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Abstract

Herbivores and pathogens impact the species composition, ecosystem function, and socioeconomic value of forests.
Herbivores and pathogens are an integral part of forests, but sometimes produce undesirable effects and a
degradation of forest resources. In the United States, a few species of forest pests routinely have significant impacts
on up to 20 million ha of forest with economic costs that probably exceed $1 billion /year. Climatic change could
alter patterns of disturbance from herbivores and pathogens through: (1) direct effects on the development and
survival of herbivores and pathogens; (2) physiological changes in tree defenses; and (3) indirect effects from changes
in the abundance of natural enemies (e.g. parasitoids of insect herbivores), mutualists (e.g. insect vectors of tree
pathogens), and competitors. Because of their short life cycles, mobility, reproductive potential, and physiological
sensitivity to temperature, even modest climate change will have rapid impacts on the distribution and abundance of
many forest insects and pathogens. We identify 32 syndromes of biotic disturbance in North American forests that
should be carefully evaluated for their responses to climate change: 15 insect herbivores, browsing mammals; 12
pathogens; 1 plant parasite; and 3 undiagnosed patterns of forest decline. It is probable that climatic effects on some
herbivores and pathogens will impact on biodiversity, recreation, property value, forest industry, and even water
quality. Some scenarios are beneficial (e.g. decreased snow cover may increase winter mortality of some insect pests),
but many are detrimental (e.g. warming tends to accelerate insect development rate and facilitate range expansions
of pests and climate change tends to produce a mismatch between mature trees and their environment, which can
increase vulnerability to herbivores and pathogens). Changes in forest disturbance can produce feedback to climate
through affects on water and carbon flux in forest ecosystems; one alarming scenario is that climate warming may
increase insect outbreaks in boreal forests, which would tend to increase forest fires and exacerbate further climate
warming by releasing carbon stores from boreal ecosystems. We suggest a list of research priorities that will allow us
to refine these risk assessments and adopt forest management strategies that anticipate changes in biotic disturbance
regimes and mitigate the ecological, social, and economic risks. ©® 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are numerous mechanisms by which
climate change could influence forest disturbance
by herbivores and pathogens. Changes in temper-
ature and precipitation can exert strong direct
effects on the survival, reproduction, dispersal
and geographic distribution of herbivores and
pathogens. Changes in temperature, precipitation,
solar radiation, and atmospheric CO, concentra-
tions can alter tree physiology in ways that influ-
ence resistance to herbivores and pathogens.
Other potentially important indirect effects in-
clude: (1) impacts of climate change on competi-
tors and natural enemies that presently restrict
the abundance of potential pests and pathogens;
and (2) interactions among direct effects of cli-
mate change and other human effects on forests
such as fragmentation, pollution, fire frequency,
and the introduction of exotic organisms. Pre-
sumably, many potential consequences of climate
change will be buffered by the resilience of forest
communities to natural climatic variation. How-
ever, it is likely that at least some of the plausible
scenarios involving herbivores and pathogens will
result in significant perturbations to the forests
with lasting ecological and socioeconomic im-
pacts. We face a considerable challenge in assess-
ing and mitigating these risks.

The consequences of climatic perturbations to
the forests will depend upon the perturbations
and the ecosystem. Perturbations of high intensity
but low frequency (e.g. fires, hurricanes, and bark
beetle epidemics) can be described as distur-
bances (Huston, 1994). Perturbations of low in-
tensity but high frequency (e.g. a trend towards
warmer, drier summers or moderate sustained
levels of herbivory and fungal infection) tend to
exert continued low-level pressures on ecosystems
that are sometimes referred to as ‘stress’ (Under-
wood, 1989; Winner, 1994; Milchunas and Lauen-
roth, 1995), although the effects are not necessar-
ily undesirable (e.g. may sometimes include an
increase in tree defenses, Lorio, 1993; or an in-
crease in forest productivity, Teskey, 1997). Cli-
mate change could also produce perturbations of
intermediate intensity and frequency, such as

