)

Quat CFVZ	= 9.8 x 10 ⁻⁸
Plio-Quat CFVZ	= 1.1 x 10 ⁻⁷
Plio-Quat YMR	= 7 x 10 ⁻⁸
Quat PullApart	= 1.5 x 10 ⁻⁷
Plio-Quat PullApart	= 1.8 x 10 ⁻⁷
WLSZ	= 8.4 x 10 ⁻⁸
NESZ	= 4.8 x 10 ⁻⁸

Bounding Estimates (cont.)

- Maximum entropy principle
 - Uniform distribution(min,max)
 - Uniform(1 x 10⁻⁹, 1 x 10⁻⁷) mean = 5 x 10⁻⁸ events yr⁻¹
- DOE/PVHA Probability Distribution
 - Skewed slightly toward minimum values, should truncate estimates below background
- NRC
 - 10⁻⁷ to 10⁻⁸ but use 10⁻⁷ events yr⁻¹
 - Uniform(10⁻⁷,10⁻⁸)



Overview Comments

Aeromagnetic anomalies

- Amargosa Valley: probably buried centers ~ 4 Ma
- Limited impact
 - Locations unlikely to project to repository disruption
 - Dike lengths
 - Dike orientation
- Drill aeromagnetic anomaly near Little Cones
 - Normal polarity
 - Possible unrecognized part of volcanic record

Crater Flat/Amargosa Valley

- Crater Flat pull-apart
- Intersection with Mine
 Mountain-Spotted
 Range Structural Zone

Crater Flat anomaly

• Younger pulses of basaltic volcanism postdating major extension

Pliocene Volcanic Events

•Timing with Death Valley extension (~ 4 Ma) ASSESSING THE EFFECTS OF UNCERTAINTY ON PROBABILITY MODELS FOR FUTURE IGNEOUS EVENTS IN THE YUCCA MOUNTAIN REGION

> September 22, 2004 Advisory Committee on Nuclear Waste

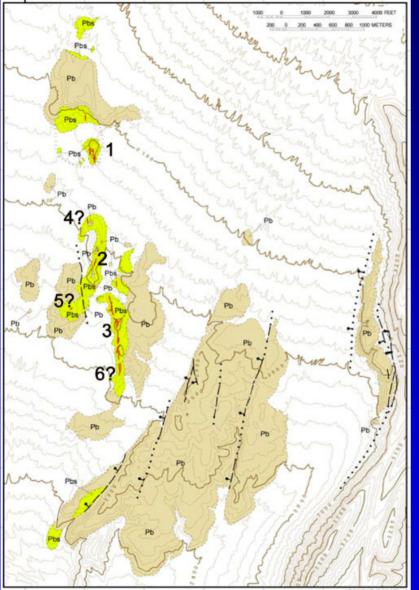
Presented by Brittain Hill 210/522-6087 (bhill@swri.org) Center for Nuclear Waste Regulatory Analyses San Antonio, Texas

> NRC Program Manager John Trapp

Contributors J. Rubenstone, C. Connor, J. Stamatakos

- Introduction
- Uncertainties in basic probability model definitions
- Current spatial and temporal uncertainties
- Effects of these uncertainties on NRC probability models
- Conclusions

Introduction

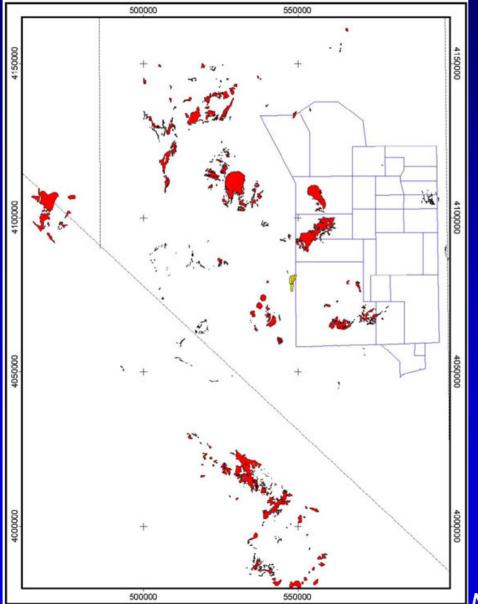

• 10 CFR 63.114: Performance Assessment Models Must

- Include actual geological and engineering data
- Account for data variabilities and uncertainties
- Consider effects of alternative conceptual models
- Evaluate events with likelihoods > 1:10,000 in 10,000 years
- Include events that significantly affect risk calculations
- Be supported by objective comparisons

Basic Data for Probability Models

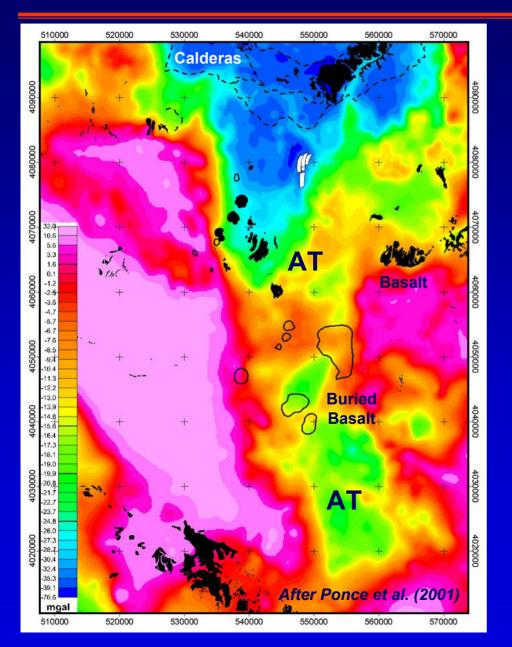
- How many past events in the Yucca Mountain Region?
- What are the event locations?
- What are the event ages?
- Multiple Interpretations, and Large Uncertainties, are Possible with Available Information

