Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Nuclear Waste 185th Meeting
Docket Number:	(n/a)
Location: Roc	kville, Maryland
Date:	Monday, December 17, 2007

Work Order No.: NRC-1915

Pages 1-157

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON NUCLEAR WASTE AND MATERIALS
5	+ + + +
6	185 th Meeting
7	+ + + +
8	VOLUME I
9	+ + + +
10	MONDAY,
11	DECEMBER 17, 2007
12	+ + + +
13	
14	The Advisory Committee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B3, 11545 Rockville Pike, Rockville, Maryland, at
17	8:30 a.m., Dr. Michael T. Ryan, Chairman, presiding.
18	MEMBERS PRESENT:
19	MICHAEL T. RYAN, Chair
20	ALLEN G. CROFF, Vice Chair
21	JAMES H. CLARKE, Member
22	WILLIAM J. HINZE, Member
23	RUTH F. WEINER, Member
24	
25	
I	I

		2
1	<u>NRC STAFF PRESENT</u> :	
2	CHRISTOPHER BROWN	
3	LATIF HAMDAN	
4	ANTONIO DIAS	
5	NEIL COLEMAN	
6	DEREK WIDMAYER	
7	MYSORE NATARAJA	
8	GARY COMFORT	
9	MIKE FLIEGEL	
10	DENNIS RATHBUN	
11	BILL von TILL	
12		
13	<u>ALSO PRESENT</u> :	
14	JOHN KEMENY	
15	AMIT GHOSH (via telephone)	
16	ROMAN KAZBAN (via telephone)	
17	LUIS IBARRA (via telephone)	
18	ASA CHOWDHURY (via telephone)	
19	GOODLUCK OFOEGBU (via telephone)	
20	CHARLES PENNINGTON	
21		
22		
23		
24		
25		
l	1	

	3
1	AGENDA
2	OPENING REMARKS
3	ELECTRIC POWER RESEARCH INSTITUTE REPORT
4	ON DRIFT DEGRADATION AT YUCCA MOUNTAIN 6
5	LUNCH
6	UPDATE ON NRC RULEMAKING ON GROUNDWATER
7	PROTECTION AT IN-SITU LEACH URANIUM
8	MINING FACILITIES
9	BREAK
10	VENDOR'S VIEW ON THE TRANSPORTATION-AGING
11	DISPOSAL PERFORMANCE SPECIFICATIONS 131
12	ADJOURN
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	1

	4
1	PROCEEDINGS
2	(8:33 a.m.)
3	CHAIR RYAN: Okay. The meeting will come
4	to order, please. This is the first day of the 185^{th}
5	Meeting of the Advisory Committee on Nuclear Waste and
6	Materials. During today's meeting, the Committee will
7	consider the following; the Electric Power Research
8	Institute's report on drift degradation at Yucca
9	Mountain, an update on NRC rulemaking on groundwater
10	protection in in-situ leach Uranium mining facilities,
11	and the NAC International views on transportation-
12	aging disposal performance specifications. The
13	Committee will also discuss ACNW letters and reports.
14	Neil Coleman is the Designated Federal
15	Official for today's session. We have received no
16	written comments or requests for time to make oral
17	statements from members of the public regarding
18	today's session. Should anyone wish to address the
19	Committee, please make your wishes known to one of the
20	Committee staff. It is requested that speakers use
21	one of the microphones, identify themselves, and speak
22	with sufficient clarity and volume so they can be
23	readily heard. It's also requested that if you have
24	cell phones or pagers, that you kindly turn them off.
25	Feedback forms are available at the back of the room
	1

(202) 234-4433

	5
1	for anyone who would like to provide us with his or
2	her comments about the meeting.
3	I'd like to begin the meeting with a
4	couple of items of current interest. First, Professor
5	Hinze, one of our members, is in the Indianapolis
6	Airport due to weather, desperately trying to make his
7	way here, so we'll look forward to his arrival. In
8	lieu of Bill being the Cognizant Member for this
9	morning's session, Professor Clarke has agreed to step
10	in for him and cover those presentations.
11	Ms. Barbara Jo White, who has been with
12	the ACRS ACNW Office for about 40 years and is off to
13	my left - Barbara Jo, good morning - is retiring on
14	January 3 rd , 2008. All these years she has provided
15	outstanding administrative support to the members.
16	She's always insured that members have a good place to
17	stay when they attend ACNW meetings in town, or out of
18	town. She has been exceptional in insuring that the
19	Federal Register notice to the Subcommittee and Full
20	Committee meetings have been issued consistent with
21	FACA requirements. Her outstanding administrative
22	support for the members, hard work, dedication,
23	professional attitude in dealing with not only members
24	and staff, but also with members of the public are
25	very much appreciated by both Committees and the staff
ļ	I

(202) 234-4433

	6
1	of the ACNW&M and the ACRS.
2	We thank you, Barbara Jo, and look forward
3	to wishing you every success and pleasure that life
4	has to offer in the days and years ahead. And it's
5	always a comfort to know I can call Barbara Jo, and I
6	won't be out in the cold, and I'll be where I'm
7	supposed to be. So thank you very much, and we
8	appreciate all your service. Thank you.
9	(Applause.)
10	CHAIR RYAN: With that, I'll turn the
11	session over to Professor Clarke.
12	MEMBER CLARKE: Thank you, Dr. Ryan. Is
13	our speaker present?
14	VICE CHAIR CROFF: He is.
15	(Off the record comments.)
16	MEMBER CLARKE: Okay. Our first speaker
17	is Professor John Kemeny of the University of Arizona,
18	who will speak to us on the Electric Power Research
19	Institute report on drift degradation at Yucca
20	Mountain. John, it's all your's. Thank you.
21	MR. KEMENY: All right. Well, thank you
22	very much. I'm from the University of Arizona, and
23	also I work for EPRI, and I want to thank Nick Apted
24	from Monitor Scientific also involved with this, and
25	John Kessler from EPRI.
I	I

(202) 234-4433

1 Today I'm going to talk about the problem of thermal spalling due to the heating of the nuclear 2 3 waste in the underground repository at Yucca Mountain. 4 I thought first I'd just mention that EPRI recently 5 has been involved in a number of rock mechanics studies, and this one being the most recent. But also 6 7 in 2007, we've been involved in looking at some rock 8 mechanics issues associated with expanding the 9 capacity of Yucca Mountain. And then if you look, 10 you'll see that last year we did some studies on the effect of multiple seismic events, which is something 11 12 quite important, and also long-term performance. We actually tried to look as far as a million years to 13 14 see what we thought would happen to the repository. And then back in 2005, we were also looking 15 at 16 seismicity and rock fall. 17 Okay. So I'll start sort of simple. What is rock spalling? It's, basically, a failure around a boundary of an excavation, and typically it could

18 is rock spalling? It's, basically, a failure around 19 a boundary of an excavation, and typically it could 20 show up as some sort of bulging, as it does here. 21 This is the test drift in Yucca Mountain, and you can 22 see it sort of bulges here. But if there isn't any 23 support, then the rock often will produce rock fall. 24 And you can see here, this is from a paper, Rajmeny, 25 and you can see this sort of initiation of some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 spalling, then some sort of minor amount of spalling. 2 You can see a piece of rock on the ground. And then 3 here you can see the drift is starting to get sort of 4 oblong shape, because this quite severe rock spalling. 5 Okay. In terms of what causes rock spalling, basically, it's a high tangential stress 6 7 combined with a low radial stress near the excavation 8 boundary. I give this example from the Canadian URL, 9 where basically they have very high horizontal stress, as high as 55 megaPascals, and so they end up with 10 high tangential stresses on the boundary. 11 12 radial Now because the stress is essentially zero on the boundary, it's like a uniaxial 13 14 test on the boundary. This is just an example of a 15 uniaxial test that we might test in the lab, and you'll notice that you're getting these sort of --16 17 these high angle fractures, what we call these splitting fractures. Anyway, so that's the idea that 18 19 the spalling will initiate on the boundary, because 20 that's where the rock strength is the lowest. And as 21 you go in towards the boundary into the rock, then, of 22 course, first of all, the tangential stress goes down. 23 And secondly, you develop a radial stress, and so it 24 becomes stronger. So, typically, the extent of the 25 spalling is limited, as you can see here for the URL

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	9
1	case.
2	In terms of what spalling depends on, it
3	depends on many factors, maybe the most important of
4	which is the in-situ stresses, the magnitude, and the
5	orientation of the in-situ stresses. Of course, the
6	opening, the shape of the opening, the size of the
7	opening, and the orientation if it has a particular
8	shape. Also, the excavation method for
9	CHAIR RYAN: John, I'm sorry to interrupt
10	you.
11	MR. KEMENY: Yes.
12	CHAIR RYAN: I forgot one opening item,
13	and that's, is there anybody on the bridge line? Is
14	there anybody on the phone bridge line? Okay.
15	They'll announce when they come in. We'll get a beep.
16	I just wanted to make sure we got that on the record.
17	Thank you.
18	MR. KEMENY: So will people be asking me
19	questions while I give the talk? Is that
20	CHAIR RYAN: No, I just wanted I had
21	the obligation to make sure our record reflected the
22	bridge lines.
23	MR. KEMENY: I'd be happy to answer
24	questions during the talk.
25	CHAIR RYAN: If folks want to break in,
I	I

(202) 234-4433

(202) 234-4433

	10
1	I'm sure they will. Thanks.
2	MR. KEMENY: All right. Thanks.
3	All right. So, anyway, also the
4	excavation method. TBM is probably the produces
5	the most stable opening, so you probably see less
6	spalling in that case, as opposed to fill and blast
7	type. And, of course, the properties of the rocks, so
8	the in-tact rock strength properties, as well as the
9	joint properties are very important.
10	The underground environment can also have
11	such as the temperature, the humidity, the rock
12	saturation, these can also affect how much spalling
13	you get. And the type and properties of the support.
14	And I know this is an important issue, but support can
15	reduce the amount of spalling. Typically, a lot of
16	times, typical kinds of support will be rock bolt and
17	shot-crete. A lot of times this will not affect the
18	amount of spalling so much as it just supports the
19	loose ground. It keeps it from falling. But in
20	extreme cases where you have tunneling and very
21	adverse conditions, actually, if you put enough
22	support in, and you put it in soon enough, you can
23	actually reduce the amount of spalling.
24	And then lastly, I talk about this thing
25	called progressive spalling. And this is this issue
1	

(202) 234-4433

1 that you get some spalling, and it sort of continues 2 to -- rock fall continues to occur, and the spalling 3 gets bigger and bigger. And this can occur, in 4 particular, because of the time-dependent nature of 5 the rock behavior. And, secondly, because of changing So, for instance, you might be 6 stress conditions. 7 driving drifts close by, and that caused a change in 8 stress. Certainly, a seismic event would cause the 9 change in stress, or the thermal loading that we're 10 talking about at Yucca Mountain would also be a timedependent effect, so we could see progressive spalling 11 over tens or hundreds of thousands of years. 12 All right. Now I want to first talk about 13 14 sort of the extreme cases. Now just in here is 15 progressive spalling leading to total drift collapse, 16 which basically occurs in very extreme conditions. 17 It's certainly not the norm. And I list sort of two conditions where this could occur, and one is where 18 19 the in-situ stresses are extremely high compared to 20 the rock strength. And this is a graph from Everett 21 Hoek, and he basically has a parameter down here which 22 is the rock strength over the in-situ stress, and he's 23 got different sort of categories. He's got a few 24 support problems, minor, severe squeezing, verv 25 severe, extreme squeezing. And sort of the boundary

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

between the minor and starting to get to severe sort of these spalling conditions would be at a value of .2, and that means the in-situ stress is five times the rock strength.

5 And if I go back to the previous figure, you can see that these are quite severe. Like here is 6 7 case where Ι have quite a high stress, 55 а 8 megaPascals, but this is a granite. The strength of 9 this rock over 100 megaPascals, so this stress is only half of the rock strength, so I'm talking about when 10 the stress is five times the rock strength. 11 So for this rock, this would mean that for this kind of 12 stress, it would have to be a rock that's very weak, 13 14 on the order of 10 megaPascal; or, conversely, for 15 rock with 100 megaPascal strength, it would have to be 16 a stress of 500 megaPascal, so, again, these are very 17 severe conditions, that we get this sort of severe squeezing condition. 18

And you can also talk about in terms of the tangential stress, so it's the max tangential stress on the boundary of about 10 times greater than the rock mass strength, then you could get this severe squeezing.

These are famous cases where they tried to put in tunnels. The TBM gets stuck, or a mile of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

drift may take five years, with all sorts of kinds of support, and grouting and things like that, so these are very extreme conditions.

4 The other condition where we sometimes see a total collapse of the drifts is the opposite of 5 that. It's a very low stress condition in a weak rock 6 7 mass. And this would typically be very shallow, so 8 maybe only 50 feet below the ground surface or 9 something like that, very weak rock mass, maybe the joints have no strength, and you can get a collapse 10 all the way to surface. So this is typically the two 11 conditions that we see, this sort of total collapse. 12 And we're not expecting these kind of conditions at 13 14 Yucca Mountain, and I'll demonstrate that in a second. 15 I'll go to the next slide, and I'll show you that 16 we're not really near this Condition 1, and not 17 Condition 2, either, because Condition 2 would involve a much shallower excavation than the drifts in Yucca 18 19 Mountain.

So I think what we really have at Yucca Mountain is what I call slight to moderate over-stress conditions. And what I mean by that is that the depth of the spalling is less than one radius away from the boundary. So, for instance, let's say this is an excavation, has a radius R, and then I might have some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

	14
1	spalling around it, and if that spalling is less than
2	or equal to the radius, then I'd call it slight to
3	moderate over-stress conditions. And these are very
4	common in underground excavation. We see this all the
5	time, almost every underground excavation has some
6	kind of failure. It may be slight, or it may be
7	moderate, and it's very typical that we can stabilize
8	these excavations with very standard types of rock
9	support, like shot-crete or rock bolt. And if it gets
10	more severe, we can use concrete liners, and so on.
11	And this is what I would expect at Yucca
12	Mountain. Again, this is before I did any analysis,
13	but just basically looking at the rock strength and
14	the in-situ stresses, and the amount of stresses
15	created by the thermal, this is what I would expect.
16	So here is kind of the I guess we're going to focus
17	today really on the non-lithophysal units. And I've
18	done this is a similar categorization that DOE has
19	done. They've separated their lithophysal into five
20	types, five categories, the weakest being Category 1,
21	and the strongest being Category 5. If you look at
22	the strengths, the unconfined compressive strengths,
23	they vary from let's say 10 for the weakest, up to
24	let's say 30 for the strongest.
25	The other thing that's very important here
	I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	15
1	is the Young's modulus. Again, all these results come
2	from the DOE's drift degradation analysis report of
3	2004. Look at the Young's modulus in gigaPascals,
4	you'll see that the Category 1 has very low Young's
5	modulus, only 1.9. The Category 5 is very almost
6	the same as the non-lith, with about 20 gigaPascal.
7	And, of course, this has to do with the lithophysal
8	porosity, which varies from 35 percent for the
9	weakest, to maybe less than 7 percent for the
10	strongest.
11	So what's going on at Yucca Mountain in
12	terms of stresses? If we forget about the thermal,
13	first of all.
14	CHAIR RYAN: I'm sorry. Is someone on the
15	bridge line, please?
16	MR. CHOWDHURY: This is the Center.
17	CHAIR RYAN: Could you tell us who you
18	are?
19	MR. CHOWDHURY: The Center.
20	CHAIR RYAN: Okay. And you are who,
21	individually?
22	MR. CHOWDHURY: This is Asad.
23	CHAIR RYAN: Okay. Thank you. Anybody
24	else with you?
25	MR. CHOWDHURY: I've got Roman, Luis, and
	I

(202) 234-4433

	16
1	Amit.
2	CHAIR RYAN: Okay. We'll have to get
3	those names from you maybe after the session. Thank
4	you.
5	MR. KEMENY: All right. So, again, back
6	to this Young's modulus. So if we take the case where
7	we don't have any thermal, so just basically what's
8	going on now, there's a few drifts at the repository
9	level now, and they're being subjected to the in-situ
10	stresses. So we're getting maximum tangential
11	stresses that vary from 3 to 18, and the 18 is coming
12	on the walls, and the 3 is coming from the roof, so
13	the walls have more stress right now than the roof.
14	And if you look at these, and you compare these
15	numbers to these, you can see that already we should
16	be seeing some kind of spalling on the drifts for
17	these Category 1 and 2 lith, which is the case. There
18	has been some documentation of some wall spalling
19	already in the drifts. And that's consistent with the
20	in-situ stresses that would cause these kind of
21	stresses.
22	Now when we add the thermal, and the
23	thermal is very tricky because the amount of thermal
24	stress depends on Young's modulus. If the rock is
25	stiffer, you will create you will generate much
I	

(202) 234-4433

more thermal stress. So what happens is, the reason the range is so great is because for this low Young's modulus, it's going to generate very -- just a few megaPascals of thermal stress, so the thermal won't really make much difference at all.

On the other hand, for the strongest 6 7 lithophysal units, the Young's modulus is 20, and it 8 will result in as much as maybe 45 megaPascals of 9 increased tangential stress. And so what that means 10 is it will exceed this value, so we can expect when we heat up the drifts that we're going to see some 11 12 thermal spalling in maybe the last three categories, probably not in these first two because the Young's 13 14 modulus is so low. And this would be both in the wall 15 and the roof. Maybe the roof actually has a higher --16 -- ends up with a higher amount of stress than the 17 walls.

Anyway, so if we compare these numbers to 18 19 the previous, just to show you again, here I'm using 20 this criterion that I get this extremely high stress 21 when the tangential stress at the boundary is 10 times 22 greater than the rock mass strength. Well, this never 23 occurs for either the static stresses, or the thermal 24 stresses. It would occur under seismic loading, but 25 it does not occur under thermal.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

As you can see, if I took a value of 30, I would be -- if I took 10 times that, I would need a max tangential stress of 300 megaPascals, or the maximum of about 50, and so on. So, again, just to reiterate, we're not in this sort of what I consider these extreme conditions that would lead to total drift collapse. We're in what I consider this slight to moderate over-stress condition.

All right. So now the issue that really has come up with regard to this is what happens if there's no rock support? Because it's true that even though this is very common in mining, and also tunneling, almost in every case, if there's going to be some over-stress, then they'll put some rock bolts in, or they'll put some shot-crete in.

16 Now in this case we have something 17 different. The Yucca Mountain drifts is going to remain under thermal loading for thousands of years. 18 19 There will be rock support that will be installed as 20 part of pre-closure, but it will deteriorate over 21 time. And this is kind of a heavy statement, because 22 we don't know ---- as far as I know, there hasn't 23 been a lot of work on exactly how long rock bolts will 24 last. Typically, rock bolts, for instance, are made 25 of sort of low-grade carbon steel. They deteriorate

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

19
very fast. It doesn't mean you couldn't make a rock
bolt that would last longer. But overall, DOE is not
taking any credit for the rock support, so similarly,
we basically assume that there's no rock support left
at the time of the maximum thermal loading.

So without rock support, there's kind of 6 7 two possible scenarios, and this is where really the 8 crux of the whole thing comes down to. The one 9 scenario is that rock reaches the peak stress, which 10 there will be some spalling. And if it immediately fails and falls, so I get some failure, and it falls 11 12 out, of course, that means that that stress has to The stress behind it will get loaded, 13 redistribute. 14 and it can probably fail, and so we'll get sort of a 15 progressive spalling. So the one is that the rock 16 strength is exceeded. That rock falls out completely, 17 and then the stress redistributes, and then I get this sort of progressive spalling. And in the end, I can 18 19 get a much larger failure zone than the initial over-20 stressed region.

The second scenario is that the rock fails, but still remains -- still has some residual strength, which is typical for most rock. Most rocks, even when it reaches the peak stress, and a little bit after, the rock strength does not go to zero

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

1 immediately. It goes gradually over strain, and so if 2 that's the case, if it retains some residual strength, 3 then the rock can remain in place. It will -- some 4 stress will redistribute, but not as much, because the rock doesn't actually fall out. It remains in place, 5 6 but it's damaged, so we end up with damaged rock that 7 stays in place. So then the failure zone really 8 doesn't grow. We don't get this progressive failure. 9 So those are kind of the two extreme scenarios. And 10 as it turns out, those are the two opinions, the first opinion by the CNWRA, the Center, and the second one 11 So that's kind of where we're left with. 12 by DOE. And if I look at where they get these 13 14 opinions, the DOE is basically based on modeling. 15 They used some discontinued modeling, UDEC and PFC, 16 and that gives them confidence that there in a sort of

17 second category where the rock is damaged, remains in 18 place; and, therefore, you don't see progressive 19 spalling.

