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Appendix 4.  Analysis primer 

While a comprehensive review of the tools used in analysis is not necessary to the management of 

risks, in this appendix we briefly discuss types of data, data distributions (especially as those relate 

to biota transfers), reliability and fault-tree analysis, and the evaluation of complex adaptive 

systems such as those characteristic of the exporting (Missouri River system), importing (Red 

River system), or engineering controls (e.g., water treatment and distribution system) considered 

in the current investigation within the context of risk reduction.  For a more extensive treatment 

of any of the analytical tools the reader is referred to the references. 

4.1  Types of Data: Categorical data and measurement data 

Categorical data reflect objects being grouped into categories based on some qualitative trait, and 

the resulting data are merely labels (Figure 1).  Common day examples of categorical data are hair 

color, flower colors, sex, and in our current investigation, species occurrence data (present/absent 

data or more precisely, found/not found data).  A simple review of even these common day 

Figure 1.  Types of categorical data. 
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examples indicates that categorical data can also be classified based upon the number of 

categories that are potentially characteristic of all members of the population.  Categorical data 

are classified as being nominal, ordinal, or binary (dichotomous) in character.  Nominal data are a 

type of categorical data in which objects fall into unordered categories (e.g., flower colors).  In 

contrast, ordinal data are categorical data in which order is important, e.g., developmental stages 

of some invertebrates are an ordered set referred to as eggs, larvae, juveniles, and adults or 

pathological states such as morbidity may be scored as none, mild, moderate, and severe.  Binary 

or dichotomous data are categorical data that occur as one of two possible states; that is, there 

are only two independent categories, e.g., species occurrence (e.g., present/absent).  Binary data 

can either be nominal or ordinal. 

Measurement data are those that are measured, based on some quantitative trait and the resulting 

data are set of numbers, e.g., height, weight, age, number of organisms in a region, or stream 

velocity (Figure 2).  Measurement data are classified as discrete or continuous, where discrete 

Figure 2.  Types of measurement data. 

measurement data occur as only certain values; that is, there are gaps between the values.  Values 

for discrete data are generally whole numbers and occur at count data, e.g, population counts 

such as number of fish in a pond.  In contrast to discrete measurement data, continuous 

measurement data may occur as any whole number plus take on any value in the interval between 

whole numbers, e.g., distance, height, and age.  Categorical data are commonly summarized using 
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“percentages” (or “proportions”), and measurement data are typically summarized using 

“averages” (or “means”) or some descriptive statistic that characterizes a particular attribute of a 

sample of numbers taken from a population of interest. 

4.2  Data distributions encountered in the analysis of biota transfer 

In data mining operations such as those implemented for the current investigation, an 

understanding of data and their characteristic distributions are necessary to conduct an analysis of 

risks, especially for probabilistic analyses (see, e.g, Bedford and Cooke 2001).  Predicted or 

forecasted outcomes of risk scenarios, be those characterized by qualitative or quantitative 

methods, that capture the concerns of stakeholders reflect issues incorporated into conceptual 

models of alternative events (such as biota transfers yielding species invasions or shifts in 

metapopluations).  Inevitably, data mining and the evaluation of encountered data has been 

completed in the absence of a fully characterized distribution of data, which is common in studies 

such as ours, in part, owing to dependence on diffuse data sources collected across multiple 

publications across a wide range of time.  Our current work, however, frequently requires 

assumptions of data distributions likely characteristic of these data compiled during the course of 

the study; hence, a brief overview of frequently encountered data distributions and their 

interrelationships is included in this appendix in order to better characterize risks, and in particular 

uncertainties associated with these risks (see standard references and online sources such as 

Weisstein (1999), e.g., http://mathworld.wolfram.com/about/mathworld.html for source materials 

for this portion of Appendix 4 and additional detail on data distributions). 

Bernoulli Distribution.  The Bernoulli distribution is a discrete distribution having two possible 

outcomes labelled by n = 0 and n = 1 in which n = 1 ("success") occurs with probability p and n = 

0 ("failure") occurs with probability , where (Figure 3; see, e.g., Evans, et 

al 2000; Balakrishnan and Nevzorov, 2003).  As such, the distribution has probability function: 

http://mathworld.wolfram.com/about/mathworld.html
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Figure 3.  Bernoulli distribution. 

which can also be written 

The corresponding distribution function is 

The performance of a fixed number of trials with fixed probability of success on each trial is 

known as a Bernoulli trial, which is an experiment in which s trials are made of an event with 

probability p of success in any given trial. 

The distribution of heads and tails in coin tossing is an example of a Bernoulli distribution with 

.  The Bernoulli distribution is the simplest discrete distribution and is the building 

block for other more complicated discrete distributions.  The distributions of a number of variate 

types are based on sequences of independent Bernoulli trials that are constrained in some way, 

e.g., the binomial distribution is characterized by the number of successes in n trials (Evans et al 

2000; Balakrishnan and Nevzorov 2003). 