Definition of an Igneous Event



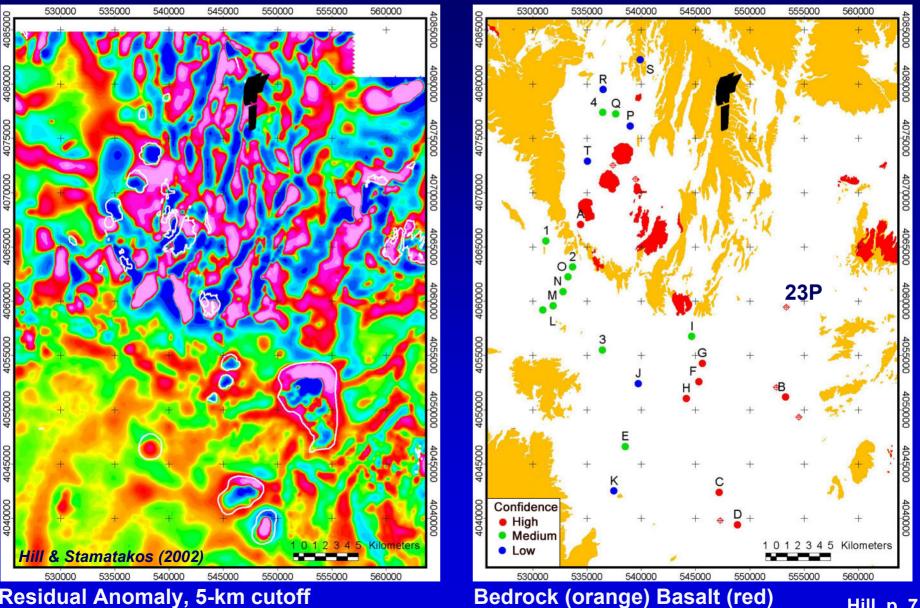
- 4 Myr old basalt, SE Crater Flat.
- 3 eroded cones+dikes (#1-3).
- 3 smaller vents? (#4-6).
- Dikes >50m west from #3.
- Subsurface extent of dikes?
- Faulted and eroded lavas could create complex magnetic anomaly if buried.

^{5.ai} BSC (2003, TBD-13)


No. 13: Volcanic Events Figure 2-11.

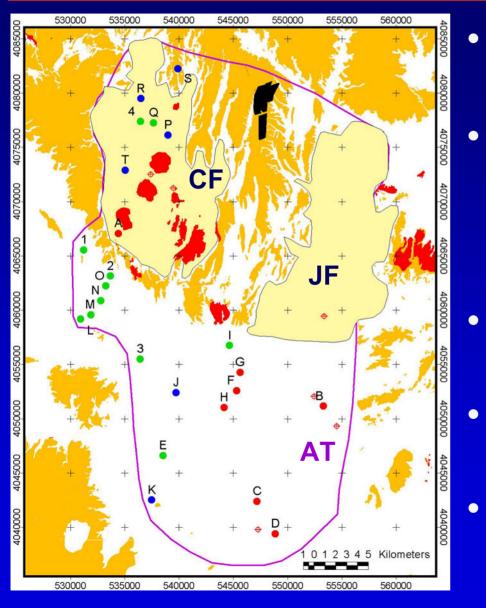
Definition of a Yucca Mountain Igneous System

- Basalt (red) <11.4 Myr used for various definitions of Yucca Mountain Region igneous system.
- Associations based on location, age, chemistry.
- Basis for selecting a subset of data should be clear and consistent.


Definition of a Yucca Mountain Igneous System

- Regional gravity low is the Amargosa Trough (AT) structural basin.
- Relevant part of Yucca Mountain Region igneous system is <11 Myr and within the AT structural basin.
- For this presentation, igneous events defined as single volcanic vents (i.e., scoria cones).

 Interpret 24 past events from these data.