changes in climatic extremes (e.g. occasional
droughts, hard freezes, and hot spells) and mild
epidemics of pests and pathogens. Populations,
communities, and ecosystems may differ in their
resistance to the effects of perturbations and their
ability to recover (Cottingham and Carpenter,
1994; Carpenter et al., 1995; Larsen, 1995). Popu-
lations with an evolutionary history of environ-
mental stability may be most affected by pertur-
bations (Bazzaz, 1983; Wilson and Keddy, 1986;
Miao and Bazzaz, 1990; Clark, 1991; Parker et al.,
1993). Ecosystems with low species diversity may
be most sensitive to climatic extremes (Tilman,
1996) and ecosystems with low productivity re-
quire the most time to recover from perturbations
(Moore ct al., 1993; Huston, 1994). Perturbations
are a natural feature of most ecosystems and are
not intrinsically deleterious (Lorimer, 1980;
Glitzenstein et al., 1986; Frelich and Lorimer,
1991; Attiwill, 1994). For example, intermediate
levels of disturbance may often maximize species
diversity (Connell, 1978; Huston, 1979, 1994;
Luken et al., 1992; Wilson, 1994). However, dis-
turbances that are different or more extreme
than those that have been historically experi-
enced by an ecosystem can result in ecosystem
degradation that is self-reinforcing and irre-
versible, even when the disturbance abates (Rap-
port and Whitford, 1999). Natural and anthro-
pogenic perturbations are a dominant considera-
tion in forest management because of the conse-
quences for community composition, biodiversity,
landscape structure, natural resources, ecosystem
processes, and aesthetics (Turner, 1987; Dayton
et al.,, 1992; Mladenoff et al., 1993; Robertson et
al, 1993; Siitonen and Martikainen, 1994;
Fleming, 1996).

2. Current impacts

To keep the scope of this review manageable,
our assessment of current impacts of forest herbi-
vores and pathogens is focused on the special
case of North America. However, many of the
patterns and processes are common to forests
throughout the world.
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2.1. Current regional variation

Herbivores and pathogens exert strong impacts
within every major forest type of North America
(Tables 1 and 2). Bark beetles (Scolytidae) are
among the largest source of natural disturbance
in pine forests throughout the continent (Raffa,
1988; Price et al., 1997; Logan et al., 1998). Fun-
gal root diseases, fusiform rust, and dwarf mistle-
toe can have further effects on pine forests (James
et al., 1984; Filip, 1994; Nebeker et al., 1995;
Walkinshaw and Barnett, 1995; Dieters et al.,
1996; Klepzig et al., 1996; Meadows and Hodges,
1996; Synder et al., 1996; Kipfmueller and Baker,
1998). White pine blister impacts pine forests
from New England to the west coast (Hunt and
Meagher, 1989; Keane et al., 1990; Hamelin et
al,, 1995; Tomback et al.,, 1995; Baskin, 1998).
Pitch canker disease is threatening endemic
populations of pine trees in California (Storer et
al., 1997), especially Monterrey pine (Pinus radi-
ata), which is probably the second most exten-
sively planted tree species in the world after euca-
lyptus. The spruce budworm and spruce beetle
arc dominant sources of natural disturbance
throughout the boreal forests (Royama, 1984; Ve-
blen et al., 1991; Fleming and Shoemaker, 1992;
Holsten et al., 1995; Fleming, 1996; Packee, 1997).
The Douglas-fir tussock moth and western spruce
budworm affect coniferous forests of the Pacific
north-west (Wickman et al., 1992; Mason, 1996).
There is currently a yellowheaded spruce sawfly
outbreak in Newfoundland. Wooly adelgids (scale
insects) have recently produced extensive mortal-
ity within alpine spruce /fir forests of the south-
ern Appalachians and within Hemlock forests of
the Atlantic states (McClure, 1989; Rabenold et
al., 1998).

Within this century, the north-temperate decid-
uous forests of North America have been dramat-
ically altered by forest tent caterpillars, gypsy
moths, chestnut blight, Dutch elm disease, and
beech bark disease (Foster et al., 1992a; Gavin
and Peart, 1993; Johnson, 1994; McKeen, 1995;
Leuschner et al., 1996; Abrams et al., 1997;
Hughes and Cass, 1997; Ruffner and Abrams,
1998). Oak wilt threatens American oaks and is
causing considerable damage in the midwest

(Appel, 1995; Nair et al., 1996). Butternut trees
are decreasing dramatically because of butternut
canker (Harrison et al., 1998; Katovich and Ostry,
1998). The bronze birch borer is a key determi-
nant of the southern distribution limits of paper
birch (Balch and Prebble, 1940; Jones et al., 1993).
Browsing by deer, moose, elk, and hares have
profound effects on species composition and
forest structure throughout North America (Ross
et al., 1970; Pease et al., 1979; Gill, 1992; Rossow
et al, 1997; Pastor et al.,, 1998). Several dozen
other species of herbivores and pathogens can
also exert striking impacts on forests (Sinclair et
al., 1987; Johnson and Lyon, 1991; Belsky and
Blumenthal, 1997). The causes for dramatic pat-
terns of maple decline in the Great Lakes states,
red spruce decline in New England, and cedar
decline in Alaska are still largely unknown and
may be attributable to some undescribed process
involving pathogens (Manion and Lachance,
1992).