The characteristic Bernoulli function is 
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and mean , variance , skewness , and kurtosis are then 

To find an estimator  for the mean of a Bernoulli population with population mean p, let N be 

the sample size and suppose n successes are obtained from the N trials.  Assume an estimator 

given by 

so that the probability of obtaining the observed n successes in N trials is then 

The expectation value of the estimator  is therefore given by 

so  is indeed an unbiased estimator for the population mean p. 
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Binomial Distribution.  The binomial distribution gives the discrete probability distribution

 of obtaining exactly n successes out of N Bernoulli trials, where the result of each 

Bernoulli trial is true with probability p and false with probability  (see, e.g., Evans et al 

2000; Balakrishnan and Nevzorov 2003).  The binomial distribution is therefore given by: 

where  is a binomial coefficient .  The following plot (Figure 4) shows the distribution of n 

successes out of N = 20 trials with . 

Figure 4.  Binomial distribution.


The probability of obtaining more successes than the n observed in a binomial distribution is
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where 

B(a,b) is the beta function , and  is the incomplete beta function. 

The characteristic function for the binomial distribution is 

(see, e.g., Evans et al 2000; Balakrishnan and Nevzorov 2003), and the skewness and kurtosis are 

The mean deviation is given by 

For the special case , this is equal to 
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where  is a double factorial .  For N = 1, 2, ..., the first few values are therefore 1/2, 1/2, 3/4, 

3/4, 15/16, 15/16, ...  A complete derivation is not included here.  However, treating the 

distribution as continuous, 

Since each term is of order  smaller than the previous, we can ignore terms higher 

than , so 

The probability must be normalized, so 

and 

Defining  , 
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which is a normal distribution.  For , a different approximation procedure shows that the 

binomial distribution approaches the Poisson distribution (see Haight 1967). 

Normal distribution and the Central Limit Theorem.  A normal distribution in a variate X 

with mean and variance  has probability function on the domain . The term 

“normal distribution” or “Gaussian distribution” are commonly used in reference to this 

distribution, and because of its curved flaring shape, social scientists refer to it as the “bell curve” 

(Figure 5; see Patel and Read, 1982). 

Figure 5.  Normal distribution. 

The so-called “standard normal distribution” is given by taking in a general  and 

normal distribution.  An arbitrary normal distribution can be converted to a standard normal 
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distribution by changing variables to , so , yielding: 

The normal distribution function gives the probability that a standard normal variate 

assumes a value in the interval , 

where erf is a function sometimes called the error function; neither  nor erf can be expressed 

in terms of finite additions, subtractions, multiplications, and root extractions.  Consequently, both 

must be either computed numerically or otherwise approximated. 

The normal distribution (Figure 5) is the limiting case of a discrete binomial distribution 

as the sample size N becomes large, in which case  is normal with mean and variance 

respectively, when . 

The distribution P(x) is properly normalized since 
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The cumulative distribution function , which gives the probability that a variate will assume a 

value , is then the integral of the normal distribution, 

where erf is again called the error function. 

Normal distributions have many convenient properties, so random variates with unknown 

distributions are often assumed to be normal.  Although this can be a dangerous assumption, it is 

often a good approximation due to a surprising result known as the central limit theorem . This 

theorem states that the mean of any set of variates with any distribution having a finite mean and 

variance tends to the normal distribution.  Many common attributes conform to a normal 

distribution, with few members at the high and low ends and many in the middle.  Because the 

normal distribution occurs frequently, there is a tendency to invoke assumptions of normality in 

situations where they may not be applicable:  “Everybody believes in the exponential law of 

errors: the experimenters, because they think it can be proved by mathematics; and the 

mathematicians, because they believe it has been established by observation” (Whittaker and 

Robinson 1967). 

The unbiased estimator for the variance of a normal distribution is given by 
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where 

so 

The characteristic function for the normal distribution is 

and the variance , skewness , and kurtosis excess are given by 

The variance of the sample variance  for a general distribution is given by 

which simplifies in the case of a normal distribution to 

(Kenney and Keeping 1951).  If P(x) is a normal distribution, then 
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so variates with a normal distribution can be generated from variates having a uniform 

distribution in (0,1) via 

The normal distribution is also a special case of the chi-squared distribution , since making the 

substitution 

gives 

Now, the real line is mapped onto the half-infinite interval by this 

transformation, so an extra factor of 2 must be added to , transforming into 

(Kenney and Keeping 1951), where use has been made of the identity . 

Poisson distribution and rare events.  A Poisson process is one that satisfies the following 

properties: 

! The numbers of changes in nonoverlapping intervals are independent for all 
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intervals. 

!	 The probability of exactly one change in a sufficiently small interval  is 

, 


where  is the probability of one change and n is the number of trials. 

!	 The probability of two or more changes in a sufficiently small interval h is 

essentially 0. 

In the limit of the number of trials becoming large, the resulting distribution is called a Poisson 

distribution (Figure 6; see Haight 1967). 

Figure 6.  Poisson distribution. 

Given a Poisson process, the probability of obtaining exactly n successes in N trials is given by the 

limit of a binomial distribution 

Viewing the distribution as a function of the expected number of successes  instead of the 

sample size N for fixed p, the equation then becomes 
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Letting the sample size N become large, the distribution then approaches: 

which is known as the Poisson distribution (see, e.g., Haight 1967; Papoulis 1984; Pfeiffer and 

Schum 1973).  Note that the sample size N has completely dropped out of the probability 

function, which has the same functional form for all values of . 

