

Microturbine Materials Technology Activities

- Si₃N₄ Ceramics
 - Environmental Stability (Honeywell, Kyocera, ORNL)
 - Mechanical Properties (UDRI, ORNL)
 - Protective Coatings (ORNL)
 - Reliability and Life Prediction (NASA, ORNL)
 - NDE (ANL)
- Recuperator Materials
 - SOA Materials Assessment (ORNL)
 - Advanced and Improved Materials (ORNL)
 - Microturbine Materials Test Facility (ORNL)
- Heat Sinks
 - High Conductivity Carbon Foam (ORNL)

Clean Advanced Microturbine Hot Section Materials Program Objectives

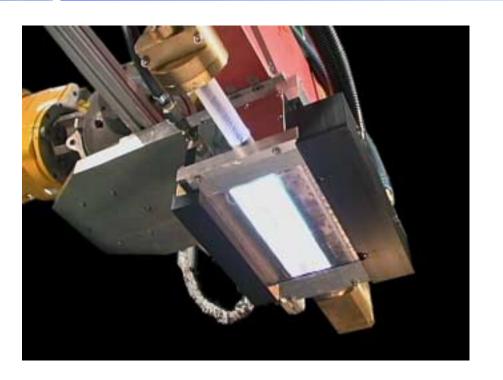
- Develop a design envelope of anticipated operating conditions for a Si₃N₄ rotor for an advanced microturbine
- Evaluate the effects of temperature, pressure, water vapor, and other gas species typical of advanced microturbines on the environmental resistance and mechanical stability of candidate Si₃N₄ ceramics
- Complete an assessment and initial evaluation of methods to improve or enhance the environmental stability of candidate Si₃N₄'s (coatings)
- Enhance current structural ceramic reliability and life prediction capabilities to incorporate environmental and coating issues
- Develop advanced ceramic manufacturing approaches capable of reducing the development cost and time for the prototype-toproduction transition (optional)

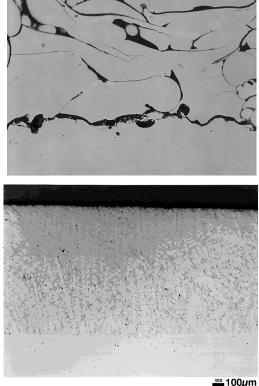
Program Participants

Honeywell Ceramic Components

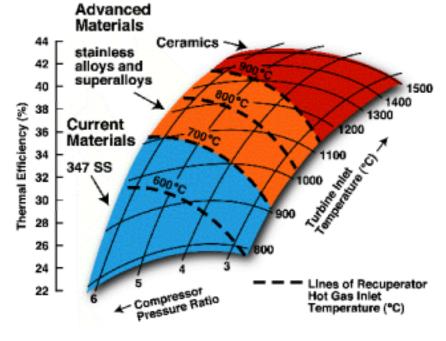
- Phase I
 - Task 1: Advanced Microturbine Scoping Studies and Research Plan
- Phase II
 - Task 1: Environmental Effects Evaluation (Uncoated)
 - Task 2: Technology Assessment for Environmental Protection
 - Task 3: Rapid Prototyping

Kyocera Industrial Ceramics Corporation


- Phase I: Develop Database of Application Requirements
- Phase II: Provide Data on Performance of Materials in Microturbines
 - Evaluate Baseline (Uncoated), Coated, and Alternate Materials

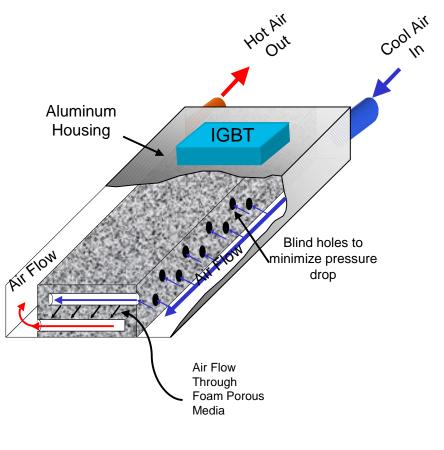

Both teams include microturbine manufacturers

Novel Infrared Processing May Produce Cost Effective Coatings


Slurry-based and plasma sprayed coatings are being densified or fused using the infrared lamp to improved their corrosion resistance

Advanced Recuperator Materials

 Advanced Microturbines Will Operate at Higher Temperatures and Demand Improved Recuperator Materials


21st Century

- Current Activities Focused on:
 - Creep-resistant Materials (600-750°C) (ORNL)

- Oxidation-resistant Materials (750-900°C) (ORNL)
- Microturbine Materials Test Facility (ORNL)

Carbon Foam Heat Exchangers are being ERGY Optimized for Heat Transfer and Pressure Drop

lean

-for the-21st Century

Second Generation Carbon Foam Heat Sink for Power **Electronics**

	Heat	
Air Flow	Transfer Coefficient h, (W/m²⋅K)	∆P/L (psi/in)
Solid Foam Air Flow	2600	2
Finned Air Flow	1000	<0.05
Pin-Fin Air Flow	1500	0.05
Blind-holes Air Flow (pin fin negative)	3500	1
Blind-holes (parallel to air flow)	3100	1
Current Radiators	20-40	<0.05