DEPARTMENT OF HEALTH AND HUMAN SERVICES

FOOD AND DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION AND RESEARCH

ONCOLOGIC DRUG ADVISORY COMMITTEE

Monday, May 3, 2004 8:10 a.m.

Hilton Washington 620 Perry Parkway Gaithersburg, Maryland

PARTICIPANTS

Donna Przepiorka, M.D., Ph.D., Chair Johanna M. Clifford, M.S., RN, Executive Secretary

MEMBERS:

John T. Carpenter, Jr., M.D. Bruce D. Cheson, M.D. James H. Doroshow, M.D. Stephen L. George, Ph.D. Antonio J. Grillo-Lopez, M.D.

Pamela J. Haylock, RN

Silvana Martino, D.O.

Gregory H. Reaman, M.D.

Bruce G. Redman, D.O.

Maria Rodriguez, M.D.

Sarah A. Taylor, M.D.

CONSULTANTS (VOTING):

Michael Bishop, M.D.
Ronald Bukowski, M.D.
Ralph D'Agostino, Ph.D.
Maha Hussain, M.D.
Jan Buckner, M.D.
Wen-Jen Hwu, M.D.
Joanne Mortimer, M.D.
Michael Perry, M.D.

PATIENT REPRESENTATIVES (VOTING):

Kenneth McDonough (for Genasense)
Natalie Compagni-Portis (for RSR 13 Injection)

FDA STAFF:

Richard Pazdur, M.D. Grant Williams, M.D. Robert Temple, M.D.

	4
CONTENTS	
Questions to the FDA and the Sponsor	278
Open Public Hearing	309
Subgroup Analysis in Clinical Trials, Stephen George, Ph.D.	314
Committee Discussion	333

-	1	Γ	Ъ	\sim	\sim	177	177	Γ	 ът	\sim	α
	L	Р	ĸ	U	C	Ľ	Ľ	ע	 Ν	G	2

- 2 Opening Remarks
- 3 DR. PRZEPIORKA: Good morning to all and
- 4 welcome to the Food and Drug Administration's
- 5 Advisory Committee for Oncologic Drugs. My name is
- 6 Donna Przepiorka. I will be chairing the
- 7 committee. I just wanted to remind everyone in the
- 8 audience that the purpose of the individuals on
- 9 this panel is to serve as independent consultants
- 10 to the FDA. We do not work for the FDA. We are
- 11 also not anyone who makes any decisions; we only
- 12 provide advice.
- Our first item on the agenda--we are going
- 14 to go a little bit out of order. We want to hear
- 15 first from Congressman Deutsch who has a few words
- 16 to say.
- 17 CONGRESSMAN DEUTSCH: Thank you very much.
- 18 I appreciate the opportunity to be here. My name
- 19 is Congressman Peter Deutsch, and I recognize that
- 20 it is not at every meeting of this committee that
- 21 you are addressed by a member of Congress. Largely
- 22 it is in that capacity that I speak to you today,

1 but it is also in my capacity as an individual who

- 2 has been personally affected by the specter of
- 3 melanoma.
- 4 On several occasions I have had basal
- 5 cells removed from my body. Thankfully, they were
- 6 not malignant but their existence renders me high
- 7 risk. My dermatologist now evaluates me on a
- 8 quarterly basis for melanoma and guides me on how
- 9 to reduce my risk profile. I pray that this risk
- 10 never materializes but, if it does, I need to know
- 11 that my physician and I have access to every
- 12 therapeutic treatment available for this horrible
- 13 disease. As someone who actually hears people
- 14 testify in many settings, I am trying to get your
- 15 attention so actually I have pictures of my kids
- 16 who both have red hair so, obviously, they are high
- 17 risk for skin cancer as well especially as having a
- 18 parent who has been diagnosed with basal cells.
- 19 They also happen to live in Florida.
- 20 Again, most of the people in this room
- 21 don't live in Florida and I am not exaggerating
- 22 that the school that they go to and, in fact, the

- 1 schools they have gone to since pre-K, do not have
- 2 hallways. It is one of the unique things about
- 3 Florida, south Florida in particular so they are
- 4 literally outside all the time. For anyone who has
- 5 kids, especially in a setting like south Florida,
- 6 think about the summer when you try to get your
- 7 kids to wear suntan lotion. It is not an easy
- 8 thing to do. So, this is a very real thing. I
- 9 mean, I have fights with my kids, especially as
- 10 they have gotten older, about putting suntan lotion
- 11 on, on a continuous basis.
- But it is not just for my kids; it is not
- 13 for myself that I am here today. It is for all the
- 14 constituents I represent and all the citizens
- 15 around the nation. So, it is on their behalf as
- 16 well that I stand before you today, not to advocate
- 17 for the approval of this drug but to advocate that
- 18 the mind set from which you consider this
- 19 application be your own mind set--clinical
- 20 physicians dedicated to the welfare of their
- 21 patients.
- What does this mean? That this

- 1 application be a referendum on whether you would
- 2 want this drug available to your patients if they
- 3 were diagnosed with metastatic melanoma. That is
- 4 the standard we owe cancer patients and that is the
- 5 standard government is obligated to uphold.
- I did not come here to preach to this
- 7 committee to the extent me and Congress have had
- 8 frustration with over-regulation by the FDA. It is
- 9 not of your doing; quite the opposite. It is
- 10 people like yourselves who give up your time to
- 11 guide the FDA. I cannot over-emphasize the
- 12 importance of your role. You provide the FDA a
- 13 window that they otherwise do not have, a window
- 14 into the real world, if you will, a world in which
- 15 dying cancer patients are desperate for and must be
- 16 given access to every reasonable treatment that
- 17 might save their lives.
- 18 As you may know, there were two relevant
- 19 newspaper articles last week that got some
- 20 attention in Congress. One was an article in The
- 21 New York Times about a Japanese study published in
- 22 The New England Journal of Medicine proving the

- 1 effectiveness of a drug called UFT in treating a
- 2 form of lung cancer. What was staggering about the
- 3 article was that this same technology was rejected
- 4 in this country by the FDA. In other words,
- 5 thousands of cancer patients in this country could
- 6 be dying because the government failed them.
- What I later learned was that the FDA
- 8 rejected this drug even though this very advisory
- 9 committee composed of your predecessors voted
- 10 unanimously to approve it and, because the FDA did
- 11 not accept the recommendations of clinicians,
- 12 countless Americans lack access to that drug today.
- 13 That is inexcusable.
- In the other article, the Wall Street
- Journal related to this committee's hearings. It
- offered no views on whether this drug should be
- 17 approved but, instead, noted the absence of
- 18 treatments for metastatic melanoma and a couple of
- 19 vignettes about the people who took the drug. One
- 20 of those was an individual names David Bernstein
- 21 who is scheduled to join us here today. Mr.
- 22 Bernstein is a fourth grade teacher from a small

- 1 town in New Jersey. The article said that Mr.
- 2 Bernstein's cancer went away and he is alive today,
- 3 teaching his students in his fourth grade classroom
- 4 because of the drug before you today.
- I am not a physician nor a scientist and I
- 6 have not studied the clinical data regarding this
- 7 drug, but I do know this, if you find that this
- 8 drug is as safe and effective as other available
- 9 treatments, if it reasonably presents another
- 10 possible course of treatment, by what right can
- 11 government deny cancer patients an avenue to save
- 12 their lives? This is not about a passing illness
- 13 for which there are other treatments. This is
- 14 about cancer, an absolutely devastating disease
- 15 that has in some ways affected nearly every single
- 16 American. This is about cancer patients who are
- 17 dying and desperate for a chance to live longer.
- 18 It is in their interest that we must be foremost in
- 19 today's hearing.
- 20 I flew back to Washington last night to
- 21 speak to you this morning, however, prior
- 22 obligations in my district require me to actually

- 1 literally turn around right now and return to
- 2 Florida this morning. I regret that I can't stay
- 3 here to listen to all of the testimony but I wish
- 4 to thank this committee for its time, and it has
- 5 been an honor and pleasure to speak with you this
- 6 morning.
- 7 DR. PRZEPIORKA: Thank you, Congressman
- 8 Deutsch. Any questions for the Congressman?
- 9 [No response]
- 10 Thank you, sir.
- 11 CONGRESSMAN DEUTSCH: Thank you.
- DR. PRZEPIORKA: Next we will hear from a
- 13 representative from Congressman Ferguson's office.
- 14 MR. DELPIZO: My name is Alex Delpizo. I
- 15 am here representing Congressman Mike Ferguson of
- 16 New Jersey who, unfortunately, is in New Jersey and
- 17 couldn't be here with us today.
- I am not a scientist or a clinician or a
- 19 chemist but everyone knows a person whose life has
- 20 been taken by cancer. For me, that person was my
- 21 mother. She fought and eventually lost her
- 22 six-year battle with cancer. However, due to

- 1 miracle life-extending drugs she saw two of her
- 2 children get married and met her three
- 3 grandchildren. My mother was fortunate enough to
- 4 experience all of the wonderful things that mothers
- 5 and grandmothers experience later in life.
- As you know, Genasense us used to treat
- 7 stage 4 metastatic melanoma. Metastatic melanoma
- 8 is currently a death sentence. When two available
- 9 therapies treat the disease and the last
- 10 chemotherapy therapy treatment was approved in
- 11 1975, yours is an awesome responsibility. The FDA
- 12 works every day to ensure that Americans and their
- 13 food and drug supply are safe. Your decisions on
- 14 which drugs are approved are based on numbers, and
- 15 numbers are very important, however, we would never
- 16 want to approve a placebo. However, an
- 17 over-emphasis on statistics at the expense of
- 18 patient needs does a life-threatening disservice.
- 19 The failure to appreciate mean or median
- 20 statistical analyses in any size sampling also
- 21 fails to take into account a patient population
- that achieved the most dramatic overall response.

1	Given	the	devastating	nature	of	this

- 2 disease and the relatively few treatments
- 3 available, even marginal increases in life
- 4 expectancy can clearly be the difference between
- 5 rapid death and years of life extension for those
- 6 patients that will see a benefit from this and
- 7 other drugs.
- 8 In closing, I would like to highlight the
- 9 experience of one of my constituents in Montgomery
- 10 Township in New Jersey. David Bernstein was
- 11 diagnosed with skin cancer and prescribed
- 12 chemotherapy to remove a grape-sized tumor on his
- 13 chest. Mr. Bernstein opted to supplement the
- 14 chemotherapy by joining a clinical trial of an
- 15 experimental drug. Six weeks after his first dose
- 16 he received the news that his tumor had essentially
- 17 disappeared. This was two years ago. That
- 18 experimental drug was Genasense.
- 19 For my mother, David Bernstein and for all
- 20 of those who have been diagnosed with cancer, I
- 21 respectfully request that you look favorably on
- 22 Genasense and other new drug applications that can

1 provide hope for those for whom hope is all they

- 2 have. Thank you very much.
- 3 DR. PRZEPIORKA: Thank you. Again, I
- 4 would like to ask the folks who are standing along
- 5 that far wall by the doors to please step outside
- 6 into the hall, or take a seat, or take a stand at
- 7 the back wall only, please. You are going to need
- 8 to vacate that area immediately, please.
- 9 We would like to now move on to the first
- 10 item on the agenda and Johanna Clifford will read
- 11 the conflict of interest statement. Thank you.
- 12 Conflict of Interest Statement
- 13 MS. CLIFFORD: Thank you. The following
- 14 announcement addresses the issue of conflict of
- 15 interest with respect to this meeting and is made a
- 16 part of the record to preclude even the appearance
- 17 of such at this meeting.
- 18 Based on the submitted agenda and
- 19 information provided by the participants, the
- 20 agency has determined that all reported interests
- 21 in firms regulated by the Center for Drug
- 22 Evaluation and Research present no potential for a

1 conflict of interest at this meeting, with the

- 2 following exceptions:
- 3 In accordance with 18 USC Section
- 4 208(b)(3), Dr. Ronald Bukowski has been granted a
- 5 waiver for serving on a competitor's advisory board
- on an unrelated matter for which he receives less
- 7 than \$10,000 a year; consulting with the sponsor of
- 8 dacarbazine on an unrelated matter for which he
- 9 receives less than \$10,000 a year; and, finally,
- 10 for consulting with a competitor on an unrelated
- 11 matter for which he receives less than \$10,000 a
- 12 year.
- 13 Dr. Maha Hussain has been granted waivers
- 14 under 18 USC 208(b)(3) and 21 USC 505(n) for
- 15 unrelated consulting for the co-developed of
- 16 Genasense for which she receives less than \$10,000
- 17 a year; and owning stock in the co-developer of
- 18 Genasense, valued from \$25,001 to \$50,000.
- 19 Dr. Wen-Jen Hwu has been granted a limited
- 20 waiver under 18 USC 208(b)(3) for her employer's
- 21 contract with a competitor for an
- 22 investigator-initiated study of a competing

- 1 product. The contrast is less than \$100,000 a
- 2 year. Under the terms of the waiver, Dr. Hwu will
- 3 be permitted to participate in the committee's
- 4 discussions of Genasense. She will not, however,
- 5 be able to vote.
- A copy of these waiver statements may be
- 7 obtained by submitting a written request to the
- 8 agency's Freedom of Information Office, Room 12A-30
- 9 of the Parklawn Building.
- 10 We would also like to disclose that Dr.
- 11 Silvana Martino has been recused from participating
- in all matters concerning Genta's Genasense.
- 13 Lastly, we would like to note for the
- 14 record that Dr. Antonio Grillo-Lopez, Chairman,
- 15 Neoplastic and Autoimmune Diseases Research
- 16 Institute, is participating in this meeting as in
- 17 industry representative, acting on behalf of
- 18 regulated industry. He would like to disclose that
- 19 he is a scientific advisor to Chiron and receives
- 20 speakers fees from Roche.
- In the event that the discussions involve
- 22 any other products or firms not already on the

- 1 agenda for which FDA participants have a financial
- 2 interest, the participants are aware of the need to
- 3 exclude themselves from such involvement and their
- 4 exclusion will be noted for the record.
- 5 With respect to all other participants, we
- 6 ask in the interest of fairness that they address
- 7 any current or previous financial involvement with
- 8 any firm whose product they may wish to comment
- 9 upon.
- 10 DR. PRZEPIORKA: Thank you. Once again,
- 11 there are still some folks registered for the open
- 12 public hearing who have not signed in. I just want
- 13 to remind you that if you do wish to speak at the
- 14 open public hearing you will need to sign in at the
- 15 table outside.
- 16 Next, I would like the members of the
- 17 committee and the other participants to introduce
- 18 themselves and we will start with Dr. Pazdur.
- 19 DR. PAZDUR: Richard Pazdur, Director of
- 20 the Division of Oncology Drug Products, FDA.
- DR. WILLIAMS: Grant Williams, FDA,
- 22 Director, Division of Oncology Drugs.

DR. FARRELL: Ann Farrell, clinical team

- 2 leader for Genasense.
- 3 DR. KANE: Robert Kane, medical reviewer.
- 4 DR. YANG: Peiling Yang, statistical
- 5 reviewer.
- DR. BUKOWSKI: Ron Bukowski, medical
- 7 oncologist, Cleveland.
- 8 DR. BISHOP: Michael Bishop, Experimental
- 9 Transplantation, Immunology Branch, National Cancer
- 10 Institute.
- DR. HWU: Wen-Jen Hwu, medical oncologist
- 12 at the Memorial Sloan-Kettering.
- DR. TAYLOR: Sarah Taylor, University of
- 14 Kansas.
- DR. REAMAN: Gregory Reaman, George
- 16 Washington University and Children's National
- 17 Medical Center.
- DR. REDMAN: Bruce Redman, University of
- 19 Michigan.
- 20 MS. CLIFFORD: Johanna Clifford, FDA,
- 21 executive secretary for this meeting.
- DR. PRZEPIORKA: Donna Przepiorka,

- 1 University of Tennessee, Memphis.
- 2 DR. RODRIGUEZ: Maria Rodriguez, medical
- 3 oncologist, M.D. Anderson Cancer Center.
- 4 DR. DOROSHOW: Jim Doroshow, Division of
- 5 Cancer Treatment and Diagnosis, NCI.
- DR. CHESON: Bruce Cheson, Georgetown
- 7 University Lombardi Comprehensive Cancer Center.
- 8 DR. GEORGE: Stephen George, Duke
- 9 University.
- 10 MS. HAYLOCK: Pamela Haylock. I am a
- 11 nurse and I am at the University of Texas.
- DR. CARPENTER: John Carpenter, University
- of Alabama at Birmingham.
- DR. D'AGOSTINO: Ralph D'Agostino, Boston
- 15 University biostatistician.
- DR. MORTIMER: Joanne Mortimer, medical
- 17 oncology Eastern Virginia Medical School.
- DR. HUSSAIN: Maha Hussain, University of
- 19 Michigan.
- MR. MCDONOUGH: Ken McDonough, patient
- 21 representative.
- DR. GRILLO-LOPEZ: Antonio Grillo-Lopez,

1 Neoplastic and Autoimmune Diseases Research

- 2 Institute.
- 3 DR. PRZEPIORKA: Thank you to all. I
- 4 think Dr. Pazdur will open with some remarks.
- 5 Opening Remarks
- 6 DR. PAZDUR: Thank you very much, Donna.
- 7 First, I would like to recognize the contributions
- 8 of four ODAC members who will be leaving the
- 9 committee after this meeting. These members
- 10 include our chairman, Donna Przepiorka, John
- 11 Carpenter, Sarah Taylor and Bruce Redman. We, at
- 12 the FDA, recognize their efforts at providing us
- 13 advice at these public meetings and, in addition,
- 14 we appreciate their valuable assistance throughout
- 15 the years in providing us with their insights at
- 16 other FDA meetings and in reviewing and assessing
- 17 protocols. Our work and the welfare of the
- 18 American public is greatly facilitated by their
- 19 hours of work and their talents devoted to these
- 20 tasks. Again, Donna, John, Sarah and Bruce, we
- 21 thank you for your efforts, your patience with our
- 22 phone calls, and advice on some of the most

- 1 perplexing issues of drug development. Let me say
- 2 this, this is not "adios" but "hasta la vista" and
- 3 it is not "hasta la vista, baby." We will be
- 4 calling you; we will be in touch; this will be a
- 5 continuous process that we will be dealing with you
- 6 over the years, but we do appreciate your kindness
- 7 and your efforts at helping us with some of the
- 8 problems that we have at hand.
- 9 Let's turn to the issues at hand. This
- 10 morning's meeting focuses on a drug for the
- 11 treatment of patients with advanced melanoma who
- 12 have not received prior chemotherapy. I would like
- 13 to spend some time addressing issues for you to
- 14 consider during the presentations provided by the
- 15 sponsor and the FDA staff. These issues are
- 16 important to this application but also this
- 17 afternoon's application and in drug development in
- 18 general, especially as we have continuing, ongoing
- 19 discussions and dialogue with the committee on
- 20 endpoints for drug development.
- The FDA has long considered the
- 22 demonstration of an improved survival as the gold

- 1 standard for drug approval. An improvement in
- 2 survival associated with an acceptable safety
- 3 profile is of unquestionable clinical benefit. It
- 4 is assessed daily and is unambiguous. When we, at
- 5 the FDA, began our discussions with the committee
- 6 on drug approval we realized that there may be some
- 7 disadvantages to requiring survival improvement for
- 8 drug approval. These disadvantages include the
- 9 confounding of survival analysis by crossover with
- 10 frequently large patient numbers required to be
- 11 enrolled on trials for survival, and the long
- 12 follow-up that may be required in selected
- 13 oncological diseases.
- 14 This trial at hand this morning was
- 15 originally discussed with the agency to be a trial
- 16 with a primary endpoint of survival improvement.
- 17 The trial did not demonstrate an improvement in
- 18 overall survival. We are asked to evaluate this
- 19 drug for approval on the basis of secondary
- 20 endpoints of claimed improvements in
- 21 progression-free survival or PFS and response
- 22 rates. Please member that since this drug is added

- 1 to a standard therapy we must assess the drug's
- 2 contribution to that standard therapy and any
- 3 claimed response rates or claims for PFS advantages
- 4 represent a combination of the investigational
- 5 agent and the standard therapy. Hence, we must
- 6 isolate the efficacy of the drug in assessing the
- 7 drug's efficacy.
- 8 Let's turn our attention to the
- 9 measurement and assessment of PFS which will be
- 10 discussed during this meeting on multiple
- 11 occasions. The assessment of PFS may be difficult
- 12 and uncertain in unblinded trials with a small
- 13 effect on this endpoint and where there is a lack
- 14 of attention to clinical trial issues that are
- 15 important in measuring and comparing PFS data
- 16 between treatment arms. These issues include a
- 17 prospectively defined methodology for assessing,
- 18 measuring and analyzing PFS. These need to be
- 19 detailed in the protocol and in the statistical
- 20 plan. Tumor progression should be carefully
- 21 defined in the protocol. The FDA and the sponsor
- 22 should agree prospectively on the protocol, the

- 1 case report forms and the statistical analysis plan
- 2 for PFS. There should be a prespecified analysis
- 3 plan for handling missing data, especially missed
- 4 assessment visits. Censoring methods and
- 5 assessment of progression in non-measurable lesions
- 6 must be prospectively outlined and agreed upon.
- 7 Most importantly, visits and radiological
- 8 assessments should be symmetrical on the study arms
- 9 to prevent systematic bias. When possible, studies
- 10 should be blinded. This is especially important
- 11 when the patient or investigator assessments are
- 12 included as components of the progression endpoint.
- 13 If progression is assessed by both the treating
- 14 physician and an external review panel or an
- 15 external radiology committee, the protocol should
- 16 prospectively stipulate whose assessment will be
- 17 used in defining PFS. This cannot occur after the
- 18 study data has been examined.
- 19 Hence, from a practical perspective, PFS
- 20 as a primary endpoint for drug approval takes
- 21 meticulous, prospective planning. The measurement
- 22 of PFS progression-free survival requires rigor.

- 1 This planning is frequently lacking in clinical
- 2 trials that relegate PFS to a secondary endpoint.
- 3 Some practical problems outlined above in
- 4 accurately characterizing the treatment of PFS will
- 5 be discussed by the FDA reviewers.
- 6 Provided an acceptable safety profile, one
- 7 has to answer the following question, what is the
- 8 magnitude of the drug's effect on PFS that would be
- 9 considered clinically relevant? A very small
- 10 effect may raise questions about the very existence
- 11 of this effect, especially when the study is
- 12 unblinded and attention to the symmetry of
- 13 assessments and handling of missing assessments is
- 14 not evident.
- In answering whether marketing approval
- 16 should be granted to an agent, two important
- 17 questions need to be answered. First, does the
- 18 drug have a convincing effect that can be
- 19 adequately characterized? Secondly, and this
- 20 question can only be addressed if the first
- 21 question is answered in the affirmative, what is
- 22 the clinical relevance of the effect? This

1	abrri analrr	m11a+	+ - 1	-i	0 0 0 0 1 1 1 1 t	_	risk-bene	£ ; ≀	+
- 1	000100810	must.	Lake	T LLC	account	a	r isk-bene		ı

- 2 analysis. However, benefit can only be assessed in
- 3 this equation if it convincingly exists and also
- 4 can be adequately characterized.
- I hope these comments will provide a
- 6 catalyst for your considerations this morning, this
- 7 afternoon and tomorrow as we discuss endpoints of
- 8 drug approval. Donna, I turn the program over to
- 9 you and I will answer questions after the FDA
- 10 presentations. Thank you.
- DR. PRZEPIORKA: Thank you, Dr. Pazdur.
- 12 Let's go ahead and begin with the sponsor
- 13 presentation, with an introduction by Dr. Itri.
- 14 Sponsor Presentation
- 15 Introduction
- 16 [Slide]
- DR. ITRI: Dr. Przepiorka, members of the
- 18 Oncology Drug Advisory Committee, ladies and
- 19 gentlemen, it is my pleasure, on behalf of Genta,
- 20 to introduce the agenda and the participants for
- 21 the presentation of the new drug application for
- 22 Genasense in combination with dacarbazine for the

1 treatment of patients with advanced malignant

- 2 melanoma.
- Following my introductory remarks, Dr.
- 4 John Kirkwood will give an overview of malignant
- 5 melanoma and available treatments. After Dr.
- 6 Kirkwood's presentation I will return to the podium
- 7 and discuss the results of GM301 in detail. At
- 8 that point, Dr. Frank Haluska will summarize the
- 9 risks and benefits in the context of the disease we
- 10 are treating.
- 11 [Slide]
- By way of introducing our speakers, Dr.
- 13 Frank Haluska is from Harvard University and Mass.
- 14 General Hospital. He is chairman of the CALGB
- 15 melanoma committee. Dr. John Kirkwood is professor
- 16 and vice chairman of Medicine at the University of
- 17 Pittsburgh and is also chairman of the ECOG
- 18 melanoma committee.
- 19 [Slide]
- In addition to our distinguished speakers,
- 21 we are fortunate to have with us today a number of
- 22 clinical experts in the field of melanoma,

- 1 including Dr. Sanjiv Agarwala from the University
- of Pittsburgh Cancer Center, Dr. Agop Bedikian from
- 3 M.D. Anderson Cancer Center, Dr. Paul Chapman from
- 4 the Memorial Sloan-Kettering Cancer Center, Dr.
- 5 Robert Conry from the University of Alabama, Dr.
- 6 Peter Hersey from the University of Newcastle, all
- 7 the way from Australia, and Dr. Evan Hersh from the
- 8 University of Arizona Cancer Center.
- 9 Drs. Bedikian, Conry, Hersey and Hersh
- 10 were principal investigators in our study and
- 11 together are responsible for managing approximately
- 12 20 percent of patients who are on our trial. They
- 13 are available to address any issues you may have
- 14 regarding patient management in the study. Dr.
- 15 Janet Wittes, formerly head of statistics at the
- 16 National Heart, Lung and Blood Institute and
- 17 currently president of Statistics Collaborative, is
- 18 available to provide expert biostatistical
- 19 consultation. Dr. Robert Ford, chief medical
- 20 officer and founder of RadPharm, is with us to
- 21 address the intricacies related to the blinded
- 22 independent review of radiographic studies. I

1 would like to now invite Dr. John Kirkwood to the

- 2 podium.
- 3 Melanoma Overview
- 4 DR. KIRKWOOD: Thank you, Loretta.
- 5 [Slide]
- 6 Dr. Pazdur, Dr. Przepiorka, members of
- 7 ODAC and the FDA, I am delighted to speak with you
- 8 today about a disease that many of us here have
- 9 spent all of our lives working on.
- 10 [Slide]
- 11 This is a disease that has risen in
- 12 epidemic proportions and is 4 percent of new
- 13 cancers, rising at 5 percent per year. The
- 14 mortality from this cancer is also rising and most
- 15 notably for men over 50 for whom there is a 157
- 16 percent increase in mortality in just the last
- 17 decade. The societal impact of this cancer is even
- 18 more because of its median age of incidence in the
- 19 late 40s, and it takes a toll in terms of
- 20 productive life years that exceeds many more
- 21 frequent cancers, even including prostate cancer.
- 22 [Slide]

1	In	the	past	37	years	only	three	agents

- 2 have been approved for the treatment of this
- 3 disease in the advanced setting. Not one of these
- 4 agents was approved on the basis of randomized,
- 5 controlled Phase 3 trials prior to their approval.
- 6 None of these agents has ever shown a survival
- 7 benefit. Approval of these agents was based solely
- 8 on response rate.
- 9 Hydroxyurea, approved in 1967 with a 10
- 10 percent response rate, has not been used in the
- 11 clinical community for 20 years or more.
- 12 Dacarbazine, approved in 1975 with a
- 13 response rate of 23-25 percent, has more recently
- 14 been summarized in an article to appear next month
- in the European Journal of Cancer. The response
- 16 rates that range between 7-13 percent I think are
- 17 far more accurate assessments of the true response
- 18 rate to this agent. Most of these were done
- 19 pre-RECIST criteria and we don't know really what
- 20 the objective response rate will be in larger
- 21 trials using the newer RECIST criteria that have
- 22 been used for the study to be discussed today.

1	[Slide]

- 2 Turning to IL-2, the most recent agent
- 3 approved for the treatment of metastatic melanoma,
- 4 the IL-2 NDA pooled 8 Phase 2 small studies. The
- 5 regimen was not compared in these to any other
- 6 therapy. The approval was based upon quality of
- 7 response, durable responses and, given the
- 8 significant toxicity of this agent, the population
- 9 that was treated was highly atypical of the general
- 10 community of patients that we have to deal with in
- 11 the country at large. The median age was 42 years.
- 12 The patients had in general no co-morbidity in
- 13 terms of cardiac or pulmonary disease. Most of the
- 14 patients who had responses had disease confined to
- 15 skin, lymph nodes and lung. The toxicity of this
- 16 regimen is so regularly, predictably severe that,
- 17 in fact, specialized units are required for the
- 18 administration of this agent. Its administration
- 19 is confined to specialized centers in general
- 20 across the country.
- 21 [Slide]
- 22 IL-2 responses were noted in 16 percent of

- 1 patients treated, about one-third of whom had
- 2 surgery to maintain this complete response, and 10
- 3 percent partial responses, defined using pre-RECIST
- 4 criteria. The most salient aspect of the IL-2
- 5 benefit in these patients has been the long
- 6 duration of response observed in some patients.
- 7 While the median duration of patients treated at
- 8 large was 9 months, the median duration for
- 9 patients who achieved complete responses was
- 10 greater than 5 years. Unfortunately, the number of
- 11 those complete responses alive is rather small.
- 12 The drug-related mortality with this treatment in
- 13 this series was 2 percent, further compromising
- 14 this relative benefit.
- 15 [Slide]
- 16 Over the years there have been many
- 17 attempts to improve upon the therapeutic benefit of
- 18 dacarbazine. The largest of the trials conducted
- 19 in the last five years are summarized in this
- 20 slide, beginning with the IL-2 experience which was
- 21 Phase 2 and, therefore, for which no comparator
- 22 exists.