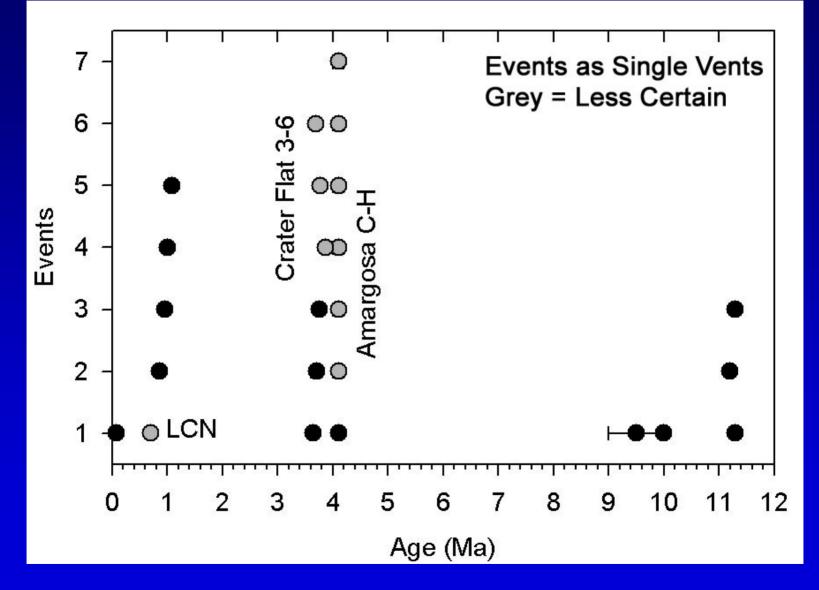

Current Spatial Uncertainties: Magnetic Anomalies

Residual Anomaly, 5-km cutoff

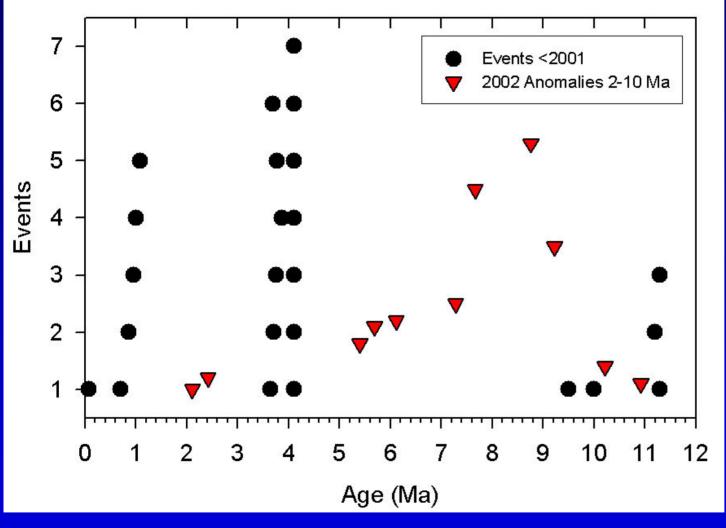
Hill, p. 7

Current Spatial Uncertainties: Undetected Events?

- Amargosa Trough (AT) with anomalies: 1 v/ 29 km²
- Analog Volcanic Fields:
 - Cima: 1 v/ 4 km²
 - Lunar Crater: 1 v/ 6 km²
 - Pancake Range: 1 v/ 8 km²
 - Big Pine: 1 v/ 16 km² (hidden?)


Crater Flat (CF): 1 v/ 13 km² – If 1 v/ 4 km² = +26 v

- Jackass Flats (JF): 1 v/ 160 km² – If 1 v/ 16 km² = +10 v
- 1-10 Present but Undetected Volcanoes in AT?
 - If +10 v = 1 v/ 23 km²

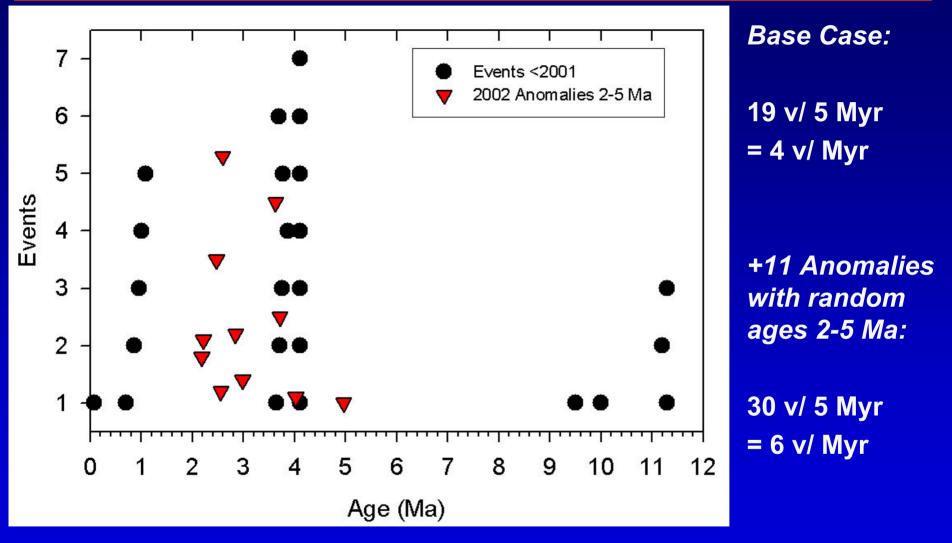

Summary of Current Spatial Uncertainties

- For the Yucca Mountain Region, addition of 11 magnetic anomalies increases spatial recurrence rates from 1 v/ 42 km² to 1 v/ 29 km².
- Comparison with analog Quaternary volcanic fields:
 - Cima: 1 v/ 4 km²
 - Lunar Crater: 1 v/ 6 km²
 - Big Pine: 1 v/ 16 km²
- Limited resolution of known features, and unexpected basalt in drill hole NC-EWDP-23P, suggests possibility of additional undetected events.
- If 1-10 additional events are present but undetected in the Yucca Mountain Region, spatial recurrence rates could increase up to 1 v/ 23 km².

When Have Past Igneous Events Occurred?