2.2. Ecological importance

Any impacts of climate change on forest distur-
bance regimes can have far-reaching ecological
consequences. Previous reviews all raise the
specter of significant effects on forest biodiversity
(Botkin and Nisbet, 1992; Franklin et al, 1992;
Hartshorn, 1992; Murphy and Weiss, 1992; Devall
and Parresol, 1997; Coley, 1998). Most tree species
support a community of other organisms (e.g.
breeding birds, specialist Lepidoptera, and many
others) so the loss of any tree species, such as the
virtual elimination of chestnut by chestnut blight,
can reduce biodiversity. Most of the indirect con-
sequences of disturbance from herbivores and
pathogens must go unrecorded in the scientific
literature. Nonetheless, there are many docu-
mented examples. Southern pine beetles elimi-
nate nesting trees of the endangered red-cockade
woodpecker (Conner et al., 1998). Wooly adelgids
led to losses of endemic birds in the southern
Appalachians (Canterbury and Blockstein, 1997).
Dutch elm disease reduced nesting cavities for
waterfowl in New Brunswich (Johnsen et al.,
1994). Any disturbances that increase forest frag-
mentation can lower the reproductive success of
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migrant birds (Robinson et al.,, 1995). Scale in-
sects of pinyon pine have negative effects on
mycorrhizal fungi (Gehring et al.,, 1997). White
pine blister rust in the Rocky Mountains is
threatening bear populations that depend upon
seeds of white bark pine (Baskin, 1998). Forest
decline of deciduous hardwoods in the Great
Lakes region is associated with declining diversity
of Lepidoptera (Martel and Mauffette, 1997).
Herbivores and pathogens may also exert impor-
tant effects on ecosystem processes such as car-
bon flux and nutrient cycling. Forest soil systems
vary on a fine scale depending on tree species
composition (Finzi et al., 1998a,b; Ferrari, 1999).
So when herbivores and pathogens alter tree
species composition they can also alter forest
biogeochemistry. For example, mortality of hem-
locks from the hemlock wooly adelgid is associ-
ated with increases in nitrogen mineralization
rates, nitrogen turnover, and possibly nitrate
leaching (Jenkins et al, 1999). In general, the
potentially deleterious effects of climate change
on forest disturbance from herbivores and
pathogens tend to be underestimated in ecologi-
cal risk assessments (Loehle and Leblanc, 1996).

Disturbance from herbivores and pathogens can
also have beneficial effects. Moderate disturbance
from bark beetle attacks can increase the diver-
sity of understory plants (Stone and Wolfe, 1996).
Forest disturbance associated with Dutch elm dis-
ease, drought, and windstorms conspicuously in-
creased the abundance of three bird species, even
while decreasing the abundance of two other bird
species (Canterbury and Blockstein, 1997). Para-
sitism of pine by dwarf mistletoe provides nesting
habitat for spotted owls (Seamans and Gutierrez,
1995) and can increase overall abundance and
diversity of birds (Bennets et al., 1996). Mainte-
nance of forest biodiversity may depend upon
maintenance of natural disturbance regimes
(Noss, 1991). Forests both sustain biodiversity and
depend upon it. A single old-growth forest in
Oregon contains at least 3400 species of
arthropods, which collectively contribute to
ecosystem function in ways that are just being
elucidated (Lattin, 1993). Many species of
arthropods and fungi that inhabit old growth
forests exploit dead wood for their resource base

and habitat. Consequently, some time-honored
practices to minimize pests and pathogens may
actually have deleterious effects on forest com-
munities. Thinning treatments in response to
beech bark disease led to a decrease in the diver-
sity of beneficial mycorrhizal fungi (Mihal, 1995).
Similarly, modern (‘efficient’) logging practices
that leave little wood within the forests can dra-
matically reduce arthropod diversity (Siitonen and
Martikainen, 1994; Siitonen et al., 1996; Kaila et
al., 1997; Martikainen et al., 1999).

2.3. Economic impacts

The economic costs of forest herbivores and
pathogens are difficult to reduce to a single esti-
mate because: (1) we only have estimates of lost
market value for a fraction of economically im-
portant pest species in North America, perhaps 1
in 20; (2) we only have defensible estimates of
non-market impacts for a few pests in a few
locations; (3) we know of no estimates of opportu-
nity costs — even though we can be quite certain
that the US timber industry would be worth more
each year if the castern forests still contained
chestnut trees, or if marketable white pine could
be grown in the areas plagued with pine weevils;
and (4) we cannot yet estimate the cost of in-
creased risks of catastrophic impacts — even
though we would probably be willing to pay for
insurance against, for example, the extinction of
native Monterrey pine from pitch canker, major
forest fires following bark beetle outbreaks, or
contamination of drinking water from the combi-
nation of atmospheric nitrogen deposition and
forest pathogens.