1	These	include	the	Dartmouth	regimen
---	-------	---------	-----	-----------	---------

- 2 adding tamoxafin to BCNU, cisplatin and
- 3 dacarbazine; two regimens of biochemotherapy
- 4 including one that the Eastern Cooperative Oncology
- 5 Group and the Intergroup presented to the ASCO
- 6 meetings just a year ago, now enrolling 416
- 7 patients; and a similarly large study from the
- 8 EORTC that has not yet been published; as well as a
- 9 publication just recently in JCO from the French
- 10 group with a total number of more than 1000
- 11 patients in which overall there has been no
- 12 combination that has shown a statistically
- 13 significant difference in overall response rate, in
- 14 complete response rate, in durable response rate or
- in progression-free survival.
- 16 [Slide]
- 17 I appeared last before this committee in
- 18 1999 in relationship to metastatic melanoma. In
- 19 that setting, it was to introduce the application
- 20 for temozolomide. This is an oral equivalent of
- 21 dacarbazine that I think no one questions was
- 22 equivalent to dacarbazine. The committee did not

- 1 vote to approve that agent which achieved
- 2 equivalency in a trial that had been targeted upon
- 3 superiority. But since that time I think it has to
- 4 be admitted that temozolomide has been the most
- 5 widely used drug in the community across the
- 6 country. The FDA briefing that you have before you
- 7 suggests that Genasense is, in fact, comparable to
- 8 temozolomide. I would argue that it is not.
- 9 The overall response rate for the
- 10 temozolomide application was not significantly
- 11 different. The complete responses, identical; the
- 12 durable responses, not detailed; and the
- 13 differences in progression-free survival with an
- 14 asymmetrical interval of assessment for the two
- 15 arms, as Dr. Pazdur has just spoken about,
- 16 significant but 11 days.
- 17 The other major difference about
- 18 temozolomide is that this agent was already going
- 19 to be available to the community at large for trial
- 20 exploration, and the agent that we are going to
- 21 discuss today will not be available if it is not
- 22 approved today.

[Slide]

- In summary, despite more than 25 years of
- 3 work and low response rates with the single agent
- 4 dacarbazine, this agent remains the reference
- 5 standard for the field. No single cytotoxic drug
- 6 nor any biological agent or combination has been
- 7 shown to be superior to single agent dacarbazine in
- 8 relation to survival.
- 9 Relative to dacarbazine, no large
- 10 randomized, multicenter comparative study has ever
- 11 shown a statistically significant benefit in
- 12 overall response rate, in complete response rate or
- in progression-free.
- 14 High-dose IL-2 is a useful agent that many
- 15 of us use for selected patients who lack
- 16 significant co-morbidity and who are willing to
- 17 accept its side effects. This drug is not suitable
- 18 for the majority of patients who present to us with
- 19 metastatic melanoma and is particularly unsuited
- 20 for patients who are elderly.
- 21 [Slide]
- 22 I would conclude that metastatic melanoma,

1 upon which I have focused the last 33 years of my

- work, is a drug-refractory neoplasm. We need new
- 3 agents desperately. Thank you.
- 4 Study GM301
- DR. ITRI: Thank you, Dr. Kirkwood.
- 6 [Slide]
- 7 Genasense is an example of a new class of
- 8 drugs called antisense. Antisense is fundamentally
- 9 a protein knockout strategy. Genasense inhibits
- 10 Bcl-2 production. Bcl-2 is a protein and is
- 11 believed to be an important mediator of cancer cell
- 12 resistance to chemotherapy. Genasense is
- 13 administered for 5 days before chemotherapy,
- 14 reduces Bcl-2 production and renders the cancer
- 15 cell more susceptible to chemotherapy. In this
- 16 way, Genasense is postulated to enhance the
- 17 efficacy of chemotherapy.
- 18 [Slide]
- 19 Bcl-2 is ubiquitously expressed by
- 20 melanoma cells. Five days of continuous IV therapy
- 21 with Genasense prior to the administration of DTIC
- 22 resulted in approximately 70 percent reduction in

- 1 Bcl-2 levels in melanoma cells taken from patients
- 2 before and after Genasense treatment. These
- 3 results provided the rationale for a Phase 3 study
- 4 in patients with advanced malignant melanoma.
- 5 [Slide]
- 6 This study is the largest randomized trial
- 7 ever conducted in patients with advanced malignant
- 8 melanoma. It was an open-label, multicenter trial
- 9 involving 139 investigational sites in 9 countries
- 10 around the world.
- 11 The primary endpoint was overall survival
- 12 and the secondary endpoints included
- 13 progression-free survival, antitumor responses
- 14 using computer calculated RECIST based on
- 15 evaluations of site tumor measurements; durable
- 16 responses which were defined as responses lasting
- 17 longer than 6 months; and, of course, safety in all
- 18 patients.
- 19 [Slide]
- 20 Patients received either DTIC at the
- 21 standard dose of 1000 mg/m
 - 2 or the same dose of
- 22 DTIC preceded by a 5-day continuous infusion of

1 Genasense at a dose of 7 mg/kg/day. Patients were

- 2 stratified according to the three major prognostic
- 3 factors for melanoma, ECOG performance status 0 or
- 4 1-2; the presence or absence of liver metastases;
- 5 and normal or elevated LDH levels. Patients could
- 6 receive up to 8 cycles during a treatment phase
- 7 which were administered every 21 days. Restarting
- 8 evaluations were performed at the end of every two
- 9 cycles.
- 10 It is important to note that the timing of
- 11 interval measurements were fixed and similar in
- 12 both arms, and they were prospectively defined with
- 13 FDA agreement, with the temozolomide review issues
- 14 clearly in mind. Crossover was not permitted from
- 15 the DTIC arm into the Genasense arm, and follow-up
- 16 was continued for 2 years in both arms of the
- 17 study. Patients on the Genasense arm only could
- 18 receive up to an additional 8 cycles of the
- 19 combination therapy in extension protocol GM214 if
- 20 they achieved at least stable disease by the end of
- 21 the treatment phase and it was considered to be in
- 22 the best interest of the patient, in consultation

1 with the treating physician.

- 2 [Slide]
- 3 The statistical assumptions for this study
- 4 were based on an overall median survival for DTIC
- 5 of 6 months which was derived from published
- 6 reviews. Genasense was postulated to add an
- 7 additional 2 months, for total a median survival of
- 8 % months; 750 patients would provide 90 percent
- 9 power to see a difference between groups, with an
- 10 alpha level of 0.05. It was assumed that accrual
- 11 would be constant at 30 patients per month. In
- 12 agreement with FDA, an analysis was planned when at
- 13 least 508 deaths had occurred on the study.
- 14 [Slide]
- The two groups were balanced for age and
- 16 gender. The median age of patients in this study
- 17 was 60 years but patients ranged in age from 16 to
- 18 93. Approximately 40 percent of our patients in
- 19 this study were greater than 65 years of age and,
- 20 remarkably, more than 10 percent were more than 75
- 21 years of age.
- 22 [Slide]

1 The two groups were equally balanced with

- 2 regard to baseline performance status and
- 3 approximately half of all patients were symptomatic
- 4 at baseline.
- 5 [Slide]
- 6 Similarly, the two groups were balanced
- 7 with respect to the major prognostic indicators
- 8 including time from initial diagnosis, LDH/disease
- 9 site distribution and prior immunotherapy which
- 10 consisted primarily of alpha interferon
- 11 administered as an adjuvant therapy in both groups.
- 12 [Slide]
- 13 Forty patients who were randomized into
- 14 the study did not receive treatment. The primary
- 15 reason for this is that in the DTIC arm some
- 16 patients, later being randomized to the standard of
- 17 care, were unwilling to travel or withdrew consent
- 18 once they learned they would not be receiving
- 19 experimental therapy. The amount of DTIC delivered
- 20 to both groups was equivalent. Overall, the
- 21 addition of Genasense did not require dose
- 22 reduction of DTIC.

1	[Slide]
	[DIIUC]

- 2 This is a summary of the efficacy
- 3 parameters which, taken together, provide evidence
- 4 for the benefit of combining Genasense with DTIC.
- 5 I will discuss each of these in more detail in
- 6 following slides.
- 7 Although not statistically significant,
- 8 improvement in overall survival was noted for the
- 9 Genasense group. Statistically significant
- 10 improvement was noted in both progression-free
- 11 survival and response rates, and I will shortly be
- 12 showing you some interesting updated results
- 13 regarding complete responses in this study. We
- 14 also saw a positive trend in patients with durable
- 15 responses.
- 16 [Slide]
- 17 The FDA has raised a number of
- 18 considerations for the committee's review. These
- 19 include response rate concordance; the impact of
- 20 interval assessments on progression-free survival;
- 21 the impact of missing data on progression-free
- 22 survival; baseline differences in prognostic

- 1 factors; and the influence of non-U.S. sites on
- 2 response rate. I will address each of these issues
- 3 separately in the appropriate sections of my
- 4 presentation.
- 5 [Slide]
- 6 This Kaplan-Meier plot of overall survival
- 7 shows that both arms outperformed expectations.
- 8 DTIC was associated with a 7.9 month median
- 9 survival as opposed to the expected 6 months, and
- 10 Genasense treatment resulted in a 9.1 month median
- 11 survival. These differences were not statistically
- 12 significant. Please note that the overall survival
- 13 curves begin to separate at 6 months and the median
- 14 follow-up at the time of database lock was 7
- 15 months.
- 16 [Slide]
- 17 The addition of Genasense was associated
- 18 with an overall response rate of 11.7 percent as
- 19 compared to 6.8 percent for DTIC alone. This
- 20 difference is significant, with a p value of 0.019.
- 21 Use of the stringent RECIST measurement system has
- 22 historically reduced response rates in other

1 studies by 25-50 percent when compared to

- 2 investigator determinations.
- 3 [Slide]
- 4 It is appropriate at this point to discuss
- 5 how responses were calculated in this study. The
- 6 investigators did not determine response.
- 7 Investigators measured lesions and entered these
- 8 data onto an electronic case report form. The
- 9 computer then calculated whether the response met
- 10 criteria for RECIST. RadPharm was only contracted
- 11 to review responding patients. The sponsor was
- 12 provided with measurements of target lesions and
- 13 evaluations of non-target lesions by RadPharm.
- 14 These measurements were also assessed by the same
- 15 computer algorithm using RECIST criteria. RadPharm
- 16 reviewers were blinded as to the treatment arm and
- 17 all clinical information in which tumors had been
- 18 selected by the sites as target lesions. All marks
- 19 made by the sites on x-rays were removed.
- 20 There are three major reasons why RadPharm
- 21 readings might not have been strictly concordant
- 22 with the site measurements. These include the

- 1 evaluation of different target lesions with
- 2 different measurements, the absence of important
- 3 clinical information regarding preexisting lesions
- 4 and controversy regarding the reporting of normal
- 5 or residual lymph node tissue.
- 6 [Slide]
- 7 The patient on this slide had extensive
- 8 liver metastasis at baseline which resolved
- 9 completely during treatment. This patient has
- 10 remained in complete clinical remission for
- 11 approximately three years.
- 12 [Slide]
- Due to the presence of a persisting liver
- 14 lesion in the same patient, RadPharm was unable to
- 15 confirm a complete response. By procedure,
- 16 RadPharm was unaware that this was a documented
- 17 preexisting cystic lesion that was benign. This
- 18 patient is being cared for by Dr. Hersey who is
- 19 here with us today and can answer any questions you
- 20 might have regarding her treatment course.
- 21 [Slide]
- 22 In the next case, which demonstrates how

- 1 the absence of medical history can confound
- 2 concordance, a biopsy-proven metastatic lesion of
- 3 the frontal sinus was read by RadPharm as
- 4 incidental sinusitis. Because this patient had
- 5 undergone a Caldwell Luck enterotomy with removal
- 6 of the inferior turbinate due to metastatic
- 7 melanoma, RadPharm reasonably assumed that this was
- 8 an infectious process and did not confirm the
- 9 response.
- 10 [Slide]
- 11 Because RECIST criteria do not provide
- 12 guidance for the interpretation of normal lymph
- 13 nodal architecture at the site of previous disease,
- 14 RadPharm could not confirm complete response in the
- 15 next case and several others like it. Despite
- 16 complete regression of the tumor next to the blood
- 17 vessel, here, RadPharm could only assign partial
- 18 response due to the presence of small residua.
- 19 The PET scan results for this same patient
- 20 confirmed complete clinical response and shows no
- 21 residual evidence of a viable signal post
- 22 treatment. The FDA did not review any of these

1 x-rays and based their concordance judgments solely

- 2 on raw measurements in percent reductions provided
- 3 by the sponsor at their request. I urge the
- 4 committee to address questions regarding
- 5 radiographic reviews to Dr. Robert Ford, who is
- 6 here with us today as an expert consultant in
- 7 radiology and who personally reviewed all of these
- 8 films.
- 9 [Slide]
- 10 Seventy-one responding patients were
- 11 evaluated by RadPharm and 60 of these were
- 12 considered to be evaluable; 11 patients were not
- 13 evaluable due to the poor quality of photographs or
- 14 films or the absence of lesions which could be
- 15 considered measurable by RadPharm. Five of these
- 16 cases occurred in the Genasense arm and 6 occurred
- 17 in the DTIC arm.
- 18 Point-to-point concordance for two time
- 19 point evaluations were available for 38 patients
- 20 and give the concordant rate of 63 percent which is
- 21 consistent with literature citations for
- 22 evaluations of this nature. Two additional

- 1 responding patients were confirmed to be responses
- 2 but were assessed differently by the site and by
- 3 RadPharm. Eight cases were consistent at a single
- 4 evaluation and were within 10 percent of response
- 5 at the second evaluation. Four patients, such as
- 6 the ones I have previously described to you, were
- 7 easily explained by the absence of appropriate
- 8 medical history. If we include only the 40
- 9 responders confirmed by RadPharm and agreed to by
- 10 the FDA on treatment comparison, Genasense is
- 11 completely consistent to DTIC as demonstrated by
- 12 odds ratios. If only those 40 responses considered
- 13 to be confirmed by both RadPharm and the FDA are
- 14 included, odds ratios reveal a 91 percent
- 15 improvement in response rate by RadPharm compared
- 16 to an 82 Percent improvement in response for
- 17 Genasense as reported in the NDA.
- 18 [Slide]
- 19 These cases were randomly selected by FDA
- 20 and included 40 cases in each arm of the study.
- 21 X-rays were collected from around the world and
- 22 included assessments which occurred in the

- 1 follow-up period after NDA cutoff. As a
- 2 consequence of this unplanned review of cases,
- 3 RadPharm was able to identify additional responses
- 4 which occurred in the follow-up period after NDA
- 5 cutoff. These important clinical findings prompted
- 6 Genta to evaluate all patients in follow-up who met
- 7 RECIST criteria for response during at least one
- 8 time point during the treatment phase and all
- 9 patients who ended the treatment phase without
- 10 disease progression and who had received no
- 11 intervening therapy.
- 12 [Slide]
- 13 As with response, we observed good
- 14 concordance regarding the conclusions about time to
- 15 progression between the investigational site
- 16 assessments and RadPharm determinations. When the
- 17 site assessments and RadPharm determinations for
- 18 time to progression are compared, both showed a
- 19 benefit for the Genasense group. RadPharm
- 20 assessments of time to progression in the Genasense
- 21 group were generally longer than the site
- 22 assessments.

1	[Slide]
1	1811001

- 2 Six additional responses have been
- 3 identified which occurred in the follow-up period
- 4 after the NDA submission and all were in the
- 5 Genasense group. Only complete responses are
- 6 reported since they are the ones most unequivocally
- 7 associated with clinical benefit and constitute a
- 8 result not commonly observed with single-agent
- 9 DTIC. Three of these complete responses were
- 10 upgraded from the partial response category and 3
- 11 were patients with long-standing stable disease.
- 12 Information regarding these additional responding
- 13 patients was submitted to the FDA on April 9th of
- 14 this year.
- 15 It is important to note that the submitted
- 16 database has not been updated or altered in any
- 17 way, nor are we attempting to change the data
- 18 provided in our NDA. We wish simply to inform you
- 19 of important and frankly unanticipated clinical
- 20 findings. These responses all occurred in the
- 21 absence of other intervening therapies and have
- 22 been documented by duplicate CT scans using the

1	same	RECIST	criteria	as	specified	in	the	protocol.

- 2 The physicians caring for several of these patients
- 3 are here with us today and are able to answer any
- 4 questions you may have directly.
- 5 [Slide]
- 6 Complete responses were evenly distributed
- 7 by gender and generally exhibited the same
- 8 demographic pattern as the overall population.
- 9 Importantly, one-third of the responses occurred in
- 10 patients with elevated LDH and half were observed
- in the worst AJCC prognostic categories, Mlb and
- 12 M1c.
- 13 [Slide]
- 14 Survival for the complete responders
- 15 ranges from 15 months to more than 3 years on the
- 16 Genasense arm, and 19 to 21 months on the DTIC arm.
- 17 The plus signs denote ongoing responses. Two
- 18 patients have died, one on each arm of the study.
- 19 [Slide]
- The evolution of the complete responders
- 21 on this study is shown in this slide. The two
- 22 responding DTIC patients are shown in yellow for

- 1 comparison. The solid bar denotes the database
- 2 cutoff of August 1, 2003 and is the information
- 3 contained in the NDA. The dotted line denotes the
- 4 date of the FDA inquiry that precipitated review in
- 5 the follow-up period after database cutoff.
- 6 As you can see, partial responses tend to
- 7 occur later in the Genasense arm and evolved over
- 8 time into complete responses. Three of the
- 9 Genasense responses, similar to what has been
- 10 described for IL-2, have been surgically
- 11 maintained. Once again, all responses were based
- 12 on strict RECIST criteria with duplicate
- 13 measurements and no patient received intervening
- 14 therapy.
- 15 [Slide]
- 16 Returning now to the data previously
- 17 reported in the NDA database, the duration of
- 18 response is presented using a box-and-whisker plot
- 19 on this slide. The red line denotes the median.
- 20 The top of the box is the boundary of the third
- 21 quartile and the bottom is the boundary of the
- 22 first quartile. As you can see, the medians are

- 1 similar but an important difference is observed in
- 2 the third quartile, resulting in a longer mean
- 3 duration of response in patients who received
- 4 Genasense.
- 5 [Slide]
- 6 Durable responses, defined as responses
- 7 lasting at least 6 months, were more than doubled
- 8 in the Genasense group, as shown in this slide.
- 9 [Slide]
- 10 Median progression-free survival for the
- 11 Genasense group was 74 days as compared to 49 days
- 12 for the DTIC group. The relative risk of having
- 13 progressive disease or death was reduced by
- 14 approximately 27 percent in the Genasense arm.
- 15 These differences are highly significant, with a p
- 16 value of 0.0003.
- 17 Time to progression was performed as a
- 18 sensitivity analysis for progression-free survival.
- 19 The results were very similar and showed
- 20 approximately a 27 percent reduction in the risk of
- 21 progressive disease. In this analysis, 11 patients
- 22 who died without documented disease progression

- 1 were censored to the day of last lesion
- 2 measurement. These 11 patients constitute the only
- 3 difference between progression-free survival and
- 4 time to progression in this study, and explain why
- 5 the two curves are so similar.
- 6 [Slide]
- 7 Genta conducted multiple sensitivity
- 8 analyses to address possible biases in the
- 9 calculation of progression-free survival. In all
- 10 instances the hazard ratios remained stable and all
- 11 were statistically significant, attesting to the
- 12 robustness of the observation. The most common
- 13 concerns regarding progression-free survival
- 14 analyses include the impact of scheduled assessment
- 15 and missing data which can potentially be a source
- 16 of bias. Several of the methods used by Genta
- 17 address these issues and all confirm the conclusion
- 18 derived from the original planned analysis.
- 19 [Slide]
- 20 FDA has performed four analyses using
- 21 interval censoring techniques. Hazard ratios are
- 22 not reported for this method. Approach number one

- 1 specifically addresses the issue of assessment
- 2 schedule bias and remains statistically significant
- 3 in favor of Genasense. Approaches two, three and
- 4 four address both assessment schedule and missing
- 5 data biases taken together. Approaches two and
- 6 three remain statistically significant in favor of
- 7 Genasense. Only approach four, which represents a
- 8 rather extreme case assumption, and I will show you
- 9 an example of this on the next slide, resulted in
- 10 an insignificant p value and would have resulted in
- 11 the deletion of almost half of the data.
- 12 [Slide]
- Using this example of patient data by
- 14 interval censoring technique number four all of the
- 15 data in yellow would have been thrown out because
- 16 the investigator failed to repeatedly record the
- 17 absence of brain metastases. I would encourage
- 18 committee members to address any questions you
- 19 might have for the sponsor regarding this analysis
- 20 technique to Dr. Janet Wittes.
- 21 [Slide]
- 22 In order to address FDA concerns about

- 1 potential differences for baseline variables to
- 2 affect efficacy endpoints, progression-free
- 3 survival results and response rates were adjusted
- 4 for the variables of age, gender and AJCC LDH
- 5 disease site criteria. Results show that both
- 6 hazard ratios and odds ratios remain stable and all
- 7 results remain statistically significant. Thus,
- 8 there was no apparent impact of potential baseline
- 9 imbalances on results.
- 10 [Slide]
- 11 An additional concern has been raised
- 12 regarding benefit for patients in the United States
- 13 when response rates are examined by country. This
- 14 tree plot shows that confidence limits overlap and
- 15 point estimates are similar for the United States
- 16 and non-United States. There is, of course,
- 17 expected variability in some countries with small
- 18 sample sizes but no evidence exists that the
- 19 beneficial effect of the Genasense combination is
- 20 different in the United States than it is outside
- 21 the United States.
- 22 [Slide]

1	In	summary.	we	have	demonstrated

- 2 radiographic concordance and superiority of
- 3 Genasense regardless of who reviews the x-rays.
- 4 Progression-free survival was not biased by missing
- 5 data or interval assessment irregularities. No
- 6 effect on endpoints was observed related to
- 7 baseline demographic variables and similar benefit
- 8 was observed for both U.S. and non-U.S. patients on
- 9 the study.
- 10 [Slide]
- 11 Turning now to safety, adverse events were
- 12 generally increased in the Genasense arm, as can be
- 13 expected with add-on therapy. The committee is
- 14 referred to the briefing document provided by the
- 15 sponsor for details of adverse events.
- 16 Importantly, no new or unexpected adverse events
- 17 were observed in the study which have not been seen
- 18 with DTIC alone. We did see an increase in the
- 19 incidence of fever, which is a well-known effect
- 20 related to Genasense as a single agent, as well as
- 21 an increase in neutropenia, thrombocytopenia and
- 22 catheter-related complications. Safety data were

1 regularly and carefully monitored by an independent

- 2 drug safety monitoring board who at no point
- 3 identified any safety concerns in the study.
- 4 [Slide]
- 5 There is an increased incidence of grade
- 6 3-4, as well as serious events of thrombocytopenia
- 7 in the Genasense arm. The word "serious" in this
- 8 context is defined in its regulatory context and
- 9 generally means the need for hospitalization or the
- 10 prolongation of hospitalization. However,
- 11 bleeding, which is the major clinical consequence
- 12 of this laboratory abnormality with grade 3-4
- 13 bleeding, serious bleeding--serious bleeding
- 14 related to thrombocytopenia, shows no difference
- 15 between the arms. Similarly, the number of
- 16 patients who required platelet transfusions with
- 17 the absolute number of units transfused were no
- 18 different between the two treatment arms.
- 19 [Slide]
- 20 Neutropenia exhibited a similar pattern as
- 21 thrombocytopenia. The incidence of grade 3-4 and
- 22 serious events was increased in the Genasense arm.

- 1 Although higher in the Genasense arm and largely
- 2 related to the presence of a central line, the
- 3 incidence of grade 3-4 and serious neutropenic
- 4 infections was generally low in both groups.
- 5 [Slide]
- 6 Not surprisingly, catheter-related
- 7 complications occurred almost solely in the
- 8 Genasense arm and the incidence was consistent to
- 9 that reported in the literature for central venous
- 10 catheters. Injection site infections occurred in
- 11 approximately 4 percent of patients and thrombotic
- 12 events occurred in approximately 2 percent of
- 13 patients receiving Genasense, whereas injection
- 14 site reactions occurred only in the DTIC group
- where peripheral lines are generally used for DTIC
- 16 administration. Two patients in the Genasense arm
- 17 received their 5-day Genasense dose in 5 hours due
- 18 to a mis-programming of the pump. Both of these
- 19 patients experienced nausea, fever and
- 20 thrombocytopenia. Both patients recovered
- 21 completely within 48 hours and had no sequelae
- 22 related to the overdose. Both patients went on to

- 1 receive the additional cycles of therapy and one of
- 2 these patients has achieved a PR after 7 additional
- 3 cycles of treatment. We are hopeful that
- 4 subcutaneous and other alternative dosing methods
- 5 in development will mitigate the need for a central
- 6 line and its attendant complications.
- 7 [Slide]
- 8 Adverse events leading to discontinuation
- 9 were increased in the Genasense arm. However, the
- 10 majority of events in both arms were related to
- 11 disease progression. In this study disease
- 12 progression could be reported as an adverse event.
- 13 Importantly, adverse events resulting in death and
- 14 deaths which occurred within 30 days of the last
- 15 dose of study drug were no different between the
- 16 two treatment arms.
- 17 [Slide]
- In summary, this study was the largest
- 19 randomized trial ever completed in patients with
- 20 advanced malignant melanoma. The study was
- 21 carefully conducted; showed internally consistent
- 22 results; and demonstrated compelling clinical

- 1 benefit.
- 2 We believe that we have addressed all of
- 3 the study questions given to ODAC for
- 4 consideration. Finally, we believe that the study
- 5 shows consistent clinical benefit, which will be
- 6 summarized by Dr. Frank Haluska in his closing
- 7 remarks.
- 8 In closing, I would like to thank the
- 9 patients and their families, the physicians, the
- 10 nurses and the site coordinators who made the study
- 11 possible. I would also like to thank the dedicated
- 12 and professional employees of Genta who worked
- 13 tirelessly to contribute to the treatment of cancer
- 14 patients. Thank you for your attention. Dr.
- 15 Haluska?
- 16 Clinical Benefit Summary
- DR. HALUSKA: Thank you, Dr. Itri.
- 18 [Slide]
- 19 My task today is to provide you with a
- 20 summary of the data that you have just seen, that I
- 21 think have been so clearly presented, as well as an
- 22 overview and some context for the clinical trial.