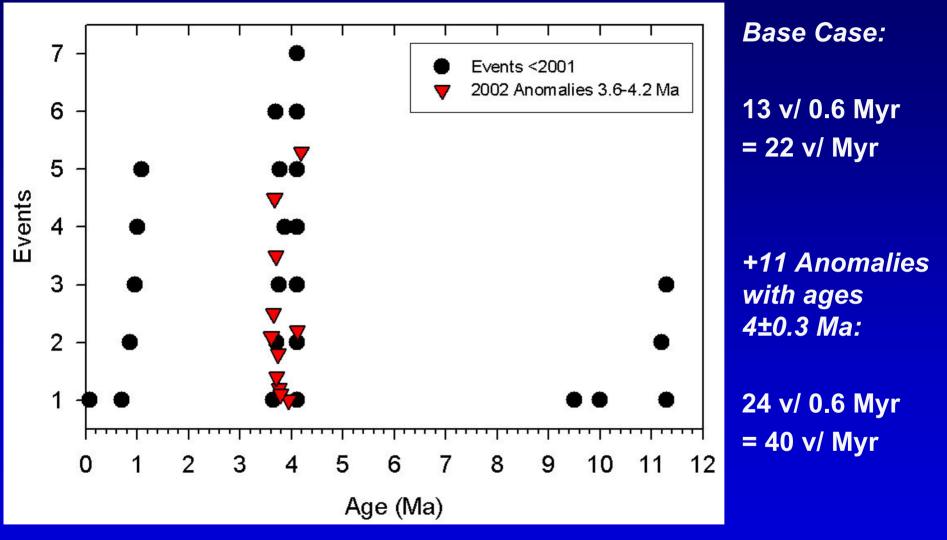
Current Temporal Uncertainties

24 v/ 11 Myr = 2 v/ Myr


Base Case:

+11 Anomalies with random ages 2-10 Ma:

35 v/ 11 Myr = 3 v/ Myr


11 High-Medium Confidence Anomalies Only

Current Temporal Uncertainties

11 High-Medium Confidence Anomalies Only

Current Temporal Uncertainties

11 High-Medium Confidence Anomalies Only

Summary of Current Temporal Uncertainties

- Depending on time interval used, age uncertainties give 1.5x to 2x increases in temporal recurrence rates.
- For Yucca Mountain Region, temporal recurrence rates may have ranged from 2-3 v/ Myr (uniform) to 40 v/ Myr (clustered).
- Quaternary recurrence rates from analog volcanic fields:
 - Cima: 26 v/ Myr
 - Big Pine: 22 v/ Myr
 - Lunar Crater: 53 v/ Myr
- Potential effects from addition of undetected events not evaluated.

NRC Probability Models: Spatio-temporal Clustering

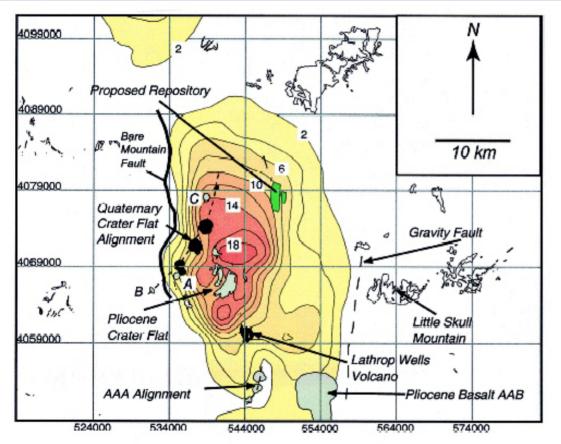
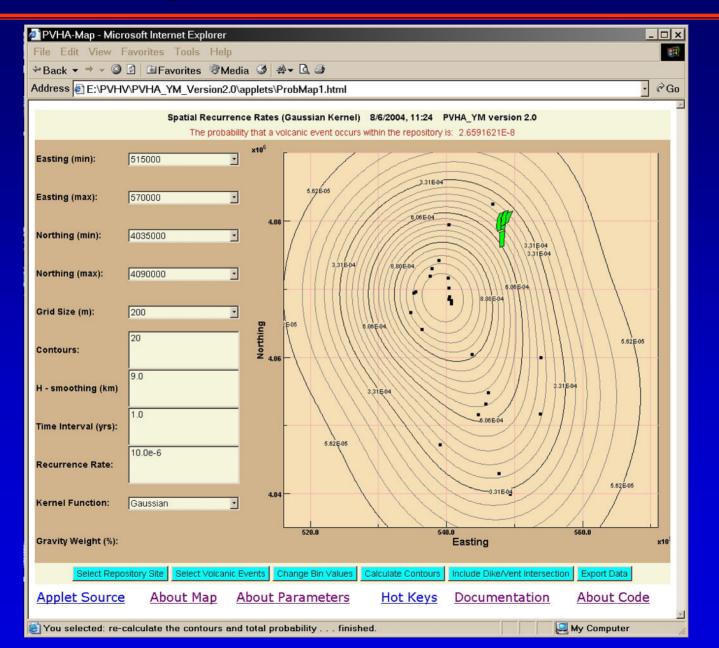
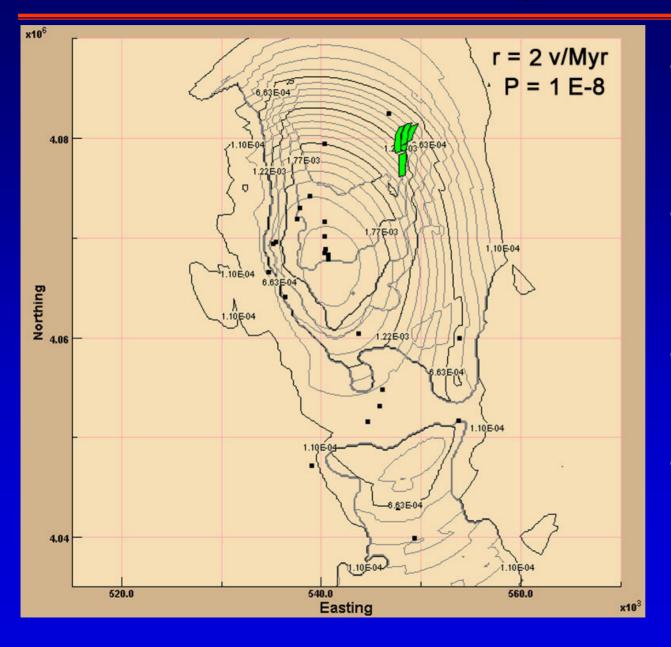