The Poisson distribution is normalized so that the sum of probabilities equals 1, since 

The mean , variance , skewness , and kurtosis are 



16 Biota transfer report, Internal Review: Appendix 4, Analysis primer 

The characteristic function for the Poisson distribution is 

(Haight 1967; Papoulis 1984), and the cumulative function is 

so 

The Poisson distribution can also be expressed in terms of 

the rate of changes, so that 

Biological implications of data types and data distributions. While the underlying 

mathematical principals excerpted from http://mathworld.wolfram.com/about/mathworld.html 

(see Weisstein (1999), last accessed November 16, 2004) and briefly summarized in this appendix 

are infrequently considered in the quantitative assessment of biological functions and processes, 

http://mathworld.wolfram.com/about/mathworld.html
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the risk analysis and subsequent interpretation of risks must be completed and interpreted with an 

awareness of what these principals are and what they mean within the context of managing risks 

characterized by investigations such as the current effort dependent on existing data and available 

information from a wide variety of sources. 

Species presence and absence data, or more appropriately stated, data that characterize species as 

found or not found, are binary or Bernoulli variables.  As noted in the preceding sections of the 

primer, a Bernoulli random variable is formally described as a variable that results from an 

experiment in which s trials are made of an event, with probability p of success (i.e., found) in any 

given trial.  By definition, a failure (i.e., not found) in any given trial is characterized as q = 1 - p. 

The classical example of a Bernoulli trial is a coin toss, preferably with a “fair coin,” one where 

the probability of a head or tail is equal on any given trial.  A binomial distribution will 

characterize the outcomes of repeated Bernoulli trials, where the binomial distribution gives the 

discrete probability distribution of obtaining exactly n successes out of N Bernoulli trials where 

the result of each Bernoulli trial is characterized by a probability p + q = 1. The binomial 

distribution is therefore given by 

= 

= 

where  is a binomial coefficient.  While the intricacies of interrelationships between differing 

statistical distributions will not be developed further (see Evans et al 2000 and Balakrishnan and 

Nevzorov 2003 for additional details), there are two important distributions, the normal 
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distribution as specified, 

and the Poisson distribution as specified,

 = 

which appear as the limits for sequences of binomial distributions.  The differences between these 

limiting distributions reflects the contrasting asymptotic behaviors of alternative sequences of 

binomial random variables and reflect the influence of sample size and p values on system 

behavior (e.g., distributions of binomial random variables reflecting p << 1 approach limits 

captured by the Poisson distribution).  Applications of these analytical tools to problems such as 

those of interest in the present investigation reflect these asymptotic behaviors and their boundary 

conditions. 

The balance of this section will focus on an overview of how these distributional properties 

influence the work completed as part of this investigation focused on potential biota transfers 

between the Missouri River and Red River basins. 

4.3  Reliabililty and fault-tree analysis: Fault-Probability Trees (FPTs) 

Complex interactive systems, be those engineered systems designed and constructed following 

industry standards or biological systems at any level of organization (e.g., molecular, cellular, 

tissues and organs, organismic, populations, communities, or ecosystems), are subject to 

inevitable events commonly referred to as “failures.”  These failures potentially compromise the 

system’s performance for various time periods, ranging from the inconsequential events to 

catastrophic terminal events.  Failure analysis, especially within the context of biological systems 

and their relationships to alternative engineering systems, was a primary tool in the evaluation of 
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risks of biota transfers associated with water diversions between the Missouri River and Red 

River basin. 

Failures range from the inconsequential to the catastrophic.  But, from the point of view of 

assessing system reliability, catastrophic failures are handled no differently from failures that occur 

when a key parameter of a system of interdependent components drifts slightly out of 

specification.  Regardless of the systems complexity, departures from nominal structure or 

function call for an unscheduled maintenance action or recovery process in engineering or 

ecological systems, respectively.  Consequences associated with failure events vary widely, since 

the restoration of a system’s performance is a function of magnitude of departure (e.g., more than 

one component fails) and the sensitivity of the system to failure of its various components (e.g., 

not all components may be equally sensitive to failure and some components may be more critical 

to system performance than others at various periods in a system’s lifetime). 

For the current investigation, problem formulation identified the “failures” that were the major 

concerns of Reclamation and Technical Team.  From a system perspective, failures were 

considered to be biota transfers (both species invasions and shifts in metapopulations) that were 

variably affected by alternative control systems interjected into the water diversion to the 

attendant reduce risks.  Failure analysis, then, was critical to the evaluation of risks, since the 

biological or ecological “failures” (e.g., a species invasion) associated with interbasin water 

transfers were influenced by “failures”in the alternative technologies incorporated into the 

proposed water distribution system linking Missouri River sources with importing areas in the 

Red River basin. 

As background to the current investigation and to encourage future iterations of this analysis 

consider the critical interactions between biological and ecological systems and the role that 

engineering systems play in reducing risks, a brief overview of failure analysis follows.  For more 

comprehensive technical guidance on failure analysis and its potential value in evaluating risks and 

consequences, the reader is referred to Barlow (1998), Blischke and Parbhakar Murthy (2000), 
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and NIST/SEMATECH (2004). 