T [DIIGE	[Slide]
----------	---------

I think the best way to do this is to in

- 3 our minds assume the role of ODAC and if I were a
- 4 member of ODAC right now I would have two major
- 5 questions. The first of these is that the sponsor
- 6 here has failed to meet the primary endpoint of the
- 7 study, which is survival--can I still approve this
- 8 drug? I think the answer to that question is an
- 9 emphatic yes. Dr. Pazdur has already commented
- 10 that although meeting a survival endpoint is
- 11 desirable and is the gold standard, the failure to
- 12 do so does not preclude approval, and I think that
- is germane here.
- I addition, I think it is important to
- 15 consider the recent regulatory history of the
- 16 melanoma field, specifically with regard to IL-2
- 17 and temozolomide. IL-2, as you know, was approved
- 18 several years ago based on the rate, the quality
- 19 and the duration of the responses, data that we are
- 20 presenting here, and I think these data are
- 21 stronger because they are the result of a
- 22 randomized, prospective trial, albeit with

- 1 secondary endpoints.
- 2 The other drug that I think is relevant is
- 3 temozolomide and, as Dr. Kirkwood has already
- 4 explained, the data are better for Genta than for
- 5 the temozolomide submission as well. So, I think
- 6 that this drug is approvable despite the failure to
- 7 meet the primary endpoint.
- 8 The second question that must be on your
- 9 mind is do the secondary endpoints confer or
- 10 support the conferral of clinical benefit? Are
- 11 they strong enough to support approval of this
- 12 drug? I do think that significant clinical benefit
- is strongly suggested by these data. So, let's
- 14 consider that.
- 15 [Slide]
- 16 These are I think the most important
- 17 endpoints of this study. Again, I want to stress
- 18 that they were prospectively identified as opposed
- 19 to, for instance, IL-2s which were the result of
- 20 Phase 2 data.
- 21 The first of them is the overall response
- 22 rate. The overall response rate approaches 12

- 1 percent versus 6.8 percent in the DTIC arm. This
- 2 is an improvement. In this field, no improvement
- 3 with statistical significance has ever been
- 4 demonstrated in response rate for advanced
- 5 melanoma.
- We have demonstrated improvement in
- 7 complete responses, 11 versus 2. This is
- 8 significant as well and, again, this has not been
- 9 demonstrated in a reaction study. I think the IL-2
- 10 experience is relevant to both of these. As I
- 11 said, IL-2 was approved on the basis of the rate,
- 12 the quality and the duration of survival. We have,
- 13 in this trial, 9 patients that are alive, an
- 14 increment that is not seen in the DTIC trial, and I
- 15 want to point out that IL-2 was approved on the
- 16 basis of 10. So, this is certainly in keeping with
- 17 previous decisions that have been made.
- The final issue is progression-free
- 19 survival, 74 versus 49 days, nearly an additional
- 20 month for patients who are presenting to their
- 21 oncologist. That is an extra visit a patient can
- 22 come to their oncologist without having been told

1 that their disease is progressing. This, to my

- 2 mind, is clinical benefit.
- 3 [Slide]
- 4 What is the context of these findings?
- 5 These are the data from the five largest randomized
- 6 trials that have been conducted in melanoma and the
- 7 trial in front of you today is the largest. There
- 8 are 2019 patients that have been treated on these
- 9 trials and until today there has never been a
- 10 significant clinical improvement for any of the
- 11 measures that we are discussing today. Response
- 12 rate has not been shown to be improved and it is
- 13 shown to be improved here. Complete responses have
- 14 never been documented in a randomized study to be
- improved and they are improved here. And,
- 16 progression-free survival has never been shown to
- 17 be improved and it is improved here. I think this
- 18 trial sets itself apart from the progress in the
- 19 field in the last few years and I think that is why
- 20 it requires your careful consideration today.
- 21 [Slide]
- To summarize that, patients value

- 1 responses and value complete responses. The FDA in
- 2 the past has made it clear that these are important
- 3 criteria to consider and, in fact, there are no
- 4 melanoma drugs approved that have been approved on
- 5 any other criteria.
- 6 You might ask is a 10 percent response
- 7 rate, or the order of magnitude of 10 percent,
- 8 important to patients and I think it is with, I
- 9 think, the recent approval history and data on
- 10 responses in other malignancies, particularly in
- 11 lung cancer. The IRESSA experience that has
- 12 recently been clarified with data published last
- 13 week suggests that a 10 percent response rate is
- 14 clinically important. We understand the biological
- 15 basis of some of these responses and a 10 percent
- 16 response rate can certainly change the field; it
- 17 can certainly change a patient's life. So, I do
- 18 not think that a 10 percent response rate in and of
- 19 itself argues against approval.
- 20 What about the magnitude of time to
- 21 progression? A month, I think, is important. Data
- that Carey Kilbridge and my colleagues have

- 1 examined with regard to how melanoma patients view
- 2 their experience strongly suggest that any
- 3 additional time without being told their disease is
- 4 progressing or without the presence of disease is
- 5 important to them. In my opinion, what the
- 6 sponsors have shown today constitutes clinical
- 7 benefit for the melanoma patient.
- 8 [Slide]
- 9 What about safety? When we research a
- 10 treatment for our patients we do it based on an
- 11 evaluation of risk versus benefit. What are the
- 12 risks of this therapy? The sponsor has shown that
- 13 there are no new or unexpected adverse events
- 14 concomitant to treatment with DTIC and Genasense.
- 15 There is no difference in the treatment-related
- 16 deaths between the two arms. There is an increase
- 17 in fever, neutropenia and thrombocytopenia. Some
- 18 of this is likely due to catheter-related
- 19 complications and this is certainly not the only
- 20 agent on the market or potentially on the market
- 21 that would be administered with a pump.
- 22 Finally, Genasense is still better

1 tolerated than other alternatives for melanoma

- 2 patients and, again, I think a review of the
- 3 literature is germane here.
- 4 [Slide]
- 5 These are three of the trials for which we
- 6 have good safety data in comparison to the trial in
- 7 front of you today. They demonstrate that the rate
- 8 of complications for the DTIC arm is certainly
- 9 similar to what was seen in other studies with
- 10 regard to grade 3 or 4 neutropenia and grade 3 and
- 11 4 thrombocytopenia, and certainly the rates of
- 12 complications that can be attributed to the
- 13 combination of Genasense and DTIC are less than
- 14 what we see with other alternatives for melanoma
- 15 patients. I think that argues that this is a safe
- 16 combination and the risk-benefit analysis is
- 17 completely reasonable to be attributed to therapy.
- 18 [Slide]
- 19 Conclusions--I think this is a novel drug.
- 20 It is the first of a class of agents that has been
- 21 shown to be efficacious by several measures. It
- 22 takes into account our genetic understanding of

1 this disease. It is in keeping with the movement

- 2 in the field broadly for targeted therapy and I
- 3 think that should be taken into consideration.
- 4 It confers a clinical benefit with DTIC by
- 5 multiple measures that I think have been reliably
- 6 demonstrated in this large clinical trial that
- 7 include response rate, complete responses and
- 8 progression-free survival. And, it has a
- 9 predictable and manageable safety profile.
- 10 [Slide]
- 11 Melanoma is refractory to current
- 12 front-line therapy. You have heard and I think you
- 13 will hear further today that we need new agents.
- 14 This product is safe; it is effective when combined
- 15 with DTIC to treat stage 4 melanoma. In other
- 16 words, this drug works. I think it is up to you to
- 17 define today what "works" means but I don't think
- 18 we can discard the randomized trial demonstrated
- 19 improvement in response rate, in progression-free
- 20 survival and in complete response rate.
- 21 A final comment--I am supposed to be here
- 22 as a dispassionate expert, scientifically objective

- 1 and clinically removed but I don't think I can
- 2 completely play that role because I do take care of
- 3 melanoma patients. The melanoma field has been
- 4 criticized for trying to consistently hit the
- 5 clinical home run. But this represents progress.
- 6 It is incremental progress. It is not a clinical
- 7 home run but it is incremental progress, and if we
- 8 are ultimately going to make real progress in this
- 9 disease to cure it, it will require the
- 10 accumulation of incremental progress. Allow us to
- 11 make incremental progress; make this drug available
- 12 to our patients. Thank you.
- DR. PRZEPIORKA: We are going to hold
- 14 questions for the first presentation until the FDA
- 15 presentation has been completed. Dr. Kane, if you
- 16 could begin? Thank you.
- 17 FDA Presentation
- 18 Medical Review
- DR. KANE: Thank you.
- 20 [Slide]
- 21 Good morning. My name is Robert Kane. I
- 22 am the medical reviewer for this NDA and I will be

1 presenting the FDA review along with Dr. Peiling

- 2 Yang, our statistical reviewer.
- 3 [Slide]
- 4 I would like to recognize our primary
- 5 review team members for this NDA.
- 6 [Slide]
- 7 Randomized, controlled trials
- 8 prospectively designed with clear, quantitative
- 9 endpoints statistically analyzed provide the basis
- 10 to assess the merits of new drugs. Clinical
- 11 judgment translates these findings for best patient
- 12 care. Our presentation today will include
- 13 requirements for new drug approval based on federal
- 14 law and regulations; aspects of ODAC review of
- 15 temozolomide which are relevant to today; the FDA
- 16 examination of the Genasense, oblimersen, NDA; and
- 17 concluding remarks.
- 18 [Slide]
- 19 In the FD&C Act of 1962 substantial
- 20 evidence of effectiveness was required by Congress.
- 21 This was defined as evidence from adequate and
- 22 well-controlled investigations, generally

1 understood to mean at least two such studies for

- 2 new drug approval.
- 3 [Slide]
- 4 The FDAMA legislation in 1997 indicated
- 5 that one trial may suffice for approval with
- 6 confirmatory evidence. The guidance document on
- 7 effectiveness in 1998 indicated that for a single
- 8 trial to suffice it should be of excellent design,
- 9 internally consistent with highly reliable and
- 10 statistically strong evidence of an important
- 11 clinical benefit, such as an effect on survival,
- 12 and a confirmatory study might be difficult to do
- 13 for ethical reasons.
- 14 [Slide]
- New drug approval can take two forms. For
- 16 regular approval a sponsor needs to show clinical
- 17 benefit. Accelerated approval uses a surrogate
- 18 endpoint reasonably likely to predict clinical
- 19 benefit and requires subsequent confirmation of the
- 20 benefit.
- 21 [Slide]
- 22 Here are the currently approved drugs for

- 1 metastatic melanoma. In the past response rate was
- 2 the primary basis, as you have seen and as you have
- 3 already heard, for hydroxyurea and for dacarbazine.
- 4 Survival times were, and continue to remain, in the
- 5 range of 5 to 9 months. More recently,
- 6 improvements in the quantity or the quality of
- 7 survival have served as the basis for approval.
- 8 Also as you have heard, the aldesleukin,
- 9 interleukin-2, approval was heavily related to the
- 10 very long complete responders, some in excess of 5
- 11 years. Complete responses will be abbreviated as
- 12 CRs on this slide.
- 13 [Slide]
- 14 I would like to remind the committee that
- 15 the evidence for interferon supported approval for
- 16 its adjuvant use although it is often used in the
- 17 treatment for metastatic disease. The temozolomide
- 18 evaluation by ODAC in 1999 is relevant and
- 19 instructive for today's review.
- 20 [Slide]
- This NDA contained one main open-label
- 22 study, the primary endpoint of which was survival

- 1 time. It was designed to show a 3-month survival
- 2 benefit for temozolomide alone over DTIC alone.
- 3 Secondary endpoints were progression-free survival,
- 4 abbreviated here as PFS, and response rate, RR.
- 5 [Slide]
- 6 The results of this study showed no
- 7 survival benefit for temozolomide over DTIC.
- 8 Median survivals were 7.7 versus 6.4 months. For
- 9 progression-free survival the difference was found
- 10 to be highly statistically significant with a
- 11 log-rank p value of 0.002. However, the median
- 12 progression-free survival difference was only 11
- 13 days. When an ample size is chosen for a survival
- 14 endpoint the statistical significance of small
- 15 differences in early endpoints can appear
- 16 magnified. Response rates were not significantly
- 17 different.
- 18 [Slide]
- 19 Temozolomide was not approved. The study
- 20 failed to demonstrate the primary endpoint of
- 21 survival benefit. Progression-free survival, a
- 22 secondary endpoint, was of small magnitude at best.

1 No symptomatic benefit was observed and a proposed

- 2 post hoc 6-month survival analysis was not
- 3 convincing.
- 4 [Slide]
- For Genta's NDA, here are the important
- 6 study dates. The Phase 3 protocol began in July,
- 7 2000. The data cutoff date was August 1, 2003, and
- 8 this represents excellent accrual to the study. On
- 9 December 8, 2003 the NDA was submitted for FDA
- 10 review.
- 11 [Slide]
- 12 Genta has just presented their trial
- 13 design. I would like to emphasize a couple of
- 14 points. This was a very large, multicenter,
- 15 multinational, unblinded study. This was an add-on
- 16 of Genasense to DTIC. Prolonged central venous
- 17 access is required for the 5-day infusions of
- 18 Genasense. Genasense may be abbreviated as G or
- 19 G3139 on our slides. The protocol specified an
- 20 independent review, a blinded group, to assess
- 21 responders. Also, the ability to deal with an
- 22 ambulatory infusion pump was required.

1		[Slide	۱ :

- 2 The primary endpoint was survival. The
- 3 design was to detect a superiority in survival.
- 4 The protocol included seven secondary endpoints,
- 5 listed here.
- 6 [Slide]
- 7 The trial design was to identify a 2-month
- 8 median improvement in survival time from 6 months
- 9 with DTIC alone to 8 months for the addition of
- 10 Genasense to DTIC. The primary analysis for the
- 11 trial was to be the unadjusted log-rank analysis
- 12 for the intent-to-treat population.
- 13 [Slide]
- 14 The study disposition of patients showed
- 15 that less than half the patients were still on
- 16 therapy after the first assessment about day 42.
- 17 Most patients went off study because of progressive
- 18 disease; 44 percent remained on study after the
- 19 first assessment. As I mentioned, the data cutoff
- 20 date was August 1 and analysis occurred at 535
- 21 deaths.
- 22 [Slide]

-	_					
	۱'n	the	nrimarv	andnoint	analysis,	ugina
_		CIIC	primary	CHAPOTHE	$\alpha_{11}\alpha_{11}$	abilig

- 2 the protocol-specified analysis with the
- 3 intent-to-treat population, no survival benefit was
- 4 demonstrated by adding Genasense to DTIC treatment
- 5 versus DTIC alone. These are the actual survival
- 6 results. As you have already seen, the hazard
- 7 ratio was 0.89 and the log rang p value for the
- 8 survival difference was 0.18.
- 9 Dr. Peiling Yang will now provide a more
- 10 detailed examination of the progression-free
- 11 survival.
- 12 Statistical Review
- DR. YANG: Thank you, Dr. Kane.
- 14 [Slide]
- As seen in Dr. Kane's presentation, the
- 16 study failed to demonstrate efficacy in the primary
- 17 endpoint of overall survival at a two-sided alpha
- 18 level of 0.05. From a statistical perspective, an
- 19 efficacy demonstration based on any other endpoint,
- 20 such as progression-free survival, would only infer
- 21 a false-positive error rate. Despite this concern,
- 22 the secondary endpoint, progression-free survival,

1 was evaluated and the important question is

- 2 regarding progression-free survival.
- 3 [Slide]
- We have doubt regarding the applicant's
- 5 findings and, second, as Dr. Kane will be
- 6 discussing, there are questions regarding its
- 7 clinical significance. This will be summarized in
- 8 this presentation.
- 9 [Slide]
- 10 My review of the progression-free survival
- 11 is as follows, review of applicant's analyses and
- 12 results; then the major FDA concern about
- 13 assessment times; then additional FDA concerns.
- 14 Let's first review the applicant's
- 15 analysis and results. Progression-free survival
- 16 was defined as time from the data of randomization
- 17 to the date of disease progression or death. The
- 18 data of disease progression was recorded as the
- 19 assessment date when disease progression was
- 20 documented. If the assessment was on different
- 21 days, then the latest date among all assessments
- 22 was used by this applicant to represent the

1 assessment date in that cycle.

- 2 [Slide]
- 3 This slide summarizes the applicant's
- 4 results. The protocol specified as secondary
- 5 efficacy analysis or progression-free survival was
- 6 the log-rank test with the missing data imputed by
- 7 the last observation carried forward method. The p
- 8 value based on this approach was very small.
- 9 However, in a large trial a small p value can be
- 10 observed even if the treatment effect is small.
- 11 During the review process FDA requested the
- 12 applicant to analyze the data using a different
- 13 approach by censoring patients at the last
- 14 assessment date when at least 50 percent of target
- 15 lesions were measured if the disease had not
- 16 progressed yet. The p value based on this approach
- 17 was also very small. However, when analyzed by
- 18 this approach the observed median progression-free
- 19 survival in the combination therapy dropped by 13
- 20 days and in the control arm dropped by only 1 day,
- 21 as presented in this table.
- 22 [Slide]

1 An important question is raised while

- 2 interpreting the results of the analysis of
- 3 progression-free survival. Is the applicant's
- 4 finding a true finding?
- 5 [Slide]
- 6 FDA has a major concern in evaluation of
- 7 progression-free survival, that is, imbalance in
- 8 observed lesion assessment times between treatment
- 9 arms. The next few slides address this concern.
- 10 [Slide]
- 11 Lesions were to be measured every 6 weeks
- 12 during the treatment phase. In practice, this did
- 13 not always occur. Even when they were assessing
- 14 the planned cycles there were still differences in
- 15 timing between the two arms. Because this is a
- 16 very large open-label trial involving two different
- 17 regimens, one administered on 6 days and the other
- 18 only 1 day and because the claimed difference was
- 19 very small, FDA was concerned that the observed
- 20 differences in progression-free survival might be
- 21 affected by systematic bias. One potential bias
- 22 could be caused by differences in the time of

- 1 lesion assessments.
- 2 [Slide]
- 3 We must remember a critical difference
- 4 between the analysis of survival and of lesion
- 5 progression. The date of death, represented by the
- 6 star, will not change regardless of the evaluation
- 7 schedule. With progression measurement, however,
- 8 the date we assign for progression is usually the
- 9 date of a scheduled visit occurring sometime after
- 10 the actual progression date. It should not be
- 11 surprising that assessing progression at longer
- 12 intervals leads to a longer time to progression.
- 13 [Slide]
- 14 To address this concern FDA summarized the
- 15 time from the date of randomization to each of the
- 16 first 3 observed assessments in this pivotal trial.
- 17 Included in this summary are those assessments
- 18 which occurred by the time of disease progression
- 19 or death and where there was at least one target
- 20 lesion measurement. The observed median times from
- 21 randomization to each of these assessments were
- 22 obtained for each treatment arm. They were 48

- 1 versus 43 days to the first assessment; 94 versus
- 2 87 days to the second assessment; and 137 versus
- 3 129 days to the third assessment. The p values for
- 4 the log-rank test comparing the entire curves were
- 5 also obtained for each assessment. Note that the
- 6 difference in timing of lesion assessments shows
- 7 striking statistical significance, with p values of
- 8 the same order of magnitude as the claimed
- 9 difference in progression-free survival. This
- 10 finding raises a concern that all or some of the
- 11 observed progression-free survival difference were
- 12 caused by this systematic bias in lesion assessment
- 13 times.
- 14 [Slide]
- 15 These are the times to the first
- 16 assessment curves. Please note that these are not
- 17 time to disease progression curves. The blue curve
- 18 represents the combination therapy and the red one
- 19 represents DTIC alone. On the horizontal axis we
- 20 have the time from randomization to the first
- 21 assessment in days. On the vertical axis we have
- 22 the proportion of patients who had the first

1 assessment later at a given time. As seen here,

- 2 the blue curve stayed above the red curve all
- 3 along, suggesting a systematic delay in the first
- 4 assessment time in the combination treatment arm.
- 5 [Slide]
- 6 Similar patterns were observed in the time
- 7 to the second assessment curves.
- 8 [Slide]
- 9 And to the third assessment curves.
- 10 [Slide]
- 11 Imbalance in assessment times may have
- 12 impact in several ways on the analysis of
- 13 progression-free survival. The first impact is
- 14 that bias may be introduced in estimating
- 15 progression-free survival. Second, with a large
- 16 trial even a small imbalance between treatment arms
- 17 may lead to incorrect conclusions.
- 18 [Slide]
- 19 This slide illustrates the first impact.
- 20 A hypothetical example is given here to illustrate
- 21 how imbalance may be introduced in estimating
- 22 progression-free survival. In this example,

- 1 suppose that the actual day of disease progression
- 2 was day 35 post randomization for both patients,
- 3 one in the control arm and the other in the
- 4 experimental arm. However, the first assessment
- 5 for the patient in the control arm was on day 42
- 6 and for the patient in the experimental arm it was
- 7 on day 48. The recorded days of disease-free
- 8 progression will be on days 42 and 48 respectively.
- 9 These recorded days, not day 35, will be the
- 10 observations used in the analysis.
- 11 [Slide]
- 12 This slide illustrates the impact of
- 13 systematic bias by a simulation study. In the
- 14 simulation study progression-free survival was
- 15 generated from identical distribution in both arms
- 16 with a median of 50 days and 300 subjects in each
- 17 arm. However, a systematic increase by 2 days in
- 18 assessment times in one arm was introduced. In 98
- 19 percent of the 5000 simulations p values were less
- 20 than 0.05. This illustrates that even with a small
- 21 imbalance in assessment times between two arms the
- 22 chance of falsely concluding treatment effect can

- 1 be very high when, in fact, there is no treatment
- 2 effect at all, also the chance of incorrectly
- 3 concluding increases as the sample size increases.
- 4 [Slide]
- 5 An additional FDA concern is about missing
- 6 data. Missing data was observed in both treatment
- 7 arms, especially for non-target lesions which also
- 8 had an influence on the determination of disease
- 9 progression. In this study lesion assessments were
- 10 not always performed in planned cycles. Also,
- 11 lesions were assessed at baseline or assessed post
- 12 baseline. In the presence of missing data bias
- 13 could be introduced in estimating treatment
- 14 effects, especially in an open-label study as this
- 15 is. This is a common problem in assessing
- 16 progression in most of the studies.
- 17 [Slide]
- 18 This slide summarizes the progression-free
- 19 survival findings. The claimed progression-free
- 20 survival benefit in the combination therapy over
- 21 DTIC alone may not be a true finding because of
- 22 imbalance in assessment times between treatment

- 1 arms. The true progression-free survival benefit
- 2 of the combination therapy over DTIC therapy alone
- 3 was confounded by imbalance in assessment times
- 4 between treatment arms. Thus, true treatment
- 5 effect with respect to progression-free survival
- 6 cannot be isolated. The chance of falsely
- 7 inferring progression-free survival benefit could
- 8 be high. Even if there was, indeed, no benefit, it
- 9 will be magnified by increasing the sample size.
- 10 Missing data is always a concern in oncology
- 11 studies evaluating progression as an endpoint. The
- 12 confidence in the amount of difference in
- 13 progression-free survival is diminished in the
- 14 presence of missing data and may allow introduction
- of bias, especially in an open-label study.
- 16 [Slide]
- 17 Finally from a statistical perspective,
- 18 this large randomized, open-label study failed to
- 19 demonstrate the protocol specified primary efficacy
- 20 based on the overall survival benefit with respect
- 21 to the secondary efficacy analysis of
- 22 progression-free survival because of systematic

- 1 bias in ascertainment. It is not clear whether the
- 2 benefit of progression-free survival in the
- 3 combination therapy over DTIC alone exists. If it
- 4 exists, the magnitude is uncertain. Also, there
- 5 are multiplicity issues with analyses conducted to
- 6 support the efficacy. Dr. Kane will address the
- 7 clinical relevance.
- 8 Clinical Relevance
- 9 DR. KANE: Dr. Yang has provided a
- 10 detailed assessment of some of the concerns related
- 11 to progression-free survival.
- 12 [Slide]
- 13 To summarize these concerns, assessments
- 14 in this study were done at 6-week intervals. The
- 15 progression-free survival difference, however, was
- only in the range of 2-3 weeks. The
- 17 progression-free survival difference is highly
- 18 statistically significant but may be fully
- 19 accounted for by asymmetry in the timing of
- 20 assessments between the two arms. The magnitude of
- 21 the effect size is uncertain. The real problem is
- 22 what is the clinical relevance.

1	[Slide]

- 2 The Division examined all of the secondary
- 3 endpoints of the protocol for the possibility of
- 4 patient benefit, given the fact that the overall
- 5 survival analysis failed.
- 6 [Slide]
- 7 We will next look at the response rates
- 8 among the secondary endpoints. The data submitted
- 9 at the time of the original NDA submission and
- 10 analysis, as has been presented here, indicated
- 11 that the Genta investigator-determined responses
- 12 were derived from an algorithm using tumor
- 13 measurements from the case report forms. In that
- 14 examination, 11.7 percent of patients were reported
- 15 as responders to the combination versus 6.8 percent
- 16 with DTIC alone. The p value for this difference
- 17 was 0.018 and the actual difference was just under
- 18 5 percent.
- 19 The study protocol also called for a
- 20 blinded independent review and confirmation for all
- 21 responders. The protocol stated that all
- 22 radiographs, as well as photographs of cutaneous

1 lesions, were to be provided to this review group.

- 2 The blinded independent reviewers, as you have
- 3 heard, reported different response rates, 6.7
- 4 percent response for the combination versus 3.6
- 5 percent for DTIC alone, a difference of 3.1 percent
- 6 and of borderline significance. Ordinarily,
- 7 adjudication by an independent review is considered
- 8 to be the definitive response rate.
- 9 [Slide]
- 10 Some of this discordance may be due to
- 11 technical difficulties, such as providing the
- 12 independent review group with the appropriate
- 13 images. However, we must point out that 5 complete
- 14 responses, which constituted all of the responses
- 15 in the initial NDA submission identified by the
- 16 Genta site investigators--there were 3 in the
- 17 combination arm and 2 in the DTIC alone arm. None
- 18 was adjudicated as complete responses by the
- 19 independent review. Forty-four percent of the
- 20 responders by the Genta site investigators were
- 21 determined as not assessable or unconfirmed by the
- 22 independent review. For 49 percent there was full

1 concordance for the response category between Genta

- 2 and the independent review.
- 3 [Slide]
- 4 You have also heard that on April 9th--a
- 5 couple of weeks ago--Genta provided new data on
- 6 responders. This new data is being examined.
- 7 There are problems with data that is developed
- 8 outside of the study protocol. There can be
- 9 ascertainment bias between arms when an analysis is
- 10 not prospectively planned. Subsequent therapies,
- 11 such as surgery not being part of the protocol
- 12 treatment, may not be applied symmetrically.
- 13 [Slide]
- 14 Turning to duration of response, another
- 15 secondary endpoint, this is Genta's analysis. This
- 16 data is skewed data and, therefore, we refer to the
- 17 median to describe it and the medians are quite
- 18 similar.
- 19 [Slide]
- 20 For durable response rate Genta has
- 21 provided this analysis. This was a prespecified
- 22 secondary endpoint. The difference was not

-	
1	significant.

- 2 [Slide]
- 3 Performance status is a measure of
- 4 functional capacity. There were no differences in
- 5 performance status observed between study arms to
- 6 suggest a benefit for adding Genasense to the DTIC.
- 7 [Slide]
- 8 For tumor-related symptoms, there were no
- 9 differences in symptoms observed between study arms
- 10 during the treatment.
- 11 [Slide]
- This slide introduces the adverse events
- 13 which represent the toxicity safety endpoint for
- 14 the study. You have heard from Dr. Itri that the
- 15 grade 3-4 adverse events, the serious adverse
- 16 events, and the adverse events leading to
- 17 discontinuation all were increased with the
- 18 addition of Genasense to DTIC. Since the DTIC
- 19 doses were the same, the increased toxicity is
- 20 likely due to the Genasense.
- 21 [Slide]
- This represents the hematologic toxicity

1 which you have already heard. There was more grade

- 2 3-4 neutropenia and thrombocytopenia on the
- 3 combination arm.
- 4 [Slide]
- 5 For non-hematologic toxicity, all adverse
- 6 events were more frequent on the combination arm
- 7 with the addition of Genasense.
- 8 [Slide]
- 9 In total, there were 18 patients with
- 10 upper extremity thrombosis on the combination arm
- 11 compared to 3 on the DTIC alone arm.
- 12 [Slide]
- In summary, the Genasense trial failed to
- 14 achieve its primary protocol-specified endpoint.
- 15 No survival benefit was demonstrated with the
- 16 addition of Genasense to DTIC compared to DTIC
- 17 alone. The efficacy of the control arm, DTIC
- 18 alone, is consistent with that of other studies.
- 19 [Slide]
- 20 Looking again at the secondary endpoints,
- 21 these are usually considered to be exploratory and
- 22 for progression-free survival there is no precedent

- 1 for progression-free survival as evidence of
- 2 clinical benefit for metastatic melanoma. This may
- 3 not be a true finding. The progression-free
- 4 survival difference between the two arms may be 13
- 5 or 25 days depending on which censoring technique
- 6 is chosen for missing data. The clinical relevance
- 7 is uncertain.
- 8 [Slide]
- 9 For response rate, the difference from
- 10 DTIC alone may be in the range of 3-5 percent. No
- 11 complete responses in the original NDA submission
- 12 were confirmed by the independent blinded review
- 13 committee. The clinical relevance of this result
- 14 is uncertain. Thus far, response rates in these
- 15 ranges have not conferred survival benefits for
- 16 metastatic melanoma. For the durable response
- 17 rate, no significant difference. Response
- 18 durations were practically identical.
- 19 [Slide]
- 20 For performance status no benefit was
- 21 observed from the addition of Genasense to DTIC
- 22 over DTIC alone. Symptomatic benefit was no

- 1 different. There is greater toxicity with the
- 2 Genasense combination than for DTIC alone. Thank
- 3 you.
- 4 Questions from the Committee
- DR. PRZEPIORKA: Thank you for the review.
- 6 We are now going to open the session for questions
- 7 to either the sponsor or to the FDA. Dr. Cheson?
- 8 DR. CHESON: I am sure the 11 or so
- 9 patients out there still in remission will be
- 10 disturbed to know that modeling suggests that they
- 11 shouldn't be there. We have heard some difficult,
- 12 complicated analyses of modeling suggesting that
- 13 what we heard from the elegant presentation from
- 14 Dr. Itri and her co-workers might not be as
- 15 clinically relevant. So, we have one side
- 16 suggesting one set of outcomes showing clinical
- 17 benefit, then the computer modeling and the FDA
- 18 suggesting perhaps that these are not reliable. I
- 19 would like to hear from the company, from Dr.
- 20 Wittes, their side of this spin.
- 21 DR. WITTES: The issue about the potential
- 22 for bias that can come from interval censoring and

- 1 from missing data we knew about and, in fact,
- 2 looked at--I need the slide, yes, that is the one.
- 3 [Slide]
- In fact, that is why we did some of the
- 5 sensitivity analyses. These sensitivity analyses
- 6 look at three different kinds of things, the
- 7 missing data and the interval censoring, and the
- 8 last three are the ones that look at interval
- 9 censoring, the by-cycle analysis, the assumed
- 10 progressive disease, back to the scheduled
- 11 visit--these are three different ways of trying to
- 12 adjust for the interval censoring. What you see is
- 13 some changes in hazard ratio but quite similar to
- 14 what they were before and then statistically
- 15 significant p values.
- 16 [Slide]
- Next slide, CC49--the FDA's approach for
- 18 interval censoring, which is a method due to
- 19 Michael Fay, is a non-parametric approach. It is a
- 20 score statistic and, again, the p value remains
- 21 statistically significant. So, yes, there
- 22 certainly is a differential time to measurement in