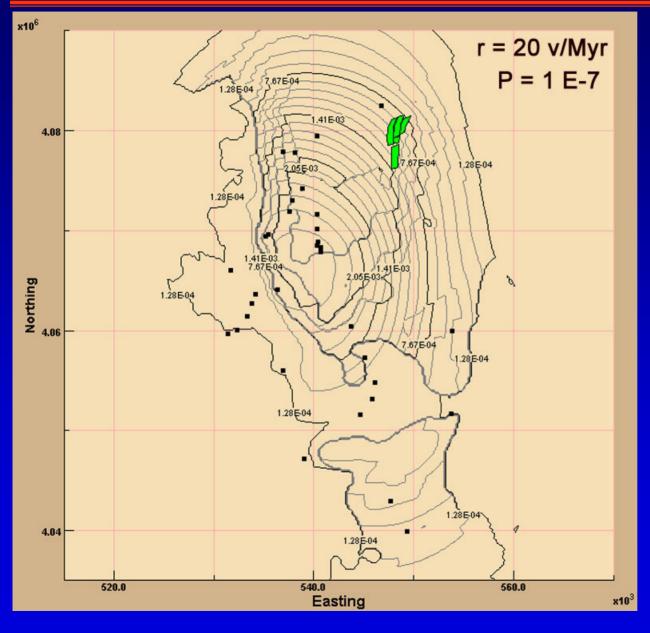
Plate 2. The spatial recorrence rate (volcanic events/km²) contoured for the YMR, based on the distribution of Quaternary volcanism and its relationship to the BMF (see appendix). The contour interval is 2×10^{-4} volcanic events/km².

Connor et al. (2000)


- Clustered event
 locations
- Simple temporal recurrence rates
- Structural weighting is subjective but accounts for data
- Model accommodates spatial and most temporal uncertainties

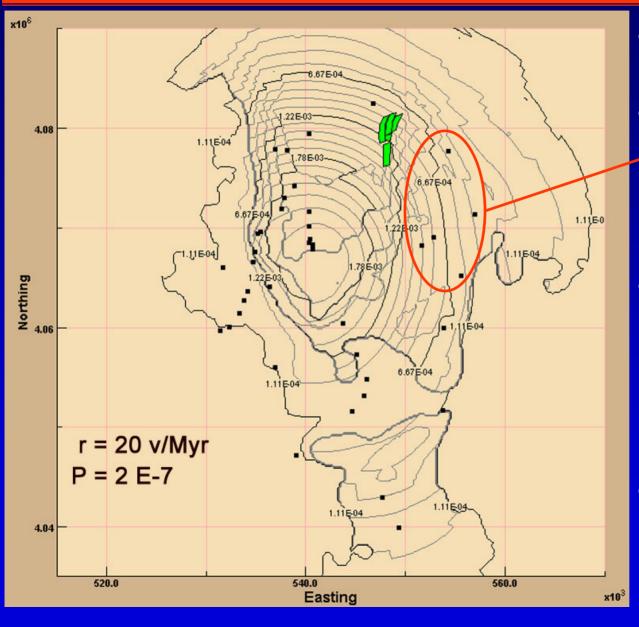
Evaluating Uncertainties with PVHA_YM 2.0

Hill, p. 16


NRC Probability Models

 Base-case example only

- Temporal Recurrence = 2 v/ Myr
- 24 events (volcanoes)
- Epanechnikov kernel, gravity weighting 90%


Effects of Uncertainties on NRC Probability Models

- Same base model
- Include 11 H-M confidence magnetic anomalies
- Recurrence rate 20 v/ Myr
- For dikes 1-10 km, P = 7x10⁻⁷ /yr

For dikes 1-5 km, P = $4x10^{-7}$ /yr

Effects of Some Present but Undetected Volcanoes

- Same base model
- +5 randomly located undetected events in JF
- For dikes 1-10 km, P = 8x10⁻⁷/yr
 - For dikes 1-5 km, P = 5x10⁻⁷ /yr
- Many other undetected event scenarios possible

Hill, p. 19

Insights from NRC Models

- Magnetic anomaly locations generally follow existing spatial patterns in Yucca Mountain region.
- Clusters of >5 undetected volcanoes are needed to change spatial recurrence patterns significantly.
- Uncertainties in recurrence rates for short periods (10,000-100,000 yr) are not captured by uncertainties in long-term (1,000,000 yr) averages.
- Clusters of past events give short-term recurrence rates comparable to other Western Great Basin volcanic fields.
- Large uncertainties in anomaly ages can be evaluated by testing alternative conceptual models.