20 On the other hand, the Center has done an 21 elastic analysis, and they get some slight to moderate 22 over-stress. And they just make the assumption, they 23 make the worst-case assumption that that rock will 24 completely be removed, and so it's really an elastic 25 analysis with what I call a worst-case assumption.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And just to sort of support both these ideas, that I think that if you go back in rock mechanics 20 years ago, we didn't have very powerful numerical models, so really the elastic analysis was kind of where we stopped. We would do an elastic analysis, and we'd say okay, we'd sort of have to wave our arms about what would happen after that.

8 Now in the last, particularly in the last 9 five or so years, there's been a lot of development in 10 being able to model into the post-failure region with these underground excavations. But it's still 11 12 relatively new, so I think what I'd say is the Center approach is the conservative approach, saying we don't 13 14 feel confident going into that post-failure region, if 15 we're going to make the worst-case assumption. 16 Whereas, the DOE, I think, has done some very novel 17 work in doing just that.

So let's talk about what I 18 All right. 19 did, what EPRI has done. We did some modeling 20 ourselves to try to also look into this. We did 21 standard 5.5 meter diameter. There's a typo. You So 5.5 meter 22 quys have -- it said radius in that. 23 drift, separated by 81 meter pillars. I took all the 24 material properties, basically the temperature, ground 25 conditions, everything has come from the drift

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

degradation analysis report. There's two kinds of analysis. I felt like one contribution that EPRI could make is to do something different than what DOE did, so that we could see another kind of analysis, and see what it gives.

So I did a continuum model, 6 where I 7 focused on the strength softening. Again, this goes 8 back to this issue here on the previous slide of, if 9 the failed region could retain some residual strength, 10 so that all has to do with the strength softening properties of the materials, so I did some continuum 11 modeling with a program called FLAC . 12 And I varied these softening properties to sort of see the range of 13 14 possible behaviors. And then also I did some 15 discontinuum modeling very similar to what DOE did, 16 but I also added a time-dependence. I added a time-17 dependent drift degradation and simulated stress corrosion cracking for 1,000 years, because that was 18 19 another issue that was brought up by the NRC, or by 20 the Center, was that you'd get a progressive time-21 dependent spalling over time, so I looked at that.

This was the mesh I used for the FLAC. It's only a quarter mesh, because for continuum analysis, it really is fine. All the other quarters are going to look about the same. But for the UDEC,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

I have what's called a block model. I'll explain more about this later, but it's a full mesh all the way around. You can see this is the big mesh, and this is just the -- focused on what's right around the drift. I focused on this block model. It's trying to simulate, realistic simulation of what actually occurs in the lithophysal properties.

8 So let's talk about the FLAC modeling. 9 Again, it's what we call a strain softening model. So 10 let me just explain what strain softening is. This is a typical stress strain curve for rock, and rock 11 12 typically we get sort of an elastic region. We get a slight non-linear region near the peak, you get a peak 13 14 strength, and then we get this what's called the 15 strain softening region after the peak, and then we 16 get some kind of residual strength at the large 17 strains. And so that's the stress strain curve. And, in particular, we're interested again in this post-18 19 peak, because that's where this difference between 20 being able to retain some residual strength. That's 21 the key, because you can see that out to the peak, the 22 strength goes down, but only after some amount of 23 displacement, and so it doesn't go down immediately. 24 So what I did, I used -- this is the 25 strain softening model in FLAC. Basically, I have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

	24
1	three things, cohesion, friction angle, and tensile
2	strength, and they all decrease as a function of
3	plastic strain down to some minimum value. And the
4	key parameter for the cohesion and the tensile
5	strength, the minimum value is pretty much zero. So
6	the key parameter for me is this gammaC, and that's
7	the strain over that's the plastic strain over
8	which these values decrease to their minimum value.
9	And I'll just here's an example of a simulation of
10	a uniaxial test using this strain softening model.
11	We've got stress on this axis, I've got strain on this
12	axis, so again I get this sort of linear region, and
13	then I get the strain softening.
14	I just want to explain a little bit about
15	the details of this, kind of waviness. The FLAC is
16	actually a dynamic model, so when I applied the load
17	initially, this actually creates a little bit of a
18	wave, so that wave is what we see here. So that's why
19	you see this little bit of a waviness rather than a
20	straightness, is just because when I first apply the
21	load, it's actually got this small amount of waving
22	properties through there.
23	And, similarly, you see this kind of thing
24	at the very end. And that's I get this instability,
25	and then it sort of rebounds a little bit, because,
ļ	

(202) 234-4433

(202) 234-4433

again, it's a dynamic model, so that's why. So if you see that, I just want to explain about that.

3 All right. Well, this is kind of the core 4 result that we get from the FLAC results. So I tried 5 many different values of gammaC, and what I tried to do here was find a value that's on one side, and a 6 7 value on the other side. So what ends up happening is, this is the Category 5 lithophysal tuff, so just 8 9 remember it's the strongest. It's got a strength of 10 about 30 megaPascal. It's got a high Young's modulus, and it's got a low lithophysal porosity, so it's got 11 12 the highest thermal stress that's generated. And what happens is, I end up producing a large spalling when 13 14 this gammaC is .002, which are these two left set of 15 And then I produce a very small spalling figures. region for gammaC of .005. 16 So there's sort of a 17 transition in-between these two strain levels.

And just to explain this figure. 18 The 19 little Xs all represent places that have gone plastic 20 in the FLAC model. And then there's also this kind of 21 orange, and the orange just shows the most recent And then there's 22 failures that are occurring there. 23 actually some tensile failures that occur here. And 24 you can see this is the uniaxial behavior for the 25 gammaC equals .002. And this is the uniaxial behavior

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

for the gammaC equals .005. So, again, a big difference.

3 I've created a scenario where I get the 4 large spalling. I've created a scenario where I get 5 the small, and the difference of these two strain And the reason for this has got to do with 6 levels. 7 the fact that when I look at the -- in the case that's 8 unstable, what's happening is the cohesion, and the 9 tensile strength are going to their minimum values, and so all the stress has to be redistributed. 10 And it's that same effect that I talked about, so then 11 that gets -- the load builds up there and fails again. 12 it's really very similar, these two are very 13 So 14 similar to these two scenarios. So I've sort of 15 created the case where I want to have the scenario where it does fail, and it's like it's being removed. 16 17 And the other case, it retains some residual strength. Now what I could -- just as a further 18 explanation, here's the case, the stable case. And if I look at the cohesion values, you can see that the key here is the cohesion has not dropped to the

19 explanation, here's the case, the stable case. And if 20 I look at the cohesion values, you can see that the 21 key here is the cohesion has not dropped to the 22 minimum values. Initial cohesion 7.5 megaPascal, and 23 then at most it's gone down by about 20 percent. 24 Whereas, if I look at the unstable case, you can see 25 here the cohesion goes all the way to zero, and that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

27 1 causes this advancement of the spalling. I really 2 have captured the two scenarios, one a stable case, and one unstable. 3 4 So now the real key now is, let's figure 5 out which one the actual Category 5 lithophysal tuff, which gammaC best fits that one, so here I do that. 6 7 Now what I'm going to look at is the key parameter 8 here is the strain it takes to go from here to here. 9 So if I look at this axis of strain at the bottom, how 10 much strain does it take me to get from the top to the bottom? 11 12 Now if I look at the unstable case, the peak to residual strain is less than .0001, and if I 13 14 look at the stable case, the peak to residual strain is about .0004. Now here's some actual results for 15 the Category 5 - well, this is actually Category 5 16 17 lithophysal, so this is actually the non-lith, and you can see, first of all, these are very much more 18 19 And, in particular, for the case with the gradual. 20 lithophysal, actually very gradual. And if I measure the peak to residual, so for the non-lith, the peak to 21 22 residual is about .001, and for the Category 5, the 23 peak to residual is about .015, so you can see here 24 that it's -- in this case, it's 15 times as much 25 strain as the unstable case. So I make the conclusion

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

from this only minor spalling is expected in Category because, certainly, the strain that you get is much greater than this minimum strain that you need in order to get this unstable.

5 Now you can make -- similar conclusions can be made for the other categories of lithophysal 6 7 tuff. I'll just show you. This wasn't in the thing. 8 I threw in the Category 3. This was in the report, 9 but it wasn't in the handout. And very similar 10 results for Category 3. Here's the uniaxial, here's again an unstable case, and a stable case. And, also, 11 the Category 1, this is a Category 1, same idea, an 12 unstable case and a stable case. 13

Again, the stable case you see still has wall spalling. And, again, as I talked about before, that's because that's a spalling that doesn't even -it occurred even without thermal loading. That's because it exceeded the strain. So that's an interesting case, so I'll repeat this last one.

I did a FLAC analysis for the Category 1 without any thermal loading, because that's what's going on now in the drifts. And there's some drifts at Yucca Mountain that are under static stresses, but they're not under thermal loading. And you can see that for the Category 1, I predict spalling even

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 without thermal loading. And if I look at the 2 cohesion values, you'll see that they don't drop very 3 much. Even though I get a spalling region, if I look 4 at the loss of cohesion, you can see that it's at most around 10 percent. So what you'd expect to see, you 5 wouldn't expect to see this big spall if you went 6 7 underground at Yucca Mountain, because the cohesion 8 values -- maybe you'd only see a little bit of 9 spalling right at the center, and that's exactly what 10 you see. So I think this matches very well with what So, again, this supports the idea that the 11 you see. strain is significant enough, the strain softening of 12 the actual Yucca Mountain rock, so that we're not 13 14 seeing this large spall, we're only seeing a very 15 small spalling region. So then the question, just to say well, at 16 17 least with Yucca Mountain, I haven't seen any case that would predict this large amount of spalling. 18 Do 19 rocks exist with a steep strain softening slope? And 20 make the statement here, in general, Т as the 21 heterogeneity in the rock increases, the peak to

22 residual strain would also increase. And so, for 23 instance, if I take a granite, this is typical 24 granite, and it's got very small scale micro cracks on 25 the order of the grain of granite, which might be a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	30
1	10 th of a millimeter, or might be a millimeter. And
2	if I compare that to the lithophysal tuff, you can see
3	there I'm getting heterogeneity on the order of
4	inches. And so what I'm saying is that because of
5	that, you can expect a lot more peak to residual
6	straining post-peak, than you would in something like
7	a granite. And I show some examples of stress strain
8	curves. For instance, this is a basalt, and has very
9	fine grain, volcanic rock, and also sometimes granite.
10	And so there are rocks where you can expect to see
11	maybe this kind of progressive spalling that wouldn't
12	be in the Yucca Mountain rock, and I'd say that's
13	because the heterogeneity is just too big, and so
14	that's creating this large strain. And that kind of
15	shows in the difference here.
16	You can see here's a case of the non-lith.
17	Here's the lith. By putting all these voids in there,
18	you can see how it's flattening out the post-peak.
19	And that's exactly what should be causing stability in
20	these cases. All right. That was the FLAC model.
21	Now I did another model with UDEC, and
22	this model is trying to closely simulate what actually
23	happens in the rock at Yucca Mountain. And, so, in
24	the lithophysal. And if I take a look, here's an
25	example of a picture of some of the lithophysal rock,
	1

(202) 234-4433

(202) 234-4433

1 and here's some of the numerical modeling. And what it 2 shows is as I load this rock up, you essentially get 3 cracks that connect the lithophysae, and that's the 4 mechanism that you expect to get failure in the 5 lithophysal zones, these cracks that connect the 6 lithophysae. And so how would a block fall? If I'm 7 going to get a block to fall in the lithophysal, 8 what's going to happen is that all sides of that 9 block, the cracks have to propagate, and it creates 10 this free block that can fall. So I say here that rock failure occurs by cracks that connect individual 11 12 lithophysae, and removable blocks, those are the ones that can create rock fall, are formed by cracks 13 14 connecting all sides of a block. So what that means is if I have cracks on 15 16 three out of four sides of a block, that may not be 17 enough. That block will stay in the roof, it won't actually fall out. It'll be damaged, the rock will be 18 19 damaged, but I won't get, necessarily, a rock fall

20 event. So a rock fall event means that I have to have21 creating a crack around all sides.

Now this is a lot in one slide, and this is a lot of work that went into this time-dependence, and I've written many papers on this, and I can give people some more references on this, but I thought I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

would be pretty brief about how I do the time-

3 Now I have this thing called a rock 4 bridge. It starts with what I call a rock bridge, so 5 what I'm calling the rock bridge is the in-tact rock between the lithophysae, so if you see a lithophysae 6 7 here and here, then that little piece of in-tact rock is what I'm calling a rock bridge. So that what we're 8 9 really doing is we're breaking the rock bridges, timedependent degradation of these rock bridges. And it 10 creates a cohesion quide, so what I have is a block 11 12 model, and on all sides of the block I have cohesion. The cohesion is there because we have these rock 13 14 bridges. And then as the rock bridges crack, then the 15 cohesion drops to zero on the boundaries of the block. 16 And if the cohesion drops to zero on all sides, then I have the potential for this rock to fall out. 17

Now based on the information in the drift 18 19 degradation report, I've taken average rock bridge 20 sizes of five, ten, and twenty centimeters for 21 Categories 1, 3, and 5 tuff. And then I have a 22 formula here, again, this comes from -- this has been 23 derived in some papers that I've written. Basically, 24 Ι have a cohesion that's based on the fracture 25 toughness, the size of the bridge, and the size of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

	33
1	block. And what I end up getting, which is
2	interesting, if I took all this information on the
3	lithophysae, obviously, when I'm in the higher
4	porosity lithophysae, like the Category 1, it's going
5	to have a much higher concentration. And based on
6	that, I calculated all the cohesion values, and when
7	I go through the analysis, I get for the Categories 1,
8	3, and 5, I get cohesion values of 3.8, 6.2, and
9	11.25.
10	Now as it turns out, this is very similar
11	to what DOE got in their UDEC model. They also put
12	cohesion. They matched the cohesion by doing some
13	kind of a matching procedure, but it's interesting.
14	I went through calculating the cohesion based on the
15	actual spacing of the lithophysae, and I got these
16	cohesion values, which turns out to match the DOE
17	quite well. And then I used power-law stress
18	corrosion formula for the cracking of the rock
19	bridges. And, again, I have material properties that
20	we determined for all of these values. So that's
21	basically how that works.
22	I'll show you some results now from the
23	UDEC. Again, it's a block model, so you can see here
24	I've got all these individual blocks. And on the
25	sides of the block are basically the cracks that will
ļ	I

(202) 234-4433

(202) 234-4433

1 connect the lithophysae. And, first of all, I've got 2 the first plot is the number of rock bridges that failed versus time. And it's in seconds, so basically 3 4 this goes to 1,000 years. And so what I did was in 5 the modeling, is I loaded it up to the max thermal, and I held it there for 1,000 years just to see what 6 7 the effect of having it at maximum temperature for 8 1,000 years. So that was kind of -- that's how I did 9 the thermal analysis.

10 And what you can see here is on this axis I've got number of rock bridges, and you can see the 11 12 maximum is about 140. And what you can see is that most of the damage occurs in the first hundred years, 13 fifty to a hundred years. 14 And then it sort of 15 flattens off, even though there's still a little bit 16 of damage. This shows the actual damage around the 17 excavation. This is Category 5 tuff. And you can see, if I look very closely, you can see blocks, and 18 19 you can see, the green shows where the bridge, it's 20 cracked. And what we see is, if I have a block where 21 it's green on all sides, then that's a potential block 22 that could fall out.

23 On the other hand, what I see mostly, 24 though, I see some green, but in a lot of instances I 25 still see some unbroken bridges. So in a lot of cases

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

Í	35
1	I get you can see I get a damage zone. I predict
2	the damage zone, but you can see there's a few blocks
3	that are actually falling. But, overall, the blocks
4	are not falling out because there's two reasons why
5	the blocks aren't really falling out. One is, because
6	I haven't because the bridges have not broken on
7	all sides, and so, therefore, they're still hanging
8	on. And secondly, because there's still frictional
9	forces, because the thing about friction is the
10	cohesion in the post-peak region basically drops to
11	zero, but the friction does not go to zero. Even when
12	I fail, I create a crack, there's still frictional
13	forces along that crack that's created, so the
14	friction may be lower than its initial value, but it
15	doesn't go to zero. And so because of that, I could
16	have a big wedge like this that's still in held in
17	place because I still have some stresses.
18	So one way to see that, and let's go to
19	the next slide. I'll show you some more. Now this
20	shows some of those frictional forces, so this shows
21	the green on this top plot shows open cracks. Now
22	the open ones are the ones that certainly there's no
23	stress on them, and they're ready to fall out. But
24	you'll notice that on the sides here, I've got some
25	ones in red, and red is the ones that have friction on

(202) 234-4433

(202) 234-4433

5 And one way to see that is to look at the 6 stresses, because what happens is I get a damage zone, 7 and the stress will move outside the damage zone. And 8 how much stress moves outside is a reflection of how 9 weak, or what's the kind of cohesion of that damage 10 zone. So if I look at the bottom figure, different colors represent different stress, and you can see --11 12 the highest stresses, as you can see, have moved out, right around the excavation, the stresses 13 SO are 14 lower. And you can see that red kind of band around 15 the outside. That's where the stresses have moved, so 16 there has been some damage, the stress has moved away. 17 But what's interesting is the stress has not gone to zero by any means, and you can see that in a lot of 18 19 places, I still have stresses on the order of 20 20 megaPascal, so that's plenty enough to hold these 21 blocks in place with friction. So the only places I 22 see where I'm really probably going to see rock fall 23 are the stresses at the very bottom here, the very 24 dark blue. So if I look at these very dark blue ones, 25 I think those are the ones I'd expect to see the rock

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

(202) 234-4433

1

2

3

4

5

6

7

8

9

	And so what I'm saying then, is based on
3	my UDEC analysis, we're predicting some rock fall
Ł	within the damage zone, but not the whole damage zone.
5	Overall, the damage zone seems to hold itself up,
5	except for a few places where the stresses have gone
,	to zero, or near zero, and they may fall out. So
3	that's kind of my sort of conclusion for UDEC
)	modeling.

10 Now Category 1 is a little different, so I thought I'd show that. Category 3 ends up the same 11 12 as Category 5. Again, the Category 1 is the weakest one, and that one is interesting because, first of 13 14 all, I get a bigger damage zone. You can see the 15 damage zone here is guite a bit larger. Again, the rate is 2-1/2 meters, and I'm getting maybe up to 2 16 17 meters of damage zone. But, again, if I look closely, you'll see that there's a lot of unbroken bridges in 18 19 the damage zone. And, again, that's because there are still stresses there. Because of the orientations of 20 21 those, they're not likely to break. And you can see 22 there's some rock fall events occurring, but overall, 23 I'm seeing some integrity of the damage zone. So, again, I don't expect that this whole thing will just 24 25 collapse.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	38
1	Now what's also interesting about the
2	Category 1 is I'm seeing some continued creep, even up
3	to 1,000 years, so at least for the Category 1, it
4	might be a case where given another 1,000 years or so,
5	there could be some additional damage. I submitted up
6	to 1,000 years, but certainly, even though most of the
7	damage occurs in the first 50 years, there seems to be
8	steady increase in damage over time in Category 1, so
9	that's the weakest lithophysal unit. I expect any
10	place that's going to see large amounts of rock fall
11	are probably going to be it's going to be there.
12	And if I look at these other two figures,
13	again, you can see there's a lot of this green
14	represents open. But again, there's red zones that
15	represent the friction. So, overall, again there's a
16	mechanism for this rock to be damaged, but not falling
17	into the excavation. And I can see that again here.
18	Again, you see these big red zones on the side.
19	That's where the stress is pushed out into these, but
20	there's a small region with this very dark blue, where
21	I expect to see some rock fall. And that's where some
22	rock falls are interfering. And so, again, I would
23	predict some isolated rock fall within the damage
24	zone, but not the whole damage zone, for the reasons
25	that I mentioned.
	I

(202) 234-4433

(202) 234-4433

1 Now I did model the non-lith. This isn't 2 in the thing. I had this in the report, but I didn't put it in the thing. I did model the non-lith. 3 This 4 is what I call regular. This is kind of this average 5 properties of the non-lith, and it's very stable. This is very similar to the DOE results, basically 6 7 predicting that almost no rock fall in the -- this 8 actually increases the stability. I get the same 9 The thermal stress actually causes to push results. 10 on those joints, and actually increases the frictional effects, so it's very stable. If I look at the number 11 12 of rock bridges, you can see it's very small. You can see there are still rock bridges that have failed, but 13 14 overall, there's not really -- there's no open zones. 15 You can see there's no green zones representing open And if I look here, there's not much load 16 zones. 17 stress even, so very stable, the standard, what I call 18 the average non-lith.