1 the two groups but analyses that adjust for that

- 2 time still show a statistically significant
- 3 benefit.
- 4 DR. PRZEPIORKA: Dr. D'Agostino?
- DR. D'AGOSTINO: Janet, the procedure the
- 6 FDA used is not unreasonable. I am asking a
- 7 question but it is a set of assumptions that could,
- 8 in fact, underlie some of the differences we see,
- 9 and I guess the point that the FDA was making, I
- 10 thought, was that you could chip away at these
- 11 differences not only in statistical significance
- 12 but magnitude of difference, clinical difference,
- 13 and that I think should be taken into account with
- 14 the interpretation of these techniques.
- DR. WITTES: I agree, Ralph, but can we go
- 16 back to that 49?
- 17 [Slide]
- 18 Here is the chipping away. I mean, the
- 19 chipping away is to look at both the interval
- 20 censoring and the missing data. I think if you
- 21 approach four, which is the one that is most
- 22 chipped, if you look at what that does, it is the

- 1 Michael Fay approach to interval censoring plus a
- very conservative method for missing data, and let
- 3 me describe that a little bit because I think it is
- 4 important to know what happens here.
- 5 There are basically three kinds of missing
- 6 data. There are those that Dr. Itri showed where
- 7 there is an assessment, it is clear and then you
- 8 don't keep on looking at that -- the no lesion. That
- 9 is one source. There is another kind of missing
- 10 data where you have an assessment. At the next
- 11 assessment you don't measure that lesion and then
- 12 subsequent to that you do measure it and there is
- 13 no progression. So, to me, that isn't really
- 14 missing. If you take away those two and leave the
- 15 missing data where you really can't know whether
- 16 there is an assessment or not, this method becomes
- 17 an 0-3 again. So, I think if you chip it away you
- 18 still get evidence of benefit in progression-free
- 19 survival.
- 20 The other thing to remember is that from
- 21 the point of view of complete responses there is no
- 22 issue at all about either interval censoring or

- 1 missing data.
- DR. PRZEPIORKA: Dr. D'Agostino?
- 3 DR. D'AGOSTINO: But just again though, we
- 4 are left in the dilemma of how do you respond to
- 5 the data as collected, as the assessments were made
- 6 and so forth, and there is uncertainty in terms of
- 7 how comfortable some of us are with the p values.
- 8 I think also with a large study you can generate
- 9 very large p values with small differences and
- 10 maybe some of that is here also. Again, p values
- 11 are important but there is clinical significance
- 12 the way these numbers draw closer together by, I
- 13 think, relatively comfortable assumptions that is
- 14 of concern I think.
- DR. WITTES: I think someone else should
- 16 address the clinical significance.
- DR. PRZEPIORKA: Dr. Temple?
- DR. TEMPLE: Janet, one of the things
- 19 about 0.003 is that you don't worry about
- 20 adjustment for multiplicity and stuff like that.
- 21 It kind of blows you away. But with the smaller p
- 22 values that you get from some of the other things

- 1 you did that might become an issue. Do you have a
- 2 view as to how one should take into account the
- 3 fact that this is not the primary endpoint? It is
- 4 one of at least several things one could have done.
- 5 What would you say the right kind of adjustment
- 6 would be in a case like that, assuming that some of
- 7 the closer to 0.05 p values were the ones that
- 8 might count?
- 9 DR. WITTES: Yes, I don't know the answer
- 10 to that. I mean, if the question is what is the
- 11 type-1 error of this study, I think one can't
- 12 really answer that question. Of course, one looks
- 13 at consistency. One worries about the potential
- 14 for bias and, again, I feel that those complete
- 15 responses kind of avoid--they become a different
- 16 kind of criterion. But if you ask me what is the
- 17 type-1 error rate, I don't know.
- DR. PRZEPIORKA: Dr. D'Agostino?
- DR. D'AGOSTINO: Just again, when you look
- 20 at the secondary endpoints after you have a failure
- 21 in the primary endpoint, the whole
- 22 interpretation--just to reinforce what you just

- 1 said, no one around this table is going to be able
- 2 to put a real p value on any of these things that
- 3 we have given that the primary didn't turn out to
- 4 be statistically significant.
- DR. PRZEPIORKA: Any other questions from
- 6 the committee? Dr. Hwu?
- 7 DR. HWU: I have a question for Dr. Itri
- 8 regarding the design of this trial, especially the
- 9 regimen used in this large trial for the
- 10 experimental arm. The initial scientific
- 11 indication of this incremental improvement in the
- 12 treatment of melanoma was based on the Phase 1 and
- 2 trial, which was published in Lancet by Jansen
- 14 and colleagues in 2000. The Phase 1 and 2 trial
- 15 design was extremely careful. They screened the
- 16 patients who had shown in tissue increased
- 17 expression of Bcl-2. Also, the pharmacokinetic
- 18 study was done very carefully and was a clinical
- 19 correlate of the tissues at the level of decrease
- 20 of Bcl-2 expression. Also, there is correlation
- 21 with responses.
- The regimen used in that trial was very,

- 1 very reasonable in design. They were giving
- 2 infusion on day 1 to day 14, continuous infusion.
- 3 Clearly by day 5 the Bcl-2 expression was maximally
- 4 down-regulated. DTIC was given from day 5 to 9 in
- 5 divided doses of 200 mg/m 2 every day for 5 days.
- 6 In other words, when DTIC is infused in patients,
- 7 the G31 and 39 Genasense treatment also continues.
- 8 Now, the response was clearly shown in the
- 9 Mla group, the patient with skin metastases or
- 10 lymph node metastases. No response was noted in
- 11 the lung or visceral organs. However, the
- 12 responses were impressive. Even one patient who
- 13 had prior DTIC had a partial response.
- 14 My question to Dr. Itri is why we changed
- 15 the protocol which has clearly demonstrated
- 16 scientifically that it worked as a target therapy
- 17 and now we have changed to 5-day infusion of
- 18 Genasense followed by 1 infusion of DTIC and even
- 19 forgot that DTIC is not an active chemotherapy
- 20 agent by itself; it requires hepatic activation to
- 21 its active metabolite MTIC? We do know that the
- 22 company provided a pharmacokinetic study that, yes,

1 the continuous infusion of Genasense that achieved

- 2 the maximal plateau level within 10 hours if you
- 3 were giving it at the 7 mg/kg/hour rate--I am
- 4 sorry, per kilogram--however, once the infusion
- 5 stopped, less than 10 hours later the level for the
- 6 Genasense clearly dropped to what we call the
- 7 biological active level of I think 1 mcg/L.
- 8 So, I would like to know before we launch
- 9 this large Phase 3 trial are there any other Phase
- 10 2 studies, other than the safety, well-tolerated
- 11 5-day infusion by 1 day of DTIC, that have shown
- 12 that there is tissue correlation and also efficacy
- 13 as shown by the Phase 1 and 2 trial. Thank you.
- DR. WALL: I am Dr. Ray Wall, from Genta.
- 15 Dr. Hwu, I think I will take a whack at those
- 16 questions since I was around at the time the study
- 17 was done and took it with Dr. Haluska down to FDA,
- 18 and Dr. Itri was not.
- 19 The Genasense study was informative. I
- 20 would point out to the committee it was a Phase 1
- 21 studies that looked at a couple of different doses
- 22 of Genasense at that time and also looked at a

- 1 couple of different routes of administration, both
- 2 subcutaneous administration as well as continuous
- 3 IV infusion. So, it was Phase 1 and it was a total
- 4 of 12 patients. It was published in Lancet in year
- 5 2000.
- 6 What we had found both in that study and
- 7 also in a variety of other studies, some of which
- 8 are presented in your briefing book, are a couple
- 9 of things with respect to the biological activity
- 10 of the drug. The pharmacokinetics are very well
- 11 described and I will skip them for the time being.
- 12 What we see in human tumor cells
- 13 subsequent to administration of Genasense is that
- 14 the onset of the down-regulation of Bcl-2 at the
- 15 protein level, not the RNA level but of the protein
- 16 level seems to occur at least as early as day 3 and
- 17 is maximal at day 5. The one other thing that had
- 18 been a very, very important driver of our clinical
- 19 schedule is that the continued administration of
- 20 Genasense beyond day 5, if the dose is not changed
- 21 you do not seem to get any further down-regulation
- 22 of Bcl-2 at the protein level.

I didn't bring a lot of blots in my back

- 2 pocket here but I think I can show you one from a
- 3 melanoma patient, if I can have MA-25, please?
- 4 [Slide]
- 5 This is a Phase 1 study looking at a very,
- 6 very low dose. This is a dose that is about 20
- 7 percent of our Phase 3 doses, and this is from the
- 8 Jansen study looking at continuous infusion over a
- 9 14-day period. Again, you see maximal
- 10 down-regulation by about day 5 and, despite the
- 11 fact that the infusion is continued, you don't see
- 12 any further decrease in the down-regulation of
- 13 Bcl-2 protein effect. These are human tumor cells,
- 14 serial biopsies of patients with malignant
- 15 melanoma.
- 16 So, from these data and from other data
- 17 that have been obtained from a variety of other
- 18 patients and other cells, both malignant cells as
- 19 well as normal cells, that molecular information
- 20 has been used to drive the clinical studies,
- 21 including the one that you have seen today.
- 22 So a couple of things, one is we use

- 1 rather short infusions to maximize the
- 2 down-regulation of Bcl-2 so that that effect is
- 3 maximal at the time that chemotherapy is
- 4 administered and we don't continue beyond. Dr.
- 5 Tony Tolcher, who actually is in the audience, has
- 6 done some of the best scheduling work but, again,
- 7 modeling preclinically, suggesting that when you
- 8 administer Genasense with chemotherapy the effect
- 9 is maximized when you administer Genasense in
- 10 advance of chemotherapy. The second thing that he
- 11 has shown is that there seems to be no advantage to
- 12 overlapping Genasense with chemotherapy. The final
- 13 observation from the Tolcher lab is that if you
- 14 reverse the sequence, if you give Genasense after
- 15 chemotherapy is administered, then you basically
- 16 eliminate the synergistic effect. So, the
- 17 constellation of these kinds of pharmacodynamic
- 18 events have driven the schedules that you have seen
- 19 here today in Phase 3.
- DR. PRZEPIORKA: Before you leave the
- 21 podium, just one more question to follow-up, how
- 22 long is the effect once the infusion is

- 1 discontinued?
- DR. WALL: As was pointed out, the
- 3 half-life of this drug is around 3-4 hours and
- 4 fundamentally disappears probably by about 10-12
- 5 hours. The data are a little fragmentary and
- 6 mostly derived from in vitro cell culture studies,
- 7 but it does look like the half-life of Bcl-2
- 8 protein is in the order of 16 to about 22 hours.
- 9 So, you would expect that if you get complete
- 10 shut-down of Bcl-2 production by knocking out the
- 11 messenger RNA, then pharmacokinetically within 5
- 12 half-lives or so you should have no protein within
- 13 the cell, and recovery would be equally as rapid as
- 14 soon as it is shut back on.
- DR. PRZEPIORKA: Dr. Temple?
- 16 DR. TEMPLE: Dr. Itri or others, there was
- 17 a lot of discussion about the responses. You
- 18 clearly had two different ways of calculating
- 19 responses, one based on investigators and the other
- 20 based on RadPharm. My presumption was that the
- 21 RadPharm analysis existed because the study was
- 22 open and that is a common thing to do, to have a

- 1 blinded analysis of the response rates. In your
- 2 presentation though I gather you were disappointed
- 3 with what RadPharm produced and you considered it
- 4 inaccurate. Could you clarify the intended role,
- 5 what happened and whether you think there ought to
- 6 be a further blinded analysis, or what? This is a
- 7 somewhat unusual situation and it wasn't clear what
- 8 the original intent was. As Dr. Kane said, usually
- 9 when you have a group like that, they are the
- 10 primary analysis. Was that not true? Just what
- 11 was the arrangement?
- DR. ITRI: That was not true here.
- DR. TEMPLE: Then why did you do it?
- DR. ITRI: The response per statistical
- 15 analysis plan was RECIST measurements based on
- 16 investigational site measurements that were then
- 17 calculated by computer to see whether or not they
- 18 met criteria for a partial response or a complete
- 19 response. That is primary and that is what is
- 20 reported.
- 21 The use of RadPharm--and I think it is
- 22 important to note that it was only responding

1 patients that they looked at so if we were going to

- 2 rely on RadPharm to actually give us a response
- 3 rate for the study they would have had to review
- 4 everyone. They were really used by us for quality
- 5 control purposes. We wanted to make sure that the
- 6 relative numbers we were seeing were consistent
- 7 with what has been reported in the literature; that
- 8 the concordance rates weren't really out of whack.
- 9 I think that the best person to speak about this is
- 10 Dr. Ford because he can put this into real context
- 11 and explain what the literature shows, and really
- 12 how we stack up in terms of other studies that have
- 13 utilized a similar review. Is that okay?
- DR. TEMPLE: Anything is okay, but you
- 15 have two somewhat separate, somewhat different
- 16 calculations based on the ones that went to them.
- 17 Usually that is distressing and I guess the further
- 18 question I have is do you have some way of
- 19 resolving this? Should this be subjected to
- 20 another blinded review where people get the whole
- 21 files, or something? I mean, as it is, you can see
- 22 why it is sort of troublesome. For example, all of

- 1 the complete responses they didn't think were
- 2 complete responses although you feel that complete
- 3 responses are very important for the reasons Dr.
- 4 Cheson mentioned earlier. That is troublesome, and
- 5 now you have found more which we haven't had a
- 6 chance to review yet, but the same problem could
- 7 arise there too. So, it does seem important to
- 8 figure out what it all means.
- 9 DR. ITRI: I really think you need to talk
- 10 to Dr. Ford about this.
- 11 DR. TEMPLE: Whatever you like.
- DR. ITRI: But the other issue is that,
- 13 you know, if the agency would like us to submit
- 14 these x-rays for review and if that would make you
- 15 more comfortable, we would be totally willing to do
- 16 that. We believe that what is being called lack of
- 17 concordance really relates to the fact that Dr.
- 18 Ford is going to elucidate now. And, it would not
- 19 be a problem; we would be so happy to sit with
- 20 anyone and give you the clinical data that supports
- 21 this because these are real and the patients are
- 22 alive, most importantly. So, we would welcome a

- 1 chance to sit down and review these x-rays.
- DR. TEMPLE: While you are at that, that
- 3 is the second question I was going to ask you and
- 4 maybe you want to answer them both. The survival
- 5 curves don't seem to have different tails on them.
- 6 So, I am a little confused about where the
- 7 long-term survivors you are referring to come from
- 8 if they are not in the survival curve, or maybe the
- 9 curve has been extended.
- 10 DR. ITRI: We provided update survival
- 11 information to the agency--
- DR. TEMPLE: I just need the one you
- 13 showed though.
- DR. ITRI: Well, that was an early cutoff
- 15 so we don't really know what the tail is doing.
- 16 That was the 7-month median.
- DR. TEMPLE: It is really Dr. Cheson's
- 18 question I am following up on, if there were a
- 19 small subset of people that got really important
- 20 responses, wouldn't you see a difference in where
- 21 the tails end up?
- 22 DR. ITRI: It might be too early to see it

- 1 on that curve.
- DR. TEMPLE: Well, that means they are in
- 3 both groups then. There are long-term survivors in
- 4 both groups. Is that right?
- DR. ITRI: There are some long-term
- 6 survivors.
- 7 DR. WITTES: It depends on the nature of
- 8 the censoring, where the censoring is. So, some of
- 9 that could be showing up before the edge of the
- 10 tail occurs because they haven't been followed long
- 11 enough. I mean, the fact that they come together
- 12 doesn't eviscerate the point. You have to look at
- 13 where the specific events occurred relative to
- 14 censoring.
- DR. TEMPLE: That is fair enough. There
- 16 was reference to at least some people who were
- 17 getting really spectacular benefits and I would
- 18 have thought that would show up as curves where the
- 19 flat part is here on one and the flat part is below
- 20 on the other.
- DR. WITTES: They are censored.
- DR. TEMPLE: They are censored because

- 1 they haven't been on long enough--
- DR. WITTES: It is like three years.
- 3 DR. FORD: Well, thank you very much for
- 4 the opportunity to address the committee on this
- 5 topic, the topic at hand being how does an
- 6 investigator who sees the patient on a daily basis
- 7 or a regular basis assess response compared to how
- 8 an independent review facility would assess
- 9 response in the same patient in a remote location,
- 10 not having access to the clinical information.
- I think that there is little written in
- 12 the medical literature about this topic, but there
- 13 are two particular studies that I would like to
- 14 review kind of as a background for this discussion.
- 15 The first was a study that was published in the
- 16 Annals of Oncology in 1997. The author was a
- 17 radiologist and that was a review of a 100-patient
- 18 ovarian cancer trial. In that review there were 24
- 19 claimed responders who were reviewed by an
- 20 independent review facility and in that instance
- 21 there were 14 patients who were concordant, that
- is, deemed to be responders by the independent

1 review facility and deemed to be concordant with

- 2 the investigator.
- There was a second study that was done,
- 4 also published in 1997 in the Journal of Clinical
- 5 Oncology. It was a review of a renal cell trial
- 6 where there were 133 subjects who were reviewed.
- 7 In that review an independent review facility
- 8 reviewed those studies and the responses were
- 9 concordant in 62 out of those reviews. In that
- 10 article you can see the concordance, that is, site
- 11 same PR to independent review facility saying PR
- 12 was approximately 60 percent, and in the second
- 13 study it was lower, on the order of 48 percent.
- Now, with that as a background, there is a
- 15 significant difference in the methodologies in
- 16 which those reviews were performed. That is, in
- 17 those examples the investigators who enrolled the
- 18 patients in the trial were actually part of the
- 19 review process. A radiologist sat down with the
- 20 films, made the measurements and reviewed the
- 21 images in concert with the physicians who knew much
- 22 more about that patient, that is, had the

1 additional clinical history that the radiologists

- 2 would have at the time of the review.
- Now, that as a background, discussing the
- 4 current study, the current study was a radiology
- 5 only review. When it was performed there was no
- 6 clinical information provided. In that instance,
- 7 even in that particular setting the concordance was
- 8 63 percent. So, 63 percent of the time that the
- 9 investigators assessed the response on this trial,
- 10 the independent review facility assessed the same
- 11 response.
- DR. TEMPLE: When they are different how
- 13 do you know which one is right? When they are
- 14 different, non-concordant, how do you decide which
- one is right? I am sure I understand that
- 16 different groups will reach different conclusions.
- 17 Sometimes these special committees have a
- 18 tie-breaker when they don't agree. But what is one
- 19 supposed to do that when they are non-concordant?
- 20 How do you decide which is true?
- DR. FORD: Well, in this particular
- 22 setting the investigator-determined response was

- 1 chosen.
- DR. TEMPLE: When? I mean, was this
- 3 prospectively defined in the protocol how any
- 4 discrepancies were going to be handed?
- DR. ITRI: Yes, it was.
- 6 DR. TEMPLE: So, the protocol was clear
- 7 that the investigator-determined conclusion, or the
- 8 analysis based on the investigator--
- 9 DR. ITRI: The investigator measurements
- 10 were fed into the computer and that is what was to
- 11 be used for determination of response.
- DR. PRZEPIORKA: Dr. Rodriguez?
- DR. RODRIGUEZ: Yes, this is a follow-up
- 14 to the question by Dr. Hwu because I didn't hear
- 15 the response to part of her question, that is, you
- 16 know, this is a biologically targeted agent and one
- 17 assumes that one is going to look for the
- 18 appropriate target or that one would select
- 19 patients who are appropriate to be treated with
- 20 this drug. I didn't hear whether all patients
- 21 entering on the study were screened, if their
- 22 tumors were screened for expression of Bcl-2 or if

1 there had been an attempt to quantitate category of

- 2 patients because, obviously, some patients are
- 3 going to be appropriate for trial and others are
- 4 not. Was that done?
- DR. WALL: That is a very good question.
- 6 Can I have slide MA-18, please?
- 7 [Slide]
- 8 The challenge with Bcl-2 is the ubiquity
- 9 of Bcl-2 expression in melanoma. So, this is not
- 10 comparable, for instance, with HER2 expression in
- 11 breast cancer in which the incidence of expression
- 12 in advanced cases is on the order of 20, 25 percent
- 13 so that you would not want to treat 100 percent of
- 14 women. You could theoretically benefit 25 percent
- 15 so the absolute response rate would be 5 percent of
- 16 your total. In general, we chose melanoma because
- 17 of the very, very high prevalence of expression
- 18 which in these studies, whether you look at
- 19 immunohistochemistry, which is the blue bars, or
- 20 RT-PCR of excised specimen, you are talking about
- 21 something in the range of 90, 95 percent expression
- 22 of tumors.

1 So, the kinds of correlations that you are

- 2 going to be able to make with respect to
- 3 over-expression we thought, going into this study,
- 4 were going to be extremely limited due to the very
- 5 high prevalence of baseline expression. Again, it
- 6 certainly influenced our choice of melanoma as one
- 7 of the early targets for this particular disease.
- 8 After that it is not clear where you could go if
- 9 you were going to look at percentage
- 10 down-regulation. That meant serial biopsies of
- 11 fresh tissues from multiple sites, handled very,
- 12 very carefully, centrally managed, exponential
- 13 increases in cost and ability to manage--that
- 14 simply overwhelmed us as a small company. So, we
- 15 figured we would pick a big tumor in which would be
- 16 an unquestioned level of very, very high expression
- 17 at baseline but it did preclude the ability to make
- 18 subset selections based on--at least at the stage
- 19 we were dealing with this in 2000--Bcl-2 expression
- 20 per se.
- DR. PRZEPIORKA: Dr. Hwu?
- 22 DR. HWU: I agree that choosing melanoma

- 1 as this malignancy is very important based on what
- 2 we know of Bcl-2 over-expression. My question to
- 3 you that you didn't answer is based on your current
- 4 regimen with some 300 patients. Have you any data
- 5 to show that it clearly reproduced your finding in
- 6 the previous Phase 1 and 2 using completely
- 7 different regimens?
- 8 DR. WALL: Well, the Phase 1 study, as you
- 9 know, did not show correlations. It really was not
- 10 appropriately powered to look for correlations
- 11 between baseline Bcl-2 expression and percentage of
- 12 down-regulation. That is very difficult to model
- 13 even preclinically. I am not sure I am answering
- 14 your question.
- DR. HWU: I don't agree that that is not
- 16 the conclusion from the publication. Clearly the
- 17 CR person that has the highest incremental decrease
- 18 of Bcl-2 is the percentage of decrease; it is not
- 19 the total amount of expression. That is what I
- 20 learned from the paper.
- 21 DR. WALL: I think you need to keep in
- 22 mind that it is a Phase 1 study. That patient got

- 1 a rather low dose. The majority of patients were
- 2 actually not serially sampled. And, the ability to
- 3 make inferences with respect to those kinds of
- 4 correlations with a total N of 12 is I think very
- 5 problematic.
- DR. HWU: To make a correction, the
- 7 patient got the highest dose level of 6.5 and she
- 8 had 70 percent--
- 9 DR. WALL: And that blot was shown to you,
- 10 by the way.
- DR. HWU: --and the patient had never
- 12 received any chemotherapy prior either.
- 13 [Slide]
- DR. WALL: Right, and here is the blot
- 15 from that patient that Dr. Itri showed. I think
- 16 the major point, however, is with an N of 1 in a
- 17 sample size of 12 in a Phase 1 study we didn't feel
- 18 like we could make inferences. I would say that
- 19 one of the advantages of being an oncologist is
- 20 that you can fall back on issues related to
- 21 maximally tolerable dose and we felt that the dose
- 22 used in this study for the Phase 3 study was

- 1 comfortably above the threshold that we needed to
- 2 achieve down-regulation of Bcl-2, which is a dose
- 3 just above what this particular patient got. Did
- 4 that happen in 300 patient? We don't have that
- 5 information. The willingness of patients to be
- 6 serially sectioned for us to obtain this
- 7 information on a fresh basis is rather limited and
- 8 it was simply not part of the study. It
- 9 overwhelmed our capabilities in year 2000 and was
- 10 not done.
- DR. PRZEPIORKA: If Dr. Tolcher is here, I
- 12 have a question. In the in vitro studies is there
- 13 a threshold amount of Bcl-2 that needs to be
- 14 down-regulated to in order for the chemotherapy to
- 15 show synergy?
- DR. TOLCHER: That is a very good question
- 17 and it is not well addressed. Most of the models
- 18 are, you know, somewhat artificial and in vitro
- 19 versus in vivo really has no strict correlation.
- 20 We functioned for a period of time with the
- 21 assumption that 1 mcg/mL is probably the minimum
- 22 effective concentration. In almost all of the

- 1 studies published to date we have a steady state
- 2 concentration of 5 mcg/mL as an average. So, based
- 3 on the work that was done preclinically, published
- 4 by Martin Gleave and others, we are well above what
- 5 we would need in the in vitro setting but, again,
- 6 the major caution always is that it is hard to
- 7 relate what are the necessary concentrations in
- 8 vitro to what are the necessary plasma
- 9 concentrations for maximal effect. Does that
- 10 answer your question?
- DR. PRZEPIORKA: I guess I was asking what
- 12 is the amount of Bcl-2 intracellularly that we need
- 13 to get the level down to in order to see the
- 14 synergy with chemotherapy.
- DR. TOLCHER: An excellent question. You
- 16 know, the issue is that it is dynamic so one
- 17 doesn't know necessarily. You are lowering it so
- 18 that you essentially are shifting the equilibrium
- 19 in favor of apoptosis. You clearly do not need to
- 20 extinguish all the Bcl-2 to have a pronounced
- 21 effect in vivo. In fact, you probably only have to
- 22 drop it below some threshold and that threshold is

1 unknown. It gets more complex as well in that

- 2 there is a diversity of Bcl-2 expression in
- 3 different tumors.
- 4 So, what I would say is that it is not
- 5 necessarily a simple equation where you have to
- 6 drop it below X amount. It may be very dependent
- 7 on the chemotherapy that is given with it. So, it
- 8 is not clear. The certainty is that we do know
- 9 that you do not have to extinguish all the Bcl-2 to
- 10 have a synergistic effect preclinically.
- DR. PRZEPIORKA: Thank you. Dr. Bishop?
- DR. BISHOP: I am relatively new to all
- 13 this so I don't know if this question is
- 14 appropriate or not but I am going to turn it to Dr.
- 15 Kirkwood and Dr. Haluska. You made passionate
- 16 pleas for the treatment of metastatic melanoma in
- 17 this randomized study. So, would this treatment,
- 18 Genasense plus DTIC, become the standard of care in
- 19 the control arm for future CALGB and ECOG studies
- 20 respectively?
- 21 DR. HALUSKA: I think that is a reasonable
- 22 proposition. I think that the context of this

1 trial's conduct is that we have never shown any of

- 2 these improvements and I think we shouldn't lose
- 3 site of the fact that we are chipping away, as has
- 4 been articulated, at numbers that have not been
- 5 able to be chipped at away before because they
- 6 haven't existed. So, I think that that is a
- 7 decision to be made by the community, but an
- 8 improvement clinically like we have seen should be
- 9 the standard against which other stage 4 therapies
- 10 will be compared. I think that is reasonable.
- DR. BISHOP: Let me make it more specific
- 12 then. In your future randomized trials will this
- 13 become the control arm? The data with DTIC we know
- 14 is not very impressive yet that is the community
- 15 standard outside of immunotherapy. So, as you plan
- 16 your future trials, and you believe these results
- 17 are impressive enough, will that become the control
- 18 with which new therapies will be developed and
- 19 compared to?
- DR. HALUSKA: I wish we had new therapies
- 21 to compare to now. I would have to say that it is
- 22 hard to view the future when those new therapies

- 1 become available. The landscape for drug
- 2 development for melanoma right now includes other
- 3 targeted therapies. None of them is at the stage
- 4 where we would choose a comparison arm like this
- 5 but the short answer to your question is yes.
- DR. PRZEPIORKA: Dr. Kirkwood?
- 7 DR. KIRKWOOD: I agree with Frank's
- 8 conclusion so I think this is an incremental
- 9 advance. I think this is something that we have
- 10 been trying to do in the studies that I reviewed
- 11 and have not succeeded to do. Obviously, if one
- 12 were going to take survival as an endpoint in a
- 13 future study it could still be dacarbazine but I
- 14 think that we are talking here about response rate
- 15 and we don't have anything that has reliably before
- 16 shown response rates and complete response rates
- 17 incrementally advanced as this has, with the single
- 18 exception of high dose IL-2, which we have spoken
- 19 about previously.
- DR. HALUSKA: Something else occurs to me.
- 21 I don't think it is the agency's job to support our
- 22 research endeavors strictly. I mean, their job is,

- 1 as I understand it, to make agents available for
- 2 public consumption. But, clearly, these decisions
- 3 do affect our research and we have, for reasons
- 4 that are not clear to any of us who work in
- 5 melanoma, been very unsuccessful in improving
- 6 overall survival. I don't believe that as long as
- 7 we hold that out as the only endpoint that we can
- 8 meet that we are going to meet it because it has
- 9 been such an impediment. But there is nothing in
- 10 my mind that prevents small improvements in these
- 11 sorts of endpoints from accumulating with addition
- 12 of different agents and you can envision a variety
- 13 of other things that you could add Genasense to
- 14 that might also prove additive to the responses and
- 15 progression-free survival we have seen today.
- 16 Ultimately, that is how I think we are going to
- 17 make real progress with the survival endpoint in
- 18 this field.
- DR. PRZEPIORKA: Dr. Redman?
- DR. REDMAN: Thank you but Dr. Kirkwood
- 21 answered my question.
- 22 DR. PRZEPIORKA: Other questions from the

1 committee? Dr. Tolcher, could you please come back

- 2 to the microphone? We need to have you identify
- 3 your affiliation, please, for the record.
- 4 DR. TOLCHER: Sure. I came actually today
- 5 without personal compensation by Genta or any of
- 6 the pharmaceutical sponsors, although my travel
- 7 arrangements have been paid for Genta. I have been
- 8 the principal investigator on three clinical
- 9 studies and have acted as an occasional advisor to
- 10 Genta and Aventis and have been compensated with
- 11 honoraria for those less than \$10,000.
- DR. PRZEPIORKA: Thank you. Hearing no
- 13 other questions, we will break for ten minutes and
- 14 return at 10:40 to begin the open public hearing.
- 15 We will need to begin the afternoon session on time
- 16 so please be on time for the next part.
- 17 [Brief recess]
- 18 Open Public Hearing
- DR. PRZEPIORKA: If we could have the
- 20 doors closed, please, we will begin the second half
- 21 of this session. This is the open public hearing
- 22 and we actually had many individuals who wanted to

- 1 speak this morning and, in order to give everyone
- 2 who is registered a chance to participate and to be
- 3 fair to all, we will be following some fairly
- 4 strict procedures. We have a timer. Each speaker
- 5 has been allotted two minutes and at the end of the
- 6 two minutes we will ask that speaker to return to
- 7 their seat and the next speaker to immediately
- 8 begin. Due to considerations of fairness and these
- 9 restrictions of time, only speakers who have
- 10 registered will be allowed to come to the podium.
- Both the FDA and the public believe in a
- 12 transparent process for information gathering and
- 13 decision-making. To ensure such transparency at
- 14 the open public hearing session of the advisory
- 15 committee meeting, the FDA believes that it is
- 16 important to understand the context of an
- 17 individual's presentation. For this reason, the
- 18 FDA encourages the open public hearing speaker, at
- 19 the beginning of your written or oral statement, to
- 20 advise the committee of any financial relationship
- 21 that you may have with the sponsor, its product
- 22 and, if known, its direct competitors. For

1 example, this financial information may include the

- 2 sponsor's payment for your travel, lodging or other
- 3 expenses in connection with your attendance at the
- 4 meeting. Likewise, the FDA encourages you, at the
- 5 beginning of your statement, to advise the
- 6 committee if you do not have any financial
- 7 relationships at all. If you choose not to address
- 8 the issue of financial relationships at the
- 9 beginning of your statement it will not preclude
- 10 you from speaking.
- 11 Thank you all for your participation in
- 12 this portion of the meeting, and our first speaker
- is Gail Graham, who is chairman and president of
- 14 the William S. Graham Foundation for Melanoma
- 15 Research.
- MS. GRAHAM: Good morning. Yes, I am
- 17 chair and president of the William S. Graham
- 18 Foundation for Melanoma Research. We are widely
- 19 known as the "Billy" Foundation. Please also note
- 20 that I am here to represent not any particular
- 21 therapy or pharmaceutical company though in the
- 22 past we have accepted financial donations to our

- 1 programs at the Foundation from Chiron, Maxim,
- 2 Genta, Antigenics and Schering. However, I have
- 3 paid my own expenses in order to address you here
- 4 today.
- 5 The phone rang and I answered a call that
- 6 would change my life and the life of our beloved
- 7 family. Over ten years ago a doctor called our
- 8 home and told us that our beloved son had stage 4
- 9 melanoma. "Mrs. Graham, your son has three to six
- 10 months to live." That was the beginning of my
- journey into every mother's nightmare, watching
- 12 your only son disappear before your very eyes.
- I was told then, ten years ago, that there
- 14 wasn't anything that could be done for him and no
- one prepares you on how to tell your child that
- 16 there is no hope, nothing that could even extend
- 17 his life for an extra month or two.
- Now, ten years later, what has truly
- 19 happened to give patients new hope? What do you
- 20 say to patients and their families now? We want
- 21 patients to have choices, choices from the onset of
- 22 their diagnosis not as a second matter of recourse.