Conclusions

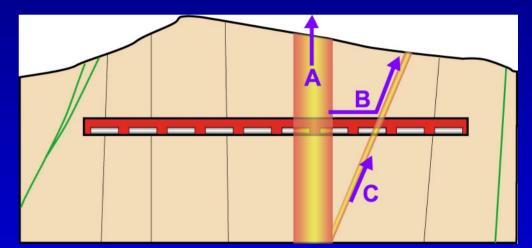
- Conceptual basis for NRC probability models is not affected by current uncertainties on number, location, and age of past events.
- Staff can evaluate effects of current spatial and temporal uncertainties on NRC probability estimate.
 - Possibility for undetected events is a reducible uncertainty
- These uncertainties give 1x-10x increases in the NRC probability estimate, relative to base models.
 - High significance to performance calculations
- Potential effects of current uncertainties on the number, location, and age of past events can affect
 - Assumptions in conceptual basis for probability model
 - Key interpretations of past spatial or temporal patterns
 - Parameter ranges

NRC REVIEW CAPABILITIES FOR EVALUATION OF POTENTIAL MAGMA-REPOSITORY INTERACTION PROCESSES

September 22, 2004 Advisory Committee on Nuclear Waste

Presented by Brittain Hill 210/522-6087 (bhill@swri.org) Center for Nuclear Waste Regulatory Analyses San Antonio, Texas

> NRC Program Manager John Trapp

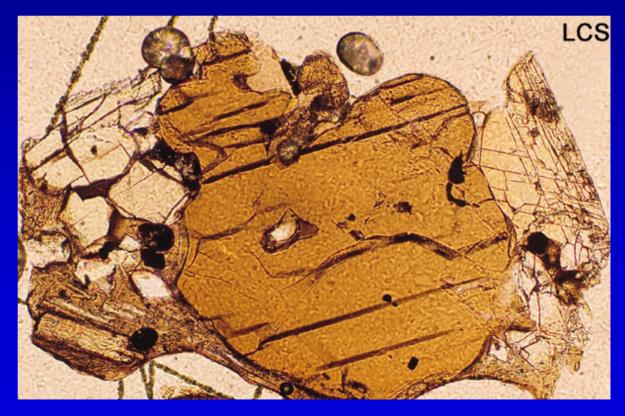

Contributors O. Bokhove, A.-M. Lejeune, S. Sparks, A. Woods

Outline

- Significance to Performance Calculations
- Water Contents of Yucca Mountain Region Basaltic Magmas
- Models for Initial Magma-Interaction Processes
- Models for Magma Flow with Elastic Wall-Rock Conditions
- Summary of Current Information

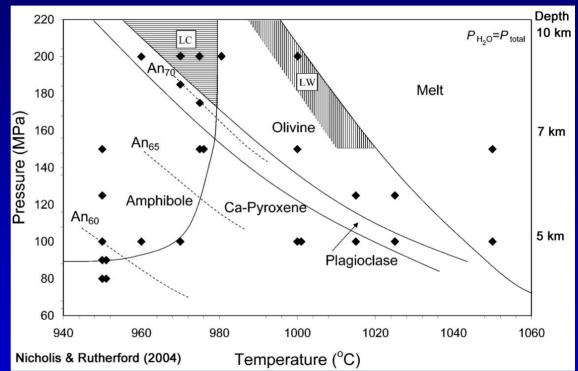
Significance to Performance Calculations

- Potential magma-repository interaction processes affect source-terms for igneous intrusive and extrusive events
- Insights from
 - Historically active basaltic volcanoes
 - Experimental analogs
 - Numerical models
- Model uncertainties
 - Magmatic water contents
 - Mass-flow characteristics
 - Crustal properties



Conceptual Model

A = Vertical conduit B = "Dogleg" C = Bocca

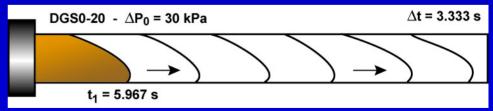

Water Contents of Yucca Mountain Region Basalt

- Basalt contains 3-5% larger crystals of olivine and minor amphibole (rare plagioclase and pyroxene)
- Amphibole is a silicate mineral with water (OH) in crystal lattice
- Presence of amphibole indicates magmatic water contents >2 wt%
- Luhr & Housh (2002) glass inclusion analyses
 - 3.5-4.5 wt% H₂O
 - 600-900 ppm CO₂

Water Contents of Yucca Mountain Region Basalt

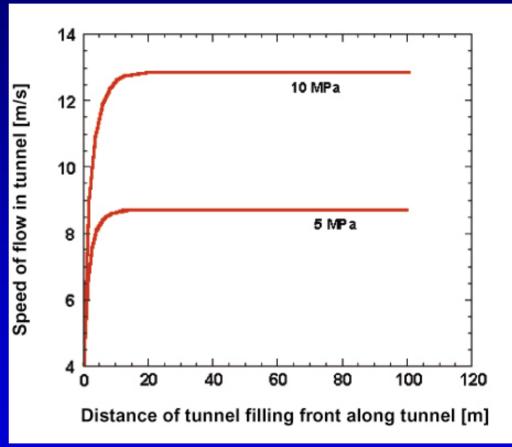
- Amphibole formation at Little Cones needed H₂O saturation at 980 °C and >180 MPa (~8 km)
- 4 wt% H₂O needed for saturation at 180 MPa
- If 3 wt% H₂O, saturation at only 100 MPa (~ 5 km)

- With 4 wt% H₂O in magma
 - Gas bubbles begin to form at 8 km depth
 - Bubbles are large and interconnected at 1 km depth


Volatile-Absent Magma Interactions with Drifts

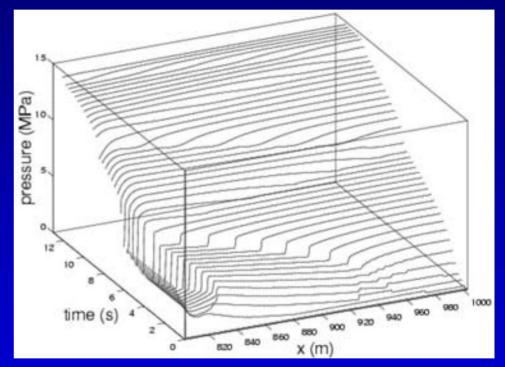
- Experimental analog using golden syrup