19 Now I also did, just for -- because I know 20 when you go underground at Yucca Mountain in the non-21 you do see zones that have a density of lith, 22 fractures, and they're referred to as these fractured 23 zones, or I forget what I call them. It could be a 24 fault zone, or it could be a highly fractured zone. 25 And there, I modeled them, and that was the worst, of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

all the things I modeled that was the worst case, was 1 that in this highly fractured zone in the non-lith. 2 3 The reason is because the failure mechanism in the 4 non-lith is different. These are actually joints, and there's hardly any cohesion on those joints. Whereas, 5 in the lith, the lithophysal zones, you have to create 6 7 those cracks between the lithophysae, and that gives 8 it some cohesion that you don't have. And in these 9 fault zones, I predict a lot of -- here it's got 800 10 rock bridges broken. You can see it's a very -- and here's a case where a lot of the bridges are broken, 11 so the only thing -- there's really no cohesion left 12 in The only thing that's holding up 13 here. is 14 frictional effects. If you go to this one, you can 15 see a lot of open, and this is a case where I would 16 expect to get some rock failure. And, again, a lot of 17 zones are very low stress near the boundary, so the only place where I really did find the condition where 18 19 might see a lot of rock fall is this highly Ι 20 fractured zone in the non-lith. 21 So conclusion, again, I did All right. two kinds of models. 22 I did the FLAC and the UDEC. 23 The FLAC results was a strain softening model, a 24 continuum model. Ιt was based on varying the 25 steepness of the strain softening slope, and I show --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 it showed that if the slope is steep enough, sure 2 enough, you will get a large spall. But for the 3 material properties of the Yucca Mountain tuff, I 4 never got a steep enough strain softening slope, so I 5 come to the conclusion from the FLAC that I wouldn't see these large spall regions because there's always 6 7 -- the strain softening slope is not steep enough in 8 any of the rocks at Yucca Mountain. 9 The UDEC results I simulated by this crack 10 growth around these lithophysae, creating free blocks that can fall out. And it showed that you will always 11 12 -- you do create a damage zone, in every case there is It's bigger in the weaker rock, it's 13 a damage zone. 14 not as big in the stronger rock. Also, I did time-15 dependence, and showed that there it is time-16 dependence, but it generally stabilizes at about 150 17 vears. And the only kind of actual rock fall I saw was isolated blocks within the damage zone, not the 18 19 whole damage zone, just isolated blocks. 20 There was a good correlation between the 21 FLAC and UDEC. There was some little differences. I 22 noticed that - this is a Category 1 tuff - but I 23 didn't vary the -- I kind of made the standard 24 orientation of block which consisted of sort of these

three sets of joints. And because they were fixed, I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

1 think that sort of influenced the exact location where 2 the weakest zone was. I noted that in the report. 3 But, overall, other than that, I think there was good 4 correlation between the FLAC and UDEC results. And 5 the results I showed are in agreement with the DOE in the drift degradation analysis, and they're in partial 6 7 agreement with the Center's results. And they're in 8 partial agreement because it does predict damage, 9 It does predict some failure, certainly. some 10 spalling, but it doesn't predict total drift collapse. So for the last statement here, neither the FLAC, nor 11 the UDEC predicted large amounts of spalling that 12 would fill the drifts with rock blocks. 13 14 MEMBER CLARKE: Okay, John. Thank you. 15 Dr. Ryan, I know you need to leave soon. Do you have 16 any questions? 17 CHAIR RYAN: No, go ahead, Jim. MEMBER CLARKE: Okay. Professor Hinze, as 18 19 Dr. Ryan mentioned, is fighting his way to Rockville. 20 He's had some serious travel difficulties, but he did 21 send in some questions. 22 MR. KEMENY: Okay. 23 MEMBER CLARKE: And I want to make sure we 24 have time for those, but let's take a couple from the 25 Committee, first. So, Ruth, do you want to go?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	43
1	MEMBER WEINER: First of all, thank you
2	for a very, very thorough presentation. I have two
3	questions that are not related to each other.
4	The first is, are there natural analogs
5	for this process? I mean, I know that we have done
6	Banolier National Monument, for example, is full of
7	caves that people have lived in in volcanic tuff.
8	Does that kind of situation afford you any sort of
9	natural analog to what you're modeling?
10	MR. KEMENY: I think so. I think the
11	problem always come in the thermal. You know, the
12	Center is very insistent that the difference
13	there's a lot of places that have high stresses, that
14	don't show complete drift collapse, and the DOE said,
15	well, look at that. And then the Center says well,
16	those don't have thermal loading, so that's really
17	and, unfortunately, I can't think of a maybe an
18	analog where you've got the same kind of thermal
19	loading. I think that's probably the problem with the
20	analog.
21	MEMBER WEINER: Yes. I don't think you
22	have the same kind of thermal loading. People did
23	build fires in those openings.
24	MR. KEMENY: Sure. True.
25	MEMBER WEINER: And that gives you, more
ļ	I

(202) 234-4433

or less, a continuing thermal loading, but the temperatures, of course, aren't as high. There's no spike.

4 MR. KEMENY: Well, certainly, the best 5 analog we have is the heater test. The heater test in the non-lith, which is good because according to my 6 7 analysis, the non-liths would have steeper strengths off the slope, so if you didn't see runaway spalling 8 9 in the non-lith, you would definitely not see it in And then the only -- the Center 10 the lith. is basically saying well, that's not a good test because 11 12 it's got rock bolts and mesh. And I would say again, you know, DOE said the same thing, if you look at the 13 14 stresses, the kind of support stresses given by rock 15 bolts, there is some. I mean, typically, I mean, 16 think about the stresses at Yucca Mountain, you've got 17 10, 20 type of megaPascal static, and then it could go up to like 50 megaPascals thermal. 18 The support 19 pressure of a rock bolt is probably half a megaPascal, 10th of a megaPascal, it's very small. And, again, 20 21 that assumes that you put it in before you get the 22 deformation, which is the case at Yucca Mountain, 23 probably. I assume they put the rock bolts in before 24 they heated it up. I assume that, so if that's the 25 case, then yes, you could get a slight amount of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

1 support stress from a rock bolt, but it would be so 2 small that I wouldn't think it would change the 3 dynamic of the spall region. So if you're getting a 4 very small spall region in the heater test, I would 5 think that's a pretty good indication that that would similar, even if you didn't have any rock spall. 6 7 That's something you could analyze, because again, 8 rock bolts just don't apply that support pressure, probably a 10th of a megaPascal, compared to the kind 9 of 20 to 50 megaPascals that's running in there, so 10 it's a very small amount of support pressure. 11 12 My other question really MEMBER WEINER: ought to be addressed to the Center, I quess. There's 13 14 a big difference between your results, and the And I remember that we discussed 15 Center's results. 16 this some years ago in visits to the Center, and also 17 in presentations to this Committee. What do you see is the resolution of that? 18 19 MR. KEMENY: First of all, I don't see it 20 as a big difference. MEMBER WEINER: Oh, that's interesting. 21 22 MR. KEMENY: You know, the differences are 23 coming from -- it's coming from the conservatism, I 24 would say, because they -- the Center ran an elastic 25 analysis, which is fine, and the elastic analysis

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 showed some failure, a small amount of failure. It's 2 very similar to what I showed, and what DOE showed. 3 They are just saying since we don't know what's going 4 to happen in the post-peak, let's take the worst case 5 scenario. So, again, it's not as if they modeled, and It was 6 they created large spall from the model. 7 really from an assumption. And, again, if I'm wrong 8 on this, let me know. But I was assuming they did an 9 elastic analysis, and then they made an assumption. 10 And since they didn't want to make -- they just took the worst case assumption about what would happen in 11 12 the post-peak. And what I tried to do is say okay, let's do better than that. Let's just see if we can 13 14 model the post-peak, similar to what DOE did. And 15 when you actually model the post-peak, it looks like 16 it's stable. So, again, I would say it's not 17 necessarily a huge difference in terms of the starting point. It's just this kind of sort of an assumption 18 19 that's made. 20 MEMBER WEINER: So you would say that the

21 differences, just to repeat what you just said so I 22 straight, the differences it are that the have 23 Center's assumptions were conservative. But within 24 their assumptions, your models would yield basically 25 the same or very similar results.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	47
1	MR. KEMENY: I think they would admit that
2	their assumptions are - I think, I'm not positive -
3	that they are conservative, because again, it's true,
4	that modeling post-peak rock behavior is a relatively
5	new thing in rock mechanics. I mean, we haven't been
6	doing it for 20 years, we've been doing it for maybe
7	less than 10 years, so it's not necessarily totally
8	out of line to say, okay, well, we can't model post-
9	peak; therefore, we just not going to. We're going to
10	make a worst case assumption. But I think the Center
11	would admit that they were making a worst case, a
12	conservative assumption.
13	MEMBER WEINER: Okay. Thank you.
14	MEMBER CLARKE: Okay, Ruth. Thank you.
15	Allen?
16	VICE CHAIR CROFF: A couple of things. If
17	you get damage in the rock, as you project, and
18	apparently DOE projects, and then a seismic event
19	comes along, is the rock a lot more susceptible to
20	spalling?
21	MR. KEMENY: Definitely. The real
22	question then, if the rock is damaged, then when a
23	seismic event comes along, it's more likely to the
24	rock fall would be worse than if it wasn't damaged.
25	VICE CHAIR CROFF: Okay. And is the
	1

(202) 234-4433

	48
1	seismic event that would be required the magnitude of
2	it, particularly large, without defining what large
3	is?
4	MR. KEMENY: Yes. And it could be that
5	the seismic event, it could create drift fill. It
6	might be smaller than if the rock wasn't there, so
7	that's right.
8	VICE CHAIR CROFF: Okay.
9	MR. KEMENY: But, again yes, that's
10	probably true. And it goes back to how much damage
11	there is. I'm not predicting like a meter to two
12	meters of damage around that
13	VICE CHAIR CROFF: Has anybody looked at
14	superposition of these two, I mean, assuming the
15	damage occurs, and then at some point well down the
16	road you get a seismic event. Has anybody looked into
17	that?
18	MR. KEMENY: That's a good question. We
19	did not, because we did the seismic, but we didn't do
20	the thermal. And, similarly, DOE did the seismic and
21	thermal separately, if I remember right. I think we'd
22	all agree that it would be I think it's reasonable
23	to agree that a damaged rock is going to fare worse in
24	a seismic event than an undamaged rock.
25	VICE CHAIR CROFF: Okay. Second, I'm a

(202) 234-4433

49 1 little intrigued by this mention of stress corrosion 2 cracking. I don't think of rock as being susceptible 3 to that kind of thing, but if I understand what you 4 mean, the rock under ordinary conditions is fairly 5 stable in the presence of the percolating water coming down from wherever. But what you're implying is that 6 7 under stress, it becomes more susceptible to, I quess, corrosion or dissolution, if I can use that word. 8 Is 9 that what we're talking about here? 10 MR. KEMENY: Yes. It's а similar phenomenon that's very common. You guys speak that 11 12 language with the metals, I know, but yes. I mean, 13 the crack -- the way we talk about it is, we call it 14 sub-critical crack growth. So what's happening is the 15 rock is under stress, and so all the little cracks are 16 under stress. And they're not enough stress to break, 17 because if we take a sample in the lab, I have to -in order to reach the tensile strength, I have to 18 19 pull a certain amount, and so it's under less than 20 that. But given enough time, the crack will continue 21 to grow, and it grows slowly but surely over time. 22 VICE CHAIR CROFF: And it's growing

24 MR. KEMENY: Well, the main mechanism for 25 stress corrosion cracking in rocks is -- again, it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

because corrosive --

23

	50
1	stress enhanced, so it's at the tip of the crack, and
2	it's typically in quartz, you get it from the
3	silica, the switch, you have a silica oxygen bond and
4	it re-arranges and becomes a weaker bond, and then
5	it's able to break. It probably a similar mechanism
6	I don't really know much about the metal stress
7	corrosion, but it's a chemical reaction that's
8	essentially taking place at the tip of the crack.
9	It's enhanced at the tip of the crack. And you need
10	water to do it, you need some amount of humidity, at
11	least, in order to drive it.
12	VICE CHAIR CROFF: Has that been studied
13	very much in tuff?
14	MR. KEMENY: Oh, yes, it's been studied a
15	lot. And I should say that DOE's model is the same.
16	The DOE has a time-dependent model in their drift
17	degradation, and it's also stress corrosion cracking
18	model. It's a little different than the one I used.
19	I used this what's called a power-law. They use an
20	exponential function. But other than that, they're
21	both they devote a lot there's a whole chapter
22	devoted to this in the drift degradation analysis
23	report about their model. Yes, and it's a stress
24	corrosion model.
25	VICE CHAIR CROFF: Okay. And are the time
	I

(202) 234-4433

51

constants on stress corrosion cracking - I mean, you've run through your models, and you basically conclude the tunnel is reasonably stable, some spalling but not much. Are the time constants on stress corrosion cracking such that it wouldn't have a lot of effect during the time you looked at it? 6 Ιt might be 100,000 years, or --

MR. KEMENY: Well, let me say first, it's 8 9 not a standard type of test to determine these time-10 dependent parameters. I am a little uneasy on those properties, just because if you look at how 11 Ι 12 determined those, a little bit of back-calculation I actually reduce the properties. 13 there, so Ι 14 mentioned this in the report, I did the analysis where I just reduced the properties, just to see what would 15 Because let's say I'm off on this one 16 happen. 17 parameter, so I reduced it much farther than I thought it would be, and just to see the difference. And it 18 19 wasn't a huge difference, but there was a difference. 20 But yes, I think what it's showing is, with the kind 21 of stresses we're seeing there, 1,000 years isn't 22 You're right. really enough. When you go to a 23 million years, you start to see a lot more definition 24 of that kind of mechanism. You can, it depends on the 25 I think everybody knows, level of stress. for

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

7

Í	52
1	instance, that like let's say I have a rock, and
2	it's got a strength of 100 megaPascal. If I sit it at
3	80 megaPascal, let it sit there, probably after a few
4	months it's going to fail. So if you're close to the
5	failure strength, then you might only have to wait a
6	few minutes, or a few months, or a few years. But
7	let's say I only put a load of half the stress I need,
8	well, then it may take 10,000, or may take 100,000
9	years to fail. It will still fail, but it may take a
10	lot longer, and it's sort of a logarithmic type of
11	thing. So as the and these tests have been done in
12	the lab. They can do the test where you put it at 90
13	percent because it fails within a few hours. You can
14	do the test at 80 percent of strength, maybe it takes
15	a few days. But as soon as you get to like 70 or 60,
16	you can't wait that long. It may take years, it takes
17	tens of years, so, unfortunately, the test results
18	don't go down the very low values because it would
19	take too long to have them fail. So we're
20	extrapolating all this, and they also do this in the
21	DOE, they have to extrapolate to these lower values.
22	VICE CHAIR CROFF: Okay. Thanks.
23	MR. KEMENY: Yes.
24	MEMBER CLARKE: Okay. Thank you, Allen.
25	I want to get to Bill's questions, but one for you,

(202) 234-4433

(202) 234-4433

	53
1	John,
2	MR. KEMENY: Okay.
3	MEMBER CLARKE: I'm looking at the second
4	bullet in your conclusions, and it says that the UDEC
5	results indicate that damage would occur within 50 to
6	150 years. Is that the case with the FLAC results, as
7	well?
8	MR. KEMENY: Well, the FLAC was not time-
9	dependent.
10	MEMBER CLARKE: It's a different kind of
11	
12	MR. KEMENY: I didn't do a time-dependent
13	FLAC result.
14	MEMBER CLARKE: Okay.
15	MR. KEMENY: The way I do time-dependence
16	in UDEC is, it's actually the stress corrosion
17	cracking, but there are really no cracks in the FLAC.
18	FLAC is a continuum model, so, unfortunately, in a
19	continuum model, you don't really have a crack, so I
20	don't really know how to do the time-dependence in
21	FLAC.
22	MEMBER CLARKE: I guess what struck me
23	with that is that that would be during the period when
24	the repository would still be open.
25	MR. KEMENY: That's true. And I feel that
ļ	I

(202) 234-4433

	54
1	same way, that in some sense - and that's what these
2	results show. We would be able to see let's say we
3	were wrong. Scientists are not we're wrong
4	sometimes, so let's say we were wrong, and you did get
5	big spalling. Well, you'd see it, because it
6	certainly would happen right away. If you look at
7	those curves, I mean, all the damage, you get a very
8	steep amount of increase in damage in just the first
9	10 years, so you would see it.
10	MEMBER CLARKE: Okay. Thank you. Neil
11	Coleman of the ACNW&M staff has been working very
12	closely with Bill on these issues. He has Bill's
13	questions, so Neil.
14	MR. COLEMAN: Okay. Could you comment on
15	the in-tact rock strength versus rock mass strength,
16	and the scaling relationship, and how that was
17	addressed in the modeling that you did?
18	MR. KEMENY: Right. Now it's right at the
19	beginning. I hope I'm not wrong in this, but the
20	typical a lot of rock mechanics has been developed
21	for the hard blocky rock containing joints, including
22	your typical three-joint sets. In non-lith, there's
23	this whole new thing, this is swiss cheese rock, and
24	something that we were not used to. But, anyway, I
25	think if I'm not wrong, these for these Categories

(202) 234-4433

	55
1	of 1-5, these are rock mass properties, but it's a
2	different kind of rock mass than you typically see for
3	a hard blocky rock. Because what happens with hard
4	rock is we test a little piece of granite in the lab,
5	we get 200 megaPascals for the strength. Well, when
6	we extrapolate that to the scale of a large slope or
7	something like that, it can go down by a factor of
8	100. The rock mass strength can be 100 times lower
9	than the in-tact strength. In-tact strength is a
10	little piece that we test in the lab. The rock mass
11	is the big piece we see on a highway, or underneath an
12	excavation, and it can be a difference by a factor of
13	100. It depends on how many joints you have, the
14	spacing of the joints. But this lithophysal rock is
15	different, it doesn't have a lot what we consider
16	these classical low-cohesion discontinuities, and so
17	because of that, when you test a sample that's big,
18	this big, it's a little bit weaker than a small
19	sample, but it's not the factor of 100. So as far as
20	I know, these are the rock mass, and there is no kind
21	of equivalent in-tact, because - well, you can, but if
22	you tested the material in-between the lithophysae, I
23	mean, this is essentially the 30 is probably
24	essentially the in-tact strength. And then by adding
25	the lithophysae, reduced it to 10, but if you didn't
I	1

(202) 234-4433

(202) 234-4433

have any lithophysae at all, you're probably just a little bit stronger than that one, so maybe 35 or 40 megaPascal. So that's essentially the in-tact. And then as I add this heterogeneity, it keeps getting weaker and weaker, so these are what I would call for the lithophysae.

7 Now this bottom one I put, maybe that's 8 what he's referring to. You can -- this is basically 9 using one of these Hoek and Browne rock mass strength 10 criteria, so based on R mar. R mar is something that he's calculated in the non-lith, you get R mar values 11 of like 50 or 60, and based on that, you take in-tact 12 rock, you can calculate it, and that's where that is 13 14 coming from.

15 Actually, the staff are MR. COLEMAN: 16 here, and I just wanted to confirm something by asking 17 Raj, as I understand it, the current design, and you won't see the final design until an LA is submitted, 18 19 but the current design involves stainless steel rock 20 bolts, and a thin layer of a perforated stainless 21 steel mesh. Is that still your current understanding? 22 MR. NATARAJA: Yes, but that's not being 23 discussed here, because that support is only supposed 24 to be helping you during the pre-closure period, and 25 no credit is being taken for the performance of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	57
1	support system during post-closure.
2	MR. COLEMAN: Right. But I'm just asking
3	what the current design was.
4	MR. NATARAJA: Yes, what you just said is
5	what we have seen in the current conceptual designs.
6	MR. COLEMAN: Certainly, stainless steel
7	rock bolts would last much longer than the carbon
8	steel that's typically used.
9	MR. NATARAJA: They could, but as the
10	presenter said, I don't think there are too many
11	studies documenting the life span of ground support
12	system.
13	MR. KEMENY: The key is it's quite a
14	corrosive environment for the rock bolt. It's in the
15	rock, fluids are going to travel. Well, they can be
16	grouted, I shouldn't say that. Well, they can't be
17	grouted because you can't use cement. I don't know,
18	so if you grouted them and protected the rock bolt
19	from the environment, they would last longer, so I
20	don't know if that's going to if they're going to
21	be grouted or not.
22	MR. COLEMAN: Of course, there's also
23	going to be a thermal period with extensive dry-out of
24	the rock that would be keeping a lot of moisture away.
25	MR. KEMENY: That's true. So if the
	I

(202) 234-4433

moisture is away, then yes, stainless steel rock bolt, 1 2 I would think would last a long time. And I would 3 think that -- I think there are some studies going on. 4 When I just did some Google search, I found some various studies in the perforated sheet, and on the 5 It looks like people are studying the 6 rock bolts. 7 long-term behavior of those things, but they haven't 8 entered into any of these initial documents, the 9 results, I guess. But it does appear there are some 10 studies going on on this stuff.