1 Over those ten years, over 300,000 people have been

- 2 diagnosed with malignant melanoma in the United
- 3 States and have had to face that diagnosis and have
- 4 extremely limited offerings available to them for
- 5 treatments, and it is long past time that something
- 6 be done to offer hope, the hope that they deserve.
- 7 I am here also to represent the dozens of
- 8 phone calls that we get on a daily and monthly
- 9 basis...
- 10 [Audio system malfunction]
- DR. PRZEPIORKA: I am sorry, but thank you
- 12 very much for your comments. R.M. Sutton please.
- MR. SUTTON: No financial involvement. I
- 14 am of clinical relevance--I am free, I am alive, I
- 15 am here after my doctor gave me about a month and a
- 16 half and because of prior medical problems no
- 17 treatment available, but this trial which has
- 18 blessed me with time to spend with my son, my
- 19 daughter-in-law, my daughter, my son-in-law. With
- 20 all due respect, should my doctor have waited a
- 21 thousand or so years until all the kinks were
- 22 worked out? If we were licensing aviation today,

1 would we have to wait for the law of gravity to be

- 2 revealed to be assured that we would never fall
- 3 from the sky?
- I am 77. I expect to live another 23
- 5 years. My mother died at 99. I want to see, among
- 6 many other things, my granddaughter get married and
- 7 eventually greet my great grandchildren. I pray on
- 8 bended knee you approve it so others like me who
- 9 have been diagnosed with melanoma--thank you, I
- 10 have a secure place in heaven to join my late wife
- 11 but, thanks to Genasense, thankfully not just now.
- 12 You can give life, hope and achievement. I hope to
- 13 write a book on dreams of reality, limited only by
- 14 my imagination, inspiration and time. Thank you.
- DR. PRZEPIORKA: Thank you, Mr. Sutton,
- 16 very much. Davie Bernstein, please.
- 17 MR. BERNSTEIN: My name is David
- 18 Bernstein. I paid my own way here. I have taken
- 19 time off from work in order to address you here
- 20 today. I am 51 years old, a husband, father of two
- 21 little girls, a fourth grade teacher in New Jersey.
- 22 Two years ago I was diagnosed with stage 4 melanoma

- 1 after discovering a lump in my chest. We were
- 2 devastated. We had found the disease had already
- 3 spread to my lungs.
- 4 I sought a group at Thomas Jefferson
- 5 University Hospital in Philadelphia to be treated.
- 6 We discussed various options for treatment, all of
- 7 which included going on various forms of
- 8 chemotherapy. I learned that DTIC was the standard
- 9 care although it was described as having very
- 10 limited results. My doctor also told me about a
- 11 clinical trial they were conducted for a drug
- 12 called Genasense. I qualified for the trial,
- 13 feeling oddly lucky that my tumor was large enough,
- 14 and received Genasense with DTIC.
- Genasense was administered through an
- 16 automatic pump that I wore like a fanny-pack for
- 17 five days, followed by a one-hour infusion of DTIC.
- 18 After six weeks, or two treatment cycles, I got a
- 19 CT scan to monitor the size of my tumor. The scan
- 20 showed that my tumor had already begun to shrink.
- 21 I remained on the therapy for a total of 16
- 22 treatments and was scanned every six weeks, each

- 1 one coming back clear of tumors. Throughout my
- 2 treatment, I was very well supported by the team at
- 3 Thomas Jefferson that included my oncologist, Dr.
- 4 Sato, and Tracy Newhalls, the clinical liaison.
- I stopped treatment in August, 2003 and
- 6 have remained tumor-free since then. I am here
- 7 today because I received Genasense in this study.
- 8 Genasense now needs to be made available to the
- 9 thousands of people like me who have received or
- 10 will have received the diagnosis of advanced
- 11 melanoma. People need to know that there is hope
- 12 for this disease in the form of new drugs.
- 13 Genasense worked for me and others should have the
- 14 same chance I did. Thank you.
- DR. PRZEPIORKA: Thank you very much for
- 16 your words. Erica Weiss, please.
- MS. WEISS: Good morning. My name is
- 18 Erica Weiss and I am the director of patient
- 19 education and outreach for the Wellness Community.
- 20 For the record, The Wellness Community will receive
- 21 an unrestricted educational grant from Genta and
- 22 Aventis. However, I received no compensation for

- 1 my presence here today.
- 2 By way of background, the Wellness
- 3 Community is a national non-profit organization
- 4 that provides free services for people with cancer
- 5 by way of support, education and hope. Our
- 6 programs include professionally facilitated support
- 7 groups, educational programs on nutrition, mind,
- 8 body--programs like this. We aim to help people
- 9 affected by cancer regain a sense of control over
- 10 their lives, feel less isolated and restore a sense
- 11 of hope for the future regardless of the stage or
- 12 type of their disease. Last year we served about
- 13 30,000 people with cancer, including people with
- 14 melanoma.
- 15 At the Wellness Community we have learned
- 16 a great deal from the people we serve and we really
- 17 value the importance of an educated and empowered
- 18 patient, and since we feel that people with cancer
- 19 often feel stigmatized, alone and overwhelmed with
- 20 grief, they feel stronger and more hopeful when
- 21 they have more options available for their disease.
- 22 When a cancer like melanoma results in 80

- 1 percent of skin cancer deaths and when limited
- 2 treatment is available for advanced melanoma, it is
- 3 clear that we are in great need of new treatment
- 4 options and better access to those treatments. At
- 5 this time we have the opportunity to expand the
- 6 chance that these families have in their daily
- 7 fight for life and we feel strongly about
- 8 supporting that opportunity, assuming that the
- 9 treatment promise has manageable side effects,
- 10 assuming there is progression-free survival time,
- 11 even if only for a few weeks or months, and other
- 12 positive outcomes.
- 13 I ask today that you carefully consider
- 14 the plight of people with melanoma and understand
- 15 the range of both physiological and psychological
- 16 issues that they face daily. Please take a
- 17 leadership role in considering the approval for a
- 18 broader range of treatments based on sound science
- 19 and answers to hard questions, and then encourage
- 20 patients to be informed, empowered and possibly
- 21 optimistic about the potential for a longer,
- 22 healthier life. Thank you.

DR. PRZEPIORKA: Thank you very much. Dr.

- 2 Anna Pavlick, please.
- 3 DR. PAVLICK: Good morning. Thank you for
- 4 allowing me to address the committee. I am one of
- 5 the clinical investigators on this trial. I have
- 6 received no financial compensation for coming down
- 7 here, however, I do receive research support
- 8 through Genta and Aventis.
- 9 I am actually here on behalf of my
- 10 patient. This is Mrs. Kovati. Mrs. Kovati was my
- 11 first patient to be enrolled on the Genta trial in
- 12 my institution. She was told by a few other
- 13 melanoma oncologists that she had six months to
- 14 live and there were no options for her. She came
- 15 to me four and a half years ago in a wheelchair,
- 16 with a leg full of melanoma, large pelvic
- 17 adenopathy and multiple tumors in her abdomen and
- 18 said, "I'm only 56 years old. I don't want to die.
- 19 Help me." I explained to her that we had this
- 20 clinical trial available to her and told her
- 21 full-well I was not sure if this was going to help
- 22 her, however, we knew what her alternative was, so

- 1 she went on study.
- 2 She was featured in CURE magazine last
- 3 summer because, I am proud to say, Mrs. Kovati had
- 4 a complete response. She now remains three and a
- 5 half years out of therapy in a continued complete
- 6 response; has been able to get out of her
- 7 wheelchair. She no longer walks with any assistive
- 8 devices. She was able to dance at her son's
- 9 wedding a year and a half ago, and she was unable
- 10 to come down here today to be with us because she
- 11 is now experiencing the birth of her grandchild,
- 12 the first one that she thought she would never-ever
- 13 see.
- I felt it was on her part and on the part
- 15 of all the other melanoma patients that I treat
- 16 that I needed to come down here and tell you what a
- 17 wonderful experience it has been for me to work
- 18 with this new drug that truly holds hope for
- 19 patients who have absolutely no options. Thank
- 20 you.
- DR. PRZEPIORKA: Thank you very much. Dr.
- 22 Lawrence Green, please.

DR. GREEN: I have no financial

- 2 disclosures to report.
- 3 [Slide]
- 4 My name is Lawrence Green. I am a
- 5 dermatologist and dermosurgeon in private practice
- 6 in Montgomery County. I also teach a weekly
- 7 dermosurgery clinic at George Washington University
- 8 to the dermatologist residents.
- 9 I am here today as a professional member
- 10 of the Skin Cancer Foundation specifically because
- 11 I have an interest in skin cancer.
- 12 [Slide]
- 13 Skin Cancer Foundation is the only
- 14 national organization that is non-profit, dedicated
- 15 solely to eradicating the world's most common
- 16 malignancy, which is skin cancer and it has been
- 17 around for 25 years, educating the public, among
- 18 other things. Despite these ongoing efforts, as
- 19 you know, the incidence of skin cancer, especially
- 20 melanoma, continues to rise at an alarming rate.
- 21 [Slide]
- One in three cancers this year will be

- 1 skin cancer which translates to 1.3 million new
- 2 cases of skin cancer in the United States this
- 3 year. Basically, that means that 20 percent of the
- 4 population in the United States will develop skin
- 5 cancer in their lifetime.
- 6 [Slide]
- 7 One person dies every hour from melanoma.
- 8 In fact, if you look at it, melanoma is basically
- 9 the most common cancer in women between the ages of
- 10 25 and 35.
- 11 [Slide]
- In light of these abysmal statistics, it
- is painfully clear that providing public education
- 14 messages on sun protection, skin cancer prevention
- 15 and early skin cancer detection is not enough. The
- 16 Skin Cancer Foundation is speaking here today, and
- 17 I am speaking on behalf of it, as part of its
- 18 patient advocacy mission to support skin cancer
- 19 research and the latest advancements in effective
- 20 treatments for its constituents.
- 21 [Slide]
- 22 Sadly, there are currently very few

- 1 effective treatments available for late stage
- 2 melanoma patients. Therefore, if this new
- 3 treatment shows promise, on behalf of myself and
- 4 The Skin Cancer Foundations, the many patients and
- 5 their families who have been affected by melanoma,
- 6 we encourage this committee to carefully consider
- 7 it. Thank you.
- DR. PRZEPIORKA: Thank you, Dr. Green.
- 9 Diane Murphy, please.
- 10 MS. MURPHY: Thank you for allowing me to
- 11 come before this scientific panel to urge fast
- 12 approval for Genta's drug Genasense. Three years
- 13 ago I was diagnosed with stage 4 melanoma, and Dr.
- 14 Hersh, at the Arizona Cancer Clinic in Tucson, told
- 15 me that without treatment statistics would show
- 16 that I had around nine months to live. This was
- 17 shocking news for me because as a family we have
- 18 been living on organic food, drinking bottled
- 19 water, exercising, staying away from chemicals and
- 20 doing whatever else we thought would give us a
- 21 healthy life. So, how could this lead to a golf
- 22 ball sized tumor?

I was biopsied, diagnosed and, thankfully,

- 2 referred to Dr. Hersh. I was considering no
- 3 treatment at all but Dr. Hersh persevered,
- 4 suggesting that I was a good candidate for the
- 5 experimental Phase 3 drug, which I did agree to try
- 6 if, for no other reason, although it might not help
- 7 me it would help someone down the road.
- 8 It did help. As my doctor told me, I have
- 9 a complete response to my treatment and can now
- 10 enjoy celebrating my big 70th birthday, which I did
- 11 by, among other things, buying shares of Genta.
- 12 [Laughter]
- 13 Hopefully, none of you today making a
- 14 decision on this drug has ever had friends or loved
- ones sitting in a chemo treatment room. It is the
- 16 saddest and most depressing place to spend time.
- 17 You can smell the fear, the misery, hopelessness
- 18 and anger, and see the fatigue in all their faces
- 19 under all the green hats hiding their bald heads.
- 20 Help for each and every one of the patients is
- 21 hearing the word "remission" and that is what
- 22 Genta's drug gave me, and I am here to encourage

- 1 you to pass this drug for approval.
- In closing, I want to thank God and the
- 3 people in my life, my husband Jim who is always
- 4 there 24/7, for hundreds of prayers from friends
- 5 and acquaintances, both known and unknown, Dr.
- 6 Hersh who truly is a healer in the greatest sense
- 7 of the word and my oncology nurse, Cindy who
- 8 encouraged me to get through each treatment day. I
- 9 pray that all the poor souls going through this
- 10 dreadful disease can have the same care, support
- 11 team and access to the latest drugs such as Genta's
- 12 Genasense. Thank you.
- DR. PRZEPIORKA: Thank you very much, Ms.
- 14 Murphy. Dr. Asher Chanan-Khan, please.
- DR. CHANAN-KHAN: Hi. I have received
- 16 honoraria for a speaking engagement. I have
- 17 received clinical trial support from Genta and have
- 18 not been compensated for anything for today's
- 19 meeting.
- 20 I would like to thank the committee for
- 21 allowing me to voice my opinion in the matter of
- 22 Genasense. I come here from Russell Park in

- 1 Buffalo, New York, where I am entrusted with the
- 2 care of patients with multiple melanoma and chronic
- 3 lymphocytic leukemia. I am one of the clinical
- 4 investigators involved in the studies exploring the
- 5 role of Genasense in these incurable and rather
- 6 frustrating diseases.
- 7 The NCI identified these as orphan
- 8 diseases, thus, emphasizing the need for developing
- 9 new and novel therapeutic options. Based on my
- 10 personal experience as a clinician and as an
- 11 investigator, I am able to comfortably state that
- 12 the agent is safe and well tolerated during these
- 13 clinical trials that I am conducting. No long-term
- 14 side effects in the patients that I have treated
- 15 have been noted. In fact, with this drug a number
- 16 of patients with CLL and multiple melanoma have
- 17 benefited clinically and continue to benefit as of
- 18 today.
- 19 In conclusion, I therefore feel that this
- 20 is a safe drug with a predictable and manageable
- 21 side effect profile, and it does bring hope to a
- lot of patients in my clinic who are facing an

- 1 incurable cancer. Thank you.
- DR. PRZEPIORKA: Thank you very much. Dr.
- 3 Tolcher, please.
- 4 DR. TOLCHER: I am a medical oncologist in
- 5 a cancer therapy research center. I have given my
- 6 disclosures already. I am an investigator with one
- 7 of the larger clinical experiences with oblimersen,
- 8 having treated 63 patients in 288 courses of
- 9 oblimersen during the conduct of 3 clinical
- 10 studies. This includes one patient who received
- 11 the maximum of 25 courses of this agent.
- 12 The toxicity profile of oblimersen is
- 13 modest and largely predictable. The majority of
- 14 adverse events experienced by patients are related
- 15 to the chemotherapy itself and, again, are
- 16 predictable for that chemotherapy agent. They do
- 17 not require any special management above that of
- 18 what a standard medical oncologist provides.
- 19 For those toxicities that can be
- 20 attributed to oblimersen alone, they include a
- 21 transient lymphopenia, pyrexia that occurs during
- 22 the infusion but can be treated with standard

- 1 antipruritics, and complications of the central
- 2 venous catheter. Patients with these toxicities
- 3 can be safely retreated with the agent without
- 4 evidence of cumulative increases or increases in
- 5 the severity of these toxicities.
- 6 Interestingly, and I think really
- 7 importantly, patient acceptance of the oblimersen
- 8 treatment and its inherent cumbersome pump is high
- 9 due to the low incidence of adverse events
- 10 associated with oblimersen. From a clinical
- 11 perspective, oblimersen can be safely and feasibly
- 12 administered to patients with cytotoxic
- 13 chemotherapy over many multiple courses. Thank
- 14 you.
- DR. PRZEPIORKA: Thank you, Dr. Tolcher.
- 16 Dr. Patrick Cobb, please.
- 17 DR. COBB: Patrick Cobb, I am medical
- 18 oncologist from Montana. I receive research grants
- 19 from both Aventis and Genta. I have not been
- 20 compensated for my time.
- 21 We have participated in a trial of
- 22 Genasense in CLL and I will address some of the

- 1 safety concerns about it. We have treated three
- 2 patients with this. All these patients had disease
- 3 refractory to fludarabine chemotherapy. One
- 4 patient received six courses of this and had no
- 5 toxicity greater than grade 2 and remains in
- 6 complete remission two years later. Another
- 7 patient was treated with the same regimen and had
- 8 an Aspergillus lung infection at the beginning of
- 9 his course and went into complete remission after
- 10 only one course and continued in complete remission
- 11 after two years. He relapsed a while back and is
- 12 receiving another course of Genasense now.
- In summary, we found Genasense to be a
- 14 very well tolerated drug when it was given to our
- 15 patients with chronic lymphocytic leukemia. As a
- 16 clinical oncologist I see a lot of patients with
- 17 metastatic melanoma and, as you have already heard
- 18 this morning, there are very limited options for
- 19 their treatment and we need more treatment options.
- 20 From the data we have seen presented today, it
- 21 appears that Genasense is both a safe and an
- 22 effective drug. Thank you.

DR. PRZEPIORKA: Thank you, Dr. Cobb.

- 2 Harrison Blanton, please.
- 3 MS. BLANTON: Betty Blanton, from Shelby,
- 4 North Carolina. I came at the request of my
- 5 oncologist, with no compensation but I have
- 6 discussed travel expenses with Genta.
- 7 I came to Carolina Regional Medical Center
- 8 in Charlotte in October, 1995 after my melanoma
- 9 reappeared following two previous melanoma
- 10 surgeries. Later in my treatments as the disease
- 11 progressed surgery was no longer a viable option.
- 12 When your oncologist tells you that you have
- 13 metastasized melanoma for which there is no
- 14 surgery, thankfully, my family and I considered the
- 15 best course and we decided that to be the Genasense
- 16 trial, as was suggested by Dr. Gary Fernad of
- 17 Carolina Health System.
- I began with the trial in January, 2003
- 19 with eight cycles. My last was in July, 2003. My
- 20 gratitude goes to my three sons who have provided,
- 21 and still do, transportation since I live an hour
- 22 from Charlotte. I received the Genasense

- 1 continuously for five days and then would go back
- 2 for my DTIC. The Genasense treatment was not a bad
- 3 experience, although a little trying to dress and
- 4 keeping the wires intact was something interesting
- 5 which I am sure the women can relate to. During
- 6 that time I was referred to by my friends as the
- 7 lady with the fanny-pack.
- 8 On days five of the Genasense treatment I
- 9 did go back to Charlotte and received my DTIC. If
- 10 I followed the medication for nausea as directed, I
- 11 was able to function normally all the time. There
- 12 were times when anemia was a problem but this was
- 13 addressed by the doctor and his team. Sometimes a
- 14 transfusion was needed but on most days I was able
- 15 to do my normal office work in the mornings as a
- 16 church secretary and teach piano in the afternoons,
- 17 both of which I have enjoyed for over 50 years now.
- 18 On Sundays I play the organ at the church. Out of
- 19 those eight cycles of treatments only one Sunday I
- 20 was not able to play.
- 21 I have nine grandchildren and two great
- 22 grandchildren. They are, indeed, my life as each

- 1 of you share with your families. But I am here
- 2 today because, I believe, the Genasense trial was a
- 3 success for me. I am still able to work, enjoy my
- 4 family and continue to live independently, and it
- 5 is my hope that this experience will have an impact
- 6 on the lives of others who know melanoma
- 7 personally.
- DR. PRZEPIORKA: Thank you very much. Dr.
- 9 Jonathan Lewis, please.
- 10 DR. LEWIS: Distinguished members of the
- 11 committee, good morning. My name is Jonathan
- 12 Lewis. I come before you wearing two hats. For
- 13 more than eight years I worked as a surgical
- 14 oncologist at Sloan-Kettering. Although I still
- 15 follow patients, the second hat I wear is
- 16 developing cancer drugs in the context of a private
- 17 start-up company. I have no financial interest at
- 18 all in Genta. They have not paid me anything; they
- 19 have not asked me to be here. Their CEO, Ray
- 20 Morrell, referred many melanoma patients to me
- 21 while we both worked at Memorial. I have only had
- 22 sporadic contact with him for several years; I have

- 1 not spoken to him for at least six months.
- I speak to you today because this
- 3 committee's decision is important in the context of
- 4 both the science and art of treating melanoma
- 5 patients and the science and art of cancer drug
- 6 development. I have been involved in the care of
- 7 thousands of melanoma patients at Memorial. I have
- 8 treated well over a thousand, and I have also
- 9 conducted and been part of many experimental
- 10 clinical studies in this disease.
- 11 As we have heard, stage 4 melanoma is an
- 12 extraordinarily difficult problem. As I interpret
- 13 these data presented today, it strikes me that
- 14 despite the fact that the study clearly missed the
- 15 statistical primary endpoint, every single
- 16 analysis, including response rate, progression-free
- 17 survival and survival demonstrates an advantage for
- 18 those patients receiving the test agent. I
- 19 understand that statistical improvement in survival
- 20 is the gold standard but I am, nonetheless, very
- 21 focused on the observation that Genasense shows
- 22 effectiveness in the setting of a hundred percent

1 lethal disease. In the context of the disease, all

- 2 of these are very likely to be clinically
- 3 meaningful.
- 4 I am here today in part because a patient
- 5 of mine with stage 4 melanoma is sitting in the
- 6 audience. He is a highly decorated, allegedly
- 7 retired senior FBI agent who has served this
- 8 country extraordinarily. His care has involved a
- 9 lot of the science and art. I have been through
- 10 the data with him and he has a tremendous amount of
- 11 common sense, wisdom and understanding and, on
- 12 reviewing these data, he asked me how can this drug
- 13 not be approved. I am grateful for your time.
- 14 Thank you very much.
- DR. PRZEPIORKA: Thank you. Cathy
- 16 Liebermann, please.
- 17 MS. LIEBERMANN: Good morning. My name is
- 18 Cathy Liebermann and I am a two-time cancer
- 19 survivor. I am here with my daughter Lisa and her
- 20 husband Aaron to share our family struggle with
- 21 melanoma.
- 22 After reading about this meeting last week

1 in the Wall Street Journal we felt obligated to be

- 2 here today, and we paid our expenses to do so. Our
- 3 story begins in 1996 when I was undergoing
- 4 chemotherapy for Hodgkin's disease. My husband
- 5 Mark's primary concern at that time was my
- 6 treatment and helping me with my battle. All the
- 7 while Mark ignored a growth on his scalp. Because
- 8 the growth was pink and perfectly round, Mark did
- 9 not think it urgent to see a doctor. However,
- 10 months later he was diagnosed with melanoma and the
- 11 lesion was removed. We were elated that the
- 12 pathology results showed no disease in Mark's lymph
- 13 nodes and no further treatment was needed.
- 14 Six years later, in February 2003,
- 15 metastatic melanoma was confirmed. We sought the
- 16 advice of experts that included Dr. John Kirkwood
- 17 and a family friend, Dr. Jerome Groupman, who
- 18 referred us to Drs. Michael Atkins and John
- 19 Richards. Mark then proceeded with four cycles of
- 20 biochemotherapy. In July he walked down the aisle
- 21 with Lisa at her wedding.
- 22 Only two months later tumors began to grow

1 again. It was then that Genasense was recommended

- 2 to us. We were disappointed when Dr. Richards
- 3 informed that the Genasense trial was no longer
- 4 enrolling patients so Mark began other treatment
- 5 instead in November. On January 10th Mark died at
- 6 the age of 54.
- 7 There is no way to know if Genasense would
- 8 have helped Mark but based on the trial results I
- 9 believe that had Mark taken this drug he might be
- 10 standing here with us today. Lisa, Aaron and I are
- 11 here to plead with you to vote in favor of
- 12 Genasense for all those who suffer with this
- 13 disease and for their families who just want a few
- 14 more days, weeks or months with their loved ones.
- 15 Thank you for listening.
- 16 Committee Discussion
- DR. PRZEPIORKA: I have no other
- 18 individuals registered. I do want to apologize on
- 19 behalf of the committee to Ms. Graham for the sound
- 20 going off before she completed her statement. We
- 21 have asked if she wished to make any additional
- 22 comments and I understand she does not. If you

1 need to change your mind now, please feel free.

- Otherwise, we will go on with the rest of our
- 3 meeting but we do apologize to Ms. Graham.
- 4 The next item on the agenda is the
- 5 questions posed from the FDA to the committee. We
- 6 have all received these previously. They include a
- 7 rather lengthy prologue which Dr. Pazdur has chosen
- 8 not to review for us. So, we can go straight to
- 9 page three and we will be voting on questions one,
- 10 two and three and question four is for discussion
- 11 only. Let me start with question number one,
- 12 given the thrombocytopenia concerns noted above,
- 13 does the committee believe that the small observed
- 14 differences in the response rates, that is, less
- 15 than 5 percent, and in progression-free survival,
- 16 the difference in median days between arms of 13
- 17 days with a p value of 0.006, represent real
- 18 effects of Genasense when added to DTIC?
- 19 I am going to ask for discussion for a few
- 20 minutes before we actually go around and take a
- 21 vote. So, if anybody has any comments on this
- 22 question, please feel free.