 Viscosities 1-100 Pa s
- Pressure-driven flows into smooth horizontal tube
- Evaluate flow characteristics for different pressures and viscosities


 Develop numerical model to scale experiments to potential repository conditions

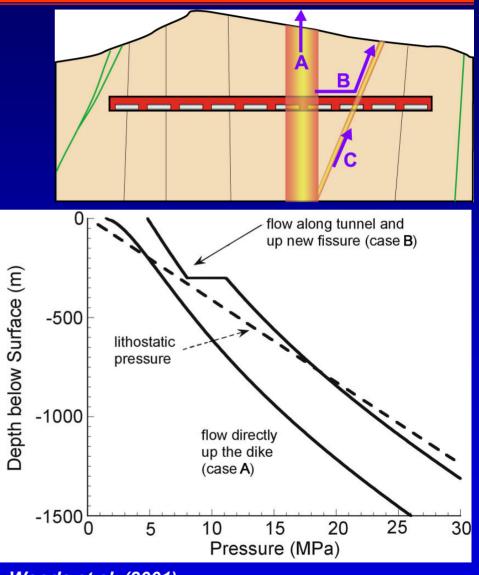
Lejeune et al. (2002)

Volatile-Absent Magma Interactions with Drifts


- Drag in dike >> Drag in tunnel
- Open tunnel conditions give velocities ~10 m/s
 - Controlled by overpressure in magma system
- Closed tunnel gives deceleration as system pressurizes
 - Gravitational slump zone at flow front

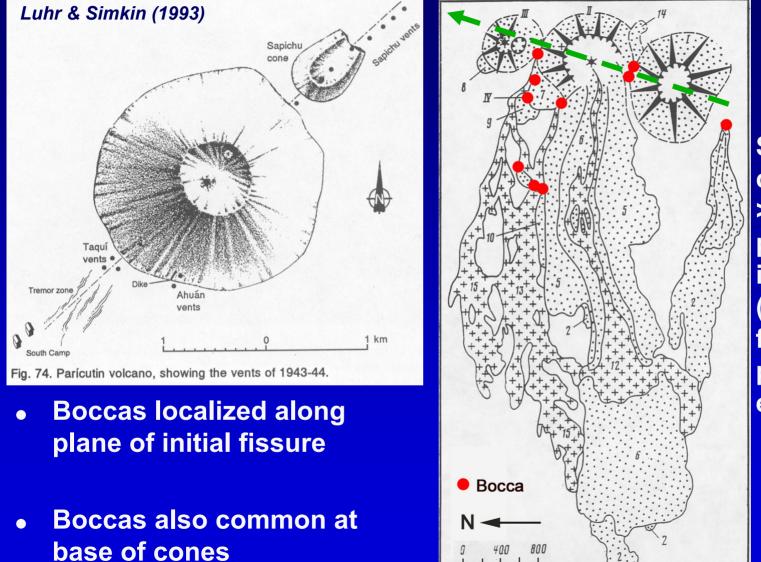
Lejeune et al. (2002)

Volatile-Rich Magma Interactions with Drifts


- Simplified model for initial interaction
 - No gas losses
 - Instant dike opening with fixed geometry
 - Closed, smooth drift
- Rapid decompression gives ~100 m/s flow with 2 wt% H₂O
- Transient shock gives overpressures of 10-50 MPa
- Fracture rock, possibly initiate additional breakouts?

Woods et al. (2002)

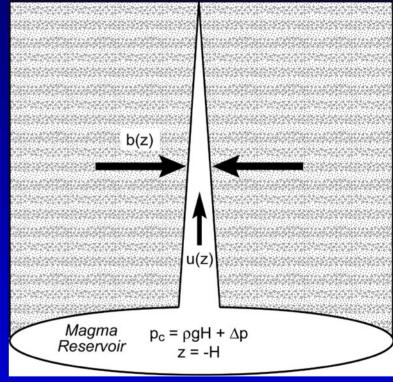
Potential Development of Alternative Flow Paths


- If drift is filled, magma can renew ascent on
 - Original fracture (A)
 - Alternative fracture (B or C)
- Likelihood of alternative flow paths?
- Shallow conduit system can be overpressured during sustained flow
- Sustained overpressure may create secondary vent, similar to satellite vents at active scoria cones

Satellite Vents at Scoria Cones

m

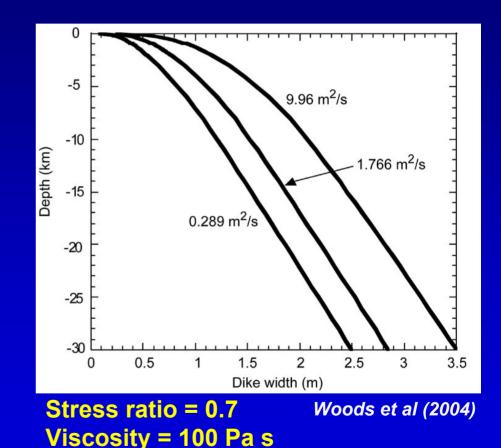
Fedotov et al. (1984



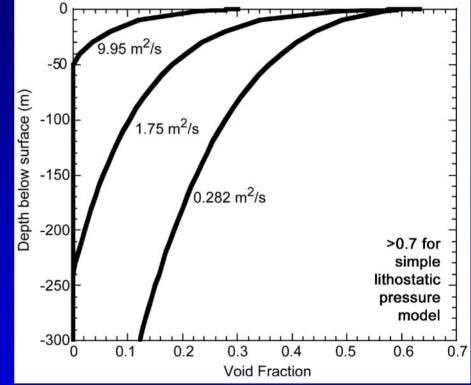
Some boccas can form >1 km from plane of initial fissure, (dashed line) for short periods in an eruption.