Repairable and non-repairable systems and lifetime distribution models.  A repairable 

system is one which can be restored to satisfactory operation following some scheduled or 

unscheduled action to remedy a departure from acceptable performance (a failure), e.g., control 

systems involving water filtration will have a routine maintenance schedule to reduce risks of 

failure in treatment system, or ecosystems may recover following unsuccessful species invasions. 

When discussing the rate at which failures occur during system operation (and are then repaired), 

an engineer will define a “Rate Of Occurrence Of Failure” (ROCF) or “repair rate” which would 

be roughly equivalent to the restoration ecologist’s term of “recovery rate.”  While the engineer 

actively develops corrective action plans (e.g., scheduled maintenance), restoration ecologists may 

assume active or passive roles in the recovery process (see, e.g., Jordan et al 1987; Manci 1989; 

FISRWG, 1998).  For engineering systems, “failure rates” or “hazard rates” are terms applied to 

the first failure times for a population of non-repairable components or to non-repairable systems. 

Biological analogs of non-repairable components or non-repairable systems would be 

characterized as aging-related events (e.g., decreased fecundity) commonly measured as changes 

in survivorship (for example) in life-table analysis.  A non-repairable population is one for which 

individual items that fail are removed permanently from the population. While the system may be 

repaired by replacing failed units from either a similar or a different population, the members of 

the original population dwindle over time until all have eventually failed.  The comparison to 

cohorts and their passage through the population ecologist’s life table are clearly evident (see, 

e.g., Caswell 2001). 

Tools for evaluating non-repairable populations.  In general, population models used to 

describe unit lifetimes are known as lifetime distribution models regardless of whether the 

populations of interest are biological or engineering in origin.  A population is generally 

considered to be all of the possible unit lifetimes for all of the units, and a random sample of size n 

from this population is the collection of failure times observed for a randomly selected group of n 

units.  A lifetime distribution model can be any probability density function (or PDF),  f(t), defined 
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over the range of time from t = 0 to t = infinity. The corresponding cumulative distribution 

function (or CDF), F(t), characterizes the probability that a randomly selected unit will fail by 

time t.  Figure 7 that follows illustrates the relationship between f(t) and F(t).  The lifetime CDF 

may be characterized by F(t) as (1) F(t) = the area under the PDF f(t) to the left of t; (2) F(t) = the 

probability that a single randomly chosen new unit will fail by time t; and (3) F(t) = the proportion 

of the entire population that fails by time t. 

Figure 7.  Cumulative distribution function for lifetime model. 

The figure above also shows a shaded area under f(t) between the two times t1  and t2.  This area is 

[F(t ) - F(t )] and represents the proportion of the population that fails between times t  and t  (or 2 1 1 2 

the probability that a brand new randomly chosen unit will survive to time t1  but fail before time 

t2).  It is worthy to note that the PDF f(t) has only non-negative values and eventually either 

becomes 0 as t increases or decreases towards the origin. Ideally, the CDF F(t) is monotonically 

increasing and goes from 0 to 1 as t approaches infinity. In other words, the total area under the 

curve is always 1. 

A good example of a life distribution model is the 2-parameter Weibull distribution for F(t). It has 

the CDF and PDF equations given by: 
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where ( is the “shape” parameter and " is a scale parameter called the characteristic life. 

Survival is the complementary event to failure, and the reliability function, R(t), also known as the 

survival function, S(t), is defined by: 

R(t) = S(t) = the probability a unit survives beyond time t. 

Since a unit either fails or survives, and one of these two mutually exclusive alternatives must 

occur, we have 

R(t) = 1 - F(t),   F(t) = 1 - R(t) 

Calculations using R(t) often occur when building up from single components to subsystems with 

many components. The reliability of a system is the product of the reliability functions of the 

components since both must survive in order for the system to survive. Building up to a “system” 

from the individual components is referred to as the “bottom-up” method.  The bottom-up 

method is guided by the general rule: to calculate the reliability of a system of independent 

components, multiply the reliability functions of all the components. 

Failure (or hazard) rate.  The failure rate is the rate at which the population survivors at any 

given instant are “falling over the cliff,” that is the failure rate is defined for non-repairable 

populations as the (instantaneous) rate of failure for the survivors to time t during the next instant 

of time. It is a rate per unit of time, and it represents a “snapshot” in time, since the next instant 

the failure rate may change and the units that have already failed play no further role since only 

the survivors count.  The failure rate (or hazard rate) is denoted by h(t) and calculated from 
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The failure rate is sometimes called a “conditional failure rate” since the denominator 1 - F(t) (i.e., 

the population survivors) converts the expression into a conditional rate, given survival past some 

time, t.   Since h(t) is equal to the negative of the derivative of ln{R(t)}, we have the useful 

identity: 

If we let 

be the cumulative hazard function, we then have F(t) = 1 - e -H(t) .  Two other useful identities that 

follow are: 

A failure rate over any interval (T1 6  T2) characterizes an “average” failure rate for the interval 

and is denoted by AFR(T ,T ).  AFR's are calculated: 1 2 
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Graphical depictions of failure rates: “Bathtub” curve.  A plot of the failure rate over time 

yields a curve that looks like a drawing of a bathtub (at least to an engineer; Figure 8).  If enough 

units from a given population are observed operating and failing over time, it is relatively easy to 

compute estimates of the failure rate h(t). 