1 DR. GRILLO-LOPEZ: I have a point of

- 2 order. I think the question needs to be worded
- 3 differently because the way it is worded it is
- 4 biased towards the analysis of the data by the FDA.
- 5 I think we need to consider as a committee both the
- 6 FDA's analysis as well as the sponsor's analysis.
- 7 So, I would say that the qualification of the
- 8 differences as small should be taken out and the 13
- 9 days, which comes from the FDA analysis, should be
- 10 taken out.
- DR. PRZEPIORKA: Dr. Pazdur, do you accept
- 12 the changes in your question, or Dr. Temple?
- DR. TEMPLE: The committee obviously is
- 14 supposed to consider all the data it heard. It
- 15 heard more than one assessment of both of those
- 16 things and, obviously, can consider both.
- DR. PAZDUR: I share that, and as I
- 18 pointed out in my initial comments, I think what
- 19 one has to take a look at is the individual
- 20 contribution that the drug is making. Remember, we
- 21 are dealing with a combination of a drug so one has
- 22 to take a look at the delta also.

DR. PRZEPIORKA: Thank you for

- 2 accommodating this need so a more unbiased question
- 3 perhaps would be, given the concerns noted above,
- 4 does the committee believe that the observed
- 5 differences in response rate and progression-free
- 6 survival represent real effects of Genasense when
- 7 added to DTIC? Dr. D'Agostino?
- 8 DR. D'AGOSTINO: I noted that the second
- 9 question picks up the ordering of the analysis.
- 10 Are we supposed to take question one as if we use
- 11 some sort of clinical judgment, are these effects
- 12 substantial, ignoring the fact that we may not be
- 13 able to attach any statistical significance to
- 14 them?
- DR. PRZEPIORKA: The answer would be yes.
- 16 Dr. Hwu?
- 17 DR. HWU: I would like to review a little
- 18 bit the background of the treatment of advanced
- 19 metastatic melanoma. In the last 30 years we have
- 20 made very small progress. The single-agent
- 21 chemotherapy gradually evolved into the combination
- 22 chemotherapy and also the development of

- 1 immunotherapy and the combination of a
- 2 biochemotherapy involving the interferon
- 3 interleukin and the chemotherapy. That evolvement
- 4 is primarily based on the findings of the pilot and
- 5 Phase 2 studies. Those trials have clearly
- 6 demonstrated that when you combine several agents
- 7 the response rate definitely increased, in some
- 8 cases double or triple, especially with
- 9 biochemotherapy. Yes, the price you pay is very
- 10 high; it is toxic. However, in the Phase 3 trials
- 11 none of those combination therapies has
- 12 demonstrated that even with the response rate the
- 13 difference is clinically significant but there is
- 14 no impact on the outcome of the survival, not
- 15 statistically significant.
- So, in year 2002 we started the AJCC
- 17 staging system which clearly separates the patients
- 18 with stage 4 disease into three prognostic groups,
- 19 Mla, which has disease in the skin and the lymph
- 20 nodes; Mlb, which can have soft tissue and the
- 21 lymph nodes but also has lung metastasis; and M1c
- 22 is the patients who have visceral disease other

- 1 than lung or with elevated LDH. The reason those
- 2 patients were categorized in three groups is really
- 3 based on their survival. The data is from over
- 4 1000 patients from nine major cancer centers.
- 5 Irrespective of what their treatment was, the
- 6 median survival for Mla is 16 months; the Mlb group
- 7 is 14 months because their survival is correlated
- 8 with Mla for the first year and then that becomes
- 9 consistent with the Mlc group. The Mlc group has
- 10 the shortest median survival of 7 months or less if
- 11 you have brain metastasis which is less than 6
- 12 months.
- So, clearly, if we want to make any impact
- 14 on the survival of the patients with stage 4
- 15 disease we have to make the treatment more
- 16 effective for the M1c group. I have to
- 17 congratulate the sponsors of this study that they
- 18 did not exclude the patients with M1c which is a
- 19 very, very bad group. However, it was not balanced
- 20 on the two arms. The M1c group has more patients,
- 21 253 on the DTIC alone group--257, and in the
- 22 experimental group there were 226. The imbalance

- 1 was also seen in stage Mla. On DTIC it was 50
- 2 patients and the experimental arm had 61 patients.
- 3 So, what is the outcome when you compare
- 4 that everybody is getting the DTIC and only the
- 5 experimental arm is getting the experimental drug?
- 6 So, which group benefits the most by adding the
- 7 experimental drug? It is not surprising to see
- 8 that most of the patient benefit is with the Mla
- 9 group because it was clearly shown in the previous
- 10 Phase 1/2 trial that patients who had responded
- 11 well to the Genasense plus DTIC is the group with
- 12 lymph node and also skin metastases. So, in this
- 13 study the M1a group in the experimental arm--13
- 14 patients had a response, objective response as
- 15 compared to DTIC with 6 patients.
- In the M1b group 16 out of 96 patients
- 17 responded to the experimental group and 9 out of 75
- 18 in the DTIC alone group. However, in M1c 16 out of
- 19 226 patients responded to the experimental drug as
- 20 compared to 11 out of 227 of DTIC alone.
- 21 So, I definitely say yes, there is
- 22 activity of this drug when it is compared with

- 1 DTIC. Are we going to make any difference in
- 2 prolonging survival of our patients? Believe me, I
- 3 desperately want to have some drug that can help
- 4 with my patients. After 15 years in this field I
- 5 cry every time when I lose a patient; I feel it is
- 6 a personal defect. But, unfortunately, this drug
- 7 is not the answer, at least the way it is
- 8 administered. We are helping the best prognostic
- 9 group of patients and I hope that with continued
- 10 effort we will eventually help the group of M1c
- 11 patients. Thank you.
- DR. PRZEPIORKA: Dr. Cheson?
- DR. CHESON: Yes, first of all to
- 14 follow-up on what you were saying, it is clear that
- 15 with these biotherapeutics, or however we
- 16 categorize this drug, that we don't have a clue as
- 17 to the optimal way to use them. We base it on cell
- 18 lines, pharmacodynamic things, but that doesn't
- 19 mean that this is the best way to do it. My
- 20 concern is that if we consider this unapprovable
- 21 the drug is going to die and we will never figure
- 22 out how to use it, and how to apply it better, and

1 how to study it better in other diseases as well as

- 2 melanoma, melanoma being one of the two diseases
- 3 increasing in frequency; the other being
- 4 lymphoma--we have to get our plug in there.
- 5 The other point I want to make is that I
- 6 sat here a few months ago at another ODAC meeting,
- 7 and this was mentioned earlier, and saw another
- 8 drug approved with a response rate for which the
- 9 lower limits of the confidence interval was 5.4
- 10 percent with two huge negative Phase 3 trials
- 11 without even a twinkle of progression-free
- 12 survival, without any suggested difference of
- 13 long-term survivors. To me, these results are a
- 14 lot more encouraging than that drug that was
- 15 approved at a prior meeting. And, that is all I
- 16 have to say about point number one.
- DR. PRZEPIORKA: Dr. D'Agostino?
- DR. D'AGOSTINO: Why will the drug die?
- 19 You don't think the company will pick it up with
- 20 the promising results here? The studies are too
- 21 expensive?
- DR. CHESON: You know, I have no

- 1 conversations with the company about that or
- 2 anything else but with a small company that has
- 3 devoted a lot of resources into a particular drug,
- 4 if it doesn't get approved then, based on economics
- 5 etc., drugs tend to fade away.
- DR. PRZEPIORKA: Dr. Temple?
- 7 DR. TEMPLE: Not to state the obvious, but
- 8 really we need to know from you whether you think
- 9 it works, not whether you feel bad for the company
- 10 or feel bad for the state of oncology development.
- DR. CHESON: No, that is not the point. I
- 12 do think it works. I think there is a strong
- 13 signal here but I think, as with that other drug,
- 14 we don't know the optimal way to use it. But there
- 15 is a signal here. I do believe the
- 16 progression-free survival data, as we will get to
- 17 in the next point. This committee discussed last
- 18 time, and may discuss tomorrow, that
- 19 progression-free survival may perhaps be the better
- 20 endpoint and, had this trial been started today
- 21 instead of several years ago, they would have been
- 22 recommended to use progression-free survival and we

1 might not have been having this sort of discussion.

- DR. TEMPLE: But this question is about
- 3 whether you believe there is a difference in
- 4 progression-free survival. The importance of it
- 5 really is what the second question is.
- 6 DR. CHESON: Well, I will vote yes on that
- 7 when it comes to my time to vote.
- 8 DR. TEMPLE: Okay. Even though the
- 9 question has been modified appropriately because we
- 10 don't want to put bias in it, you do need to tell
- 11 us what you think of the various comments that
- 12 various people have made about the difference in
- 13 time of assessment and whether those shake you or
- 14 not. That is what this question is.
- DR. CHESON: I will leave that to Dr.
- 16 George who is about to ask a question.
- DR. GEORGE: I have a number of comments
- 18 about this. To me, some of this is rather
- 19 disturbing and I guess that is why we have it
- 20 before the committee. If it were easy we wouldn't
- 21 see it.
- The general strategy of when the primary

- 1 endpoint is not met and looking at secondary
- 2 endpoints is bothersome from a regulatory point
- 3 view point and scientific view point just on the
- 4 surface. That is, one way it could have been
- 5 done--of course, we wouldn't be talking about this,
- 6 at least in the same way if the primary endpoint
- 7 had been progression-free survival and more tightly
- 8 done with the measurements. But, you know, one way
- 9 it could have been done would have been a bigger
- 10 study, of course, but you could have said, all
- 11 right, we are going to look at the primary endpoint
- 12 and the secondary endpoints and we are going to
- 13 make adjustments. The adjustments basically are we
- 14 have to be more sure of the results, therefore, we
- 15 have to have a much bigger study. Of course, this
- 16 is already a large study.
- So, getting back to the point, there
- 18 wasn't an advantage in survival. There may have
- 19 been some signal there. That is, some very small
- 20 percentage of patients, those who achieve a CR, may
- 21 be the long-term survivors and may, in fact, be
- 22 different in the really long term. That is, you

- 1 might have--what?--if you look at the survival
- 2 curves at about 20 months they are identical but
- 3 there is some evidence obviously both from the
- 4 testimonials and from the data that there are some
- 5 patients who are making it beyond that.
- 6 But to pick up that kind of difference, of
- 7 course, is very, very difficult and takes huge
- 8 sample sizes and that is sort of out of the
- 9 question here. But what is bothering some people
- 10 here is that they are thinking there might be
- 11 something here but it just isn't clear.
- Just to make my own point on this, it is
- 13 clear that the overall survival, from a regulatory
- 14 view point, wasn't significant. I am very
- 15 suspicious of the progression-free survival. I
- 16 didn't get the data myself, of course, and go over
- 17 all this but I am very worried by the differential
- 18 measurement timing and the effect of this, the
- 19 potential effect of this on attenuating that
- 20 result, maybe attenuating it down to a point where
- 21 there is really essentially no difference between
- 22 the two.

1 So, I am sort of left at looking at these

- 2 response rates and then I hear that there is this
- 3 question about whether this independent assessment
- 4 of the response rate--there is some question about
- 5 that and, again, I am not clear on what it all
- 6 means. It sounded plausible that maybe if this
- 7 independent group had had more of the background
- 8 clinical information it wouldn't have been so
- 9 discrepant, but the fact is it was discrepant. So,
- 10 I am struggling with all these things in the face
- 11 of what might be a promising agent but probably at
- 12 a very low level.
- 13 DR. PAZDUR: I just wanted to emphasize
- 14 why we drew up these questions the way we did. If
- 15 you remember my opening comments, we first have to
- 16 make sure that there is a biological effect. What
- 17 is the effect of this drug on the endpoint that we
- 18 are entertaining, and then how adequately
- 19 characterized is that effect? We have to answer
- 20 that question first before we go and discuss the
- 21 clinical relevance because the clinical relevance
- 22 of a certain drug brings in the risk-benefit

1 relationship and, as I pointed out, benefit cannot

- 2 be discussed unless it is adequately characterized,
- 3 and this is the sense of the questions and why we
- 4 are asking them in the way we are.
- 5 DR. PRZEPIORKA: I would just then like to
- 6 ask if we could split question 1 into 1A and 1B.
- 7 DR. PAZDUR: That would be fine.
- 8 DR. PRZEPIORKA: So, 1A being the
- 9 difference in response rate is pretty objective and
- 10 I think we can address that. I am just sorry to
- 11 hear that the study was not designed truly based on
- 12 the best way determined in this Phase 1 study, as
- 13 Dr. Hwu pointed out earlier, and also that there is
- 14 really no biological correlate that was looked at,
- going instead straight from a Phase 1 to a Phase 3.
- 16 So, there is a huge number of design issues which I
- 17 think really limited the difference in response
- 18 rate that we are seeing here.
- I have to agree with Dr. George that there
- 20 is a tremendous bias ascertainment here with the
- 21 progression-free survival data and that is why I
- 22 would like to ask that these two questions be

1 answered separately. Dr. D'Agostino, you had more

- 2 comments?
- 3 DR. D'AGOSTINO: In some sense I was going
- 4 to endorse what was said. I mean, we have to
- 5 understand, if I am understanding correctly, that
- 6 these were secondary outcomes we are looking at,
- 7 and sort of the way that one would rigorously
- 8 define these and then ascertain them is somewhat
- 9 missing. So, I am stuck, as you point out, with
- 10 the difficulty with progression-free survival and
- 11 how that can move around depending on some
- 12 assumptions.
- 13 I am also concerned with the response rate
- 14 in terms of how rigorous that was. I am quite
- 15 surprised that the outside independent group was
- 16 somehow or other only there for quality control,
- 17 and the quality control was somehow or other not
- 18 able to work because it wasn't given all the data.
- 19 I find those aspects of the study to really bother
- 20 me in terms of how do we interpret these relatively
- 21 small numbers.
- DR. PRZEPIORKA: Dr. Taylor?

DR. TAYLOR: I guess I have a concern

- 2 about progression-free survival in that there are
- 3 some patients who have very slow growing tumors
- 4 and, if you are going to use that as a measurement,
- 5 in particular people with the soft tissue type
- 6 disease, I think you have to know how rapidly they
- 7 were progressing before they were treated, and if
- 8 you have someone who had very slow growing disease
- 9 that might be impacted on that.
- 10 The second thing that as a clinician I
- 11 have seen is that melanoma is a particularly
- 12 unpredictable disease. Although its response to
- 13 chemotherapy has been dismal, I have patients whom
- 14 we put on tamoxafin studies and who are now 20
- 15 years out in complete remissions. So, it makes it
- 16 very hard for me to not be concerned when I see
- 17 small numbers of patients getting benefit about
- 18 whether it is truly the drug or the natural history
- 19 of that particular melanoma.
- DR. PRZEPIORKA: Dr. Bukowski?
- DR. BUKOWSKI: The issue of response rates
- 22 I think is an important one to consider. We have

- 1 looked in melanoma, and I believe I am correct
- 2 here, in randomized trials where we have added
- 3 biological agents to chemotherapy and have seen
- 4 increments in response rates in the past that were
- 5 significantly higher than the chemotherapy alone.
- 6 Unfortunately, those studies demonstrated no
- 7 benefit in terms of survival or other secondary
- 8 effects.
- 9 So, I think we have to keep this in mind
- 10 as we consider this particular drug. There is an
- 11 increment in response here that may be a signal but
- 12 we have seen this before without the signal of
- 13 survival being met. Melanoma is not unique in this
- 14 situation, obviously, but this is a concern when
- 15 you look at response rates and we are saying
- 16 response is one measure of drug effect here and we
- 17 have seen this before in this disease.
- DR. PRZEPIORKA: Before we go on to the
- 19 vote, are there any other comments from the
- 20 committee? Dr. Rodriguez?
- 21 DR. RODRIGUEZ: I share similar concerns
- 22 that have already been voiced with regards to the

- 1 PFS endpoint and that there clearly was some
- 2 difference in the timing to assessment of that
- 3 endpoint.
- 4 I think as a clinician there is one thing
- 5 that can't be argued and that is, as I look at this
- 6 data, the arm that got Genasense clearly had more
- 7 complete remissions. I am staring at that and I
- 8 can't let that go. I mean, we have seen some of
- 9 the survivors here today and one can't argue with
- 10 the living.
- 11 We all know as oncologists that we will
- 12 never get to a cure unless one gets a complete
- 13 remission. So, it is intriguing to me that it
- 14 seems that this drug probably improves on the
- 15 quality of response rather than the overall total
- 16 response or DTIC. The question is what makes the
- 17 people who did get the complete responses different
- 18 than the other patients. I am so disappointed,
- 19 like Dr. Hwu, that we don't have anything that
- 20 correlates that will point us to the appropriate
- 21 patients for whom this drug is indicated.
- DR. PRZEPIORKA: Dr. Reaman?

1 DR. REAMAN: I regret that we have sort of

- 2 brought up the past in a prior meeting of this
- 3 committee but, unfortunately, it has been brought
- 4 up and there was a suggestion to approve an agent
- 5 with a response rate that was of a similar
- 6 magnitude. I feel that we are being called upon to
- 7 make a similar decision again with a hint of a
- 8 response with an agent that may disappear if it is
- 9 not approved at this committee meeting.
- 10 Also, I am troubled by the fact that the
- 11 response rates and the methods for independent
- 12 review were as troublesome in this study, but I
- 13 just feel like we are between a rock and a hard
- 14 place in trying to answer the first part of
- 15 question one.
- DR. PRZEPIORKA: Dr. Pazdur?
- 17 DR. PAZDUR: I would just like to comment
- 18 that when we talk about response rates, remember
- 19 that the "other" drug that you mentioned was a
- 20 single agent that produced that 10 percent response
- 21 rate. We are talking about a combination therapy
- 22 and, therefore, one has to take a look at that

- 1 combination.
- 2 Also, I think it is very important that we
- 3 perhaps discuss this issue more about the complete
- 4 responses. Remember, 3 of the proposed 11 complete
- 5 responses were surgically induced. As far as my
- 6 recollection of the protocol, there was no uniform
- 7 statement about how surgery was going to be
- 8 applied. This is really a very down-the-line
- 9 analysis. There is a great deal of subjective
- 10 bias. We all know who are surgical candidates and
- 11 who are not surgical candidates.
- To the patients, I fully understand the
- 13 importance of complete responses and whether they
- 14 get it by surgery plus chemotherapy or chemotherapy
- 15 alone probably may not matter to them. What we are
- 16 addressing here though is a drug effect, and I
- 17 think it is important that we take a look really at
- 18 those surgically induced complete responses really
- 19 as partial responses, if they were in fact, that
- 20 would then render them disease-free by surgery. I
- 21 think that would be a more appropriate way of
- 22 really suggesting this entire issue.

1 But this whole idea of surgery intervening

- 2 here--granted, it is very important--there is a
- 3 higher degree of subjectivity and unless that is
- 4 handled in a prospective manner on both arms of the
- 5 study it is really hard to ascertain how many
- 6 complete responses, especially when people are
- 7 following these patients out for prolonged periods
- 8 of time--the symmetry of follow-up has to be
- 9 similar.
- DR. PRZEPIORKA: Dr. Hwu?
- DR. HWU: Regarding the response rates to
- 12 the single agent in the other Phase 3 trial, we
- 13 have to remember that although the response rate is
- 14 similar to this study, in that study it allowed 20
- 15 percent of the patients with brain metastases and
- on the DTIC arm all the 20 patients who had brain
- 17 metastases did not respond as compared to the 5
- 18 percent response. So, you have to discount those
- 19 20 patients in that study.
- DR. PRZEPIORKA: Thank you. If there are
- 21 no other burning issues I would like to call the
- 22 question. Dr. Lopez?

1 DR. GRILLO-LOPEZ: Grillo-Lopez. At the

- 2 end of the session today we really have to address
- 3 question number five which, regardless of all of
- 4 the above, is should Genasense be approved and made
- 5 available to the patients who need it? That
- 6 relates to what Dr. Pazdur and Dr. Temple just
- 7 said. We need to give a recommendation on whether
- 8 or not there is an effect and if that effect is
- 9 important enough to merit approval of this agent,
- 10 and that question is not asked so I would ask that
- 11 we add that as question number five.
- DR. PAZDUR: That is patient access and I
- 13 think that is a different question. There are
- 14 obviously access mechanisms available through
- 15 expanded access programs. We are asking basically
- 16 about issues here that are defined in our
- 17 questions. If you would like to discuss that at
- 18 the end, please feel free to do so.
- DR. PRZEPIORKA: Dr. Temple, do you have
- 20 any brief comments before we take a vote?
- 21 DR. TEMPLE: I just have one thing. Maybe
- 22 you will find it distracting. There is some sense

- 1 that there is a small fraction of the population
- 2 that has a very special response and maybe, indeed,
- 3 that is true. But in the two figures that we have
- 4 seen that look at that, namely progression-free
- 5 survival and survival itself, the curves at about
- 6 700 days are right on top of each other. In fact,
- 7 for progression-free survival Genasense is slightly
- 8 below. So, maybe the continued data will show that
- 9 there is an excess of long-term survivors but at
- 10 least in the data we have seen so far it is very
- 11 hard to discern this hyper-responder group. I
- 12 don't know whether that is lack of maturity of the
- 13 data and when the last 10 percent of the people are
- 14 looked at something will turn up but, at least in
- 15 those figures, there is no hint of that and I just
- 16 wondered what everybody thinks about that in light
- 17 of the possibility that there might be some people
- 18 who get particularly good responses.
- 19 DR. PAZDUR: I think it is also important
- 20 that people are cognizant, when they talk about
- 21 these responses, these complete responses, that the
- 22 N in the treatment arm is quite high. We are

- 1 talking about, whether one wants to say 8
- 2 responses, 10 responses, how many patients were in
- 3 that arm.
- 4 DR. PRZEPIORKA: So the survival issue
- 5 actually falls under question two I think and we
- 6 will discuss that in just a few moments. Dr.
- 7 Cheson, you had some other comments?
- 8 DR. CHESON: Just one comment about that.
- 9 Didn't they stop collecting survivor data at a
- 10 certain point for these curves and, therefore, we
- 11 don't know if they were censored--what?--at two
- 12 years or something and we don't know what goes on
- 13 beyond that.
- DR. TEMPLE: That is what I am saying. As
- 15 far as the data that we have been presented, you
- 16 don't see that tail on the curve looking different.
- 17 In fact, they are right on top of each other.
- 18 Maybe with the final values on everybody you will
- 19 see something but I don't see that yet, even though
- 20 there are obviously some people who had good
- 21 responses to either the drug or the combination.
- 22 DR. PRZEPIORKA: Let's go ahead with the

1 vote and we are going to simply start at one end of

- 2 the table and go around. Dr. Grillo-Lopez and Dr.
- 3 Wen Jen-Hwu are not voting members but everyone
- 4 else should give a yes, no or abstain.
- 5 Question 1A would be does the committee
- 6 believe that the observed differences in response
- 7 rate represent a real effect of Genasense when
- 8 added to DTIC? Dr. Bukowski, we will start with
- 9 you.
- DR. BUKOWSKI: No.
- DR. BISHOP: Yes.
- DR. PRZEPIORKA: Dr. Taylor?
- DR. TAYLOR: No.
- DR. REAMAN: Yes.
- DR. REDMAN: Yes.
- DR. PRZEPIORKA: Yes.
- 17 DR. RODRIGUEZ: Yes.
- DR. DOROSHOW: Yes.
- 19 DR. CHESON: Yes.
- DR. GEORGE: Yes.
- MS. HAYLOCK: Yes.
- DR. CARPENTER: Yes.

1 DR. D'AGOSTINO: No.

- DR. MORTIMER: No.
- 3 DR. HUSSAIN: No.
- 4 MR. MCDONOUGH: Yes.
- 5 DR. GRILLO-LOPEZ: I am a non-voting
- 6 member but I would vote yes if I were allowed to.
- 7 [Laughter]
- 8 So, the end of the vote says 11 yes and 5
- 9 no. Question 1B would be does the committee
- 10 believe that the observed difference in
- 11 progression-free survival represents a real effect
- 12 of Genasense when added to DTIC? We will start
- 13 with Mr. McDonough and go the other way.
- MR. MCDONOUGH: Yes.
- DR. HUSSAIN: No.
- DR. MORTIMER: No.
- DR. D'AGOSTINO: No.
- DR. CARPENTER: No.
- 19 MS. HAYLOCK: Yes.
- DR. GEORGE: No.
- 21 DR. CHESON: Yes.
- DR. DOROSHOW: No.

- 1 DR. RODRIGUEZ: No.
- DR. PRZEPIORKA: No.
- 3 DR. REDMAN: Yes.
- 4 DR. REAMAN: No.
- DR. TAYLOR: No.
- DR. BISHOP: No.
- 7 DR. BUKOWSKI: No.
- 8 DR. PRZEPIORKA: The final vote is 6 yes
- 9 and 10 no. Let's move on to question two. Do the
- 10 results of the study, in particular the difference
- 11 in response rate and/or progression-free survival
- 12 for the combination of Genasense and DTIC versus
- 13 DTIC alone, in the absence of a survival
- 14 improvement, provide substantial evidence of
- 15 effectiveness that outweighs the increased toxicity
- 16 of administering the Genasense for the treatment of
- 17 patients with metastatic melanoma who have not
- 18 received prior chemotherapy?
- 19 While the members of the committee are
- 20 thinking about comments, I personally have two.
- 21 One is that I know the folks at the FDA have seen
- 22 me say, "yes, I'm a pro PFS kind of person" with

- 1 the exception of when the experiment is not done
- 2 very critically. So, progression-free survival I
- 3 think has to be considered a valid endpoint in
- 4 melanoma for which there is no drug that shows a
- 5 benefit for survival. There is no question about
- 6 that.
- 7 The other issue has to do with the
- 8 administration. As was pointed out, this is a drug
- 9 added to another drug and Genasense is administered
- 10 by continuous infusion requiring a pump and a
- 11 catheter and is not given as a pill. I think that
- 12 actually also weighs with regard to what I was
- 13 thinking.
- I have just been handed a recount. On
- 15 question 1B the recount is four yes and 12 no.
- 16 Thank you to the folks who went through the tape
- 17 and listened to everyone once again. Other
- 18 comments on question two? Dr. D'Agostino?
- 19 DR. D'AGOSTINO: I think we do, in
- 20 responding to question two, have to remember what
- 21 the objective of the study was. The objective of
- 22 the study was to have a primary outcome of survival

- 1 and some secondary outcomes, of which two are
- 2 mentioned here. The survival was not significant
- 3 and I am concerned or confused about where the
- 4 separation comes from. Maybe later data will show
- 5 us that but it is sort of beyond the study time
- 6 period and heaven knows what other things were
- 7 going on. So, again, to focus it, we did have
- 8 survival as the primary outcome. It wasn't
- 9 significant and the secondary outcomes weren't
- 10 obtained, at least the progression wasn't obtained
- 11 in the clearest fashion. So, I think we have
- 12 concerns that the study didn't meet its objective.
- DR. PRZEPIORKA: Dr. Lopez?
- DR. GRILLO-LOPEZ: Grillo-Lopez; Lopez is
- 15 my mother's last name.
- 16 DR. PRZEPIORKA: I stand corrected, thank
- 17 you.
- DR. GRILLO-LOPEZ: Thank you. At the
- 19 December meeting of this committee we discussed
- 20 endpoints primarily in the setting of lung cancer.
- 21 But as I recall, our recommendation to the FDA was
- 22 to apply and utilize progression-free survival in

- 1 preference to overall survival in most settings.
- 2 There are some exceptions. So, this protocol was
- 3 probably written four or five years ago and
- 4 discussed with the agency, and maybe at that time
- 5 overall survival was favored.
- 6 Now, those of you who are not familiar
- 7 with how primary endpoints are chosen should
- 8 understand that the sponsor meets with the agency
- 9 and there are discussions around protocol design,
- 10 the choice of endpoints and the statistical design
- 11 of the study. And, it is not entirely up to the
- 12 sponsor to choose the endpoints. The agency, of
- 13 course, has a strong influence on what the primary
- 14 and secondary endpoints are. I think it is
- 15 important, since it is an overriding concern for a
- 16 number of people here, the issue of not having met
- 17 the primary endpoint--I think it is important to
- 18 know how the agency and the sponsor arrived at the
- 19 decision for that primary endpoint and whether or
- 20 not that would have been the sponsor's first
- 21 choice.
- DR. PRZEPIORKA: Dr. Temple?