Hill, p. 10

Magma Flow in Elastic-Walled Conduits


- Previous models generally assumed rigid conduit walls
- Fractures dilate from magma pressure > minimum principal stress
- Assume a 2D elastic conduit wall, allow magma pressure to control conduit width
- Controlling processes
 - Magma pressure
 - Stress ratio
 - Volatile content

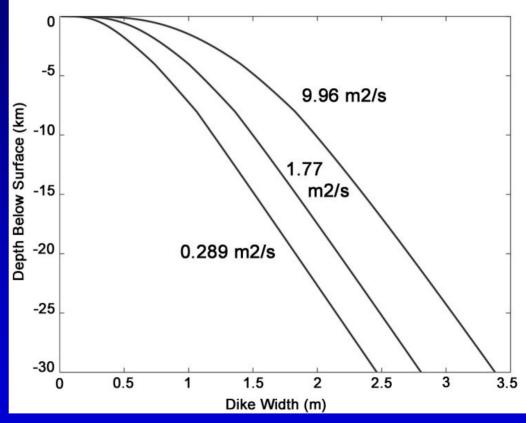
Woods et al (2004)


Volatile-Poor Magma Flow in Elastic-Walled Conduits

- Buoyancy driven flows
 - Reynolds numbers ~ 2-20
- Conduit width controlled by (P_{magma} – P_{rock}), where P_{rock} integrates density, stress ratio, and elastic properties
- Viscous drag >> turbulent drag
- Sensitive to stress ratio and viscosity

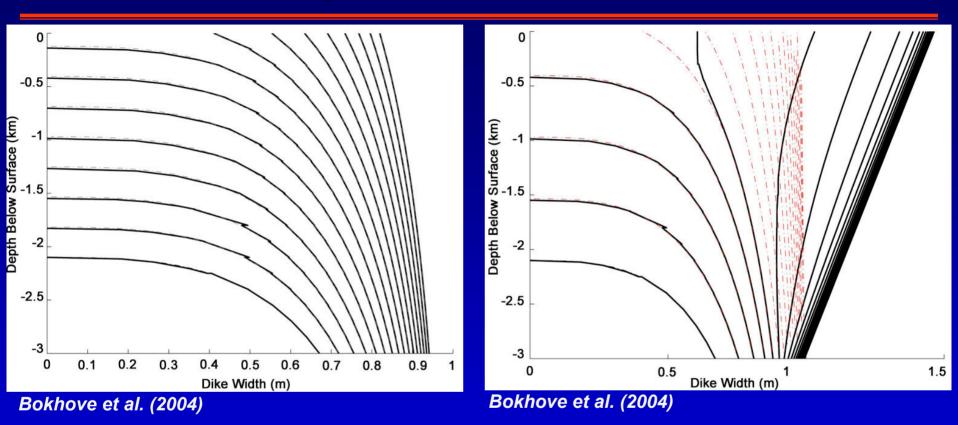
Volatile-Bearing Magma Flow in Elastic-Walled Conduits

- Model exsolution of gas and compressibility effects
 - Constant viscosity
 - Laminar & turbulent drag
 - Single phase flow
- Steady flow conditions, speed cannot exceed speed of sound at vent
 - Choked conditions
- Choking gives overpressures that inhibit gas exsolution
- Magma fragmentation depth shallower than calculated by lithostatic models


Woods et al (2004)

Magma Flow in Elastic-Walled Conduits

- Alternative approach using nonlinear advection-diffusion equations
 - Noncompressible flows


• Evaluate nonsteady flow conditions using finite element approach

 Stationary solution equivalent to Woods et al. (2004) model

Bokhove et al. (2004)

Nonstationary Flow in Elastic-Walled Conduits

- Time history (54 min) of dike width from 3 km reservoir
 - Min stress = 0.7 Max stress
 - Basaltic magma, no volatiles
 - No eruption at surface

- Time history (2.4 hr) of dike width from 3 km reservoir
 - Red dashed lines = no eruption
 - Black lines = with eruption

Insights from Magma Flow Modeling

- Models are sensitive to magma viscosities, volatile contents, and variations in minimum-to-maximum horizontal stress
- Flow choking at vent can cause pressure variations in the magma system that can affect characteristics of the gas phase
- Modeled eruption rates for a 1-km-long dike (100-3,000 m³/s) correlate with measured basaltic scoria cone eruption rates on the order of 100 to 1,000 m³/s
- Modeled dike or conduit systems can respond to changes in pressure on the order of minutes to hours

Summary of Current Information

- Water contents of 4 wt% appear characteristic of <1 Myr old basaltic magmas in the Yucca Mountain region
- If rising basaltic magma intersects nonbackfilled drifts, magma may flow into drifts on the order of 10-100 m/s
- Continued vertical ascent of magma appears most likely following potential intersection with drifts

 Additional breakouts (i.e., "doglegs") still appear possible for short periods during the eruption

• Staff continue to refine these models to evaluate uncertainties for conditions relevant to a potential repository site