Figure 8.  Typical “bathtub” curve of the reliability engineer. 

In an idealized bathtub curve, the initial region begins at time zero (t0) when a system’s operation 

commences (which is analogous to birth in life table analysis).  The system is initially 

characterized by a high but rapidly decreasing failure rate (e.g., early failure period for an 

engineering system, infant mortality period for biological populations and actuaries), with the 

decreasing failure rate typically lasting several weeks to a few months depending on the system. 

Following the initial, frequently transitory high failure rate, the failure rate levels off and remains 

roughly constant for throughout “useful life of the system.”  This long period of a relative 

constant failure rate is known as the intrinsic failure period or the stable failure period.  The 

constant failure rate level during this period is referred to as the intrinsic failure rate.  Most 

systems function most of their lifetimes in this flat portion of the bathtub curve.  If units from the 

population remain in use long enough, the failure rate begins to increase as materials wear out and 

degradation failures occur at an ever increasing rate. This is the “wearout failure period.” 

Based on empirical observations, the bathtub curve also applies to repairable systems, but in this 
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instance, a “repair rate” or the “rate of occurrence of failures” (ROCOF) characterizes the 

ordinate of Figure 8.  A different approach is used for modeling the repair rates for a repairable 

system, since failures occur at given system ages and the system, once repaired, be the same as 

new, or better, or worse than the original system.  Frequency of repairs may be increasing, 

decreasing, or staying at a roughly constant rate, and may be characteristic of a given system. 

Let N(t) be a counting function that keeps track of the cumulative number of failures a given 

system has had from t0, t1, t2,. . .tn, tn+1  . Then, N(t)is a step function that jumps up one every time 

a failure occurs and stays at the new level until the next failure.  Every system will have its own 

observed N(t) function over time. If we observed the N(t) curves for a large number of similar 

systems and “averaged” these curves, we would have an estimate of M(t) = the expected number 

(average number) of cumulative failures by time t for these systems.  Repair rate is the mean rate 

of failures per unit time, and the derivative of M(t), denoted m(t), is defined as the repair rate at 

time, t. 

Lifetime distribution models.  A handful of lifetime distribution models are commonly applied 

to investigations where data mining provides “starter sets” for an analysis.  While empirical data 

sets developed as a direct result of observational or designed studies have contributed much to the 

literature for use in the current investigation focused on biota transfers, the inevitable stochastic 

character of the invasion process leads the analysis of risks to distribution models that have 

enjoyed great practical success in past investigations.  There are a handful of distribution models 

that have successfully served as population models for lifetime distributions and failure times 

arising from a wide range of applications (e.g., engineering, biological, and ecological) and failure 

mechanisms. Sometimes there are probabilistic arguments based on the physics of the failure 

mode that tend to justify the choice of model. At other times the model is used solely because of 

its empirical success in fitting actual failure data.  Six models frequently used are described in this 

appendix: Exponential, Weibull, Extreme Value, Lognormal, Gamma, and Proportional Hazards. 

Exponential distribution. The exponential model with only one unknown parameter is the 
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simplest of all distribution models. The key equations for the exponential distribution are listed 

below, with the failure rate reducing to the constant for any time.  As a consequence, another 

name for the exponential mean is the “mean time to fail” (MTTF) = 1/ .  The exponential 

distribution is the only distribution to have a constant failure rate.  The Cum Hazard function for 

the exponential is just the integral of the failure rate or H(t) = t.  The PDF and CDF for the 

exponential have the familiar shapes shown below (Figure 9 and Figure 10, respectively). 

Figure 9.  PDF for exponential distribution. Figure 10. CDF for exponential distribution. 

The exponential distribution models the flat portion of the “bathtub” curve, because of its 
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constant failure rate property.  Since most components and systems spend most of their lifetimes 

in this portion of the Bathtub Curve, this justifies frequent use of the exponential distribution 

when early failures or wear out is not a concern. 

Weibull distribution.  The Weibull distribution is a very flexible life distribution model with two 

parameters, and has CDF and PDF and other key formulas given by: 

with  the scale parameter (the characteristic life),  (gamma) the shape parameter, and  is 

the Gamma function with (N) = (N-1)! for integer N.  The Cum Hazard function for the 

Weibull is the integral of the failure rate or 

A more general 3-parameter form of the Weibull includes an additional waiting time parameter : 

(sometimes called a shift or location parameter).  The formulas for the 3-parameter Weibull are 

easily obtained from the above formulas by replacing t by (t - :) wherever t appears.  No failure 

can occur before : hours, so the time scale starts at :, and not 0. If a shift parameter : is known 

(based, perhaps, on the physics of the failure mode), then all you have to do is subtract : from all 

the observed failure times and/or readout times and analyze the resulting shifted data with a 

2-parameter Weibull.    When  = 1, the Weibull reduces to the exponential model , with = 

1/  = the “mean time to fail” (MTTF).  Depending on the value of the shape parameter , the 

http://apr124.htm
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Weibull model can empirically fit a wide range of data histogram shapes as illustrated below 

(Figure 11). 

Figure 11. Illustrations of Weibull distribution. 