1 DR. TEMPLE: Well, we have been bringing

- 2 the question of what the endpoint should be to
- 3 various deliberations of the advisory committee
- 4 for--I don't know, probably ten years; for a long
- 5 time. One of the problems that we recognize is
- 6 that many trials have crossover and if there is
- 7 going to be crossover you have very little hope of
- 8 showing a survival effect. We understand that.
- 9 That is a serious problem.
- 10 The other thing is that if death occurs
- 11 long after progression the numbers of people you
- 12 have to have in a trial to show a difference start
- 13 to get huge even if you retain the whole benefit.
- 14 But all of those conversations have reflected the
- 15 fact that disease-free survival has to be done
- 16 scrupulously, with great care, preferably in a
- 17 blinded study because it is subject to bias, and it
- 18 is not just a simple matter of which do you like.
- 19 I think that is what Rick said at the beginning,
- 20 and that has always been part of the discussion
- 21 too. Whether people were influenced by the
- 22 endpoints that we like or not, if somebody were

1 setting out to really do disease-free survival I

- 2 have to believe it would be done differently, and
- 3 that is part of the context too.
- 4 DR. GRILLO-LOPEZ: I think a lot of us
- 5 don't like overall survival and that is the
- 6 discussion that we had in December. Some of the
- 7 things that have to count against overall survival
- 8 as an endpoint were mentioned by Dr. Pazdur
- 9 earlier. It is a biased endpoint and those biases,
- 10 by the way, were not mentioned by--
- DR. TEMPLE: Why is survival a biased
- 12 endpoint?
- DR. GRILLO-LOPEZ: Let's go back to the
- 14 December meeting. Survival as an endpoint depends
- on an event, death. That event, if it relates 100
- 16 percent exclusively to the disease, is useful. But
- 17 that is not reality. In the majority of patients
- 18 it doesn't relate 100 percent to the disease. It
- 19 depends on complications of the disease or the
- 20 treatment. It depends on co-morbidity, it depends
- 21 on a variety--don't interrupt me; I am not
- 22 finished, Dr. Pazdur. Please turn off your

1 microphone. Let me talk. You interrupted me once

- 2 before and that is enough. Okay?
- 3 The event is, in fact, something that can
- 4 be manipulated. It can be manipulated depending
- 5 on, one, the supportive care the patient receives
- 6 or does not receive. The patient may die earlier
- 7 or later because of that. That introduces a bias.
- 8 The event also depends on a death being certified
- 9 by a physician who may or may not be the primary
- 10 physician, who may or may not know the patient and
- 11 the natural history of his disease. So, if a
- 12 physician is seeing the patient for a first time at
- 13 the deathbed and know the patient has cancer may
- 14 say the cause of death, cancer. Maybe the patient
- 15 had an MI or pulmonary embolism. So, there are
- 16 many ways in which overall survival is a biased
- 17 endpoint, which is why progression-free survival,
- 18 despite all of the problems that have been
- 19 mentioned here today about its measurement, is a
- 20 preferred endpoint because it is measurable.
- 21 DR. TEMPLE: There are statisticians in
- 22 the room. Most people wouldn't call bias in any of

1 those things. That is an unusual use of the term.

- DR. PRZEPIORKA: If we could continue with
- 3 the discussion on question two which regards a
- 4 risk-benefit ratio, does the benefit, the small
- 5 benefit that has been seen in this particular study
- 6 outweigh the toxicities and the trouble with giving
- 7 everything by continuous infusion? Dr. Carpenter?
- 8 DR. CARPENTER: I thought it was worth
- 9 noting, in response to Dr. Temple's comments, that
- 10 long survival could confuse things because it
- 11 causes a death and could muddy the endpoint. Long
- 12 survival is not an issue in this study, at least
- 13 from what we have now. Since there is no other
- 14 therapy which dependably prolongs survival in
- 15 melanoma, I think a crossover effect in this
- 16 population is extremely unlikely.
- DR. PRZEPIORKA: Dr. D'Agostino?
- DR. D'AGOSTINO: I just can't let the
- 19 death be a biased endpoint. I am sorry to eat up
- 20 the time on the committee but I wish all studies
- 21 had such a firm endpoint. The death is all-cause
- 22 mortality; it is not cancer-related mortality.

1 Right? So, we are not talking about mistakes, and

- 2 I hope that the investigators don't give
- 3 differential treatment to subjects depending on
- 4 what treatment they are on. So, the biases that
- 5 might be generated by care I hope really are not an
- 6 issue.
- 7 DR. PRZEPIORKA: Any other comments
- 8 regarding the toxicity and risk-benefit ratio? Dr.
- 9 George?
- DR. GEORGE: I will pass.
- DR. PRZEPIORKA: Dr. Hwu?
- DR. HWU: We spent the last three decades
- 13 trying to find standard care or better treatment
- 14 and I believe all my colleagues in the field feel
- 15 that the only way to establish better treatment is
- 16 through a Phase 3 trial with an endpoint of
- 17 improved survival, not any other means because,
- 18 clearly, we have gone through this for years and
- 19 years and improved response does not translate into
- 20 improved survival. The endpoint has to be
- 21 survival, overall survival.
- DR. PRZEPIORKA: Dr. Redman?

DR. REDMAN: Just for my clarification

- 2 because I really need things simplified, question
- 3 one that I answered already is basically saying is
- 4 there a difference and do you believe the
- 5 difference is real. Question two is asking us is
- 6 it of clinical benefit.
- 7 DR. PAZDUR: That is the approval
- 8 question.
- 9 DR. PRZEPIORKA: Other comments? If not,
- 10 I will call the question. Do the results of this
- 11 study, in particular differences in response rate
- 12 and/or progression-free survival for the
- 13 combination of Genasense plus DTIC versus DTIC
- 14 alone, in the absence of a survival improvement,
- 15 provide substantial evidence of effectiveness that
- 16 outweighs the increased toxicity of administering
- 17 Genasense for the treatment of patients with
- 18 metastatic melanoma who have not received prior
- 19 chemotherapy? We will start with Dr. Bukowski,
- 20 please.
- DR. BUKOWSKI: No.
- DR. BISHOP: No.

```
1 DR. TAYLOR: No.
```

- DR. REAMAN: No.
- 3 DR. REDMAN: No.
- 4 DR. PRZEPIORKA: No.
- 5 DR. RODRIGUEZ: No.
- 6 DR. DOROSHOW: No.
- 7 DR. CHESON: Yes.
- 8 DR. GEORGE: No.
- 9 MS. HAYLOCK: Yes.
- DR. CARPENTER: No.
- DR. D'AGOSTINO: No.
- DR. MORTIMER: No.
- DR. HUSSAIN: No.
- MR. MCDONOUGH: Yes.
- DR. PRZEPIORKA: The final vote then is
- 16 three yes and 13 no. The third question has a
- 17 rather lengthy prologue. For regular approval of a
- 18 drug for metastatic melanoma, the FDA has
- 19 considered an improvement in survival and/or
- 20 disease symptoms to constitute clinical benefit.
- 21 However, in the December ODAC discussion
- 22 considerable interest was expressed in

1 progression-free survival as an endpoint in some

- 2 settings, particularly where crossover to other
- 3 treatment could obscure a potential survival
- 4 benefit. In the metastatic melanoma setting, do
- 5 you believe that a progression-free survival
- 6 benefit of some magnitude represents clinical
- 7 benefit that could support regular drug approval,
- 8 even in the absence of an effect on survival?
- 9 We have initiated some discussion and I
- 10 will just throw my two cents in here and say
- 11 absolutely, in a disease where there is no drug
- 12 that confers a survival benefit having a
- 13 progression-free survival, getting patients off
- 14 chemotherapy for some period of time or at least
- 15 away from the stigma of having active disease is a
- 16 clinical benefit. Any other comments from the
- 17 committee? Dr. George?
- DR. GEORGE: Just a comment I made
- 19 actually at the last meeting when we discussed this
- 20 has to do with the crossover effect issue that
- 21 people seem to obsess about quite a bit. The real
- 22 point about that is that if there is something that

- 1 happens later that affects the outcome, then you
- 2 still can look at survival. That is, there still
- 3 is an answer. The answer may not be what you
- 4 wanted to answer, that is, did this therapy prolong
- 5 survival if I didn't give anything else later or if
- 6 I absolutely controlled everything precisely the
- 7 same way beyond this point? But is the real-world
- 8 answer that in the current setting with available
- 9 therapies that are so-called salvage therapies
- 10 sometimes and other things, it may not work with
- 11 respect to survival or it may work but the answer
- 12 is still a good one for that therapy. Having said
- 13 that, I still think that progression-free survival,
- 14 done properly, is in fact a very good way to do it.
- DR. PRZEPIORKA: Dr. Carpenter?
- DR. CARPENTER: I just second that.
- DR. PRZEPIORKA: Dr. Grillo-Lopez?
- DR. GRILLO-LOPEZ: It is important to
- 19 consider that for the majority of agents that come
- 20 before the FDA for approval the submission package
- 21 does not include data as to their optimal use,
- 22 perhaps the use with a combination therapy that may

1 have the potential of prolonging survival. Usually

- 2 this is the early data. It is the first studies
- 3 done with an agent and you maybe will see evidence
- 4 of clinical activity but not necessarily the
- 5 optimal use within the best possible combination of
- 6 that agent. There are many examples of that.
- 7 I will give you rituxan, a product for
- 8 which I was responsible for clinical development.
- 9 When we presented the data to the agency we did not
- 10 have the optimal use of that agent that would
- 11 prolong overall survival. In fact, that happened
- 12 only five to six years after the fact when the
- 13 combination with CHOP has shown that it can
- 14 increase the cure rate in patients with diffuse
- 15 lymphoma.
- So, again, we have to be careful because
- 17 that is another problem with overall survival as an
- 18 endpoint. You seldom receive at the
- 19 beginning--you, the agency, seldom receive at the
- 20 beginning the optimal use of the agent, and I think
- 21 you have to be very careful and look for clinical
- 22 activity. If it has clinical activity, then it

1 should be approved and it should go to the medical

- 2 community that really has the responsibility for
- 3 finding what the eventual optimal use in
- 4 combination, and so on, is for that agent.
- DR. PRZEPIORKA: Dr. D'Agostino?
- 6 DR. D'AGOSTINO: Is it a quality of life
- 7 issue that you are suggesting by using this
- 8 variable that the individual removes a stigma?
- 9 DR. PAZDUR: let me just jump in here. Do
- 10 I have permission to speak?
- DR. PRZEPIORKA: Yes, sir.
- DR. PAZDUR: Thank you. The issue here is
- 13 that we really brought this to the committee
- 14 because we really wanted to illustrate problems of
- 15 time to progression or progression-free survival.
- 16 In order for this to have rigor it has to be
- 17 adequately measured and prospectively defined. The
- 18 points that I was trying to get across that I wrote
- 19 last night and read to you is that this is really
- 20 almost a harder endpoint to do correctly. It
- 21 requires robustness. It probably requires that the
- 22 pharmaceutical sponsors actually meet with their

- 1 investigators and emphasize to them how to handle
- 2 missing data. The symmetry of assessments have to
- 3 be there. It actually is a much more difficult
- 4 endpoint to assess.
- Now, getting back to Dr. D'Agostino's
- 6 question, I think one of the fundamental issues
- 7 that you have to answer, and here again it comes
- 8 back to question number four, which is almost an
- 9 unanswerable question because it is in the eyes of
- 10 the beholder--what is the magnitude? What is the
- 11 benefit of delaying progression of a disease?
- 12 Here, again, in any analysis of survival with a
- 13 conventional toxicity profile, we have really not
- 14 answered that question if it was statistically
- 15 significant with an acceptable toxicity profile.
- 16 But when you are dealing with a progression
- 17 endpoint, I think one has to ask oneself what is
- 18 the benefit in light of the toxicity, even if the
- 19 toxicity is what one would encounter in a standard
- 20 chemotherapy drug.
- 21 The other issue that we have been
- 22 discussing with sponsors as we move away and we

- 1 have to ask ourselves why we should move away in
- 2 individual disease, and Bob brought this up, is
- 3 whether it is a problem with crossover. Is the
- 4 disease of such sufficient natural history that is
- 5 so long that a survival endpoint might not make
- 6 sense to bring up? Is the trial so big that it is
- 7 unmanageable to do? Why does one want to
- 8 substitute PFS for survival? That may be an
- 9 individual disease setting that that needs to be
- 10 discussed, and that is why we are approaching these
- 11 disease by disease rather than just making a
- 12 uniform policy that we will no longer look at
- 13 survival; we will look at progression-free
- 14 survival.
- 15 The other issues that we have discussed
- 16 with sponsors is that we really like the studies to
- 17 be powered at least for survival, not that that
- 18 would necessarily be an approval endpoint, but it
- 19 is something that I think we have to look at
- 20 eventually. We could approve a drug, for example,
- 21 on progression-free survival but if we never power
- 22 the study for survival we will never know whether

1 any of our treatments have a survival advantage and

- 2 that would really put medical oncology behind
- 3 significantly.
- 4 The other issue, finally, is power on
- 5 trials. To power a trial requires a degree of
- 6 guesstimation and frequently we have seen trials
- 7 that come to this committee as under-powered
- 8 trials. At least if we power for survival, one
- 9 would hope that a progression-free survival would
- 10 be adequately powered even with the uncertainties
- 11 that exist there.
- DR. PRZEPIORKA: Dr. Redman?
- 13 DR. REDMAN: I agree that progression-free
- 14 survival is probably important and I think one of
- 15 the problems is the p value. If someone says I am
- 16 going to power a trial to prove that for patients
- 17 getting drug X the progression-free interval is
- 18 three weeks greater and they had a p value with six
- 19 zeroes in front of it, the question is, no matter
- 20 how rigorously it was done, how clinically relevant
- 21 that is. I guess it comes down to the point, and
- 22 it is not very scientific, that you will know it

- 1 when you see it.
- DR. PRZEPIORKA: Dr. Temple?
- 3 DR. TEMPLE: A couple of other points
- 4 while we are discussing this, there has never been
- 5 any question that if someone had data on time to
- 6 symptomatic progression that would be a clinically
- 7 meaningful endpoint. Despite our saying that at a
- 8 hundred end-of-Phase 2 conferences we have been
- 9 very unsuccessful at getting anybody to look at
- 10 that. I just want to make the advert that even
- 11 after someone progresses radiologically you could
- 12 still measure time to symptomatic progression,
- 13 especially if there isn't anything very good to
- 14 transfer the patient to. So, that is one pitch.
- The second this is sort of a practical
- 16 matter. When you calculate the increase in sample
- 17 size that is needed to show survival, even if the
- 18 effect on survival was the same as the effect on
- 19 time to progression, if death occurs considerably
- 20 after progression the effect size gets depressingly
- 21 small. So, if you had a hazard ratio of 0.8 at 10
- 22 months and survival goes to 20 months that same

- 1 difference becomes a hazard ratio of 0.9 and the
- 2 sample size implications become quite daunting.
- 3 That is a practical concern but it could mean that
- 4 trials in that setting would have to be just
- 5 enormous, and that is another reason we are
- 6 thinking about disease-free survival.
- 7 DR. PRZEPIORKA: Just to come back to a
- 8 question that Dr. D'Agostino asked me earlier, you
- 9 raised the issue of symptomatic relapse and I still
- 10 have great concerns that depression and anxiety are
- 11 truly symptoms that we wish to address. Dr.
- 12 Carpenter?
- 13 DR. CARPENTER: I think how much one is
- 14 willing to accept a progression-free survival
- 15 endpoint is going to be inevitably tied to question
- 16 four but a couple of simple examples help to modify
- 17 the way one might think about it. In this
- 18 application that we are discussing the issues were
- 19 all with a possible increase in progression-free
- 20 survival on the order of magnitude of a month or
- 21 less, no matter which projection you look at. If
- 22 you were talking about something in the 3-6 month

- 1 interval I would be surprised if the tenor of the
- 2 discussions was not different and if the difference
- 3 in survival, even if it was small, would not become
- 4 secondary. The more we get into drugs that act by
- 5 biological mechanisms that may not shrink tumors
- 6 but which might stop growth so you may get long
- 7 periods and if you get relief of symptoms and
- 8 prolonged freedom from progression, I think it
- 9 would be an unusual person who won't think that is
- 10 a benefit.
- 11 The question in this particular
- 12 application was whether they have really met some
- 13 kind of endpoint that would be satisfactory. Could
- 14 one accept unequivocally that they have met that or
- 15 not, and the votes are there.
- DR. PRZEPIORKA: Ms. Haylock?
- MS. HAYLOCK: Let's see, all the numbers I
- 18 think kind of obscure the reality of what melanoma
- 19 patients face and I think of all the kinds of
- 20 cancers, the dying process in melanoma is sometimes
- 21 long and drawn out and fairly awful. So, I think
- that symptomatic progression is important just in

1 terms of the things that people do go through if

- 2 their treatment fails overall.
- 3 So, I think the cure versus control issue
- 4 we are looking at in this particular kind of
- 5 cancer, like a lot of cancers, is more of a chronic
- 6 disease entity and how do we control those chronic
- 7 symptoms for longer periods of time and give people
- 8 quality for whatever time they have left--I think
- 9 that is sort of lost in all the numbers,
- 10 particularly lost when people just look at death as
- 11 the sentinel event in this.
- DR. PRZEPIORKA: If there are no other
- 13 questions I will ask for a vote. Question number
- 14 three, in metastatic melanoma, do you believe that
- 15 a progression-free survival benefit of some
- 16 magnitude represents clinical benefit that could
- 17 support regular drug approval, even in the absence
- of an effect on survival? Mr. McDonough?
- 19 MR. MCDONOUGH: Yes.
- DR. HUSSAIN: Yes.
- DR. MORTIMER: Yes.
- DR. D'AGOSTINO: Yes.

```
1 DR. CARPENTER: Yes.
```

- 2 MS. HAYLOCK: Yes.
- 3 DR. GEORGE: Yes.
- 4 DR. CHESON: Yes.
- DR. DOROSHOW: Yes.
- DR. RODRIGUEZ: Yes.
- 7 DR. PRZEPIORKA: Yes.
- 8 DR. REDMAN: Yes.
- 9 DR. REAMAN: Yes.
- 10 DR. TAYLOR: Yes.
- DR. BISHOP: Yes.
- DR. BUKOWSKI: Yes.
- DR. PRZEPIORKA: It is unanimous, yes.
- 14 The last question for discussion, which we have had
- 15 a tremendous amount about is, if yes, please
- 16 discuss what magnitude of improvement in this
- 17 endpoint would be required to demonstrate clinical
- 18 benefit and whether this would depend on the
- 19 toxicity of the treatment.
- 20 I will just start by saying not just
- 21 toxicity of the treatment but the way the drug is
- 22 administered, and in this situation where the drug

- 1 was administered by continuous infusion for a
- 2 patient population who had no other alternative,
- 3 like many diabetics who are on a fanny-pack right
- 4 now, I don't think the patients would mind having
- 5 the fanny-pack for the rest of their life if it
- 6 meant they would actually get a clinical benefit
- 7 from it. So, for this particular setting how the
- 8 drug is administered is less of an issue because of
- 9 the background.
- 10 Other comments regarding this question
- 11 from the committee? Hearing none, Dr. Temple and
- 12 Dr. Pazdur, do you have any other questions you
- 13 need advice on from us?
- DR. PAZDUR: No.
- DR. PRZEPIORKA: Thank you. I call this
- 16 meeting adjourned then. We will meet here promptly
- 17 at 12:45 to begin the second session. Thank you.
- 18 [Whereupon, the proceedings were recessed
- 19 for lunch, to reconvene at 12:45 p.m.]

1	Δ	F	т	F	R	TAT	\cap	M	Ρ	R	\cap	\sim	F	F	D	Т	M	C	C
4	Δ	т.	_	10	T/	ΤΛ	\sim	TA		T/	\sim	_	10	10	$\boldsymbol{\mathcal{L}}$	_	ΤΛ	u	\sim

- DR. PRZEPIORKA: In the interest of time,
- 3 we will start the meeting and we will have a few
- 4 people in and out during the course of the day, and
- 5 I apologize but we do want to stay on time as much
- 6 as possible.
- 7 This afternoon we will be discussing RSR13
- 8 and we want to start with a conflict of interest
- 9 statement. I understand there are no conflicts of
- 10 interest for the group for this afternoon. Please
- 11 refer to this morning's statement if you want more
- 12 information.
- 13 Because we have moved around a bit and
- 14 there are new individuals who have joined us for
- 15 this particular meeting, I would like to go ahead
- 16 and allow the committee to introduce themselves
- 17 once again and if we could start with Ms. Portis.
- 18 MS. COMPAGNI-PORTIS: Natalie
- 19 Compagni-Portis. I am a patient representative.
- DR. MORTIMER: Joanne Mortimer, medical
- 21 oncology, Eastern Virginia Medical School.
- DR. HUSSAIN: Maha Hussain, medical

- 1 oncology, University of Michigan.
- DR. D'AGOSTINO: Ralph D'Agostino, Boston
- 3 University, biostatistician.
- 4 DR. BUKOWSKI: Ronald Bukowski, medical
- 5 oncologist, Cleveland Clinic.
- 6 DR. BUCKNER: Jan Buckner, medical
- 7 oncology, Mayo Clinic, Rochester, Minnesota.
- 8 DR. MARTINO: Silvana Martino, medical
- 9 oncology, the John Wayne Cancer Institute.
- DR. TAYLOR: Sarah Taylor, medical
- 11 oncology, Palliative Care, University of Kansas.
- DR. REAMAN: Gregory Reaman, pediatric
- 13 oncologist, George Washington University and the
- 14 Children's Hospital.
- DR. REDMAN: Bruce Redman, medical
- 16 oncologist, University of Michigan.
- 17 MS. CLIFFORD: Johanna Clifford, FDA,
- 18 executive secretary to this meeting.
- DR. PRZEPIORKA: Donna Przepiorka,
- 20 hematology, University of Tennessee, Memphis.
- 21 DR. RODRIGUEZ: Maria Rodriguez, medical
- 22 oncologist, M.D. Anderson Cancer Center.

1 DR. DOROSHOW: Jim Doroshow, Division of

- 2 Cancer Treatment and Diagnosis, NCI.
- 3 DR. GEORGE: Stephen George, Duke
- 4 University.
- 5 MS. HAYLOCK: Pamela Haylock, oncology
- 6 nurse.
- 7 DR. CARPENTER: John Carpenter, medical
- 8 oncologist, University of Alabama at Birmingham.
- 9 DR. RIDENHOUR: Kevin Ridenhour, medical
- 10 reviewer, FDA.
- DR. SRIDHARA: Rajeshwari Sridhara,
- 12 statistical reviewer, FDA.
- DR. DAGHER: Ramzi Dagher, medical team
- 14 leader, FDA.
- DR. WILLIAMS: Grant Williams, Deputy
- 16 Director, Oncology Drugs.
- DR. PAZDUR: Richard Pazdur, Director,
- 18 Oncology Drugs.
- DR. TEMPLE: Bob Temple, Office Director.
- DR. GRILLO-LOPEZ: Antonio Grillo-Lopez,
- 21 Neoplastic and Autoimmune Diseases Research
- 22 Institute.

DR. PRZEPIORKA: Thank you and welcome to

- 2 all. I just again want to remind everyone in the
- 3 room, as well as on the committee, that this is a
- 4 committee that serves as consultants to the FDA.
- 5 We are not employed by the FDA or the U.S.
- 6 government. We do not make any decisions here; we
- 7 simply provide advice to the FDA.
- 8 We will start the presentations this
- 9 afternoon with Dr. Pablo Cagnoni, from Allos, to
- 10 introduce the topic.
- 11 Sponsor Presentation
- 12 Introduction
- DR. CAGNONI: Good afternoon, Dr.
- 14 Przepiorka, ladies and gentlemen.
- 15 [Slide]
- 16 My name is Pablo Cagnoni and I am
- 17 representing Allos Therapeutics today for this
- 18 presentation to the Oncologic Drugs Advisory
- 19 Committee for the new drug application for RSR13 as
- 20 an adjunct to whole brain radiation therapy for
- 21 patients with breast cancer and brain metastases.
- 22 [Slide]

1 Our agenda for today is shown here. After

- 2 a brief introduction Dr. John Suh will provide an
- 3 overview of brain metastasis. This will be
- 4 followed by Dr. Brian Kavanaugh who will provide a
- 5 review of the mechanism of action of RSR13, early
- 6 preclinical and clinical data. I will then
- 7 summarize the efficacy and safety data with our
- 8 compound and we will have some concluding remarks
- 9 by Dr. Paul Bunn.
- 10 [Slide]
- We have a number of experts today
- 12 available for the question and answer session: Dr.
- 13 Paul Bunn, Director of the University of Colorado
- 14 Cancer Center; Dr. Walter Curran, Group Chairman of
- 15 the Radiation Therapy Oncology Group; Dr. Anthony
- 16 Elias, Director of the Breast Cancer Program at the
- 17 University of Colorado.
- 18 [Slide]
- 19 Dr. Henry Friedman, Director of the Brain
- 20 Tumor Center at Duke University Medical Center; Dr.
- 21 Marc Gastonguay, clinical pharmacologist who
- 22 performed the clinical pharmacokinetic analysis and

- 1 population pharmacokinetic analysis for RSR13; Dr.
- 2 Charles Scott, biostatistician, former statistician
- 3 from RTOG who conducted the analysis of our RT-08
- 4 and served as a design analysis consultant for
- 5 RT-09; Dr. Baldassarre Stea, Chairman, Radiation
- 6 Oncology at the University of Arizona, who is a
- 7 lead enroller in study RT-09.
- 8 [Slide]
- 9 In addition, we have a number of experts
- 10 from Allos Therapeutics that will be available to
- 11 answer questions as well.
- 12 [Slide]
- 13 We need to acknowledge today that brain
- 14 metastases in patients with breast cancer represent
- 15 an unmet medical need. This complication afflicts
- 16 tens of thousands of patients a year in the U.S.
- 17 alone. It carries a very high morbidity and nearly
- 18 uniform mortality. This field has been
- 19 characterized for the last 25 years by lack of
- 20 progress in terms of improving the survival of
- 21 these patients. The data that we will review for
- 22 you today demonstrates that RSR13 improves the

1 survival of patients with breast cancer and brain

- 2 metastases; increases the response rate in the
- 3 brain in these patients; and has an excellent
- 4 safety profile in this population.
- 5 [Slide]
- 6 Our proposed indication for RSR13 is to be
- 7 administered as an adjunct to whole brain radiation
- 8 therapy for the treatment of brain metastases
- 9 originating from breast cancer. Our proposed
- 10 dosage is RSR13 75-100 mg/kg/day IV over 30 minutes
- 11 with supplemental oxygen immediately prior to each
- 12 of 10 fractions of whole brain radiation therapy.
- 13 [Slide]
- 14 At this point, I would like to introduce
- 15 Dr. John Suh. Dr. Suh is Clinical Director of
- 16 Radiation Oncology and Director of the Gamma Knife
- 17 Radiosurgery Center from the Brain Tumor Institute
- 18 and the Cleveland Clinic Foundation. Dr. Suh was
- 19 the study chair for our pivotal trial RT-09 and he
- 20 has extensive experience with use of RSR13 in the
- 21 treatment of brain metastases.
- 22 Brain Metastases

1 DR. SUH: Good afternoon, ladies and

- 2 gentlemen. It is a pleasure to be here today to
- 3 talk about brain metastases. As a clinician who
- 4 focuses his clinical and research efforts on brain
- 5 tumor patients, I have the opportunity to evaluate
- 6 and treat a number of these patients. For the past
- 7 ten years I have been involved in a number of
- 8 clinical trials related to these patients and hope
- 9 that after today's discussion you will consider
- 10 changing the treatment paradigm for patients with
- 11 breast cancer who develop brain metastases.
- 12 [Slide]
- In terms of the brain metastasis, its
- 14 incidence is on the rise. Every year in the United
- 15 States approximately 170,000 Americans are
- 16 diagnosed with this condition. It is estimated
- 17 that 20-40 percent of cancer patients will
- 18 eventually develop brain metastases. The incidence
- 19 is thought to be rising secondary to earlier
- 20 diagnosis of the cancer; better systemic therapy
- 21 for extracranial disease; and better neuroimaging
- 22 techniques, the MRI scans.