Nonetheless, the economic costs that have been
quantified are considerable. The value of timber
and pulpwood lost to the southern pine beetle
can reach $237 million/year (Price et al., 1997).
Losses to the western pine beetle can reach
$100/acre (Liebhold et al., 1986). The value of
slowing the spread of gypsy moth defoliations has
been estimated at > $51 million /year (Leuschner
et al.,, 1996). Losses of southern pine to fusiform
rust are $20-$40 million /year (Pye et al., 1997).
The timber value in 1912 of standing chestnut
trees killed by chestnut blight in Pennsylvania,
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West Virginia, and North Carolina alone was
approximately $82 million (USDA, 1991; in fact,
chestnut blight virtually eliminated chestnut trees
from forests throughout eastern North America).
Approximately $150 million has been spent in a
largely futile effort to thwart white pine blister
rust (Baskin, 1998). The total costs of herbivores
and pathogens are much greater if we include the
non-market impacts. For example, loss to residen-
tial property value from gypsy moths has been
estimated at $1175/acre; the value of a camp-
ground in the Pacific north-west drops by approxi-
mately $1725 when 25 trees are killed by the
Douglas-fir tussock moth; mountain pine beetle
damage in the Targhee National Forest of Idaho
costs approximately $564000/year in losses to
consumer surplus and local expenditures; south-
ern pine beetle damage near reservoirs of east
Texas cost approximately $1-$4 million in recre-
ation benefits; and residents of an 800000 square
mile area in the southern Appalachians were
willing to pay $11-$36 /household for protection
of spruce-fir forests that are threatened by wooly
adelgids (Rosenberger and Smith, 1997). The areal
extent of significant impacts from forest herbi-
vores and pathogens can exceed 20000000 ha in
the United States alone (USDA, 1998).

2.4. Impacts of human activity

Human activities can intensify or mitigate forest
disturbance from herbivores and pathogens. Nine
of 31 syndromes in Tables 1 and 2 are associated
with introduced species and there are hundreds
more prospective pests that could show up in
North American forests at any time (USDA, 1991;
Niemeld and Mattson, 1996). Loss of genetic di-
versity in tree populations (e.g. from clonal pro-
pogation) increases the risks from pathogens
(Steiner, 1998). Fire management is another im-
portant factor. Fires can promote outbreaks of
pests and pathogens (Wood, 1982; Wingfield,
1983; Dixon et al., 1984; Gara et al., 1984; Geis-
zler et al.,, 1984; Thomas and Agee, 1986; Matlack
et al,, 1993; Ehnstrom et al., 1995) and pests and
pathogens can increase the probability of fires
(Geiszler et al., 1980; Wood, 1982; Raffa and

Berryman, 1987). In other situations, fires can
reduce pest outbreaks and promote beneficial my-
corrhizae (Hadley and Veblen, 1993; Mutch et al.,
1993; Herr et al, 1994; Jurgensen et al., 1997;
Kipfmueller and Baker, 1998). Herbivory can
sometimes reduce the probability of fires (Belsky
and Blumenthal, 1997). Fire suppression, in com-
bination with insects and disease, can lead to the
loss of keystone tree species (Keane et al., 1990;
Tomback et al., 1995; Williams, 1998). Interac-
tions between insects and fire can be a primary
determinant of ecosystem structure and function
(Showalter et al., 1981; Baker and Veblen, 1990).
Anything that affects the species composition and
age structure of tree communities can influence
the epidemiology of forest pests (Menges and
Loucks, 1984; Showalter and Turchin, 1993). Pest
populations may commonly increase with increas-
ing disturbance because disturbance tends to
favor fast-growing plant species, which tend to be
poorly defended against herbivores (Coley et al.,
1985). Air pollution, atmospheric nitrogen deposi-
tion, and forest fragmentation are other human
activities that can impact disturbance from herbi-
vores and pathogens (Roland, 1993; Frankland et
al., 1994; Klironomos and Allen, 1995; Nodvin et
al., 1995; Jung and Blaschke, 1996; Kozlov et al.,
1996; Meadows and Hodges, 1996; Britton et al.,
1997; Redak et al., 1997; Erelli et al., 1998; Roth
and Fahey, 1998).

2.5. Feedback to climate from herbivores and
pathogens

Herbivores and pathogens can alter the species
composition and size structure of forests, which
can in turn affect ecosystem processes such as
evapotranspiration, CO, flux, and heat transfer,
thereby creating feedbacks to climate (Shukla et
al., 1990; Aber and Federer, 1992; Kurz and Apps,
1994; Bonan et al,, 1995; Starfield and Chapin,
1996; Otto and Upchurch, 1997). Effects of herbi-
vores and pathogens on forest fires can create
additional feedback to climate (Smith and
Shugart, 1993; Kasischke et al., 1995).