Also, there's a question 11 MR. COLEMAN: 12 about the basic testing that the data are based on, 13 the uniaxial compression testing. Now this, of 14 course, is different from the actual conditions 15 underground. Initially, you have a cylindrical tunnel 16 that's unconfined on one side, and a lot of these 17 conclusions about the rock strength are based on a completely unconfined test. this add to 18 Does 19 conservatism of the analysis in what one concludes 20 about the strength?

21 MR. KEMENY: I don't know. I'm not sure. 22 That's a typical -- if it's a typical, we just assume 23 that's the uniaxial strength. I don't think that's 24 necessarily that conservative.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. COLEMAN: In identifying the depth of

(202) 234-4433

25

	59
1	spalling that takes place, I believe some of the
2	materials you've written refer to a self-limiting
3	process in this depth of spalling. And, although, I
4	think you've addressed that at several points in your
5	talk, could you just briefly summarize the things that
6	limit the depth of spalling in the worst case.
7	MR. KEMENY: Here, these two figures -
8	well, these two, so if I take a look at these two,
9	here's a case where I do see a lot of spalling, here's
10	a case where I don't. And the difference is the
11	key difference, it's in the post-peak behavior of the
12	material.
13	Now if I look at the stable case, what I
14	see here is, I see, again, I see a very narrow region
15	where I'm getting some softening. But if you look at
16	these numbers right here, it starts at 7.5, only goes
17	down to 6, only about a 20 percent decrease in the
18	cohesion, and in the tensile strength. And because of
19	that, it's basically it still maintains some
20	residual stress. So the key is if I go maybe I
21	didn't do that before - is start at the peak, and that
22	material in the boundary is not down here, it's right
23	here somewhere. It hasn't gotten all the way down.
24	And the reason is because there hasn't been enough
25	strain. Because this kind of it's all got to do
I	I

(202) 234-4433

(202) 234-4433

with this kind of extra stuff right at the peak here, so it ends up sitting right there, instead of dropping down.

4 If I go to the unstable case, you can see it's a very sharp drop. It doesn't have any strain at 5 6 the top there, so as soon as there's a little strain 7 in the post-peak, it drops. So what happens is, you 8 can see it started actually on the wall, but what 9 happens is it completely reaches bottom, so all the 10 stress has to go to the neighbor. That gets bottomed out, and so on. And the reason it sort of starts at 11 the wall and sort of progresses toward the roof is 12 13 because that what happens to the stress rate over 14 As you heat up an underground excavation, time. 15 initially you're just heating up right at the 16 boundary, so the high stresses are equally around, all 17 around the boundary. And it's going to fail first right here, because that in-situ stress is the highest 18 19 But then with time, what happens is in the wall. 20 there starts to be some interaction between the drift 21 here and the drift that's 81 meters apart, and those 22 temperatures start to expand that pillar. And that 23 creates higher stresses in the roof. So you get sort 24 of -- it starts here, and it kind of migrates over to 25 And if you look at this figure here, you the roof.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

actually see -- this one, you can actually see the same thing, because what happened was, these are green, which represents yield in the past. And then the active yielding is in the roof, so what happens, again it started in the wall, and it migrated up to the roof, and that's sort of the process that we see there.

But anyway, so the big factor is that the 8 9 fact that it's not very steep in the post-peak means that it can retain residual strength, and it doesn't 10 have to fall out. It can just sit there with slightly 11 -- it's a stable -- it turns out this is a stable 12 equilibrium condition, with just a slightly yielded 13 14 zone here, and it's like you said, it's self-limiting 15 in this particular case. But if it was a steeper 16 strain softening, it's not self-limiting, it causes 17 that progressive spalling.

18 MR. COLEMAN: And here, you're talking 19 about a case where there's no consideration of ground 20 support at all, just the natural case.

21 MR. KEMENY: Right. Right. Sure. I 22 mean, it makes sense. If you create a damage zone and 23 the rock doesn't fall out, it retains a little 24 residual strength, then that's the best support. It's 25 like a natural support system, in a way, because the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1 stress moves away from it a little bit, so there isn't 2 much stress in it, but it doesn't fall out. That's 3 right. 4 MR. COLEMAN: The NRC has recently 5 published TPA 5.1, the User's Guide, and the current 6 best estimates by the staff on collapse of the 7 tunnels. And the current estimate in there is that 8 full collapse of the tunnels would occur in less than

9 2,000 years. And that certainly seems very different 10 from what you're talking about here. It does not 11 appear to take into account the variation in the rock 12 properties, the lithophysal.

MR. KEMENY: You're right. 13 Right. Well, 14 that's another -- that's true. That's another thing 15 that -- these are -- you would expect -- I mean, 16 there's a significant change in the properties between this lithophysal 1 and 5, so you wouldn't expect 17 everything to just happen the same across the board. 18 19 You would expect there to be differences between the different materials. 20

And what I'm kind of showing, if there's any rock that's the most susceptible, it would be this lithophysal 1. It's got the highest porosity, it only represents 2.5 percent of the repository, but that's the one that, if anything, may show some more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

63

1

2

3

4

5

6

MR. COLEMAN: I'm trying to think of a very simple way to describe this. The liths that you're showing, the lower right in that figure shows this is the thermal phase, and you're showing a greater depth of spalling in the roof?

7 MR. KEMENY: Well, no. Actually, I should be careful, because this is what an elastic analysis 8 9 would kind of show, because what an elastic analysis that there's 10 shows is several phases of this temperature cycle. Initially, you're heating up right 11 12 around the room, and then in the end, you're heating the whole pillar and the whole rock mass 13 up is 14 expanding. In the end, the elastic analysis, this is 15 very similar to what -- maybe what the Center came up with. But what I kind of show sometimes, and that's 16 17 very similar to the stable case, I get here. You can see I've got there's more cohesion lost in the roof 18 19 than there is in the wall, so I also get that. But in 20 this case, you'll notice it's a little bit different, 21 because in this case, because I get failure of the 22 wall first, it actually changes the stress state, so 23 you end up with sort of a different kind of a failure 24 in the end. And I mentioned this in the report, that 25 in a true non-linear analysis, the stress path does

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

matter. And you can see that here, the stress path results in a different failure than if you just did an elastic analysis. You might predict something like this, but because that's elastic, so there's no failure anywhere. But when you actually take into account the non-linear of the rock, you might get a different result.

8 MR. COLEMAN: One last point here. You 9 describe thermal period there's how in the а 10 transition in the maximum stress more to the overhead in the tunnel than in the walls; whereas, in the 11 12 present day, there's a greater stress in the walls. Sort of a simple way to look at this, if you get 13 14 initial spalling from the overhead in the drift, then 15 more of it begins, from a stress point of view, to 16 look like walls. Is that one of the things that in a 17 simple way is limiting the overall spalling, where it eventually completely bridges over, and you don't get 18 19 much additional failure?

20 MR. KEMENY: I don't know. Well, I mean, 21 the -- initially, the stress is higher in the walls 22 because this is a normal faulting regime. Normal 23 faulting, you've got your highest stress is your 24 vertical stress, so initially, the highest stress is 25 in the wall, because this is your highest in-situ

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1 stress is the vertical stress, because it's a normal 2 faulting type of thing. But the transition is really 3 -- first of all, when you start to heat, if you look 4 at solution for thermal stress due to putting a hot 5 canister, it gives an equal thermal stress pretty much all the way around, and that's true. So then what 6 7 you're doing is, you're still not creating this 8 effect. But that final effect comes from the fact 9 that you heat those pillars, 81 meter pillars up, and 10 that expansion creates this sort of third phase which has got a high stress component in the roof. 11 And that's got to do with -- because it's allowed to --12 the mountain basically moves up, but it can't really 13 14 -- because you've got all these parallel drifts, it's 15 kind of forced to not expand laterally, so it creates 16 the stress. But that's when the full heating of that 17 pillar -- I didn't bring any -- I should have brought some figures on that to show you, but that's really 18 19 what's creating the high stress on the roof, is the 20 heating of the pillar. It wants to expand, but 21 because I have parallel drifts, it can't expand, so it 22 creates a high horizontal stress. And that's kind of 23 the third phase. 24 The first phase is before you heat, you

(202) 234-4433

have the highest stresses here.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

(202) 234-4433

When I thermally

heat, the thermal heating is kind of equal all the way around, but you'll end up with the higher stresses in the wall because you add the in-situ stress to the thermal. And then finally as the pillar starts to heat up, you'll start to see a little more -- maybe a little more stress in the roof. But you were giving some analogy which I couldn't quite --

8 MR. COLEMAN: Just as a final 9 clarification here. Your first bullet there, "Depth 10 of spalling less than 1 radius", it would predict less 11 than 1 radius away from the boundary. And is that for 12 the lithophysal Category 5?

Well, I'm not -- I put this 13 MR. KEMENY: 14 mainly -- I'm trying to just say well, what do I mean 15 by slight to moderate over stress? I'm not really 16 speaking of Yucca Mountain so much here. I'm iust 17 speaking about any place. I'm saying if the overstress is greater than the radius, then we might -- it 18 19 might start to get into this category here, what I 20 consider to be -- we used the word here, we call it 21 squeezing ground conditions. We have this super high 22 stress, we refer to that as the squeezing ground 23 condition, because the stress is so high. So what I'm 24 saying is, once this D is greater than R, or maybe 25 even 2R, then you've kind of -- now it's at the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

ĺ	67
1	squeezing ground condition, as opposed to this, what
2	I'd call slight to moderate over-stress condition.
3	MR. COLEMAN: Well, from your modeling,
4	what insight would you have about not looking at
5	the most highly fractured case, which is a severe
6	case, but of the different categories of lithophysal
7	versus non-lithophysal rock, what sort of radius depth
8	of spalling
9	MR. KEMENY: Well, the FLAC is predicting
0	this to skip. I call it like a skin effect. So,
.1	again, you get sort of a different result between the
.2	FLAC and the the FLAC is predicting various thin
.3	skin of spalling, less than way less than a meter,
. 4	less than a half a meter. And that's shown by
5	basically this. So, again, we predict that you always
G	get this cant of stable case. But you're getting come

16 get this sort of stable case. But you're getting some 17 small region where you're over-stressing the rock, and 18 it's just what we call a skin effect. Now that's what 19 you get from the FLAC.

Now what you get from UDEC is a little bit different. UDEC kind of predicts this kind of result, where you've got a damage zone that could be quite thick, but you're only predicting very little isolated blocks to come down within that damage zone. So the who damage zone does not come down, and that's because

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

1

1

1

1

1

1 the definition of damage zone is different than the 2 definition of what the FLAC sees. The definition of 3 damage zone means that at least one side of that block 4 is cracked, but that doesn't mean all sides are 5 cracked. So just because you have a damage zone, these blocks won't necessarily fail, because they're 6 7 held up, and there's only some failure on certain 8 sides of the blocks, and not all sides. That's why. 9 Again, if you refer to the damage. So this is very 10 similar to what DOE was getting, the damage zone was on the order of a meter, but again, it wasn't really 11 showing that much rock fall within the damage zone. 12 Just maybe isolated blocks here and there. 13 14 MR. COLEMAN: Thank you very much. A very 15 informative presentation. Thank you, Neil. 16 MEMBER CLARKE: MR. COLEMAN: We have five minutes. 17 You might want to invite any comments from the staff. 18 19 MEMBER CLARKE: I was going to do that, 20 but Ruth has a quick one, and hope it's a quick one. 21 And I want to invite the Center to participate, as 22 We just have a few minutes, and we do need to well. 23 24 MEMBER WEINER: This is a very quick 25 You're assuming that the effects that you question.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	69
1	see are uniform along the entire drift.
2	MR. KEMENY: Sure.
3	MEMBER WEINER: That's correct. Is that
4	a good assumption?
5	MR. KEMENY: Well, I think, again, this is
6	the same assumption that DOE makes, that the
7	lithophysal makes for an okay, two-dimensional
8	approximation, because it's kind of like the swiss
9	cheese rock, so it's really okay.
10	Now when you go to the non-lith, you
11	notice they did a full 3-D analysis, because really
12	you run into problems there by making a two-
13	dimensional assumption. But for the non-lith for
14	the lithophysal, then I think it's a pretty good
15	assumption, yes.
16	MEMBER WEINER: Okay. Thanks.
17	MEMBER CLARKE: Okay. Antonio has
18	something.
19	MR. DIAS: Yes. Hi, this is Antonio Dias
20	with the Center staff, and it's somewhat to follow-up
21	from what Ruth was saying. In your model, UDEC model,
22	you basically assumed at the start of your simulation
23	that that was a pristine drift. What would be the
24	consequence, and how difficult would it be to
25	incorporate actually the effects of the drilling that

(202) 234-4433

70 1 cause on those walls, so instead of starting from a 2 clean sheet, you actually have already some induced 3 cracks. 4 MR. KEMENY: Okay. From the TBM, you 5 mean? MR. DIAS: Yes, the tunnel boring. 6 How 7 much of a penalty is that? And the other question I 8 have would be, your thermal loading, you applied it 9 for 1,000 years. Is it a constant load? 10 MR. KEMENY: Yes. I'm sorry. I didn't quite do -- I actually -- the way I did the thermal, 11 12 I'll answer that question first, was I loaded up to the maximum thermal, and then I just kept it constant 13 14 for 1,000 years. 15 MR. DIAS: Because it's --MR. KEMENY: But I realize -- and I did 16 17 some of the models where I did that, and it wasn't that much of a difference. 18 19 MR. DIAS: Really? That's very 20 interesting. 21 MR. KEMENY: Yes. But, again, I didn't 22 repot on those, because I just did one run, I think, Most of them I held it for constant for 23 on that. 24 1,000. 25 MR. DIAS: Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	MR. KEMENY: But to answer your first
2	question, yes, I think so. I think that TBM will do
3	some damage, probably within maybe a half a meter
4	or something, so that could be put into the model.
5	MR. DIAS: Yes. Okay. Thank you.
6	MEMBER CLARKE: Thanks, Antonio. Let me
7	now invite the Center. Are you still on the bridge?
8	MR. IBARRA: Yes, this is the Center.
9	MEMBER CLARKE: Any questions?
10	MR. IBARRA: Okay. This is Luis Ibarra
11	from the Center. I have a question about the FLAC
12	model. Mr. Kemeny has mentioned several times that it
13	was key behavior that made the key difference in the
14	potential spallation of the rock. And he mentioned
15	that a factor of gammaC, which is the strength after
16	the the peak strength, it will be the key. I don't
17	have the figures here, but in one of the figures on
18	the report, he shows that you have a larger gamma C
19	value, he has on ductility after the peak strength, so
20	my question is there's no experiment, at least no
21	available experiments showing what is the performance
22	of this tuff material after the peak strength, and the
23	question would be what are the reasons for believing
24	that you shall have that shall be ductility or less
25	ductility after the peak strength in the confinement
	1

(202) 234-4433

	72
1	area is reached?
2	MR. KEMENY: Okay. That's a good
3	question. First of all, he brings up a very good
4	point, which is mentioned in the report, that these
5	are actually not laboratory test results. As it turns
6	out, when do lab tests, it's been traditional to
7	measure the peak, and to measure this slope so we know
8	the modulus. But this is in all the reports that
9	I have, I do not have the information from actual
10	tests.
11	Now there were a couple of tests presented
12	by DOE, I don't have them, that did show this
13	International Lab test, but they're from some report
14	that I don't have, or unpublished. But I think the
15	key is, and I mentioned this in the conclusions, in
16	the future we need to really start reporting the post-
17	peak because it is so important in this problem of
18	spalling. But I think the question that he asked is
19	really the answer here, that why do we believe that in
20	the real when we test the real rock, we're going to
21	get those big strain softening slopes? And it's
22	really got to do with the size of the heterogeneity,
23	that when we tested granite, and it has a .1
24	millimeter grain size, we sometimes get a very steep
25	post peak. But in all cases, when you start to have
I	I

(202) 234-4433

(202) 234-4433

1 this heterogeneous cracks, it's a very torturous path 2 the crack has to take to get its way through there, 3 and it always results in more strain. You can see 4 that in the results.

This is without the lithophysae, this is with, and you can see that it produces a much bigger post peak. And I believe that in general, the larger the heterogeneity, the more strain, post-peak strain you're going to -- they're going to produce. And since this is the rock that we're dealing with --

MR. IBARRA: All right. That's all our follow-up questions.

MEMBER CLARKE: All right.

MR. OFOEGBU: John, this is Goodluck. 14 Ι 15 have the response to Luis' question, that in looking 16 at the calculations you did, what we find is that the 17 parameter, what it intends to control, actually, is not stress, often it is the amount of strain that your 18 19 material can undergo without a significant change in 20 the strength, which is the ductility that Luis is 21 talking about. And you know that brittle rock, like 22 basaltic, volcanic rock is typical brittle rock based 23 information that has been published in the on 24 literature, for it to have this kind of ductility, you 25 have to increase the confining pressure to probably

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

13

tens of megaPascals. The best thing, of course, would be to show whether the rock has this kind of ductility, that without a test, the question is what do we expect, based on studies of rocks that we have published in the literature. What kind of rock usually is the peak when you measure the ductility at the peak of the stress. Would we observe this kind of behavior from volcanic tuff?

9 I see what you're saying. MR. KEMENY: 10 I've seen some non-lithophysal tuff that's very fine grain, like you said. It could be quite brittle, but 11 12 that's not what we're looking at, in general, in the It's very heterogeneous. 13 lithophysal. But I would 14 say, my biggest support, I think, would be the two test results that I -- the two kind of actual field 15 16 results that you have. One is, that if I go to the 17 Category 1, this is the Category 1, if it was very brittle. But this is not what we see in the drifts 18 19 What we see in the drifts today, looks more today. 20 like what we predict when it's not very brittle. So 21 I quess this would be the one piece of evidence we 22 have, is that this exists now in the tunnels. We can 23 go look at this, and we do not see this massive type of wall spalling. 24 What we see is something more 25 consistent with this, where we see a region with just

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

a little drop in cohesion, maybe a little bit of bulging right near the center.

The second case, I would say, would be the heater test in the non-lith, because again, there are rock bolts there. I don't believe the rock bolts are really adding much support; so, therefore, I would say that, again, that's another piece of evidence that it's behaving not like this basalt that has this super steep post peak, but rather like a more -- a rock that has a lot of heterogeneity to it on large scale.

