Crop Bioprotection Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Genomic Mechanisms of in Situ Detoxification of Biomass Conversion Inhibitors for Ethanologenic Yeast Saccharomyces Cerevisiae

Location: Crop Bioprotection Research

Project Number: 3620-41000-123-01
Project Type: Reimbursable

Start Date: Sep 15, 2006
End Date: Sep 14, 2009

Objective:
The overall objective of this project is to elucidate genomic mechanisms of detoxification and tolerance of ethanologenic yeast to biomass conversion inhibitors furfural and 5-hydroxymethylfurfural (HMF), and thereafter to genome-wise manipulate and engineer more robust strains for low-cost biomass conversion to ethanol. This study will identify and characterize genes involved in pathways relevant to detoxification, biotransformation, and tolerance to furfural and HMF involved in biomass conversion to ethanol; and elucidate regulatory mechanisms of major gene interactions in relevant pathways involved in furfural and HMF detoxification and tolerance using computational prediction and mathematical modeling.

Approach:
We plan to study genomic regulatory mechanisms of inhibitor detoxification by yeast during ethanol production from dilute acid-hydrolyzed biomass. We propose to characterize the genomic transcriptional profiling of wild-type and several improved, more inhibitor-tolerant strains in response to furfural and 5-hydroxymethylfurfural (HMF) supplied in a defined culture medium. To accomplish this, yeast cells will be sampled in a time-course study to isolate total RNA and conduct microarray experiments using two-color microarray with spiking universal external RNA quality controls. Inhibitor and inhibitor-conversion products, glucose consumption, ethanol production, and other byproducts generated during the fermentation process will also be monitored during the time-course study to establish metabolic profiles for wild-type and more tolerant strains involved in detoxification of biomass conversion inhibitors. Based on data from culture time-course studies, we will propose computational models to predict the behavior of the gene function and expression of natural and genetically engineered networks under furfural and HMF stress. A dynamic mathematical model using difference equations and estimate parameters will be applied and tested for its ability to describe gene regulatory network behavior. Based on these approaches, we will form testable hypotheses to explain molecular and genomic mechanisms of yeast detoxification and tolerance to furfural and HMF.

   

 
Project Team
Liu, Zonglin
Slininger, Patricia - Pat
 
Project Annual Reports
  FY 2008
  FY 2007
 
Related National Programs
  Quality and Utilization of Agricultural Products (306)
  Bioenergy & Energy Alternatives (307)
 
 
Last Modified: 05/06/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House