M.P. Ayres, M.J. Lombardero / The Science of the Total Environment 262 (2000) 263-286 271

3. Potential impacts of climate change
3.1. Direct effects on herbivores and pathogens

Climate, especially temperature, exerts strong
direct effects on herbivores (Ayres, 1993). A 1931
review paper cited over 1000 scientific papers
describing the effects of climate on insects
(Uvarov, 1931). Thousands more papers have been
published since then. At least in temperate and
boreal forests, increases in summer temperatures
will generally accelerate the development rate of
insects (and other poikilotherms) and will com-
monly increase their reproductive potential
(Sharpe and DeMichele, 1977; Asante et al., 1991:
Porter et al., 1991). In Finland, species richness of
macrolepidoptera increases from north to south
by =93 species per increase in mean summer
temperature of 1°C (Virtanen and Neuvonen, in
press). The vast majority of forest insects have
geographic distributions that are more limited
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than that of their host plants, and have high
mobility, so their distributions could change very
rapidly in response to climatic amelioration (Mac-
Lean, 1983; Ayres and Scriber, 1994; Virtanen
and Neuvonen, in press). Warmer winter temper-
atures frequently increase overwinter survival
(Marcais et al., 1996; Virtanen et al., 1996, 1998).
Even southerly distributed insects could benefit
from increasing temperatures. For example, di-
rect physiological measurements and published
records of mortality in wild populations indicate
that air temperatures of —16°C or less result in
almost 100% mortality of the southern pine bee-
tle (Ungerer et al., 1999). Such temperatures are
common in the current northern range of the
southern pine beetle (PLLT > 0.50 in Fig. 1),
which indicates that this species occurs as far
north as possible given winter temperatures. For
this and many other insect species, climatic
warming may increase outbreaks in the northern
and/or alpine regions of their current distribu-
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Fig. 1. Annual probability of reaching the lower lethal temperature for the southern pine beetle, Dendroctonus frontalis (= —16°C
air temperature). Maximum recorded D. frontalis distribution is shown as the shaded area. The northern limits for economically
meaningful outbreaks is = 300 km farther south, where the annual probability of winter mortality is = 0.5. From Ungerer et al.

(1999).
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tions (Williams and Liebhold, 1995; Virtanen et
al., 1996, 1998; Ungerer et al., 1999) and decrease
outbreaks in the southern regions of distributions,
Climatic warming may also facilitate the es-
tablishment of exotic species. Insect species that
overwinter as eggs or adults may benefit the most
from climatic amelioration (Virtanen and Neuvo-
nen, in press).

Warmer winter temperatures will tend to de-
crease the food requirements of browsing mam-
mals (homeotherms) such as deer, moose, and
snowshoe hares (Moen, 1976), which could reduce
their per capita impact on forest vegetation, but
because their population size tends to be dictated
by winter survival (Bartmann et al., 1992), popula-
tions would probably increase as a result of
warmer winter temperatures, which would in-
crease their collective impact on forests, Warmer
winter temperatures and decreased snow depth
could allow whitetail deer to extend their north-
ern distributions farther into the boreal forests
than they presently occur, which would increase
the relative abundance of unpalatable tree species
(Gill, 1992; Anderson and Katz, 1993; Abrams,
1998). Conversely, decreases in snow depth may
decrease the overwinter survival for many forest
insects that overwinter in the forest litter where
they are insulated by snow cover from potentially
lethal low temperatures.

Changes in temperature, precipitation, soil
moisture, and relative humidity influence the
sporulation and colonization success of some
forest pathogens (Brasier, 1996; Lonsdale and
Gibbs, 1996; Chakraborty, 1997; Houston, 1998)
and tree-damaging storms can open wounds that
allow entry of pathogens (Pearce, 1996; Irland,
1998). Additional effects could be produced by
changes in thunderstorm activity because trees
that are struck by lightning frequently act as foci
for the initiation of bark beetle infestations
(Flamm et al,, 1993). In some cases, changes in
climatic variability may be as important for forest
organisms as changes in the average climate
(Wigley, 1985; Hodkinson et al., 1998; Ruel and
Ayres, 1999). Simulations with the southern pine
beetle indicated that changes in the interannual
variation in minimum annual temperatures could

influence beetle populations across > 200 km of
latitude (Fig. 2).