MR. OFOEGBU: Can I see -- I don't know 11 what the schedule is there, but this behavior of 12 Category 1 material in the drifts that you mentioned, 13 14 actually helps confine the strength of the material, 15 that it doesn't really tell us what would happen if the stress were to -- if there is a constant sort of 16 17 loading, like thermal load, that tends to increase the stress in the rock beyond the peak strength. 18

MR. KEMENY: The result I show, as I said before, because the modulus is so low, this has not got to do with thermal at all. The result I show for Category 1 is all based on in-situ stress, because the thermal - it's like one megaPascal increase due to thermal, and so this is the result of static loading only.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

	76
1	MR. OFOEGBU: Yes, but I mean all the
2	analyses come and do show that for Category 1 rock,
3	you don't get you get failure on the side wall, but
4	not in the roof, because of the low modulus on the
5	thermal load. So what I'm wondering is how the
6	behavior of Category 1 rock out in the field is
7	evidence of ductility. It only gives you the what
8	happens in an opening immediately after it's
9	commissioned? That tells you how the stress, the in-
10	situ stress, or the stress concentration around the
11	opening relates to the strength of the material, but
12	it doesn't really tell you how failure may progress,
13	if it didn't occur. And the example you mentioned for
14	the heater test, I thought that the heater test showed
15	a lot of bulging in the wire mesh, indicating that
16	there is a load of rubble weighing down on that
17	material, and that it is possible that the existence
18	of the material essentially removed the space
19	available for more for rock to fall into, that's
20	likely if the opening were to be filled with rubble.
21	So why would you use that as an evidence of ductility
22	for the non-lithophysal tuff?
23	MR. KEMENY: Well, again, I know how much
24	force one of these this is a split-set, it looks
25	like to me. If that's a split-set, it probably
ļ	I

(202) 234-4433

(202) 234-4433

	77
1	when I said .1 megaPascal, that was for actually like
2	a resin ball. There was a split-set, which that looks
3	like it is, I have to calculate it, but it's probably
4	100^{th} of a megaPascal, is the amount of support force
5	it's going to apply. So I can't imagine that the
6	difference between massive rock fall and it's just a
7	100^{th} of a megaPascal of rock bolt support, so I would
8	I think it I just think that compared to
9	again, this is the non-lith, so again, if anything is
10	going to go, it would be the if anything is going
11	to be brittle, it's going to be the non-lith. So the
12	fact that you're seeing such a small zone of spalling,
13	to me, would indicate that
14	MR. OFOEGBU: Well, the importance of the
15	heater test, is that it's live evidence that we have
16	of how the rock might behave on that thermal load.
17	I'm surprised, though, that you're discounting the
18	role of support. Support system does the role of
19	support system is not really reduced related to the
20	amount of pressure it applies in this particular case.
21	What is critical is for something to the wire mesh,
22	what it does is that as the rubble comes down, instead
23	of falling off the surface, it is held by the wire
24	mesh, and the wire mesh essentially creates limits
25	the amount of space that is available. And once that
I	1

(202) 234-4433

(202) 234-4433

space is filled up, then there isn't room for any more material to fall. This is speculation, of course. The right thing would have been to cut out the wire mesh, and let whatever is there fall off, and then we see how much it is, and then see whether there's any tendency, and this is why I think it's virtually incomplete in terms of the behavior of the rock under heated conditions.

9 MR. KEMENY: Well, let me just say that if 10 I went into a deep underground excavation with this amount, same support rock bolts, mesh, and it was 11 12 unstable in the sense of -- I would see this full of I mean, it wouldn't just be in the 13 loose rock. 14 middle, it would be all across, it would be sagging 15 the mesh in-between the bolts, it would be popping the bolts out. 16 I mean, there are many examples of 17 underground excavations where this is a support, and it's just popping. It's just popping it out. 18 So I 19 would just -- if it really -- if you really thought 20 that this was the kind of -- going back to this 21 If you really thought this was the kind of figure. 22 failure we're getting, then I would expect to see more 23 evidence of that behind the wire mesh. We've seen 24 that in deep underground excavations.

MR. OFOEGBU: We've spent a lot of time on

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

8

1 non-lithophysal, but for the lithophysal rock, I think 2 the main thing you present is that with some amount of ductility, that you can expect the rock -- the 3 4 overloaded rock to simply fracture, and shed the load. 5 But your analysis all show that even if you reduce this ductility, then you would expect the material to 6 7 fracture and fall. One of the test results, you 8 showed two tests by FLAC, one with .05 and the other 9 one with -- okay, .002 and .005. So that small 10 difference, and you also show that the difference is really in the ductility at the peak point or the 11 12 stress break-off. In one case, there is measurable 13 ductility. The other case, there is ductility, but 14 not much. 15 Right. MR. KEMENY: 16 MR. OFOEGBU: Okay. So the first case 17 showed what you interpreted to be spallation tended for the spallation to continue. Whereas the other one 18

19 showed that in fact the ductility of the rock is 20 enough to prevent it. So it boils down, really what 21 needs to be determined, if we are going to -- if one 22 would rely on this kind of behavior to predict what 23 might happen in the drifts is to look at test results 24 that will show whether this rock has sufficient 25 change the behavior under ductility to thermal

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

79

	80
1	conditions.
2	MEMBER CLARKE: Mr. Chairman, I'm going to
3	need to jump in here. We were scheduled to end at 10,
4	and it's now past 10, after 10. Raj has one more
5	question, then I'm going to have to call it. Thank
6	you.
7	MR. NATARAJA: This is Nataraja, NRC
8	staff. I don't have a question. We didn't intend to
9	have any kind of a debate or anything like that on
10	this presentation. All I can say is that it's an
11	excellent presentation, and what we have learned today
12	does not seem to change our approach to the review.
13	If you remember what we said, we were looking at the
14	various possibilities, the range of possibilities that
15	might be predicted by various models, alternative
16	conceptual models, and it looks like that this
17	presentation confirms that we have a number of
18	possibilities, as he showed the two extreme cases, and
19	we are looking at all the things in-between in our
20	performance assessment. So I think it actually
21	strengthens our approach of review, and it's an other
22	good data point for us. Thank you.
23	MEMBER CLARKE: Thank you. John, thank
24	you very much.
25	MR. KEMENY: All right.

(202) 234-4433

(202) 234-4433

	81
1	MEMBER CLARKE: Thank you all. Allen?
2	VICE CHAIR CROFF: Thanks for an
3	interesting presentation. At this point, we'll go off
4	the record until 1:00, where we'll reconvene and hear
5	about in-situ leach mining and TAD. Thank you.
6	(Whereupon, the proceedings went off the
7	record at 10:14 a.m., and went back on the record at
8	12:58 p.m.)
9	CHAIR RYAN: The meeting will come to
10	order.
11	The cognizant member for this session, the
12	session after the break, is Dr. Weiner on issues
13	related to first in situ uranium mining facilities;
14	and second, vendors' views on transportation, aging
15	and disposal performance specifications.
16	So Dr. Weiner, have at it.
17	UPDATE ON NRC RULEMAKING ON GROUNDWATER PROTECTION
18	AT IN-SITU LEACH URANIUM MINING FACILITIES
19	MR. RATHBUN: Thank you.
20	We are scheduled to have an update on the
21	rulemaking on groundwater protection at in-situ leach
22	facilities. And I take it our speakers are Gary
23	Comfort and Mike Fliegel. Divide it up however you
24	want to.
25	Gary, you're in charge, our lead speaker.
ļ	I

(202) 234-4433

	82
1	MR. RATHBUN: Dr. Weiner, let me say -
2	Dennis Rathbun from the Division of Intergovernmental
3	Liaison and Rulemaking.
4	We are pleased to be here. We worked this
5	up with Mike and Gary.
6	(Telephone interruption)
7	MEMBER WEINER: I think it's just us.
8	Dennis, if you want to continue. Sorry
9	for the interruption.
10	MR. RATHBUN: Oh, sure. Thank you.
11	Anyway, we responded to ANCW's request.
12	Talked to Mike Fliegel and Gary Comfort.
13	Gary will be - he has a set of slides that
14	he's going to go through. But we've had a lot of
15	interactions over the past several months with
16	Environmental Protection Agency, and that's been kind
17	of challenging I guess is a gentle way to put it.
18	And we had originally planned that e would
19	have a draft proposed rule in late spring, April or so
20	of next year in 2008. Whether or not we will actually
21	make that date or not, given the current status and
22	the complexity of the ongoing discussions that we had
23	with the Environmental Protection Agency I think
24	frankly is a little problematic at this point.
25	But ANCW wanted to have a status report on
l	I

(202) 234-4433

	83
1	where we are with respect to the situation, and in
2	particular the technical basis. And so Gary will go
3	through what we're doing.
4	I'll turn it over to Gary and Mike.
5	MR. COMFORT: Good afternoon, everybody.
6	My name is Gary Comfort. I'm a senior project manager
7	in the rulemaking branch and division of inter-
8	governmental liaison and rulemaking.
9	I'm here to update you on the status of
10	our rulemaking for the groundwater protection at in
11	situ leach facilities.
12	I plan on between Mike Fliegel who's to my
13	right and I are going to basically plan to give you
14	some information on the background of the rulemaking
15	just to remind you of what it's about; the status of
16	our current rulemaking effort; and then to respond to
17	the comments that were sent to us last summer.
18	Just a reminder, we gave you a previous
19	presentation on this on April 11 th . During that
20	presentation we discussed the technical basis of our
21	rulemaking.
22	Included in that discussion was
23	legislative and regulatory background, the efforts
24	that we were - the commission's efforts and desire for
25	us to try to eliminate dual regulation. Currently
ļ	I

(202) 234-4433

	84
1	we're in a situation where the Environmental
2	Protection Agency will provide permits to the
3	underground injection - or the injection wells, and we
4	provide licensing to the ISLs themselves for the
5	uranium processing operations.
6	We discussed our rulemaking strategy at
7	the time. And prior to the April 11th meeting we were
8	having our discussions with the Environmental
9	Protection Agency at that time also.
10	We were having some more high level policy
11	issues about what the basis for our regulation was;
12	whether - were the Uranium Mill Tailings Control Act,
13	or if we could use the EPA's underground injection
14	control for these ISL facilities.
15	We discussed our path forward, which as
16	Dennis had mentioned we were hoping to get our
17	proposed rule to the Commission by April of this year.
18	We had meetings shortly after we had
19	resolved where our technical basis - or our basis for
20	the rulemaking was for the UMTRCA, the Uranium Mill
21	Trailings act, and we discussed that in final meetings
22	with EPA, and also the National Mining Association to
23	make sure they understood that the direction that the
24	Commission had originally pointed us at was not going
25	to work because of EPA's new discussion with us about

(202) 234-4433

	85
1	what the actual statute required.
2	But we basically got agreement from both
3	of those groups to move forward. Then we basically
4	discussed what our next steps at that time were.
5	Just to remind you that our initial
6	commission direction was given in March, 2006, where
7	the Commission directed us to initiate rulemaking for
8	groundwater protection at ISLs. The big thing on that
9	was to focus on eliminating dual regulation of
10	groundwater protection at those ISLs.
11	We were hoping that we could potentially
12	get our regulation situated consistent with EPA's UIC
13	program for Underground Injection Control program, to
14	allow us to defer our regulation of certain aspects of
15	our program to EPA; basically the day-to-day
16	monitoring, that kind of thing, to either EPA or their
17	state programs.
18	We were also directed to actively engage
19	the stakeholders, and we were supposed to get a
20	proposed rule at that time to the Commission in
21	January of 2007.
22	That date wasn't met because of our
23	difficulties with determining what the basis for the
24	rule really should be.
25	In June of 2006, after we'd gotten the
I	I

(202) 234-4433

	86
1	initial direction from the Commission, we sent out a
2	letter to EPA which requested that they confirm with
3	us that the Commission's intent that the UIC rules
4	were the appropriate standards for which us to conform
5	our NRC regulations; that was going to be correct.
6	We got back a letter in August of that
7	year that basically said that they were very concerned
8	with that proposal, and they suggested that we go
9	ahead and meet with EPA to discuss that standard a
10	little bit more intensively.
11	So we started going down the path of
12	rulemaking because we had a very expedited schedule,
13	but we were starting to meet with EPA at the same
14	time.
15	In those meetings in August that we had
16	with EPA, basically EPA stated that it had two major
17	problems. The one first was that the groundwater
18	standards in 40 CFR and 192 which basically were the
19	UMTRCA standards are applicable to ISLs, and they were
20	stating that the UIC standards were not applicable.
21	What this ran us into a difficulty is what
22	our restoration requirements, that was where the
23	biggest difficulty came out. UIC basically wasn't
24	quite as conservative as what the restoration
25	requirements were for UMTRCA. UMTRCA requires the
Į	I

(202) 234-4433

	87
1	first attempt for you to go back to background.
2	Additionally they pointed out that if we
3	did want to defer, EPA didn't think they had
4	sufficient resources to regulate the ISLs under an
5	expanded UIC program to include what they thought NRC
6	would need at the time, particularly in non-authorized
7	states. The states themselves may have the resources,
8	but EPA themselves at that point said they didn't.
9	So they were actually intending
10	potentially maybe to even defer it to us, or rely on
11	us for some of the work.
12	We continued those meetings all the way
13	through late 2006, and finally EPA made it clear that
14	they didn't believe that the use of the UIC standard
15	as a basis for the ISL rulemaking was going to be the
16	adequate standard. They said that the UMTRCA
17	standards were the correct ones, and EPA however
18	expressed a willingness to continue to work with us in
19	this rulemaking process.
20	Now up to this point is basically things
21	that you'd kind of seen in the previous presentation
22	back in April. Now I'm moving up to things that
23	happened after that date.
24	The first thing is, we updated the
25	Commission on all this new information that we had
ļ	1

(202) 234-4433

	88
1	gotten. Basically we told the Commission in COMSECY-
2	07-0015 that we were resolving these issues with EPA;
3	what the difficulties were; and what EPA had basically
4	said should be the underlying standard.
5	And basically we said that we believed
6	though that with that new information from EPA we
7	could still go forth with a rule.
8	The staff requirements memorandum from
9	that paper basically directed the staff to continue
10	rulemaking; said they continued to remain diligent in
11	working with EPA and the states also, and they wanted
12	us to make sure we were establishing standards to
13	protect the public and environment, as well as they
14	still had an intent for us to reduce and eliminate
15	dual regulation.
16	So that's where this rulemaking is going
17	forth right now is to meet those goals.
18	In response to making sure that we worked
19	sufficiently with the states and EPA, we added two
20	working group members from the Environmental
21	Protection Agency, one from their Office of Air and
22	Radiation, and one from their Office of Water.
23	And we also added a person to help
24	represent the states. We had already had an agreement
25	state member from the Organization of Agreement
	1

(202) 234-4433

	89
1	States, so we added somebody from the CRCPD.
2	MEMBER WEINER: I am going to interrupt you
3	just for a point of clarification. What now is EPA's
4	role in regulating this?
5	MR. COMFORT: EPA set the original
6	standard.
7	MEMBER WEINER: Yes, but they have said
8	that they don't think the underground injection
9	standard is appliable.
10	MR. COMFORT: Right.
11	MEMBER WEINER: So what now is their role?
12	MR. COMFORT: Well, they still have a role
13	in providing us - basically we have to - they
14	basically confirm that our regulations meet with
15	UMTRCA says. They have a role in that.
16	MEMBER WEINER: Oh, okay.
17	MR. COMFORT: So making sure that it's
18	consistent with UMTRCA. So we almost have to do a
19	concurrence to them to a certain level that they say -
20	and we've got that developed into our process, that
21	they will basically pout a statement at some point,
22	probably in our statements of consideration, that they
23	agree that the rule we are putting out is consistent
24	with UMTRCA.
25	We are also using them in other ways to
I	I

(202) 234-4433

make sure that we are not - anything that we develop in regulation is not going to be in conflict with any of their regulations that they have to regulate the same facilities with, again, to help eliminate the dual regulation issues, and other complications that could cause. 6

7 So since that point we have these group 8 members; we've also begun, or further developed our 9 draft ruling, which the language is basically being 10 pulled from our NUREG in 1569 which we currently use to help regulate the ISL facilities that we have. 11

12 We also did still grab a lot of language from EPA's UIC program, and you'll see in a 13 few 14 minutes that that caused a little bit of problems with EPA. 15

We are also adding focus on additional -16 17 or basically the rule we are writing is going to focus primarily on additional requirements that are specific 18 19 to the groundwater protection at ISLs. The Commission 20 was very clear that tehy don't want us to expand this 21 rule outside of that role of developing it for groundwater protection only. 22

23 There'd been talk in the past of doing a 24 bigger, broader role that would be specific to the 25 conventional mills and ISLs, and the Commission

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	91
1	basically decided they don't want to put the resources
2	into that at this time, and just add this hole that
3	they feel is missing in our regulations on how to
4	better protect and regulate the ISLs.
5	Our recent interactions with EPA have been
6	complicated to say the least. After we added the
7	working group members, we provided this new version of
8	draft language to all the working group members. And
9	that was in September.
10	The EPA staff raised some concerns about
11	that language, particularly our use of UIC. There
12	were also some other difficulties that it felt that we
13	were pointing more toward UIC instead of the UMTRCA
14	regulations.
15	Part of it was because we'd provided them
16	additional language to go into our existing
17	regulations of the mills, in Appendix A of Part 40,
18	and they didn't quite understand how it fit in there
19	as well. So they were looking for an independent
20	rule, and they saw no language related to UMTRCA
21	rather tahn in the rule we were referring to the
22	existing regulations, because they are still going to
23	be applying to these facilities.
24	Again, our intent was just to add
25	additional criteria that we thought were necessary to

(202) 234-4433

	92
1	ensure the proper safety of these facilities.
2	EPA nad NRC have met a couple of times
3	since that point after the working group meeting.
4	They brought it up to their management, and brought
5	their concerns related to the rule, particularly the
6	use of the UIC, and the complications that they
7	foresaw with using their language.
8	And we've been going through a process of
9	trying to resolve those issues. We had a meeting in
10	October, and our latest was in December.
11	Basically there are issues surrounding, as
12	I said, the UIC being used as a standard. What they
13	were concerned about is by us using some of their
14	language, we were going to usurp their role in running
15	their underground injection control program by
16	basically taking away their ability to do permits, or
17	doing something to impact how they were going to be
18	writing these permits for these injection wells.
19	And they thought it would actually
20	influence not just the ISLs but any that they did
21	under this class of facilities.
22	They also thought that anything we
23	interpreted by using their language would result in a
24	difficulty that tehy would have to interpret the same
25	way.
	I

(202) 234-4433

	93
1	So what they really preferred us to do was
2	to change our language to do direct reference to their
3	UIC program language.
4	While NRC saw that there were some
5	problems with that direct reference - one, we didn't
6	think anything such as the interpretation problem went
7	away, it actually got worse; it would still be citing
8	from our regulations. We have to interpret it, and
9	now we are using their exact words.
10	Second of all their UIC program
11	encompasses a lot more things than just ISLs, so
12	trying to do a direct referral to aspects that would
13	only regulate those - that was going to be specific to
14	ISLs out of the larger scope was more difficult, and
15	what we had done in our draft language was only taking
16	that language that went specifically to the ISLs.
17	And then additionally we ran into a
18	difficulty that the UIC program - lost my train of
19	thought, apologize.
20	So they had a lot of difficulties though
21	with us using UIC language, but we basically we were
22	able to, in this December meeting, resolve that it
23	would be our language; it was specific to our uses;
24	and the other difficulty was that, or explanation that
25	we had was, we were running under two different
l	I

(202) 234-4433

1 statutes that we are regulating under, so our use of 2 basically their language was meant to make а 3 consistent pathway forward to resolve similar 4 problems, but because they were under different 5 statutes there shouldn't be any difficulty if we had 6 slight differences in interpretation, and we felt 7 there was no reason to develop totally new language, 8 and reinvent the wheel that could cause further 9 conflict.

10 The other big difficulty they saw the current language was that despite us telling them that 11 12 there were referrals back to the existing Appendix A, they didn't believe that the UMTRCA standard was 13 14 represented in this language enough. And so we are 15 language to better trying to work on the rule 16 emphasize to make sure that people realize the UMTRCA 17 is still the underlying standard.

Again, our last meeting was in December with EPA. We got it up to the management level of both EPA offices, as well as they got their lawyers, as well as our NRC lawyers, and managers were in the meeting.