As a failure rate model, the Weibull is a natural extension of the constant failure rate exponential 

model since the Weibull has a polynomial failure rate with exponent {  - 1}. The Weibull has 

been applied to many failure analyses because of its flexible shape and ability to model a wide 

range of failure rates across a wide range of physical and biological systems. 

Extreme value distributions.  Extreme value distributions are the limiting distributions for the 

minimum or the maximum of a very large collection of random observations from the same 

arbitrary distribution (see Castillo et al, 2005).  Gumbel (1958) showed that for any well-behaved 

initial distribution (i.e., F(x)is continuous and has an inverse), only a few models are needed, 

depending on whether you are interested in the maximum or the minimum, and also if the 

observations are bounded above or below.  In the context of reliability modeling, extreme value 

distributions for the minimum are frequently encountered, e.g., if a system consists of n identical 

components in series, and the system fails when the first of these components fails, then system 
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failure times are the minimum of n random component failure times.  Extreme value theory says 

that, independent of the choice of component model, the system model will approach a Weibull as 

n becomes large. The same reasoning can also be applied at a component level, if the component 

failure occurs when the first of many similar competing failure processes reaches a critical level. 

The distribution often referred to as the extreme value distribution is the limiting distribution of 

the minimum of a large number of unbounded identically distributed random variables. The PDF 

and CDF are given by: 

If the x values are bounded below (as is the case with times of failure) then the limiting 

distribution is the Weibull. PDF shapes for the (minimum) extreme value distribution are 

illustrated in Figure 12. 

Figure 12.  Illustrations of various Extreme Value 

distributions. 
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The Weibull distribution and the extreme value distribution have a useful mathematical 

relationship. If t , t , ...,t  are a sample of random times of failure from a Weibull distribution, then 1 2 n 

ln t1, ln t2, ...,ln tn  are random observations from the extreme value distribution. In other words, 

the natural log of a Weibull random time is an extreme value random observation.  Because of this 

relationship, computer programs and graph papers designed for the extreme value distribution can 

be used to analyze Weibull data which is similar to using normal distribution programs to analyze 

lognormal data, after first taking natural logarithms of the data points. 

Lognormal distribution.  The lognormal life distribution, like the Weibull, is a very flexible 

model that can empirically fit many types of failure data. The two parameter form has 

parameters  = the shape parameter and T50 = the median (a scale parameter).  If time to failure, 

tf, has a lognormal distribution, then the (natural) logarithm of time to failure has a normal 

distribution with mean : = ln T50  and standard deviation . This makes lognormal data 

convenient to work with; just take natural logarithms of all the failure times and censoring times 

and analyze the resulting normal data. Later on, convert back to real time and lognormal 

parameters using  as the lognormal shape and T50  = e: as the (median) scale parameter. 

Below is a summary of the key formulas for the lognormal. 

A more general 3-parameter form of the lognormal includes an additional waiting time 

parameter   (sometimes called a shift or location parameter). The formulas for the 3-parameter 
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lognormal are easily obtained from the above formulas by replacing t by (t - ) wherever t 

appears. No failure can occur before  hours, so the time scale starts at and not 0. If a shift 

parameter  is known (based, perhaps, on the physics of the failure mode), then all you have to 

do is subtract  from all the observed failure times and/or readout times and analyze the resulting 

shifted data with a 2-parameter lognormal. 

Examples of lognormal PDF and failure rate plots are shown in Figure 13 and Figure 14, 

respectively.  Observe that lognormal shapes for small sigmas are very similar to Weibull shapes 

when the shape parameter  is large and large sigmas give plots similar to small Weibull 's. 

Both distributions are very flexible and it is often difficult to choose which to use based on 

empirical fits to small samples of (possibly censored) data. 

Figure 13.  Illustrations of the lognormal 

distribution PDFs. 

Figure 14. Illustrations of lognormal failure 

rates. 

As suggested by the preceding plots, lognormal PDF and failure rate shapes are flexible enough to 

make the lognormal a very useful empirical model.  Lognormal models can be theoretically 

derived under assumptions matching many common failure processes, which does not mean that 

the lognormal is always the correct model for these mechanisms, but it does perhaps explain why 

it has been empirically successful in so many cases. 
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Gamma distribution.  In the literature, the gamma distribution is commonly presented in one of 

two forms, and different authors use different symbols for the shape and scale parameters. Below 

we show three ways of writing the gamma, with a = = , the “shape” parameter, and b =1/ , 

the scale parameter.  The exponential is a special case of the gamma when a = 1, the gamma 

reduces to an exponential distribution with b = .  Another well-known statistical distribution, 

the Chi-Square, is also a special case of the gamma, where a Chi-Square distribution with n 

degrees of freedom is the same as a gamma with a = n/2 and b = 0.5 (or = 2).  Figure 15 

illustrates of gamma PDFs, CDFs, and failure rate shapes. 
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Figure 15.  Illustrations of PDFs (top left), 

CDFs (top right), and failure rates (bottom) for 

gamma distribution. 
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The gamma distribution is commonly used for Bayesian reliability analysis, since it is a flexible life 

distribution model and frequently provides a good fit for failure data. 