3.2. Indirect effects through changes in plant
resistance

In addition to the direct effects of climate
change on herbivores and pathogens, other ef-
fects may result from climate-induced changes in
tree physiology and tree defenses (Landsberg and
Smith, 1992; Ayres, 1993; Coley, 1998). Changes
in cloud cover, temperature, precipitation, soil
nutrients, and CO, can all impact the primary
and secondary chemistry of plant tissue, which
influences nutritional suitability for herbivores.
Physiologically-based plant allocation models
offer a good foundation for predicting effects on
constitutive plant chemistry (Herms and Mattson,
1992; Ayres, 1993): e.g. reduced irradiance or
increased soil nutrients tend to reduce concentra-
tions of secondary metabolites; increased CO,
tends to reduce nitrogen content and sometimes
increase secondary metabolite concentrations; and
moderate water deficits tends to increase sec-
ondary metabolites while extreme water deficits
decrease secondary metabolites. Temperature
changes can influence the development rate of
herbivores, and perhaps pathogens, relative to
ephemeral tissue on which they depend (e.g. ex-
panding leaves; Ayres, 1993). Understanding geo-
graphic patterns in tree defenses is essential for
predicting geographic patterns in future distur-
bances from herbivores and pathogens, but most
data come from relatively short-term manipula-
tions of resource availability at a single site (e.g.
Wilkens et al, 1997). It is possible that geo-
graphic patterns in tree defenses match the tem-
poral responses of trees to short-term manipula-
tions of resource availability, in which case we
already have the basis for predicting geographic
patterns in tree defenses. However, this hypothe-
sis remains untested and other relationships are
possible (Fig. 3). Depending upon the physiologi-
cal acclimatization of trees, and the genetic varia-
tion among tree populations, forests that develop
in regions of, for example, low precipitation or
high mineral nutrients, may or may not have the
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Fig. 2. Changes in the annual probability of reaching lower lethal temperatures (PLLT) for the southern pine beetle, Dendroctonus
frontalis under four scenarios of climate change (a~d). Baseline function (dotted line in upper figure) was developed from 60 years
of daily climate records at 33 sites. Bottom figure indicates the expected change in the annual probability of beetle mortality
associated with each scenario. When the average minimum annual temperature was increased by 3°C (scenario a), the annual
probability of winter mortality was generally decreased (by up to 0.27 at 36.0°N). If the standard deviation among minimum annual
temperatures was increased by 3°C with the average held constant (scenario b), PLLT was increased by up to 0.14 (at 32.6°N) and
decreased by up to 0.12 (at 38.6°N). When the standard deviation was decreased by 3°C (scenario ¢), PLLT decreased by 0.28 at
34.4°N and then increased by 0.25 at 36.6°N. When both the average and the standard deviation were increased by 3°C (scenario d),
PLLT was decreased by up to 0.26 (at 38.0°N) and the effects occurred farther north and over a broader range of latitudes than the
changes associated with an increase in the average alone (PLLT was markedly decreased over 465 km). Under this scenario, regular
outbreaks could occur up to 170 km north of where they presently occur (to northern Missouri, Illinois, Indiana, Ohio,
Pennsylvania, and New York) and outbreaks could sometimes occur as far north as the pine forests of Minnesota, Wisconsin,
Michigan and New England. The standard deviation in minimum annual temperature varies by up to 2.5°C within the southeastern
US, so a scenario of 3°C change does not seem unrealistic, but we know of no explicit predictions regarding possible changes in
climatic variability. From Ungerer et al. (1999).

resistance to herbivores and pathogens that would
be predicted from manipulations of water or
nutrients.

Although there is abundant evidence that
phenotypic changes in plant physiology can affect
herbivores (reviewed in Herms and Mattson,
1992), comparable studies with pathogens are few
and results are equivocal (Matson and Waring,
1984; Christiansen, 1992; Christiansen and Fjone,
1993; Kyto et al, 1996; Britton et al, 1997;
Chakraborty et al., 1998). Plant defenses against
pathogens, like defenses against herbivores, in-
volve the synthesis of biologically active sec-
ondary metabolites (Julie and Daniel, 1995;
Pearce, 1996), but plant pathology usually empha-