As I stated we explained why the use of the UIC language, and why we wanted to use the UIC language, and what the problems with the direct

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

94

	95
1	referral were.
2	We did get most of the outstanding issues
3	resolved that we believe we can move forward now with
4	the rule. And this was only two weeks ago, so we're
5	just at that point that we are reestablishing, making
6	changes to the rule.
7	We are hoping to provide the working group
8	a new version sometime in early 2008. Again, we will
9	continue to work with EPA and provide those. They've
10	got the working group numbers on the working group.
11	Our next steps are, we'll through the next
12	couple of months continue drafting the rule package.
13	There are a couple of other policy type issues that we
14	have to deal with on handling some things in UMTRCA
15	such as their use of the drinking water requirements
16	and how that applies to the groundwater restoration,
17	or Safe Drinking Water Act requirements.
18	The way it's been done in UMTRCA and
19	Appendix A is that we've done basically a direct
20	citation of what this Safe Drinking Water Act
21	requirements were back when Appendix A was developed.
22	That's now changed, and we're looking at a route that
23	we can perhaps do a direct reference in this case,
24	since they have to meet Safe Drinking Water Act.
25	But since UMTRCA itself and the EPA
l	I

(202) 234-4433

	96
1	implementation doesn't have that, we've got to do some
2	negotiating with EPA.
3	We hope to continue this, and as Dennis
4	said, it's likely going to be delayed. We are
5	expecting we probably won't be able to get a proposed
6	rule to the Commission until sometime around fall.
7	Part of that is because we still have to
8	do a few more meetings with EPA to make sure that they
9	are okay with the path that we are going; they feel it
10	will meet the requirements of UMTRCA. And also we do
11	want to make sure that we can get further input from
12	stakeholders.
13	We have been planning on trying to do some
14	public meetings early in the process. And we're
15	hoping to, once we get some draft rule language
16	developed, and to a point that the working group
17	agrees to it, then we can either get it, some of it
18	put on the web for comment, or go out and do some
19	meetings at the potentially impacted sites.
20	So that's really where we're at with the
21	rulemaking. Mike will now go on and basically respond
22	to the comments that you had provided back in your
23	letter.
24	MEMBER WEINER: Let me interrupt briefly
25	again. Do you have a slide that shows in some way
I	I

(202) 234-4433

	97
1	what the language was that EPA objected to, and how
2	you ahve resolved that? Or could you give us some
3	more details?
4	It's a little difficult to follow just
5	saying, they didn't like this. Do you have that in
6	your presentation?
7	MR. COMFORT: That's really not in the
8	slides. But I can talk to that.
9	What we had done is, as we laid out the
10	rule, the first draft of the rule, we had sections in
11	there about characterization of the aquifer, about
12	requirements to ensure that wells are properly
13	drilled; and that there is integrity testing for
14	wells; things like that.
15	Well, in looking at what hte language
16	ought to be, we borrowed some of that from rule
17	language, EPA's rule language under the Underground
18	Injection Control program. For example certain
19	statements about well integrity testing.
20	And we only borrowed pieces because EPA
21	had within their rule had requirements that didn't
22	really apply. So we had pieces that came from the UIC
23	program. We also had pieces that came from our
24	guidance. And while EPA was upset about us
25	essentially borrowing the language for certain aspects
Į	I

(202) 234-4433

	98
1	from their regulations.
2	As Gary stated, the concerns were, well,
3	why don't you just point to our regulations? Well
4	then we'd have to - every time we borrowed a piece,
5	have to point to that specific location in the EPA
6	regulations. It just would become very cumbersome,
7	and it wouldn't resolve the problem that we
8	interpreted something a little differently than they,
9	wehther we cite it in their regulations, or just write
10	it in our own words, replacing EPA with NRC.
11	So that's basically what it was.
12	MEMBER WEINER: Thanks for hte
13	clarification. That's good. That's fine.
14	MR. FLIEGEL: I am Mike Fliegel. I'm
15	senior project manager in the Uranium Recovery
16	Licensing Branch in the Division of Waste Management
17	and Environmental Protection.
18	I'm going to pick up on the ANCW's
19	recommendations.
20	After the April meeting, the staff
21	briefing, ANCW wrote to Chairman Klein on May 9 th .
22	The letter presented five recommendations.
23	The EDO wrote back to ANCW on June 10^{th}
24	and agreed with the recommendations. It was a very
25	short letter basically saying they agree.
	I

(202) 234-4433

	99
1	The rest of my presentation will go
2	through the recommendations and discuss how we plan to
3	address them.
4	I'd like to say that we have already
5	identified all the items in the recommendations. What
6	I'll say is, we have identified most of them.
7	There are a couple of suggestions, they
8	were all good, but there were a couple we hadn't
9	thought of. Next slide.
10	The first recommendation was that the
11	staff should proceed with developing the proposed
12	rule, including codification of appropriate standards
13	specified by EPA and we agree, and we are proceeding
14	with the rulemaking as Gary as just discussed the
15	recent activities.
16	The rule should provide specific guidance
17	on the three-dimensional location of the point of
18	compliance; groundwater monitoring requirements;
19	methods of demonstrating compliance; and financial
20	surety considerations.
21	I'll take them one at a time. The point
22	of compliance: that's discussed in the present rule in
23	the existing Appendix A with respect to conventional
24	mills. It's location in the uppermost aquifer where
25	the standards must be met.
I	1

(202) 234-4433

	100
1	It's also used to identify how we identify
2	leakings from an impoundment at conventional mills.
3	For ISLs, well, first of all the mining zone we know
4	will exceed standards during operation. The rule will
5	define where the standard is to be met; that is, in
6	the mining zone after restoration.
7	The rule will also require excursion
8	monitoring to detect contamination moving away from
9	the mining zone during operation.
10	It's not clear yet whether the rules will
11	specifically use the term for that point of
12	compliance, but we will have those requirements in the
13	rule.
14	Groundwater monitoring requirements, both
15	in the mining zone and outside, including aquifers
16	above and below will be in the ruling.
17	Methods for demonstrating compliance, both
18	for excursions and for restoration, will be in the
19	ruling.
20	Financial surety, financial surety is
21	already in the rule, in the existing Appendix A
22	criterion 9. However the ISL rule will discuss
23	additional surety requirements that are specific to
24	ISLs.
25	For example currently our guidance
ļ	I

(202) 234-4433

101 1 discusses the situation if there is an excursion the 2 licensee has to do certain things, and if he still 3 doesn't contain the excursion and wants to continue 4 operating, the guidance suggests that he's got to 5 provide additional surety. Well, things like that will go in the 6 7 ruling. But again, surety in general, we feel is 8 already in the rule. The rule should establish guidance on 9 measures to reduce the likelihood of contaminant 10 excursions outside the mine zone and the 11 site property, and for remediation outside the mine zone is 12 excursion occurs. 13 14 To prevent excursions the rule will 15 require a net inflow into the mining zone, and will require monitoring above and below the mining zone; 16 and the rule will also address actions that must be 17 taken if an excursion occurs. 18 Rules should be risk informed and should 19 20 consider groundwater use, onsite effluent disposal, 21 and deconditioning and license termination. 22 Restoration: requirements for restoration must be one of three standards. And these come from 23 24 UMTRCA, EPA standards in 40 CFR 192, and are now in 25 Appendix A, criterion 5. And the three standards are:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	first, premining background; second, essentially
2	drinking water standards; and the third is an
3	alternative concentration limit.
4	The third requirement, an alternate
5	concentration limit, incorporates risk in groundwater
6	use. And so that's how we believe that it will be
7	risk informed, and consider groundwater use.
8	Onsite effluent disposal: a licensee
9	basically uses one of two methods. They use
10	evaporation ponds, and that is already addressed in
11	Appendix A criterion 5. The rule will refer to that,
12	will make it clear than an ISL an evaporation pond has
13	to meet the requirements that already exist for
14	impoundments in criterion 5.
15	And deep well injection, which really is
16	a requirement by EPA or the state.
17	Decommissioning and license termination:
18	the decommissioning of wells will be addressed in the
19	rule. The decommissioning of the site and the license
20	termination we believe are beyond the scope of the
21	rulemaking, but those subjects are already in Appendix
22	A.
23	An ISL site has to be decommissioned to
24	cleanup criteria that already exist in criterion 6,
25	and license termination is already in Appendix A.
I	I

(202) 234-4433

Finally the rule should provide requirements for establishing premining background and baseline level quality. The rule will provide requirements for establishing premining background, baseline quality, for all aquifers potentially affected by the ISL activities.

7 That includes the surfacial aquifer. We 8 will in the rule point out that an ISL, you still have to look at the official aquifer, and the licensee is 9 responsible for leakage from surface facilities into 10 the surfacial aquifer in addition. And so it has to 11 give some background for that, in addition to the 12 aquifer that the mining zone is in and aquifers above 13 14 and below it.

15 That concludes my presentation. 16 MEMBER WEINER: Thank you very much. 17 Dr. Hinze, why don't you start off. MEMBER HINZE: Good afternoon, ma'am. 18 19 MEMBER WEINER: Glad to see you made it. 20 MEMBER HINZE: Thank you. 21 It's really heartening to hear all of this 22 response to the comments that the committee made in

24 I do have a couple of questions at this

time, and I'll ask a couple more afterwards.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the letter.

23

25

1

2

3

4

5

6

	104
1	The matter of dual regulation is one that
2	we've heard, and we have also heard some of the state
3	people not be overly concerned about state regulation;
4	about dual regulations; about NRC regulations
5	overlapping from the state's.
6	The states certainly differ in their
7	regulations on this issue, and one wonders if in the
8	advance to eliminate dual regulation that there may be
9	holes in this process.
10	What are you doing to assure us that there
11	are no holes as a result of the varying state
12	regulations and trying not to overlap them?
13	MR. FLIEGEL: Well, we are looking at - I
14	view it as a two-step process. The first step is
15	writing our regulations to cover what we conclude NRC
16	has responsibility to regulate.
17	Once we have that in place, we can go to
18	a state; we can look at what the state is regulating,
19	and if they are amenable reach an agreement whereby
20	one party regulates that aspect for the two of us.
21	For example, once our regulations are in
22	place, and we have a regulation looking at, say, well
23	integrity, and testing of new wells, if the state has
24	a requirement under their UIC program for the same
25	thing, we could write an MOU that essentially has the
I	I

(202) 234-4433

	105
1	licensee meeting its NRC obligation by having the
2	state approve the well integrity testing.
3	There may be, depending on what's in the
4	state regulations, there could be a lot of areas where
5	we could defer to the state, or if the state wants to
6	defer to us and we are amenable to it.
7	MEMBER HINZE: Mike, I really appreciate
8	that response, and it gives me assurance that there
9	won't be holes.
10	But I guess the other thing, the other
11	side of the coin is, I wonder how generic this
12	regulation is. Is that every time you have to deal
13	with a different state or a different licensee, that
14	we will have to adjust the regulations; or adjust the
15	license or the committee to accommodate the state's
16	regulations.
17	MR. FLIEGEL: That's certainly possible,
18	that once the regulations are in place, we may have to
19	negotiate understandings with each individual state
20	and with EPA if EPA is amenable, although in our
21	earlier meetings they told us that they didn't have
22	the staff to do it for states that are not EPA
23	authorized.
24	But we may have to do it state by state,
25	and depending on what the legal implications are, we
I	I

(202) 234-4433

	106
1	may also have to do it licensee by licensee.
2	MEMBER HINZE: Well, that seems like a
3	pretty cumbersome approach, but it may be necessary.
4	I'll defer to Dr. Weiner on this, but we did hear the
5	states not be overly concerned about dual regulation.
6	They felt that the problem was more in the
7	communication and understanding of where the states
8	were going and where the NRC was going.
9	So I think this whole matter of dual
10	regulation needs a very close look.
11	Let me ask you a question about this point
12	of compliance, I forget now what slide it was in, 11A,
13	something like that. In any event, the point of
14	compliance. One of the concerns is, if that point of
15	compliance is at the margin of the mining zone, and we
16	have monitoring wells, we discover that indeed there
17	may be some excursions, and some levels above that
18	background; I'm concerned that the material that the
19	contaminant would then be outside of the zone, because
20	if you find it at the edge it's outside as well.
21	And I'm wondering if you have given any
22	thought to buffer zones in terms of this point of
23	compliance. I realize that they also impose a
24	significant problem. But what's the thinking of the
25	NRC on buffer zones?
	I

(202) 234-4433

	107
1	MR. FLIEGEL: Bill, do you want to -
2	MR. VON TILL: This is Bill Von Till. I'm
3	the branch chief for Uranium Recovery. That's a good
4	point. Appreciate your comment.
5	The existing regulations with plant
6	compliant is set up for a surface impoundment whereby
7	you are trying to detect a leakage from an
8	impoundment.
9	The in situ situation is more analogous to
10	underground storage tank, a circular RCRA groundwater
11	remediate plume, where the entire plume as EPA or EPA
12	authorized states would have point of compliance wells
13	all within the plume itself; not outside the plume.
14	So we'll have to work this, but right now
15	how we envision it more, you have a mine zone, you
16	have like mine unit #1, for example. You have number
17	of monitoring wells within the mining area.
18	And when they go to restore it, those
19	wells will be the actual point of compliance wells to
20	which they are measured by. As far as trying to get
21	down to background MCLs or ACLs.
22	Now in addition to that you also have
23	other wells that are outlying wells, horizontally and
24	also vertically within other aquifers to look for,
25	detect for excursion.
Į	I

(202) 234-4433

108 1 So one of the things we are trying to do 2 is put the point of compliance well strategy in this 3 unique situation that is not really like a surface 4 impoundment scenario. 5 So I think that kind of gets to your The actual excursion monitoring well 6 question more. 7 rings are about 500 feet or so, depending on the 8 nature of the aquifer outside the mining area to 9 detect excursions. They are not really - I wouldn't say they 10 are really point of compliance wells. They are almost 11 12 more point of exposure wells. I think the point of compliance wells, 13 14 once they get into restoration, are really within the 15 actual mining zone itself. MEMBER HINZE: Is that in effect a buffer 16 17 zone then? MR. VON TILL: A buffer zone is in effect 18 19 depending on how the aquifer exemption - we are seeing different scenarios with how that is done from state 20 21 to state. For example in Nebraska -22 MEMBER HINZE: And it depends on how you 23 monitor it. 24 MR. VON TILL: Yes, sometimes in Nebraska, 25 between Nebraska and Wyoming, some may have more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	buffer zones than other areas. But I think that's a
2	good point, that it is important to have some kind of
3	a buffer zone, so that by the time you get to the
4	actual underground drinking water source, it's
5	protected.
6	MEMBER HINZE: You used the term, in
7	response to one of our concerns, net inflow. I think
8	I know what net means, but what does net mean to you
9	people? Does that mean that we can still have
10	excursions, local excursions?
11	MR. VON TILL: I'm a hydrogeologist, too,
12	so when it's a hydrogeology type of question, I'll
13	kind of jump in.
14	There are different types of excursions.
15	And the biggest one is losing control of the lixiviant
16	and the mining solution horizontally. And the
17	companies typically have a 1 percent, 2 percent what
18	they call bleed. In other words they are pumping more
19	than they are injecting, and that causes this net
20	inflow.
21	And that in essence tries to prevent
22	excursions. You still can have excursions even
23	horizontally if they are not watching the ebb and flow
24	of your injection. And we see that happening.
25	MEMBER HINZE: Not to belabor the point,
ļ	I

(202) 234-4433

	110
1	but relying on net inflow is to me still opening up
2	the box for having something go wrong.
3	MR. VON TILL: And that's a good point.
4	There are really a number of contingencies here.
5	There is the net inflow, and then there is the
6	horizontal excursion monitoring well, and then there
7	is also the monitoring wells that are located above
8	and below the aquifers above and below. So there is
9	a network of controls in place to make sure that the
10	groundwater that is being used for drinking water
11	purposes or other purposes is protected.
12	MEMBER HINZE: Mr. Chairman, can I have one
13	_
14	CHAIR RYAN: I yield my two minutes to you,
15	Bill. Go ahead.
16	(Laughter.)
17	MEMBER HINZE: Just a half a question.
18	MEMBER WEINER: Only half?
19	MEMBER HINZE: Just establishing the
20	premining background, what kind of guidance are we
21	talking about here in terms of coming to a premining
22	background, and the length of time that is going to be
23	- that monitoring is going to have to be in place, and
24	what criteria are you going to use to determine what
25	that length of time is going to be?
Į	

(202) 234-4433

	111
1	MR. VON TILL: Well, we are looking at that
2	in the rule. And you know, typically we like these
3	licensees or these applicants to come in with at least
4	a year of monitoring.
5	MEMBER HINZE: What is that based on?
6	MR. VON TILL: That's based on our Nureg
7	1569.
8	MEMBER HINZE: What science?
9	MR. HAMDAN: Four seasons.
10	MR. VON TILL: Four seasons, yes, to
11	capture the fluctuations of seasonal fluctuations.
12	MEMBER HINZE: We also have climatic
13	change, and you know, and I think they are - I think
14	one should take a very close look at the length of
15	time that you require the mining companies to
16	establish background, or down to some asymptote.
17	Because I would like to have a feeling
18	that in the states involved, that even covering these
19	four seasons over a period of several years would give
20	a reasonably good value.
21	I understand where Latif is coming from,
22	the four seasons. But we also know that the four
23	seasons change quite a bit.
24	With that, I'll pass it.
25	MEMBER WEINER: Allen?
ļ	I

(202) 234-4433

	112
1	VICE CHAIR CROSS: Bill, you got my
2	question on excursions, so I'll give Mike back his two
3	minutes.
4	CHAIR RYAN: Just a follow-on comment I
5	think mainly to Mike. I applaud, and everybody I
6	guess, I applaud the fact that you are working
7	directly with states, particularly nonauthorized
8	states. Because from a licensee's perspective, the
9	fact that you are doing that means there will be a
10	little more, hopefully, regularity state to state.
11	So even though, Bill, that is complicated,
12	frankly I think that is preferred. I would hate to
13	see all individual licensees having to go through that
14	negotiation on their own.
15	So I think if you can get the bulk of it
16	with the authorized states program, that's great. If
17	you have a few other ones where you are working
18	directly with them on collaborating or coordinating
19	NRC regulations with states, working on behalf of
20	whatever licensees might show up in that state, that's
21	a real positive.
22	MEMBER HINZE: I think we are on the same
23	team. We want to make certain that-
24	(Simultaneous voices)
25	MEMBER HINZE: So I thought I'd clarify my
	I

(202) 234-4433

	113
1	view.
2	CHAIR RYAN: Again, from a licensee's
3	perspective I will tell you that is very positive to
4	have the agencies working it out without using the
5	licensees as lubricants in that process. So three
6	cheers to that.
7	And again my other questions were covered
8	well by Professor Hinze. So I'll pass it back to
9	Ruth.
10	MEMBER CLARKE: Yes, thanks Ruth.
11	You mentioned a couple of regulatory
12	programs explicitly, mill tailings, radiation control
13	act, and the underground injection control which I
14	think is under the Safe Drinking Water Act, is it?
15	And then indirectly the alternate
16	concentration limits that I think come from RCRA; at
17	least that was the first time I ran into them.
18	Are they part of UIC as well?
19	MR. FLIEGEL: Ultimate concentration
20	limits?
21	MEMBER CLARKE: Yes.
22	MR. FLIEGEL: I don't believe they are.
23	MR. VON TILL: No, they are not. They
24	originally came from RCRA as you were mentioning, then
25	they were adopted at UMTRCA in our Appendix A
I	1

(202) 234-4433

	114
1	criterion 5. But they originally came from RCRA
2	sites.
3	MEMBER CLARKE: Yes, they could probably go
4	in UIC as well. I mean it's all the same problem I
5	think.
6	The other thing I wondered about, the
7	evaporation ponds. Are they Clean Water Act, RCRA as
8	well? Is that another, I guess -
9	MR. FLIEGEL: We would view the evaporation
10	ponds as an impoundment with 11(e)(2) byproduct
11	material. And so would be solely covered under UMTRCA
12	and under - the basis for our regulation would be
13	these UMTRCA regulations, 40 CFR 192, which envisions
14	impoundments, impoundements in general, an evaporation
15	pond. We feel that the existing regulations in
16	criterion 5 are certainly adequate to address that.
17	EPA has a separate responsibility for it.
18	MEMBER CLARKE: And EPA agrees with that?
19	MR. FLIEGEL: I don't know that it has been
20	raised. But they haven't objected.
21	MR. VON TILL: No, they don't have a
22	problem. I should mention that the industry where
23	they can likes to use the deep well injection
24	methodology for effluent disposal as opposed to
25	evaporation ponds for economic reasons.
ļ	I

(202) 234-4433

	115
1	And even in our existing facilities, where
2	they have evaporation ponds, like Crow Butte in
3	Nebraska, they are trying to use more and more the
4	deep well injection methodology.
5	So with the incoming applications that we
6	have, and I should mention we received our third
7	application today; we have three now, three brand new
8	applications; they are looking mainly at deep well
9	injection is their preferred means for disposing
10	liquid effluent.
11	MEMBER CLARKE: Okay, that's helpful, thank
12	you.
13	MEMBER WEINER: I have a couple of
14	questions to take off on some of Dr. Hinze's comments.
15	First of all on the one-year monitoring,
16	there are a number of EPA regulations and guidance
17	that I am thinking specifically of power plants that
18	require three years of atmospheric monitoring, three
19	years of weather monitoring for example.
20	And I would just simply encourage you to
21	look at the question of whether one year is enough,
22	whether you shouldn't expand that to a couple more
23	years. That is just something for you to look at.
24	And there may be very good reasons to stick with one
25	year.
ļ	I

(202) 234-4433

	116
1	On the inflow question, don't you really
2	mean inflow and not net inflow? I mean net inflow
3	implies that you are controlling - that there is still
4	outflow if you will.
5	So I'm a little concerned about the
6	language and how you intend to implement that.
7	MR. VON TILL: that's a good point, and we
8	should work with the terminology. But in essence an
9	inward gradient, hydraulic gradient, is what we're
10	really looking at there.
11	We can work with the actual terminology
12	and language.
13	MEMBER WEINER: That's very helpful.
14	Finally you did sort of slide past the
15	question of financial surety. What are you doing if
16	anything to prevent situations like the Atlas tailings
17	pile from recurring? In other words where the company
18	simply runs out of money, goes bankrupt. You have no
19	financial surety, and you have to clean up the
20	groundwater nonetheless.
21	What is going to happen - what are you
22	doing to prevent situations like that, or to address
23	situations like that?
24	MR. FLIEGEL: Well, we have to recognize
25	why we ran into a problem with Atlas, and part of the
	1

(202) 234-4433

reason that we ran into a problem with Atlas is that by the time the regulations were in place, the requirements for financial surety between the rulemaking and the challenges to the rulemaking, by the time we actually got to look at Atlas, Atlas Corporation didn't have the wherewithal to provide a larger surety.