Proportional hazards model.  The proportional hazards model is often used in survival analysis, 

but infrequently with engineering data.  Cox’s proportional hazards model (Cox 1972) has been 

used primarily to evaluate survival when secondary variables are likely exerting effects on the 

system.  Its strength lies in its ability to model and test many inferences about survival without 

making any specific assumptions about the form of the life distribution model. 

Proportional hazards model is based on an assumption that there are one or more explanatory 

variables (continuous, categorical, or binary) that affect lifetime. The hazard rate for a nominal (or 

baseline) set z = (x ,y , ...) of these variables be given by h (t), with h (t) denoting legitimate 0 0 0 0 0 

hazard function (failure rate) for some unspecified life distribution model.  The proportional 

hazard model assumes changing a stress variable (or explanatory variable) has the effect of 

multiplying the hazard rate by a constant.  The proportional hazards model assumes we can write 

the changed hazard function for a new value of z as: 

h  (t) = g(z)h  (t) z 0

In other words, changing z, the explanatory variable vector, results in a new hazard function that 

is proportional to the nominal hazard function, and the proportionality constant is a function of z, 

g(z), independent of the time variable t. A common and useful form for f(z) is the log-linear 

model which has the equation: g(x) = eax  for one variable, g(x,y) = eax + by  for two variables. 

The proportional hazards model is equivalent to the acceleration factor concept if and only if the 

life distribution model is a Weibull (which includes the exponential model, as a special case). For a 

Weibull with shape parameter  , and an acceleration factor AF between nominal use fail time t0 

and high stress fail time ts  (with t0  = AFt s) we have g(s) = AF . In other words, h (t) = (t).s AFh0 

Under a log-linear model assumption for g(z) without any further assumptions about the life 
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distribution model, it is possible to analyze experimental data and compute maximum likelihood 

estimates and use likelihood ratio tests to determine which explanatory variables are highly 

significant.  More details on the theory and applications of the proportional hazards model may be 

found in Kalbfleisch and Prentice (2002) and Lawless (2003). 

Data limitations and failure analysis.  The more reliable a system is, the more difficult it is to 

gather failure data to predict its failure.  Two closely related problems that are typical of reliability 

data and related types of statistical data encountered in invasion biology (e.g., species distribution 

data where “species not found” may be misinterpreted as “species absence”).  First, data are 

generally censored (e.g., when an observation period ends, but not all units have failed).  Failure 

data may be “right censored” or “left censored,” depending on the way the data were collected 

(e.g., testing period of fixed time or fixed number of failures defines testing period, respectively; 

see Kalbfleisch and Prentice (2002), Lawless (2003), and Meeker and Escobar (1998) for a 

comprehensive review of the role of data censoring in limiting failure analysis).  Data may also be 

“multicensored,” since different studies may record observations differently for identical systems 

being considered, e.g., failure may be identified as a run-time endpoint, if the unit did not fail 

while under observation, or failure may be identified as an exact failure time, or failure may be 

identified as an interval of time during which the unit failed.  Many statistical methods can be used 

to fit models and estimate failure rates even with censored data (e.g., probability plotting, 

maximum likelihood estimation; see Meeker and Escobar 1998). 

Second, observed failures may be few in number or completely absent, if the system is highly 

reliable or inadequately sampled.  Independently or in combination, these data limitations 

influence the uncertainty associated with analyzing failure data, particularly as those tools apply to 

evaluations for risk.  Although serving as sources of uncertainty, solutions to these data 

limitations generally mean making additional assumptions in developing risk scenarios and using 

“best guess” models for characterizing failure events and their role in modifying risks (e.g., 

increasing or decreasing risk estimates). 
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Distinguishing Failure Modes.  Failures are a generally a coarse measurement endpoint, and 

may result from several different failure modes (e.g., root cause of failure may differ from one 

occurrence to the next), and in the current investigation the discrimination between species 

invasions linked to interbasin water transfers and those linked with other pathways are considered 

within the context of competing risks in Section 4. 

In general, the analysis of competing risks, regardless of the focus being on biological and 

ecological systems, or on engineering systems, revolves about failure mechanisms that are 

assumed to be independent, with the first “failure mode” that occurs causes the system to fail. For 

example, if a species invasion is considered a failure, then each of  k different failure modes or 

ways a failure can occur are competing (e.g., for species invasions, different pathways may be 

interpreted as different failure modes), and underlying each failure mode is a failure mechanism 

(for a given pathway, each mode will have one to many different failure mechanisms).  

In evaluating competing risks, a system’s reliability is considered as a “build up” model, based on 

evaluations of the reliability of each failure mode. Three assumptions are generally specified in 

such an analysis of competing risks: (1) each failure mechanism leading to a particular type of 

failure (i.e., failure mode) proceeds independently of every other one at least until a failure occurs; 

(2) a failure event occurs when the first of all the competing failure mechanisms reaches a failed 

state; and (3) each of the k failure modes has a known life distribution model F (t).i 

Quantitatively, the competing risk model is best applied when all three assumptions hold. If R (t),c 

F (t), and h (t) denote the reliability, CDF and failure rate for the component, respectively, and c c 

R (t), F (t)and h (t) are the reliability, CDF and failure rate for the i-th failure mode, respectively, i i i 

then the competing risk model formulas are: 
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Multiply reliabilities and add failure rates.  For evaluating competing risks, consider all failure 

mechanisms are racing to see which can reach failure first, e.g., which competing risk is most 

likely to yield a species invasion.  If the failure mechanisms are assumed independent, then the 

component reliability is the product of the failure mode reliabilities and the component failure rate 

is the sum of the failure rates.  This algorithm holds for any arbitrary life distribution model, as 

long as “independence” and “first mechanism failure causes the component to fail” assumptions 

are not violated. 