sizes genetic regulation of host—pathogen interac-
tions rather than environmental effects (Smith,
1996; Glazebrook et al., 1997; Buell, 1998; but see
Loomis and Adams, 1983). For aggressive
pathogens such as Dutch elm disease and Chest-
nut blight, climatic effects on tree physiology are
apparently trivial compared to the importance of
tree genetics and pathogen dispersal. For other
pathogens, such as Annosum root rot, Armillaria
root rot, black stain root diseases, and anthrac-
nose leaf disease, tree physiological condition may
be quite important (see references in Table 2),
and climate change may affect their epidemi-
ology. However, it is difficult to predict how speci-
fic climate scenarios will influence tree resistance
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Fig. 3. Alternative hypotheses relating spatial and temporal
patterns in the secondary metabolism of pine trees. UPPER:
Spatial patterns could be driven by the same physiological
principles as temporal patterns and follow the same patterns
as have been demonstrated in experimental manipulations of
water availability (e.g. Reeve et al,, 1995) and mineral nutri-
ents (e.g. Wilkens et al. 1997). This would imply that: (1) the
effects of climatic variation on tree resistance will depend
upon the magnitude of change and the initial conditions; and
(2) we can expect similar effects of short-term climatic varia-
tion and directional climatic change. MIDDLE and LOWER:
Spatial variation runs counter to short-term phenotypic re-
sponses of trees. The middle scenario would result if trees
acclimatize (and/or adapt) to average resource availability
(Bloom et al., 1985); this scenario predicts no geographic
patterns in future pest outbreaks due to regional variation in
climate. The lower scenario could resut if forests that develop
under different climates are quite different in the extent of
crown closure and root competition; this scenario would indi-
cate that the plant stress hypothesis (Larsson, 1989) accurately
predicts variation in tree resistance at coarse geographic scales
but not within-site responses to variation among years.

to pathogens. We need physiological models that
can provide these predictions. The resource
allocation models developed to understand plant—
herbivore interactions (Ayres, 1993) provide a
possible starting point, but may be unsatisfactory
because plant defenses against pathogens tend to
involve rapid inducible responses, while resis-
tance against herbivores frequently depends upon
constitutive defenses. Little is known about how
environmental effects on tree physiology influ-

ence the inducible responses that are relevant to
pathogens (i.e. signal recognition, generation of
phytoalexins and reactive oxygen species, hyper-
sensitive responses, callus growth, and systemic
acquired resistance; Kobayashi et al., 1995; Doke
et al, 1996; Hammond-Kosack et al., 1996; Me-
hdy et al, 1996; Bolwell and Wojtaszek, 1997;
Greenberg, 1997; Kuc, 1997; Woijtaszek, 1997).
However, some of the extensive agricultural liter-
ature must be relevant (e.g. evidence for the
importance of temperature on hypersensitive re-
sponses; Valkonen, 1997; Moury et al, 1998;
Tadege et al., 1998; Yang et al., 1999).

3.3. Indirect effects through other community
interactions

Climate change could further impact the epi-
demiology of herbivores and pathogens through
affects on other organisms within the community.
This is particularly clear for the numerous disease
syndromes that involve both insects and pathogens
(Hatcher, 1995; Paine et al., 1997). For example,
the distribution of Dutch elm disease could be
influenced by climatic effects on the beetle that
transports it (Hansen and Somme, 1994). The
westward expansion of beech bark disease may
have slowed because of some ecological con-
straint on the scale insects that are required by
the pathogenic fungi to enter the tree (Houston,
1998). The spread of the pitch canker will depend
in part upon the ecology of its insect vectors
(Hoover et al., 1996; Storer et al., 1998).

Many of the herbivores in Table 1 are ‘pests’
because their population dynamics produce cycli-
cal outbreaks. Population cycles generally result
from biological interactions with other species,
often natural enemies, that produce delayed den-
sity-dependence (Turchin and Taylor, 1992;
Turchin et al,, 1999). For example, population
cycles of the southern pine beetle might be the
result of delayed feedback from a specialized
beetle predator (Reeve et al., 1995), or from a
bluestain fungus that outcompetes other fungi
that are fed upon by the beetle larvae
(Lombardero et al., submitted). Population cycles
of gypsy moths may result from interactions with
mice that feed upon host plant acorns and prey
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upon moth pupae (Jomes et al., 1998) and/or
nuclear polyhedral viruses that become more or
less pathogenic to caterpillars depending upon
inducible changes in oak leaf tannins (Foster et
al., 1992b). For such systems, any direct or indi-
rect effects of climate change on the species or
processes that produce delayed density-depen-
dence could make pest population dynamics more
or less cyclical, with consequences for forest dis-
turbance regimes. Identifying species interactions
that produce population cycles is necessary to
evaluate whether or not climate changes will alter
the population dynamics. Understanding species
interactions is also necessary to predict secondary
ecological impacts of outbreaks. For example, the
mice that interact with gypsy moths also happen
to be hosts of the tick that carries the spirochaete
bacteria that causes Lyme disease, so the epi-
demiology of Lyme disease in humans could be
affected by anything that affects the population
dynamics of gypsy moths (Jones et al., 1998).

Forest soil communities are also likely to sus-
tain indirect effects from herbivores and
pathogens. Herbivory and other environmental
effects on trees can influence the extent and type
of mycorrhizal infection in tree roots (Gehring
and Whitham, 1994, 1995; Klironomos and Allen,
1995; Power and Ashmore, 1996; Gehring et al.,,
1997, 1998). This could beget additional disease
because mycorrhizae compete with saprophytic
fungi, some of which are opportunistic pathogens
of living trees (Klironomos et al., 1996).