8 So in the future, presumably, now that the 9 regulations are in place, we are requiring the 10 financial surety essentially up front, and what we do 11 for all our licensees is, there is an annual review of 12 surety. And the annual review is forward looking.

For example if we have a licensee, and they had a surety of \$10 million, and they have done \$2 million worth of remediation, they can come to us and say, well, our surety should now be \$8 million because we've done \$2 million; they have to come to us and show us, there's \$8 million of work left, and here is how we judge those costs.

20 So that's what we're doing now. We 21 recognized that Atlas was under insured, but we didn't 22 have the means, or Atlas didn't have the means to 23 provide more financial assurance.

24 MEMBER WEINER: That's a very helpful 25 clarification, that your surety requirements are now

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	118
1	always forward looking and reviewed. I think that
2	does resolve the question.
3	I have one more, and then I'll get back to
4	you.
5	I was a little bit confused about your
6	discussion about point of compliance. And it looks to
7	me as if you are getting rid of the ACL concept, or
8	not getting rid of the ACL concept.
9	Judging from what Bill von Till said, your
10	point of compliance is now going to be in the mine
11	zone. Maybe I'm just confused about this. Are you
12	still looking at an ACL - at the possibility of an
13	ACL, where a point of compliance is outside the mine
14	zone, is somewhere close to the boundary?
15	MR. VON TILL: We are going to look at that
16	in more detail. But to answer your question, the
17	existing requirements for remediation and restoration,
18	the background MCLs and ACLs, we are going to use that
19	concept.
20	In other words, the way our guidance is
21	right now, and the way we envision the rule, is that
22	the licensee would have to first attempt to get down
23	to the background in the mining zone itself.
24	And when you say, restore to those levels
25	in the mining zone itself, you have to have compliance
ļ	I

(202) 234-4433

	119
1	within the mining zone.
2	Now if they can't get down to that, and
3	they can show that they have gotten as low as is
4	reasonably achievable, after using practicable
5	technologies and so forth, we will look at, like we do
6	today, potentially alternate concentration scenarios,
7	as long as they are protective of human health and the
8	environment, basically outside the zone.
9	And so that is part of the risk, you know,
10	informed risk based kind of approach that we utilize
11	even today, and we plan to utilize that.
12	But luckily the criterion 5 already has
13	that in there. We will have to expand on that in the
14	rule to the unique nature of ISLs as opposed to
15	tailings impoundment.
16	But we are going to use ACLs on
17	background, MCLs and ACLs.
18	MEMBER WEINER: Thank you very much.
19	Jim, do you have another question?
20	MEMBER CLARKE: Thank you, just a quick I
21	guess observation on monitoring, retains most of the
22	monitoring, but one of the things that we are seeing
23	a lot of in environmental restoration, especially when
24	you put something into the subsurface, and then you
25	try to get it out, is the mass transport dynamics in
	I

(202) 234-4433

120 1 a subsurface with any complexity are such that stuff 2 diffuses into zones where water doesn't move as fast 3 as other zones. 4 This is going to be very basic to Bill. 5 But when you stop pumping and you measure concentrations, there is something called a rebound 6 7 effect. Concentrations will actually go back up if 8 you turn the pumps back off. So I was just wondering, does that have 9 any role in deciding when you have met the -10 MR. VON TILL: It does quite a bit, and 11 12 licensees can use a number of pumping and groundwater restorations, biorestoration modeling. 13 And we have 14 been looking at this situation that you refer to for 15 quite some time. We have been working with the Office 16 of Research and looking at this aspect, and I've got right in front of me this NUREG/CR-6870, which is the 17 consideration of geochemical issues in groundwater 18 19 restoration of uranium in situ mining facilities. So we continue to look at this research 20 21 subject matter to try to get a handle on the actual 22 geochemical conditions at one of these sites, and what 23 happens when you stop extracting uranium, what happens 24 to the actual uranium as it moves forward, and as you 25 are trying to restore it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	And it is a research area that we are
2	looking at.
3	I should also mention that we have the
4	SRM, the November 28^{th} SRM that also tasks the staff
5	to work with the committee on looking at various
6	remedial technologies, you know, other types of
7	remedial technologies, and how they could be used at
8	these sites, too. And we want to start to meet with
9	the committee on that aspect.
10	So this is kind of an ongoing research and
11	development kind of situation.
12	MEMBER CLARKE: That's helpful, Bill. I
13	was referring to the false negative, if you will, when
14	you think your concentration is where you want it to
15	be, and then you turn the pumps off and it goes back
16	up again.
17	So there are - there's been a lot of work
18	in this area. There are models now to handle this.
19	MR. VON TILL: Stabilization is very much
20	on our mind, too. A lot of people can use
21	biorestoration, and bringing the concentrations down
22	temporarily, but how long would they stick is a big
23	question.
24	And we want to make sure that we have done
25	an adequate job of monitoring that for an adequate

(202) 234-4433

	122
1	period of time such that we have confidence that it's
2	not going to be a problem in the future.
3	MEMBER CLARKE: Okay, for what it's worth
4	I just throw it out. Thank you.
5	MR. FLIEGEL: The rule will address it.
6	The rule will not define restoration completion as it
7	meets the standards when you turn the pump off. There
8	will be a period of time that the restored well field
9	will have to be monitored.
10	MEMBER CLARKE: Thank you.
11	MEMBER WEINER: Bill, you had another
12	question?
13	MEMBER HINZE: Well, it's an observation
14	really.
15	In a study of what's going on in the West
16	today where these ISL sites are, there is a lot of
17	mineral resource development in the area, you drive
18	out through there, and there are drill holes, a number
19	of drill holes being put down by the petroleum
20	companies. There are mining activities going on, coal
21	deposits. All of these could have an impact on the
22	gradient of the groundwater.
23	They could all have an impact on leakage
24	from one aquifer to the other.
25	And I know there are state regulations
ļ	I

(202) 234-4433

that deal with a number of these things, but I think in developing new regulation, you should at least have in the back of your mind the possibility of mineral resource development, and making certain that the licensee really understands what's going on, and that there is some precautionary efforts made here to not have them interact with each other.

As we traveled to Grand Junction several months ago the number of wells going in was really outstanding. And they weren't far from many of these sites. And the same is true of the coal mines.

So this is something that you need to at least approach in the regulation in some sort of guidance to the licensee.

MR. VON TILL: I appreciate that. That's very timely. Some of the applications we have in Wyoming right now, we have a lot of coal bed methane production right in the area, and we are looking at that not only from a safety and groundwater aspect, but from a NEPA cumulative impact standpoint.

21 So we are looking at that, and we 22 appreciate those comments.

23 MEMBER WEINER: Well, having touched on 24 that, I will pick up on that. At the public hearings 25 that were held on this rule, and I don't know what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	EPA's take is on this, but at the public hearings
2	there was a great deal of concern expressed about
3	doing a generic environmental impact statement, and
4	that this would in some way obviate or limit what was
5	done regarding site specific environmental issues.
6	And I wonder if any of you could comment
7	on that?
8	MR. VON TILL: Well, the generic
9	environmental impact statement was designed to look at
10	the generic aspects of this. But in addition to that
11	there is going to be site specific environmental
12	analysis through at least an environmental assessment,
13	along with public comment periods; so that there is
14	adequate time for the public to comment on these site
15	specific issues, and so that the issues that are not
16	generic, like some of the groundwater issues in
17	particular, some cultural resource type issues, will
18	be looked at through the NEPA process, and we received
19	a number of comments about that. Governor Richardson
20	and members of Congress as well.
21	MEMBER WEINER: What I think we were
22	looking for as a committee, and perhaps you want to do
23	this at a future time, is to identify what issues you
24	see that are generic as the state found those that are
25	site specific.
Į	I

(202) 234-4433

125
Because I think this is what the public is
looking for. I recall at the public meeting, two
public meetings that I knew about, it would have been
- what people were looking for was a list. These
issues are generic issues that affect all sites, and
these other issues are ones that are clearly site
specific.
And I would encourage you to look at that
from that point of view.
And staff questions, I know that Latif

will have some.

1

2

3

4

5

6

7

8

9

10

11

12 MR. HAMDAN: I want to first defend myself to Dr. Hinze the question was the basis for - I was 13 14 not expressing an opinion. In Appendix A it mentions 15 minimum of four seasons. 40 CFR 192 on the standards themselves, they say four seasons, at a minimum one 16 year, and it goes back actually to RCRA, for CFR 264, 17 same thing. So this is the absolute minimum. 18

19 And just if I could make another point, 20 the point of compliance is actually in the case of 21 mill tailings right at the mill tailings, and in this 22 case it is in the aquifer.

23 The point that you were talking about away 24 from the site is the point of exposure. So in other 25 words you can have a higher standard, higher number so

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	to speak, in the case of ACL, but you need the primary
2	starter at a point of exposure, just to clarify for
3	the record.
4	And I only have one question, Mike. Are
5	you going to address in the rule the buffer zone for
6	the ACL? Are you going to put a limit for how much
7	area, or how much distance you will have between the
8	point of compliance and the point of exposure?
9	MR. FLIEGEL: Yes, at this point in our
10	address we don't have that in there. And there is a
11	difference that there - at a conventional site what
12	sometimes happens is that - especially because of past
13	practices where impoundments were built before
14	requirements for liners and the monitoring and the
15	cleanup as soon as you see contamination; before that
16	all happened there were some plumes at existing sites
17	that have essentially migrated.
18	And one of the solutions that some of our
19	licensees have taken is essentially to have a bigger
20	piece of land that they could apply an ACL in and have
21	their boundary as the point of exposure. And that's
22	what is currently done in some situations, because the
23	site goes to DOE in the end.
24	And an ISL it's not a site that is going
25	to DOE, so what will have to happen is that if it's an
	I

(202) 234-4433

	127
1	underground source of drinking water, the licensee
2	will have to make the argument that they are
3	protecting the underground source of drinking water.
4	And I don't know that there is a mechanism
5	to extend that out. Bill, is there?
6	MR. VON TILL: No, that's really somewhere,
7	a lot of times, up to the licensee. We have to make
8	sure that they adhere to the requirements of an ACL,
9	or we cannot grant an ACL. And what they have done in
10	some of the conventional sites is, they've purchased
11	additional properties. They've used institutional
12	controls sometimes.
13	That's up to them. What we have to prove
14	is that it's going to be protective to human health
15	and the environment where people will use that water.
16	And if there is not a buffer zone, that
17	would steer more towards us not approving an ACL is
18	the modeling doesn't demonstrate that it's going to be
19	safe there.
20	But we can look at that, Latif. We'll
21	have to work with EPA a little bit, because EPA
22	actually a lot of times makes the aquifer exemption
23	boundary. We don't do that here at NRC. And that in
24	essence would set up the point of exposure, the
25	aquifer exemption boundary, so we'll have to work with
I	I

(202) 234-4433

	128
1	EPA on that a little bit.
2	MR. HAMDAN: I think you should, because
3	this is really a major issue, in this case an ACL, the
4	ACL guidance is clear, but I believe we are involved -
5	in the ACL we are involved with - a certain area that
6	the licensee cannot go beyond it.
7	This way, the licensee would not go and
8	buy a lot of land, and could have a lot of area that
9	otherwise would not be contaminated. This is
10	something that needs to be looked at carefully I
11	think. If you read the guidance in the ACL you would
12	find this is the case that you cannot allow a free
13	hand on how much land and how much area you can
14	contaminate.
15	MR. VON TILL: That's a good point. From
16	a research standpoint you don't want to contaminate a
17	lot of the resource.
18	MEMBER HINZE: That's the buffer zone that
19	we have to be concerned about.
20	Latif, how is this point of exposure
21	position determined? What criteria are you using?
22	MR. HAMDAN: Okay, the main criteria is,
23	the ACL is a standard that is larger than the primary
24	standard. So the point of exposure technically is
25	determined as the point at which this contamination in
	I

(202) 234-4433

	129
1	the point of exposure attenuates to the primary
2	standard at the point of exposure.
3	In other words - are you with me?
4	MEMBER HINZE: I'm with you. I don't want
5	to be with you but I am.
6	MR. HAMDAN: Actually you can think of it
7	as - it is a point of compliance, but it is also a
8	point of compliance location. So you meet the primary
9	standard at a different location which is the point of
10	exposure.
11	MEMBER HINZE: And that could lead to these
12	very large buffer zones, which could take land out of
13	place and use and so forth.
14	MR. HAMDAN: Yes, but to complete the
15	answer to your question, that is the primary measure
16	of where the building should be. However, the
17	licensee land is not large enough. Then they cannot
18	take full attention of that. They have to contain it.
19	If the licensee land is too large, the question
20	becomes that's where I was coming from.
21	But the idea is to have the point of
22	exposure where the primary can be met. But that
23	doesn't mean that you can, in my mind, I think the
24	guidance for ACL, original guidance would say, that
25	doesn't mean you go buy all the land you can and have
I	I

(202) 234-4433

	130
1	a buffer zone that is five miles.
2	MEMBER WEINER: If there are no further
3	questions, comments, I'll turn it back to the chair.
4	CHAIR RYAN: Okay, thank you. That was
5	very interesting.
6	I agree with Professor Hinze, it's
7	gratifying to see our advice been read and accepted.
8	So thanks, we'll look forward to your updates on
9	future visits. Thanks.
10	With that we're at a point where we should
11	take a break. And based on the schedule, I don't want
12	to get too far ahead, we will reconvene at 2:45.
13	Thank you.
14	(Whereupon at 2:06 p.m. the
15	proceeding in the above-
16	entitled matter went off the
17	record to return on the record
18	at 2:44 p.m.)
19	CHAIR RYAN: Our last session was also Dr.
20	Weiner. So Dr. Weiner, without further ado, I'll turn
21	the meeting over to you.
22	MEMBER WEINER: Thank you, Mr. Chairman.
23	We had a request from NAC International to
24	make a presentation on their views on the
25	transportation aging and disposal canister, and the
ļ	I

(202) 234-4433

131 1 presentation will be given by Charles Pennington, who 2 is currently the director of NAC's marketing and business development for spent fuel storage 3 and 4 transportation businesses. 5 And just to go on the record, we have already advised Mr. Pennington as we did the other 6 7 commercial vendors that came to us that we do not 8 advise the Department of Energy. So we only advise 9 the Nuclear Regulatory Commission. 10 So having said that, go ahead, Charley, with your presentation. 11 VENDOR'S VIEW ON THE TRANSPORTATION-AGING-DISPOSAL 12 PERFORMANCE SPECIFICATIONS 13 14 MR. PENNINGTON: Thank you, Ruth. 15 Let me just follow that wonderful lead and 16 assure the committee. Ι know it will be а 17 disappointment, but this will not be a sales and marketing presentation. I will intend to address in 18 19 a little bit of a unique way I think from what you've 20 heard previously a technical issue. 21 This is primarily intended as a technical 22 issue discussion, but is also intended to be a little 23 more than that. We all know that technical issues do not 24 25 Technical exist in issues а vacuum. are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	contextualized by the framework in which we find them.
2	In fact you can see that the context often defines the
3	boundary conditions as it were to what technical
4	solutions may be possible to technical issues.
5	I've heard in numerous discussions,
6	especially in Miami recently at the PATRAM meeting a
7	number of people expressing opinions about what the
8	TAD system design was going to be or what it was not
9	going to be.
10	And I was struck by how these people who
11	are outside of the packaging industry felt about TAD
12	systems, and how we, at least some of us, within the
13	industry feel about the TAD system.
14	So I though I would first of all try to
15	take, and not be duplicative or redundant to other
16	messages you have heard from previous suppliers, but
17	rather try to take a few new issues that have some I
18	believe resonance with TAD development; highlight
19	those; then put those in a special context which I've
20	called other issues and limitations.
21	Because I think from the committee's
22	perspective you will see that those will play as great
23	a role, if not a greater role, than the technical
24	issues themselves.
25	So with that little bit of an
ļ	I

(202) 234-4433

	133
1	introduction, let me proceed with the presentation
2	itself. Please ask any questions at any time. I am
3	not sensitive to interruption or whatever.
4	I am going to cover these topics. This
5	will roughly serve as the framework for the technical
6	issues that I will discuss, and then putting them in
7	a context, contextualizing them, as it were, into the
8	conditions th8at presently exist in TAD system
9	development space.
10	I think we need to understand a little
11	bit, so I've got one slide about NAC's qualifications
12	for having input, providing input to this committee.
13	I want to give a brief overview of TAD
14	system development, then talk about key TAD
15	performance specification issues related to Part 71
16	and Part 72. And let me further amplify, Part 71 and
17	Part 72 is indeed all that I would be an expert on.
18	I do not claim expertise in Part 63. I
19	understand some of the interactions at play here with
20	Part 63, and the possible implications for Part 71 and
21	72 design, but my discussion is limited to Part 71 and
22	Part 72 issues.
23	Then I'll move into that contextual area
24	that I've mentioned briefly about other issues and
25	limitations that are of a potential concern. And then

(202) 234-4433

	134
1	if there is desire at the end to have a discussion,
2	I'll be happy to do whatever the committee wishes.
3	Quick background, and I have chosen to
4	present a background in terms of the business
5	organization.
6	(Telephone interruption)
7	MEMBER WEINER: Is anyone on the bridge?
8	Excuse me, we have a bridge line, and we need to
9	determine if there is someone on the bridge.
10	MR. IBARRA: This is the center from San
11	Antonio.
12	CHAIR RYAN: And who are you?
13	MR. IBARRA: This is Luis Ibarra. I have
14	with me Asa Chowdhury, Song Witt and Niko Shikan.
15	CHAIR RYAN: Thank you.
16	MR. IBARRA: Sure. No problem.
17	MR. PENNINGTON: Are we good? Okay.
18	The way to present the background I've
19	chosen here is that we have three basic business areas
20	at NAC.
21	One is for spent fuel, spent nuclear fuel
22	dry storage systems development. We do that
23	routinely.
24	We also fairly uniquely ship spent fuel.
25	We have been shipping spent fuel since 1970. We move
I	1

(202) 234-4433

	135
1	an awful lot of spent fuel. We've got currently more
2	than 3,600 cask loads of spent fuel that's been
3	shipped. And we have developed a lot of spent fuel
4	systems and delivered them.
5	So this is our expertise that I want to
6	simply mention for purposes of introduction of NAC to
7	the committee.
8	TAD system development overview. For a
9	year and a half the industry met very frequently with
10	the DOE and others, and we worked very well together
11	in working through - in fact, having been in this
12	business for a few decades, it was the best
13	interaction with DOE that we have experienced with
14	respect to common objectives, and getting the
15	performance specification contents into what I call
16	the, quote, reasonable range.
17	I think thanks in no small measure to
18	those activities NAC believes that the performance
19	specification contents directed for Part 71 and Part
20	72 can be met.
21	There are a number of things that were put
22	into the performance specification rates with respect
23	to the aging systems, and some of the criteria that
24	they want met that will require additional discussion
25	with the DOE. But uniquely I believe that right
	I

(202) 234-4433

	136
1	approach here is to take Part 72 systems and make them
2	completely different from the aging systems.
3	Others have expressed a counter view, and
4	I don't really see that right now. I think that that
5	is not the right way to go.
6	Another point here is that I am going to
7	be talking about issues. I am going to try not to be
8	repetitive. You've heard from others. I'm going to
9	bring up I think four issues that have either not been
10	presented or not necessarily presented in the way I'm
11	going to present them.
12	So I would move forward with the first one
13	of those issues. The issue of borated stainless.
14	Borated stainless steel is a material that has not
15	been used widely in spent fuel casks for a number of
16	years. Our good friends at Dominion Resources - it
17	used to be Virginia Power - used borated stainless in
18	a number of cask systems in the `90s. Not a lot of
19	use of voided stainless steel currently.
20	There is - the next issue would be an
21	increase of canister design life. The specification
22	takes the design life of canister systems and more
23	than doubles the industry average as they currently
24	exist.
25	There is an interesting requirement for a
ļ	I