Alternative “rules” associated with calculating risks for different types of systems are briefly 

reviewed below. 

Failures in series models.  The series model is used to go from individual components to the 

entire system, assuming the system fails when the first component fails and all components fail or 

survive independently of one another.  The series model is a “build up” model where components 

are constructed to yield sub-assemblies and systems, and only applies to non-replaceable 

populations (or first failures of populations of systems). The assumptions and formulas for the 

series model are identical to those for the competing risk model, with the k failure modes within a 

component replaced by the n components within a system.  In Figure 16, the entire system has n 

components in series, and the system operates when all components function or fails when at least 

one component fails.  Each component is independent, but failure in one component means the 

system fais.  Simplified, the system of 5 components in series may be represented by an equivalent 
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system (as far as reliability is concerned) with only one component. 

Figure 16.  Illustration of a series system. 

Failures in parallel or redundant systems.  In parallel systems, all n components that make up 

the system operate independently and the system works as long as at least one component still 

works.  Parallel systems are the opposite of a system operating in series in which the first 

component failure causes the system to fail.  In a parallel system, all the components have to fail 

before the system fails. If there are n components, any (n-1) of them may be considered redundant 

to the remaining one (even if the components are all different). When the system is turned on, all 

the components operate until they fail. The system fails at the time of the last component failure. 

In contrast to a system operating in series, the assumptions for a parallel model are: (1) all 

components operate independently of one another, as far as reliability is concerned; (2) the system 

operates as long as at least one component is still operating, and system failure only occurs at the 

time of the last component failure; and (3) the CDF for each component is known.  For a system 

operating in parallel, the CDF F (t) for the system is just the product of the CDF's F (t) for the s i 

components or 
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R (t) and h (t) can be evaluated using basic definitions, once we have F (t).  Figure 17 represents a s s s 

parallel system with 5 components and the (reliability) equivalent 1 component system with a 

CDF Fs  equal to the product of the 5 component CDFs. 

Figure 17.  An illustration of a parallel system. 

R out of N model.  An “r out of n” system survives when at least r of its components are 

working (any r).  An “r out of n” system contains includes the series system and the parallel 

system as special cases. The system has n components that operate or fail independently of one 

another and as long as at least r of these components (any r) survive, the system survives. System 

failure occurs when the [n - (r+1)] component failure occurs.  When r = n, the r out of n model 

reduces to the series model, and when r = 1, the r out of n model becomes the parallel model. 

When all the components of the system (1) are identical and have the identical reliability function 

R(t); (2) operate independently of one another (as far as failure is concerned); (3) the system can 

survive any (n-r) of the components failing, but fails upon the [(n - (r+1)] component failure, then 

system reliability is given by adding the probability of exactly r components surviving to time t to 

the probability of exactly (r+1) components surviving, and so on up to the probability of all 
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components surviving to time t. These are binomial probabilities (with p = R(t)), so the system 

reliability is given by: 

If all the components are not identical, then R (t) would be the sum of probabilities evaluated for s 

all possible terms that could be formed by picking at least r survivors and the corresponding 

failures. The probability for each term is evaluated as a product of R(t)’s and F(t)’s.  For example, 

for n = 4 and r = 2, the system reliability would be (abbreviating the notation for R(t) and F(t) by 

using only R and F): 

R R F F + R R F F  + R R F F + R R F F  + R R F F + R R F F2  R  =  s  1 2 3 4  1 3 2 4 1 4 2 3  2 3 1 4  2 4 1 3  3 4 1  

+ R R R F + R R R F  + R R R F + R R R F  + R R R R  1 2 3 4  1 3 4 2  1 2 4 3  2 3 4 1  1 2 3 4

Complex systems.  For complex systems, reliability can be evaluated by successive applications 

of series and parallel models.  Many complex systems can be diagramed as combinations of series 

components, parallel components, and R out of N components (see, e.g., Miller and Escobar 

1998; Thompson 2000; Borgelt and Kruse 2002; Huzurbazar 2005; Banerjee et al 2004; Salthe 

1985; Puccia and Levins 1985).  While many engineering analyses, and indeed many evaluations 

of ecological systems, seek to reduce their complexity to “equivalent” simple systems, many 

systems with marked interdependence and interconnectedness, or with systems characterized by 

complicated operational logic structure, alternative tools such as event trees, Boolean 

representations, coherent structures, cut sets and decompositions may be involved.  The reader is 

referred to those authors listed above for more comprehensive treatment of complex systems 

analysis .1 

1 Graphics and excerpts from NIST/SEMATECH (2004), e-Handbook of Statistical Methods (available at 

http://www.itl.nist.gov/div898/handbook/) have been relied upon for peer-reviewed technical summaries 

incorporated into this overview of reliability analysis in this appendix. 

http://www.itl.nist.gov/div898/handbook/)
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