4. Research priorities

The following are suggested priorities for a
research program to assess and mitigate the risks
to forests of climatic effects on herbivores and
pathogens. This research program should antici-
pate the possibility of important variation among
regions in the magnitude and direction of future
changes in forest disturbance, but at the same
time strive to develop and test general theoretical
models that have applicability beyond specific
tree-pest interactions in specific regions.

e Identification of focal herbivores and path-

ogens that are likely to be key agents of forest
disturbance in the next 50 years. Tables 1 and
2 are intended as a starting point for this task.
This objective will be facilitated by:

the development and testing of general theo-
retical principles that predict the sensitivity of
various epidemiological syndromes to environ-
mental change; and

continue and expand integrated continental
surveys of the abundance and impacts of forest
herbivores and pathogens. These immensely
valuable surveys have been compiled for some
years by the US Forest Service and Canadian
Forest Service (Evans et al, 1995; USDA,
1998). These qualitative surveys should be
continued and expanded to include some ef-
forts toward better quantification through the
development of statistically rigorous field sam-
pling protocols (e.g. Scott, 1998).

Improved understanding of the direct environ-
mental effects of temperature and moisture
on focal herbivores and pathogens. Ideally,
conclusions should be expressed within a mod-
eling framework that: (1) predicts regional
patterns in abundance using historical climatic
data and scenarios of projected climates; and
(2) validates conclusions with geographical
sampling programs.

Improved understanding of the effects of tem-
perature, moisture, irradiance, CO,, and min-
eral nutrient availability on tree secondary
metabolism. Of these, temperature and mois-
ture may require the most additional research
(Ayres, 1993). Plant allocation theory already
allows many reliable predictions of temporal
variation in constitutive secondary metabolism,
but research is needed to evaluate whether
these models can also predict: (1) spatial vari-
ation in constitutive tree resistance (Fig. 3);
and (2) spatial and temporal variation in in-
ducible tree resistance (especially against
pathogens).

Experimental studies of the effects of tree
physiology on forest pathogens.

Descriptive and experimental studies of the
epidemiology of focal herbivores and path-
ogens at the geographic margin of regions
where they currently exert significant distur-
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bance. One result should be an improved
characterization of pathogen population dy-
namics to evaluate whether they tend to ex-
hibit population cycles, as do many of the
focal herbivores.

o Elucidation of the specific community interac-
tions that produce delayed density-dependent
feedback in focal herbivores and pathogens
that exhibit population cycles.

e Improved understanding of interactions and
feedback between forest fires and biological
disturbance from herbivores and pathogens.

e Descriptive and experimental studies of the
consequences of disturbance from herbivores
and pathogens for forest structure and biodi-
versity. There is a need for general theoretical
models that can predict consequences for dif-
ferent forest types of different classes of dis-
turbance.

e Development of strategies for maintaining the
genetic diversity of tree populations. This will
be a critical determinant of future patterns in
the epidemiology of forest pathogens.

o Refined predictions of future climatic patterns
in precipitation, relative humidity, and cli-
matic variance. This will be facilitated if
biologists can specify the climatic parameters
that are relevant to focal herbivores and
pathogens (e.g. mid-summer precipitation or
interannual variation in minimum annual air
temperature; Figs. 1 and 2).

e Refined predictions of future patterns in min-
cralization rates and nutrient availability in
forests. Nutrient availability has strong pre-
dictable effects on tree resistance to herbi-
vores and pathogens, and nutrient availability
is likely to change in many forests as a result
of climate change, but for now we cannot even
predict the direction of changes in nutrient
availability.

5. Conclusions

An extensive body of scientific literature sug-
gests many scenarios by which climate change
could significantly alter patterns of disturbance

from forest herbivores and pathogens. It should
be anticipated that some types of disturbances
will increase overall, some will decrease overall,
and others will shift in their geographic occur-
rence; in all these cases, there are potentially
important ecological and socioeconomic conse-
quences (Ayres and Reams, 1997). Strong delete-
rious impacts are possible for forestry economics,
biodiversity, and landscape esthetics. There could
be feedback to climate from alterations of forest
composition and resulting changes in ecosystem
attributes such as water flux and carbon pools.
Given the evidence already available, the gravity
of potential consequences, and the likelihood that
forest management practices will influence the
outcome, it is prudent to treat these risks very
seriously. The greatest challenge at present is to
assess the full spectrum of scenarios, identify the
biological systems and geographic regions that
face the greatest risks, and evaluate how specific
forest management practices can mitigate the
risks. Satisfying the research objectives that are
outlined here would go a long way towards meet-
ing this challenge.
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