(202) 234-4433

137 1 PWR disposable control rod assembly in the spec. That 2 is curious, because it's a DOE design, and it impacts our design and licensing of the canister. 3 4 And finally there are some flow through 5 requirements for the geologic repository operating area and the aging system that as may have been 6 7 highlighted earlier by a previous presented, may have 8 some impacts on Part 71 and Part 72. 9 So I am going to touch on these issues straightforward. 10 Borated stainless, a function of borated 11 12 a neutron absorber stainless is as of a poison The main function in 13 material. the basket, 14 particularly at the quantities that are listed in the 15 performance specification, is for maintenance in a physical location and chemistry for the long term 16 17 repository service. However, Part 71 and Part 72 18 19 really control how the borated stainless is to be 20 deployed and fixed in the basket. 21 So the real duty of this material, the 22 challenge for the material, is real from the 23 repository, but the licensing, Part 71 and Part 72, control how it can physically be mounted and used in 24 25 the basket.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Now there was a code case for the use of 2 borated stainless steel, Code Case -510-1, in the mid-3 1990s. That issue has never really been tested with -4 that code case has never really been tested with the 5 NRC. The code case is very restrictive with 6 7 respect to welding. Are there specific designs that 8 may need to do welding of the borated stainless for 9 their particular basket approach? Unknown, but it is 10 an uncertainty in the licensing process with respect to borated stainless. 11 Again, what load bearing properties would 12 the borated stainless be allowed to take with respect 13 14 to normal accident conditions in the canister? 15 Again, uncertain issues. Finally, because of the severe duty of the 16 17 voided stainless in the repository, there is a very large volume, a very heavy mass of borated stainless 18 19 required for the basket. 20 This has a couple of factors. One, it 21 increases the weight substantially; two, with a very 22 limited canister diameter it restricts flux path and 23 So you are going to get it restricts moderation. 24 you have a tendency toward under-moderation in the 25 canister design, which can be problematical, and may

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	lead you in certain design directions with respect to
2	the basket.
3	So that is a quick overview of some of the
4	concerns with respect - some of the issues associated
5	with borated stainless.
6	Canister design life: canister design life
7	averages about 40 to 50 years in most industry
8	applications. Performance spec calls for a canister
9	design life of 60 years at the power reactors, and 50
10	years at the aging facility; roughly a doubling, or a
11	little more than doubling, of the design life.
12	There really is - the only real design
13	life limitation that NAC has ever been able to
14	identify would be in a highly corrosive environment in
15	which the shell, or the welds on the shell, or the
16	welds on the lid, might be compromised. And that
17	literally is out many, many years.
18	How that is to be justified, defended,
19	demonstrated, with that dramatic an increase in the
20	canister design life is unclear. NAC does not
21	consider it a problem. It only becomes an issue if
22	there is far greater defense of that than has
23	historically been necessary required.
24	The disposable control rod assembly, and
25	this applies to PWRs only, and it's for fuels that
ļ	I

(202) 234-4433

	140
1	fall outside the post-closure criticality loading
2	curves, which are contained within the performance
3	spec.
4	The design of that DCRA, how many are
5	required per canister, all of these aspects of the
6	DCRA are not only not final, they are not even
7	identified.
8	The DCRA as you can appreciate fits into
9	a spent fuel assembly very much like a control rod,
10	either a CEA in a CE plant, or an RCC, rod control
11	cluster, in a Westinghouse plant.
12	That means it's displacing water. That
13	means that you are again being driven towards under-
14	moderation. And depending on how many of these DCRAs
15	you're required to have, and what some of these
16	special unique characteristics such as an extra thick
17	Zirc cladding, extended poison coverage, a special
18	spider design, all of this is in DOE's design core.
19	We need that for input. We need that very quickly
20	when we move into contract execution in order to
21	decide what fuels we indeed can license. Because
22	that's our decision.
23	So this is an issue really of, hopefully
24	timing is okay, hopefully DOE's understanding of the
25	DCRAs is sufficiently detailed. But the use fo these
ļ	I

(202) 234-4433

	141
1	DCRAs may drive basket designs toward either larger
2	flux traps, or flux traps in general whether they have
3	them or not.
4	Again, the licensing schedule makes
5	finalization critical.
6	The GROA, aging system flow through
7	requirements from the performance specification, there
8	are a number of system drops, and system handling
9	events, due either to seismic or mishandling at the
10	GROA that are required by the performance
11	specification.
12	Interestingly the acceptance criteria is
13	specified and stated in terms of leakage rates. Now
14	I think everyone would understand that when you start
15	talking about leakage rates you by definition have to
16	have a hole size or a crack size or a leak size in
17	order to begin to make that determination; and the
18	analysis methods that are used with the code, design
19	codes allowed, do not give you anyway to do that.
20	So there are some discussions that need to
21	go on amongst the vendors and the DOE on exactly what
22	this means. We have a strategy on how this is to be
23	done. We have a way to look at this we think that
24	will work.
25	But this is, as mentioned I believe by one
I	I

(202) 234-4433

	142
1	of my predecessors here, this could have some impacts
2	on the canister designs for the storage and transport.
3	I personally don't think it will, but it could.
4	At any rate it's one of the things that I
5	think can be resolved with discussion, but it needs to
6	be resolved, and it needs to be resolved very clearly,
7	because this will be an issue that might come up in
8	licensing space even under Part 71 and Part 72.
9	Now I mentioned earlier that technical
10	issues don't stand by themselves. Technical issues
11	are indeed rarely the control and technical
12	organizations that do not understand the context in
13	which they are developing technical solutions are in
14	great peril of failure.
15	So I want to talk a little bit now about
16	some of the context that surrounds us with TAD system
17	development, because there are some significant
18	boundary conditions I would call them that will impose
19	types of technical solutions upon us.
20	First of all we have a number of
21	unresolved transport certification issues, and the
22	committee has heard about these issues. NEI and
23	others have made a number of presentations on these
24	issues. I won't bother to dwell on them. But high
25	burnup fuel cladding properties, burnup credit,
ļ	I

(202) 234-4433

moderator exclusion, all are issues that weigh in right now.

And the key point is that while making progress on these issues, they are still works in process. So we are not at closure on these issues.

Now DOE intends to proceed in the near term on TAD development, which it would be hopeful that they would. Time has really expired for applying any new resolutions. Because once the flag drops, there is a very crisp schedule, and a number of deliverables that have to be met, and time for working on resolution and new approaches just won't be there.

So in my view, I think industry must proceed with the current situation with respect to any of these issues in resolving licensing issues for transportation. And by the way I'm going to get to some ideas in the end to suggest how industry might go about doing this.

19 Another biq issue is what. call we 20 confirmatory testing that is needed for transport 21 certification with the NRC. Confirmatory testing is 22 not testing for licensing; it is simply testing that 23 confirms the analysis methodologies that you have used 24 with the system designs that you are trying to 25 license.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

This testing of cask systems is time consuming and costly. Testing facilities, how many of Well, right now I would them are really out there? only be willing to say that Sandia National Labs is available. There is not a lot of testing that goes on; therefore there is not a big business in testing; 6 therefore there is very little incentive for people that have testing to maintain their testing 9 capabilities.

And make no mistake about it, drop testing 10 is a craft. And it's an important craft, and it's 11 12 very difficult, and even more importantly, and I mention this in the next bullet, they need to be 13 14 audited and fully approved supplies under vendors -15 approved vendors.

In other words they have to be a quality 16 17 supplier with an appropriate QA program. I would dare say there is no supplier of casks out there that right 18 19 now has an approved vendor for cask drop testing on 20 its approved vendors list. Just my guess, but I would 21 be willing to hazard that guess.

22 Next, those of us that have done extended 23 testing and a lot of testing over the last seven years 24 are aware of the expanded nature of NRC requirements 25 for cask drop testing. In the 1990s cask drop testing

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

7

8

	145
1	was really limited pretty much to assuring that peak
2	G loads in the analysis were matched by peak G loads
3	in the testing.
4	Today that is not the case. Today it's a
5	matter of a time-history G loading in the actual drop
6	test that matches a similar time history analysis
7	curve from your own codes that you are applying to
8	this.
9	It's a very rigorous approach to
10	confirmatory drop testing.
11	What this says is that phantom work cask
12	confirmatory drop testing for certification will be a
13	time consuming process, especially if there were,
14	let's say, only one supplier offering that service,
15	one supplier that has a QA program, one supplier that
16	have been approved.
17	And another issue that provides the
18	context here for our technical issues, the DOE
19	licensing requirements and their licensing schedule,
20	and the current delays that we seem to be experiencing
21	in deciding to proceed with the TAD development.
22	Under the current DOE procurement
23	documents, vendors bear all risks of NRC licensing
24	including schedule. We all know that new designs, new
25	system designs, are most challenging both for vendors
	I

(202) 234-4433

5 One doesn't have to think too hard about this to see that if there were four suppliers of TAD 6 7 systems, each providing at approximately the same 8 time, within weeks of each other, an application for 9 transport certification, and an application for dry 10 storage certification, all of those on top of everything else could end up taxing the system. 11 That is a very likely scenario with respect to what we see 12 the DOE approach to be. 13

And finally we are now about approaching three months behind the schedule that we anticipated, and it's getting to be a critical proportion, even vendors have to do something with resources. So the resource availability becomes a concern the longer this carries forward.

All right, so now let me try to put a little bit finer point on the context issues I've raised here that surround the technical issues.

First of all all these context issues I'm sure have been looked at as carefully by the other supplies as they have by NAC. Our reviews and reviews

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

146

147 1 in general lead you to consider the following things. 2 Well, let's get rid of as much originality 3 as we can. Let's make this TAD canister just about as 4 much a duplicate as anything we've ever done. 5 Storage and transport: the next 6 consideration that might come up is, let's really 7 limit ou8r spent fuel. Let's make sure that we are 8 not doing anything challenging with respect to 9 licensing space. High burnup fuel and burnup credit issues being the way they are, if licensing is going 10 to be an issue, licensing schedule, then let's be very 11 careful about what we select to license. 12 Consistent with the abilities of outside 13 14 contractors to provide testing services, one could 15 say, okay, let's make sure that not only our canister 16 but that our transport cask is bounded by recent 17 testing that we have already done. Let's get as much - let's get as close on 18 19 a transport cask design impact, limit our design to 20 current designs as possible, so that we restrict the 21 need for this testing with respect to schedules. 22 And finally even one might consider that, 23 let's make the TAD system a simple amendment to 24 current designs that we have already certified. 25 So those are some of the implications that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	vendors might consider in looking at all of the
2	context of the technical issues that we face.
3	So real quickly, I believe that the
4	performance specification issues for Part 71 and Part
5	72 can certainly be solved.
6	We are looking at them, even the flow
7	through requirements, we've looked at approaches that
8	will address some of the grow up pass through
9	requirements; believe those can be done. But again
10	you are never certain until you've talked with the DOE
11	and then met with the NRC.
12	So it's really from NAC's perspective
13	these other issues and limitations that are more
14	troubling. How shall we view those? And how shall we
15	use those to bound and restrict o8ur TAD development
16	so that it is likely - not only likely but highly
17	likely to be successful in the time frame that DOE
18	expects?
19	And finally with the schedule delays that
20	we are experiencing with the DOE, I would say that
21	most importantly time is of the essence. The
22	schedules that DOE had laid out originally are
23	aggressive. With the delays we've got right now they
24	become even more aggressive.
25	So we believe that it's time to make our
	I

(202) 234-4433

	149
1	moves, and make them very quickly; start resolving not
2	only the contextual issues but the technical issues.
3	Lady and gentlemen, that's my quick and
4	very - I would apologize, it's not superficial, but it
5	did not have a lot of technical detail. But at least
6	it highlighted some of the issues that we in the
7	industry think are important.
8	MEMBER WEINER: Thank you very much,
9	Charley.
10	Jim? Mr. Chairman?
11	CHAIR RYAN: No, I didn't have any, thanks.
12	MEMBER WEINER: Allen?
13	VICE CHAIR CROSS: No, thank you.
14	MEMBER HINZE: Well, I won't leave you
15	hanging.
16	How do you change the canister to achieve
17	this doubling of the lifetime? You mentioned the
18	corrosive environment, particularly on the welds.
19	What needs to be done?
20	MR. PENNINGTON: Nothing. There is so much
21	reserve margin in canister design as it exists. We
22	have never really been able to find anything that
23	limits the canister design from a lifetime
24	perspective.
25	In fact we've only really taken any
ļ	

(202) 234-4433

1 analysis out for a very long time, and that would be 2 a canister in a very aggressive marine environment. 3 And even at that point you'd get, and you are clearly 4 looking at thinning, thinning of welds, thinning of 5 shelves and things of that nature, you are still looking at canister design lives of around 200 years 6 7 before you would compromise your accident analysis and lose confinement containment of the materials inside. 8 9 So the real question is not what we have 10 to do to the canister, but what we would be required to do for licensing space to demonstrate a rough 11 doubling of the design life. 12 That's the uncertainty. 13 It hasn't been 14 done this way before. 15 MEMBER HINZE: Is there anything that could 16 be done with the welds to improve their quality and 17 their lifetime? Is there - is there any robustness that one can add to the welds? 18 19 MR. PENNINGTON: This is an opinion, and 20 I'll express it that way: I believe the welds are 21 actually as high quality as anything else, because you 22 are using materials in the welds that are actually 23 better than the canister itself. MEMBER HINZE: It isn't the material. It's 24 25 the weld.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

150

	151
1	MR. PENNINGTON: Well, the weld itself is
2	so redundant and so I would like to say it is well
3	tested. Now it is not as well tested of course as if
4	it were a code weld. And this is just a lid weld.
5	The other welds on the canister are code welds.
6	But it is so well tested and so
7	progressively tested and since we've never really had
8	a failure of one of those welds, I think the
9	experience is that it's a good weld.
10	Now if you wanted, the way to make it
11	fully high quality would be to use either a UT or an
12	RT method of inspecting that at the plant. That
13	becomes horrendously expensive, and I could virtually
14	- I don't want to speak for the utility community, but
15	that would be very difficult for the utility company
16	to take.
17	MEMBER HINZE: How can you improve the
18	testing or calibrate the testing so that one can
19	achieve a validity out to 100, 110 years? How do you
20	improve the likelihood of extrapolation? And what
21	happens to the uncertainties as you extrapolate out?
22	MR. PENNINGTON: Well, let me just walk you
23	through what I consider to be the life of a canister.
24	You've got a canister that is closed, and it's been
25	placed into service. And everyday that passes from a
	1

(202) 234-4433

	152
1	thermal and a radiation perspective, its life gets
2	better and better. If the heat load goes down, source
3	term goes down. So the threat diminishes, any threat
4	from either temperature or radiation decreases with
5	time.
6	The historical analysis work on canisters
7	shows such high margins for anything like fatigue,
8	thermal cycling, anything like that, such high margins
9	that you really - there really is not a need to try to
10	say, okay, instead of a $3/4$ inch or $\frac{1}{2}$ inch canister,
11	I'm going to double the fitness. I'm going to up the
12	weld thickness by this amount.
13	There really isn't - you are already
14	talking about margins that are sufficient, so that you
15	are not going to really threaten them very much by
16	essentially doubling the life.
17	But again the very questions you are
18	asking might be the questions that the review staff
19	asks, and says, okay, do something different. I don't
20	know what they will ask, but that is an uncertainty
21	that presents itself to any vendor going in with a new
22	design requirement.
23	MEMBER HINZE: Going to your slide #10,
24	referring to the 3 g seismic peak acceleration design
25	requirements, Kennedy from DOE was in last month and
l	I

(202) 234-4433

	153
1	discussed some of the recent work that the DOE has
2	done on preclosure. And it struck me in reading the
3	transcript on that, I missed it at the time, but he
4	was talking about the 3 g being important because they
5	didn't want the aging casks to tip over, because the
6	ends of the canisters were not as adequately protected
7	from radiation as the cylinder.
8	Can you help me with that?
9	MR. PENNINGTON: Yes, I think what he was
10	saying loosely was that the lid thickness of the cask
11	is not historically as much as the shell thickness,
12	skyshine is such a small component dose. I think
13	that's what he must have been trying to say. But
14	again you can make it as thick as you want. You can -
15	
16	MEMBER HINZE: So one can solve this 3 g by
17	doing something to the lids? Could you?
18	MR. PENNINGTON: No, I think what - at
19	least as I understood what you said to me, he was
20	saying, well, we don't want them to tip over because
21	we are going to get higher shine out of the -
22	MEMBER HINZE: Yes, right.
23	MR. PENNINGTON: Well, I can fix that.
24	MEMBER HINZE: Well, the top and the
25	bottom.
	I

	154
1	MR. PENNINGTON: if that is all you are
2	worried about, I'll put 10 feet of concrete up there.
3	MEMBER HINZE: That can be fixed.
4	MR. PENNINGTON: That can be fixed. So I
5	think, and I don't want to put words in his mouth -
6	MEMBER HINZE: No, I'm just trying to -
7	because you have obviously looked at the 3 g sites -
8	MR. PENNINGTON: Yes, and 3 gs is not a
9	problem. And keeping it from tipping over at 3 gs is
10	not really a problem. It can be done. It's going to
11	be a hellatiously, horrifically expensive cask, but it
12	can be done. It certainly can be done.
13	I think, and I don't want to speak for
14	everybody else in the industry, but I think we would
15	prefer to see tie-downs. They don't want to go
16	through the inspection of tie-downs. Okay.
17	But this is certainly a kind of dialogue
18	that we need to have with the site people in coming up
19	with, okay, what's really important here? Can we
20	combine a new design idea with perhaps a performance
21	specification modification? There are certainly ways
22	to go about this to solve these issues.
23	The g loading in 3 gs is nothing for these
24	canisters. It's not a threat on that. It's only a
25	threat on tip over, and you don't want it to walk off
I	I

(202) 234-4433

	155
1	the pad. So you are going to avoid cylindrical bottom
2	plates. You are going to do something else.
3	But you will be able to solve these
4	issues, expensively, but you can sure solve them.
5	Now your point is well made. Okay, if all
6	you are worried about is a tip over, we'll put you a
7	real thick lid on there and there won't be any shine
8	off the top.
9	MEMBER HINZE: Thank you very much, Mr.
10	Pennington.
11	MEMBER WEINER: I just have a couple of
12	questions. Normally, or recently, in recent
13	environmental impact statements, no credit has been
14	taken for the TAD in looking at the risks of
15	transporting spent nuclear fuel.
16	Could you comment on what the influence of
17	the TAD would be on those risk assessments, if credit
18	were taken for the TAD, or if the TAD were included in
19	the risk assessment; any TAD.
20	MR. PENNINGTON: Well, I would certainly be
21	happy to do that.
22	The TAD provides in essence double
23	containment. The transport cask will be licensed as
24	a containment boundary. We can assure by both
25	analysis and test that the canister will not leak. It
	I

(202) 234-4433

	156
1	won't leak; it won't let water in either. So that's
2	a different issue.
3	But the point is that you have double
4	containment system. I don't believe that there really
5	is no event that I can conceive of in the regulatory
6	framework, present regulatory framework, that would
7	cause failure of either containment system, let alone
8	both.
9	So the risk assessment has to come down to
10	your beyond-design basis assessment, and I'm not sure
11	which environmental assessment you're talking about,
12	and whether they took into account beyond-design basis
13	events or not.
14	But beyond-design basis events, there
15	really isn't, if you shift - if you were to use an
16	beyond-design basis event analysis for instance, if
17	you were to shift away from code allowable to shift to
18	really an ultimate strain or ultimate stress or
19	ultimate strain criterion, you can do almost anything
20	to these casks and they won't fail.
21	If you look at a simple stress vein curve
22	for simple stainless steel, and you look at the amount
23	of that area under that curve that the regulations
24	allow you to use, you are going to see that you have
25	a factor of 10 safety just to ultimate on any of the
ļ	I

(202) 234-4433

	157
1	materials you are using, including the weld material.
2	So I think that the presence of the TAD
3	canister, if properly assessed, increased - decreases
4	the risk order of magnitude, more, something like
5	that, for releases, for releases or radioactive
6	material.
7	MEMBER WEINER: Thank you.
8	Other questions or comments from the
9	audience? Hearing none, I turn it back to you, Mr.
10	Chairman.
11	CHAIR RYAN: All right. Well, thanks very
12	much. We appreciate your time and presentation.
13	With that, we are at the point where we
14	are going to take up a discussion of our letter
15	writing activities, and I guess we can probably take
16	a five-minute break before we initiate that session
17	and get ready for that.
18	So thank you all very much. And we will
19	close the formal part of the record today here, and we
20	can be in five minutes or so.
21	(Whereupon at 3:19 p.m. the proceeding in
22	the above-entitled matter was adjourned.)
23	
24	
25	
	I