1	[Slide]

- 2 In terms of breast cancer patients with
- 3 brain metastases, up to 35,000 patients per year
- 4 are diagnosed with this disease. It afflicts
- 5 younger patients. The median age for our study was
- 6 53 years of age, and most of these patients are
- 7 quite functional as well. Systemic agents have
- 8 provided benefit for extracranial disease.
- 9 Therefore, to control the brain becomes very
- 10 important. Current treatment strategies have
- 11 provide limited benefit and, as a result, more
- 12 effective treatment options are needed.
- 13 [Slide]
- 14 This is an example of a an excellent
- 15 response from radiation therapy. This is a picture
- 16 of a CT scan of a patient with two very large brain
- 17 tumors in the frontal area, and after radiation
- 18 therapy you can see a dramatic response.
- 19 Unfortunately, this is a very untypical response
- 20 from radiation therapy and, as a result, we need
- 21 better therapies for these patients.
- 22 [Slide]

1	Tn	+ orma	o f	+ho	aurron+	treatment
1	\perp n	terms	OI	tne	current	treatment

- 2 strategies for patients with brain metastases,
- 3 there are a number of treatment strategies
- 4 depending on the patient and their performance
- 5 status. Steroids have been shown to increase
- 6 survival by approximately one month.
- 7 Anticonvulsant medication is used to prevent
- 8 seizures. Surgical resection has been shown by
- 9 several randomized studies to improve survival for
- 10 patients with single metastases. Stereotactic
- 11 radiosurgery has been shown by a recent trial to
- 12 improve survival for patients with a single lesion.
- 13 Chemotherapy has had limited use thus far. Whole
- 14 brain radiation therapy has been the gold standard
- 15 and has been used for over 50 years for treatment
- 16 of brain metastases.
- 17 [Slide]
- 18 In terms of the results with whole brain
- 19 radiation therapy, the mean survival is
- 20 approximately 4.5 months. it improves and/or
- 21 stabilizes neurologic function in the majority of
- 22 these patients. The standard dosing scheme

- 1 established by the RTOG is 30 Gy in 10 fractions.
- 2 There has been no benefit to altered fractionation
- 3 schemes.
- 4 [Slide]
- 5 This slide summarizes the lack of progress
- 6 over the past 20 years for patients with brain
- 7 metastasis. These are series from the 1970s to the
- 8 1990s, looking at various fractionation schemes.
- 9 If you look at the median survivals overall, they
- 10 range from about 3-5 months. Therefore, better
- 11 treatment is needed for these patients.
- 12 [Slide]
- 13 It is important when analyzing patients
- 14 with brain metastasis to have common prognostic
- 15 factors. RTOG performed a recursive partitioning
- 16 analysis of 1200 patients enrolled in 3 consecutive
- 17 clinical trials from 1979 to 1993. They came up
- 18 with 3 classes of patients. The best class of
- 19 patients is Class I patients, with a KPS of 70 or
- 20 higher; primary controlled; age less than 65; and
- 21 no extracranial metastasis, which comprised 20
- 22 percent of this database with median survival of

- 1 7.1 months.
- 2 For Class II patients, these are patients
- 3 with a KPS of at least 70 and any of the following,
- 4 controlled primary; extracranial metastases; age
- 5 greater than or equal to 65. This comprises the
- 6 majority of the patients in this database; 65
- 7 percent survival of only 4.2 months.
- 8 For the Class III patients, these are
- 9 patients with a KPS less than 70; median survival
- 10 of only 2.3 months, and resulting in poor survival
- 11 for this group of patients. They are typically
- 12 excluded from clinical trials.
- 13 [Slide]
- 14 If you focus on the results of whole brain
- 15 radiation therapy for patients with breast cancer,
- 16 these are some recent publications from the late
- 17 '90s to 2000, looking at 100 patients. You can see
- 18 here that their median survival has hovered between
- 19 4-6 months. The RTOG brain metastasis database
- 20 that I alluded to, for 113 patients with brain
- 21 metastases, the median survival was 5.4 months.
- This is a retrospective series from the

1 Cleveland Clinic of 116 patients. When we looked

- 2 at the one-year survival, it was only 17 percent
- 3 and two-year survival was only 2 percent.
- 4 [Slide]
- 5 The recursive partitioning analysis
- 6 developed at the RTOG was consistent with the
- 7 control arm of the RT-009 study. As you can see
- 8 here, for the Class I patients, 7.7 months versus
- 9 7.1 months, and for the Class II patients, 4.1
- 10 months versus 4.2 months, suggesting that this
- 11 database is reliable for comparing results.
- 12 [Slide]
- 13 In conclusion, brain metastases from
- 14 breast cancer are common. Current treatment
- 15 strategies yield poor results. Treatment options
- 16 are available for extracranial metastases.
- 17 Therefore, it is paramount that we control the
- 18 disease within the brain to improve survival for
- 19 these patients, and there is a compelling need for
- 20 more effective treatment options.
- 21 [Slide]
- 22 At this point, I would like to introduce

1 Dr. Brian Kavanaugh, who will talk about the

- 2 science of RSR13.
- 3 The Science of RSR13
- 4 DR. KAVANAUGH: Thank you, John. It is an
- 5 honor to be here today. I have been working with
- 6 RSR13 for ten years. I participated in the
- 7 preclinical evaluation. I served as the PI for the
- 8 Phase 1 study in cancer patients and I have
- 9 enrolled patients on both the Phase 2 and Phase 3
- 10 studies that you will be hearing about today.
- 11 [Slide]
- 12 In this section we will review several
- 13 topics, first of all, a brief refresher on tumor
- 14 hypoxia and its particular importance in
- 15 radiotherapy. We will explain how and why RSR13
- 16 was designed. We will explain how RSR13 improves
- 17 tumor oxygen delivery and, thus, radiosensitizes
- 18 solid tumors. And, we will share some key
- 19 observations when the agent was first taken into
- 20 the clinic.
- 21 [Slide]
- 22 Oxygen has long been recognized to be the

- 1 purest and most efficient radiosensitizer.
- 2 Ionizing radiation introduces free radicals which,
- 3 in the presence of oxygen, are stabilized. When
- 4 cancer cells are treated with radiotherapy in
- 5 oxygenated conditions the effect of radiation is
- 6 roughly tripled when compared with treatment with
- 7 radiation in hypoxic settings. There are pockets
- 8 of hypoxia or low p0-2 to varying extent in all
- 9 solid tumors. The reason this exists is that
- 10 supply simply doesn't keep up with demand in
- 11 hyper-metabolic areas. It is possible to measure
- 12 directly in the clinic the degree of tumor hypoxia
- 13 present in certain solid tumors and in all cases
- 14 where this has been performed there is a direct
- 15 correlation between the extent of hypoxia and the
- 16 outcome after radiotherapy. Specifically, the more
- 17 hypoxic the tumor is the lower the chance of
- 18 controlling with radiation.
- 19 I should just add one more point, that it
- 20 is essential for the oxygen to be present at the
- 21 moment of radiation. The radiation-induced free
- 22 radicals that are generated in the absence of

- 1 oxygen have a half-life of 10
 - -5 or 10-9 seconds and
- 2 with oxygen present this half-life is extended to
- 3 the range of milliseconds. Nevertheless, it is
- 4 important for oxygen to be present at the moment
- 5 that radiation is given.
- 6 [Slide]
- 7 To consider hypoxia in breast cancer in
- 8 particular, these data represent thousands of
- 9 individual point measurements of p0-2 within tumors
- 10 in a cohort of breast cancer patients. On the X
- 11 axis is the tissue oxygen pressure and on the Y
- 12 axis is the frequency with which a value and the
- 13 range shown on the X axis was observed.
- 14 You can see that fully 15 percent of the
- 15 measurements were less than 5 mmHg and this would
- 16 be an extent of hypoxia expected to cause
- 17 substantial radioresistance. Now, it is
- 18 technically very challenging to obtain p0-2
- 19 measurements clinically in tumors, and particularly
- 20 difficult in the brain. So, there are far fewer
- 21 data particularly with brain metastasis but what is
- 22 available would suggest that the rate of hypoxia is

1 probably even higher when tumors have spread to the

- 2 brain.
- 3 [Slide]
- 4 In the early 1980s Professor Don Abraham
- 5 and the Nobel Laureate Max Perutz set out on a
- 6 mission to design agents which would have
- 7 therapeutic benefit by modifying the properties of
- 8 hemoglobin, and RSR13 is the product of their
- 9 collaboration.
- 10 As you can see here, RSR13 binds within
- 11 the central water cavity of hemoglobin and exerts
- 12 an effect on hemoglobin through a process called
- 13 allosteric modification. Under the influence of
- 14 RSR13 hemoglobin is changed in its properties.
- 15 Specifically, the binding affinity between
- 16 hemoglobin and oxygen is reduced.
- 17 [Slide]
- 18 I will illustrate that for you in this
- 19 graph. You will recall that under ordinary
- 20 conditions, represented here by the black curve,
- 21 there is an approximately sigmoidal relationship
- 22 between p0-2 in the bloodstream and the percent of

- 1 saturation of all available hemoglobin binding
- 2 sites. RSR13 has the property of shifting this
- 3 curve right-ward. We can easily quantify this
- 4 effect in terms of the p50. The p50 is defined as
- 5 a pO-2 at which there is 50 percent saturation of
- 6 all available hemoglobin sites. We have calculated
- 7 in other studies that an increase in p50 of 10 mmHq
- 8 is expected to have a major improvement on tumor
- 9 oxygen delivery and, thus, radiosensitization.
- 10 But before we leave this slide, let me
- 11 share one other particularly important point
- 12 regarding the reason why supplemental oxygen is
- 13 given to patients who receive RSR13. At sea level
- 14 under ordinary conditions you will recall that the
- 15 pO-2 of arterial blood is typically in the range of
- 16 90-100 mmHq. Under normal conditions there would
- 17 be expected to be 96-98 percent or so saturation of
- 18 hemoglobin binding sites. Adding additional oxygen
- 19 in that setting is unlikely to yield any noticeable
- 20 benefit because the blood is already carrying as
- 21 much oxygen as possible into the peripheral
- 22 circulation. Under the influence of RSR13, in

- 1 order to exploit the agent to its maximal effect,
- 2 we want there to be as high as possible saturation
- 3 of blood leaving the lungs and entering the
- 4 peripheral circulation. That is why we give
- 5 supplemental oxygen to achieve p0-2s in the range
- 6 of 120 or more so that blood leaving the lungs is
- 7 going to be at a very high level of oxygen
- 8 saturation.
- 9 [Slide]
- 10 There have been numerous clinical studies
- 11 to establish both the proof of principle and the
- 12 establishment of the radiosensitizing effect of
- 13 this agent and I will share with you a couple of
- 14 examples.
- In this situation, using a rodent mammary
- 16 carcinoma, the experimental endpoint was percent of
- 17 tumor oxygen pO-2 readings below 5 mmHg. You can
- 18 see in the yellow bar that under controlled
- 19 conditions this particular tumor is roughly 50
- 20 percent hypoxic. Oxygen has only a modest effect,
- 21 and I should add that in animals the reason for a
- 22 modest effect in oxygen in this kind of experiment

- 1 is because they are anesthetized and there is a
- 2 certain amount of hyperventilation. It is not
- 3 expected to have that much effect in humans. The
- 4 addition of RSR13 has an even stronger effect than
- 5 oxygen alone, and the combination of RSR13 and
- 6 supplemental oxygen essentially abolishes all
- 7 measurable tumor hypoxia. This effect on tumor
- 8 oxygen levels translates directly into
- 9 radiosensitizing properties.
- 10 [Slide]
- 11 Again using a rodent model in the lab, the
- 12 experimental endpoint here is the clonogenic
- 13 survival fraction after in vivo exposure. With
- 14 RSR13 alone and oxygen, you can see that there is
- 15 no appreciable effect on tumor cell surviving
- 16 fraction because the agent itself is not directly
- 17 cytotoxic. Radiation has, of course, an expected
- 18 effect in terms of reducing tumor cell survival
- 19 fraction, but the combination of RSR13 and oxygen
- 20 will meaningfully sensitize cells to radiation and
- 21 have a pronounced additional radiosensitizing
- 22 effect.

1	This	proof	of	principle	and

- 2 radiosensitizing effect has demonstrated in
- 3 non-small cell lung cancers also and, in fact, for
- 4 all solid tumors tested in the lab that RSR13 can
- 5 exert a radiosensitizing effect.
- 6 [Slide]
- 7 The first instance in which this agent was
- 8 taken into humans was in a study of healthy
- 9 volunteers. The targeted pharmacodynamic endpoint
- 10 was an increase of p50 of 10 mmHg which, as I have
- 11 already mentioned, is expected to have a meaningful
- 12 improvement in tumor oxygen delivery.
- 13 A Phase 1 study was conducted of 19
- 14 patients in which RSR13 was given in doses ranging
- 15 from 10 up to 100 mg/kg using a single intravenous
- 16 dose. The observation was an increase in p50 of 10
- 17 mmHg achieved consistently at a dose of 100 mg/kg.
- 18 [Slide]
- 19 A few observations about the
- 20 pharmacokinetics of RSR13, its volume of
- 21 distribution is a vascular compartment. Half the
- 22 drug is gone within red blood cells and the other

- 1 half is in plasma, most of it bound to plasma
- 2 proteins. The half-life in red blood cells is 4.5
- 3 hours. The drug is partially glucuronidated in the
- 4 liver and then both the parent compound and the
- 5 metabolites formed are excreted through the
- 6 kidneys.
- 7 [Slide]
- 8 The pharmacokinetic and pharmacodynamic
- 9 parameters analyzed in several studies have been
- 10 combined and the results are shown here. In four
- 11 separate studies involving both the healthy
- 12 volunteers and a broad range of cancer patients,
- 13 the pharmacokinetic parameter of mean red blood
- 14 cell concentration was assayed and directly
- 15 compared with the mean p50 increase or
- 16 pharmacodynamic effect. The eight data points on
- 17 this particular graph represent the averages of
- 18 those two groups of patients either receiving 75
- 19 mg/kg or 100 mg/kg in the four individual studies.
- 20 What you notice is a linear correlation
- 21 between these two parameters. On the X axis again
- 22 is the mean red blood cell concentration. In order

1 to achieve our desired pharmacodynamic effect, an

- 2 increase of 10 mmHg, we need to achieve in red
- 3 blood cells a concentration on the order of 480
- 4 mcg/mL.
- 5 [Slide]
- 6 Let me just summarize that tumor hypoxia
- 7 has long been recognized to be a major cause of
- 8 radioresistance. RSR13 has the properties of
- 9 reducing tumor hypoxia and increasing
- 10 radiosensitivity. The pharmacodynamic effect of
- 11 the agent is easily quantified by characterizing
- 12 the increase in p50. There is a linear correlation
- 13 between the drug concentration and the
- 14 pharmacodynamic effect. And, RSR13, at a dose of
- 15 100 mg/kg, was selected for future study based on
- 16 its ability to induce the desired p50 increase.
- 17 [Slide]
- Now I will let Dr. Cagnoni present to you
- 19 the clinical efficacy results.
- 20 Clinical Efficacy Results
- DR. CAGNONI: Thank you, Dr. Kavanaugh.
- 22 [Slide]

1 Today's presentation is a culmination of

- 2 almost ten years of clinical development of RSR13.
- 3 This was initiated with filing IND 48-171 in 1995.
- 4 This was followed by the human volunteer study that
- 5 Dr. Kavanaugh described and, in turn, that was
- 6 followed by Phase 1 studies in combination with
- 7 radiation therapy. Our pivotal study in patients
- 8 with brain metastases started enrollment in
- 9 February of 2000, completed enrollment in July 2002
- 10 and the present NDA was submitted in December of
- 11 2002.
- 12 [Slide]
- 13 Before we describe the results of the
- 14 Phase 2 and Phase 3 studies, it is important to
- 15 understand how RSR13 is administered relative to
- 16 radiation in both studies. On arrival to the
- 17 clinic oxygen and pulse oximetry for monitoring are
- 18 initiated. RSR13 is administered through a central
- 19 venous access device over a 30-minute infusion in
- 20 both studies. Both studies mandated that patients
- 21 be radiated within 30 minutes of completing the
- 22 RSR13 infusion. After radiation therapy was

- 1 administered patients were monitored as the oxygen
- 2 was tapered, and they were released from the clinic
- 3 when oxygen saturation at room was acceptable. The
- 4 same process was repeated daily for 10 days.
- 5 [Slide]
- 6 Our Phase 2 study in patients with brain
- 7 metastases is study number RT-08. It enrolled 69
- 8 patients. It was an open-label study and 21 of the
- 9 patients in this study had breast cancer, 39 had
- 10 non-small cell lung cancer and 9 patients had other
- 11 tumor types. Patients were enrolled at 17 sites in
- 12 the U.S. and Canada. The primary endpoint of the
- 13 study was survival. To use as a comparison group
- 14 we selected the RTOG brain metastasis database that
- 15 Dr. Suh summarized for you earlier.
- 16 [Slide]
- When we compared the results of the RT-08
- 18 Class II patients with the RTOG database Class II
- 19 patients, we see the following results: In yellow
- 20 are the RSR13 patients with a median survival of
- 21 6.4 months and in red is the median survival of
- 22 4.11 with the patients in the RTOG brain metastasis

1	~~	1 ہ	h-	~ ~	
	da	Lai	υa	SE	

- 2 [Slide]
- 3 We then compared these two groups by tumor
- 4 type within the Class II patients, and in breast
- 5 cancer of the RTOG database there was a median
- 6 survival of 5.4 months and in the RSR13-treated
- 7 patients the median survival was 9.7 months. In
- 8 the lung cancer population the survival was 3.9 and
- 9 6.4 months respectively.
- 10 [Slide]
- 11 As a result of this study a pivotal trial
- 12 was initiated, study number RT-09. This was a
- 13 Phase 3 randomized, open-label, comparative study
- 14 of standard whole brain radiation therapy with
- 15 supplemental oxygen, with or without RSR13, in
- 16 patients with brain metastases. The study chairs
- 17 were Dr. John Suh, from the Cleveland Clinic, and
- 18 Dr. Edward Shaw from Lake Forest University.
- 19 [Slide]
- 20 The key eligibility criteria for RT-09 are
- 21 summarized here. Patients had to have a KPS of at
- 22 least 70. In other words, Class II patients were

1 excluded. The excluded histologies were small-cell

- 2 lung cancer, non-Hodgkin's lymphoma and germ cell
- 3 cancer. No prior therapy for brain metastases was
- 4 allowed, with the exception of partial resection.
- 5 In other words, patients had to have measurable
- 6 disease after resection. All patients had to have
- 7 adequate hematologic, renal, hepatic and pulmonary
- 8 function, including resting and exercise oxygen
- 9 saturation of at least 90 percent on room air.
- 10 [Slide]
- 11 This was a 1:1 randomization. It was an
- 12 open-label study. All patients received standard
- 13 whole brain radiation therapy, 3 Gy fractions for
- 14 10 days for a total of 30 Gy. Both arms received
- 15 supplemental oxygen and patients were randomized to
- 16 receive or not RSR13. At the time of randomization
- 17 patients were stratified using RPA class and tumor
- 18 type.
- 19 The primary endpoint of RT-09 was
- 20 survival. The study had 85 percent power to detect
- 21 a difference in all patients and 75 percent power
- 22 to detect a difference in the lung/breast

1 co-primary population. These are the only two

- 2 populations for which the alpha spending and the
- 3 log-rank test was calculated.
- 4 [Slide]
- 5 RT-09 was amended three times, generating
- 6 four protocol versions. The key amendment in the
- 7 study is amendment two. Amendment two took place
- 8 between versions two and three. At the time of the
- 9 amendment 222 patients had been enrolled in the
- 10 study. The key components of the amendment were to
- 11 expand the sample size up to 538 patients; to
- 12 define the lung/breast co-primary population as a
- 13 co-primary population for analysis; and it expanded
- 14 the dosing adjustment guideline of RSR13 for
- 15 patients receiving antihypertensive medications,
- 16 including also weight and gender. This amendment
- 17 was discussed with the FDA at the time and
- 18 concurrence was reached on the approvability of
- 19 this co-primary population.
- 20 [Slide]
- 21 The dosing adjustment guideline is
- 22 summarized here. Using the weight cutoff of 70 kg

- 1 for women and 95 kg for men, the study divided
- 2 patients in high weight/low weight categories.
- 3 According to the guideline, high weight patients
- 4 were to receive an initial dose of RSR13 of 75
- 5 mg/kg and low weight patients were to receive a
- 6 dose of RSR13 of 100 mg/kg.
- 7 [Slide]
- 8 For the primary endpoint of survival we
- 9 assumed that 20 percent of the patients would be
- 10 RPA Class I. We expected a median survival time in
- 11 the control arm of 4.57 months and a 35 percent
- 12 improvement over this would have been a median
- 13 survival of 6.17 months in the RSR13 arm. The
- 14 analysis of the study was determined by a number of
- 15 events, with a minimum follow-up of 6 months and
- 16 minimum number of events or 402 patients had to
- 17 occur in all patients and the minimum number of
- 18 events of 308 had to occur in the lung
- 19 cancer/breast cancer co-primary population.
- 20 [Slide]
- 21 The analysis of survival following the
- 22 statistical analysis plan, which was completed

- 1 prior to the completion of enrollment, defined that
- 2 the primary method for survival analysis would be
- 3 an unadjusted log-rank. The primary population for
- 4 analysis of survival would be comprised of the
- 5 eligible patients. For the co-primary population
- 6 of lung and breast cancer patients a modified
- 7 Bonferroni adjustment was described Both the
- 8 protocol and the SAP specified the Cox multiple
- 9 regression analysis would be conducted.
- 10 [Slide]
- 11 The benefits of this type of analysis are
- 12 summarized here. Adjusted analyses, such as Cox or
- 13 stratified log-rank, provide the most accurate
- 14 treatment estimate in heterogeneous populations.
- 15 As we will see in the presentation, the population
- 16 of patients in RT-09 was clearly very
- 17 heterogeneous. It is important to remember that
- 18 omitting strong covariates can reduce the power of
- 19 the study to detect treatment effects.
- 20 [Slide]
- 21 To this effect, prespecification of the
- 22 Cox model was performed in the protocol and

- 1 expanded in the statistical analysis plan. Seven
- 2 covariates, in yellow, were specified in the
- 3 protocol and were derived from the literature. In
- 4 addition to this, ten more covariates were added in
- 5 the statistical analysis plan. The top six in
- 6 yellow are derived from the literature as well.
- 7 The bottom four were specific to the study to take
- 8 into account the mechanism of action of RSR13 and,
- 9 i the case of the weight category to take into
- 10 account the dosing adjustment guideline.
- 11 [Slide]
- 12 RT-09 had five secondary endpoints. The
- 13 objective of RSR13 is to improve local therapy in
- 14 the brain, therefore, the most important secondary
- 15 endpoint in the study is response rate in the
- 16 brain. Other secondary endpoints were time to
- 17 radiographic tumor progression in the brain and to
- 18 clinical tumor progression in the brain, cause of
- 19 death and quality of life.
- 20 [Slide]
- 21 For the radiologic evaluation the
- 22 following was mandated by the protocol, all

- 1 patients had to have a CAT scan or MRI of the brain
- 2 at baseline. The follow-up had to be done with the
- 3 same test a month after whole brain radiation day
- 4 10, 3 months after day 10 and every 3 months
- 5 thereafter until progression. All CAT scans and
- 6 MRIs were centrally and independently reviewed by a
- 7 team of radiologists at the Neuroimaging Core
- 8 Laboratory at the Cleveland Clinic. The reviewers
- 9 were blinded to study arm and treatment outcome.
- 10 [Slide]
- 11 Let me now review the results of RT-09, 5
- 12 38 patients were randomized in 82 sites in the
- 13 U.S., Europe, Israel, Australia and Canada; 267
- 14 patients were randomized to the control arm and 271
- 15 to the RSR13 arm.
- 16 [Slide]
- 17 The two arms were well balanced for
- 18 gender, RPA class, age and tumor type.
- 19 [Slide]
- 20 RSR13 did not impair the administration of
- 21 standard whole brain radiation therapy in this
- 22 population and 95 percent of the patients in the

- 1 control arm and 94 percent of the patients in the
- 2 RSR13 arm received all 10 doses of whole brain
- 3 radiation, with the mean number of doses in each
- 4 arm of 9.9 and 9.8. Eighty percent of the patients
- 5 in the RSR13 arm received at least 7 doses of
- 6 RSR13, with a mean number of doses of 8.4.
- 7 [Slide]
- 8 According to the statistical analysis plan
- 9 and following ICH guidelines, the primary
- 10 population for survival analysis was to be
- 11 comprised of the eligible patients. Accordingly, a
- 12 blinded neuroradiology review was conducted to
- 13 determine eligibility and 22 patients were
- 14 identified in this review. In addition, one
- 15 patient with small-cell lung cancer was also
- 16 excluded from this analysis. Overall, this
- 17 represents a rate of ineligibility of only 4.3
- 18 percent.
- 19 [Slide]
- 20 The Kaplan-Meier curve shows the overall
- 21 survival for all eligible patients in this study.
- 22 In yellow we see the RSR13-treated patients and in

- 1 red the control arm. The median survival in the
- 2 control was 4.4 months and in the RSR13 arm was 5.4
- 3 months. This represents a hazard ratio of 0.7 by
- 4 unadjusted log-rank, and when these results were
- 5 updated with an additional follow-up of a year the
- 6 hazard ratio is consistent with the initial
- 7 analysis.
- 8 [Slide]
- 9 In the population of eligible lung
- 10 cancer/breast cancer patients, which is the
- 11 co-primary population for analysis, the median
- 12 survival in the control arm was 4.4 months with an
- 13 improvement of 38 percent, and a median survival of
- 14 6 months in the RSR13-treated patients. By
- 15 log-rank this is a hazard ratio of 0.81 with a p
- 16 value of 0.07. When these results were updated
- 17 with an additional follow-up of a year the hazard
- 18 ratio is consistent with a p value of 0.05. In
- 19 yellow we see the RSR13-treated patients and in red
- 20 the control arm, with an early separation of the
- 21 curves and separation through the median.
- 22 [Slide]

1 The protocol and the SAP specified the

- 2 conduction of a Cox multiple regression analysis
- 3 that had 17 prespecified covariates. Of the 17
- 4 covariates, 7 were found to be predictive of
- 5 outcome in RT-09, and they are listed here. Those
- 6 7 covariates are KPS, extent of extracranial
- 7 disease, prior brain resection, primary site, age,
- 8 gender and baseline hemoglobin. When all 17
- 9 covariates are incorporated in the model as
- 10 described in the SAP, the hazard ratio shows a 22
- 11 percent reduction in the risk of death in favor or
- 12 the RSR13-treated patients, with a p value of 0.01.
- 13 [Slide]
- 14 In the eligible lung cancer/breast cancer
- 15 co-primary population the same analysis was
- 16 conducted following the SAP. The covariates that
- 17 were predictive of outcome in this population were
- 18 KPS, extent of extracranial disease, prior
- 19 resection, age and gender. When all 17 covariates
- 20 are incorporated in the analysis the hazard ratio
- 21 shows a 24 percent reduction in the risk of death,
- 22 with a p value of 0.017.

- 1 [Slide]
- 2 In addition, to confirm the results of the
- 3 Cox, we ran a stratified log-rank survival
- 4 analysis, including in this analysis the three
- 5 strongest covariates detected in the study. Those
- 6 are KPS, prior resection and extent of extracranial
- 7 disease. When this analysis was done in all
- 8 patients a hazard ratio of 0.81 is found including
- 9 all three covariates, with a p value of 0.037. In
- 10 the non-small cell lung cancer/breast cancer
- 11 population the incorporation of just one covariate
- 12 in the stratified log-rank shows a hazard ratio of
- 13 0.78, with a p value of 0.029.
- 14 [Slide]
- 15 Let me emphasize the results in the
- 16 eligible non-small cell lung cancer/breast cancer
- 17 co-primary population. In this population we saw
- 18 by unadjusted log-rank a hazard ratio of 0.81 with
- 19 the corresponding p value of 0.07. The Cox showed
- 20 a 24 percent reduction in the risk of death with a
- 21 p value of 0.017. At this point the logical thing
- 22 to do was to look at the outcome of these two very

- 1 distinctive tumor types separately.
- 2 That is, indeed what we did. In the
- 3 eligible non-small cell lung cancer patients the
- 4 log-rank showed a hazard ratio of 0.97 with the
- 5 Cox showing a hazard ratio of 0.90. In contrast, a
- 6 large treatment effect was observed in the eligible
- 7 breast cancer patients with a hazard ratio of 0.51
- 8 by log-rank and a hazard ratio very consistent with
- 9 log-rank of 0.51 by Cox, both very consistent with
- 10 each other.
- 11 Let me emphasize that the eligible
- 12 patients with breast cancer do not represent an
- 13 arbitrary subset. They are the result of a logical
- 14 analysis of the result that we encountered in a
- 15 co-primary population of lung cancer, breast cancer
- 16 patients.
- 17 [Slide]
- 18 This slide shows the overall Kaplan-Meier
- 19 survival curve for the eligible breast cancer
- 20 patients. The median survival in the control arm
- 21 was 4.5 months and in the RSR13 the survival was
- 22 doubled, to 9 months. By log-rank, as we recently

- 1 reviewed, this shows a hazard ratio of 0.51 and by
- 2 Cox the same hazard ratio with all 17 covariates
- 3 included in the analysis. In yellow we see the
- 4 RSR13-treated patients and in red the control arm.
- 5 There is an early separation of the curves; clear
- 6 separation of the curves through the median and a
- 7 much larger number of long-term survivors in the
- 8 RSR13 arm.
- 9 [Slide]
- In fact, we looked at the time of the
- 11 original analysis of the study for patients with a
- 12 survival of at least 12 months from randomization
- 13 and this is what we encountered. Five patients in
- 14 the control arm had survived these 12 months. Of
- 15 these, 3 had died at the time of the analysis. In
- 16 contrast, 11 patients in the RSR13 arm had survived
- 17 at least 12 months from randomization and of these
- 18 9 were still alive at the time of the analysis. I
- 19 would like to emphasize that all the survivors in
- 20 the RSR13 arm had from adequate to excellent
- 21 performance status.
- 22 [Slide]

1 As I mentioned earlier, RT-09 was updated

- 2 with an additional follow-up of a year. Therefore,
- 3 we looked at all the breast cancer patients, in
- 4 this case with a minimum potential follow-up of 18
- 5 months by arm, and the results are shown here.
- 6 Each number represents an individual patient.
- 7 Those in white are patients that died at the time
- 8 of the analysis; those in yellow are patients that
- 9 are still alive. There were 7 patients in the
- 10 control arm that survived at least 18 months. Two
- 11 of these had died at the time of the analysis. In
- 12 contrast, there were 15 patients in the RSR13 arm
- 13 that were alive a minimum of 18 months from
- 14 randomization. Of those, all those in yellow were
- 15 still alive with survivals ranging from 18.5 months
- 16 to almost 40 months, and there were 7 patients in
- 17 this column and 2 in this column with survivals in
- 18 excess of 2 years.
- 19 [Slide]
- 20 I will now focus on the secondary
- 21 endpoints. Let me first point out that by
- 22 statistical analysis planned the secondary

1 endpoints were to be analyzed in all randomized

- 2 patients.
- 3 [Slide]
- 4 Response rate in the brain defined per
- 5 protocol which is, in our view, the most important
- 6 secondary endpoint of the study considering that
- 7 RSR13 focuses on improving local therapy in the
- 8 brain, is shown here. There was an 8 percent
- 9 difference in the response rate for all patients in
- 10 favor of RSR13. There was a 12 percent, and
- 11 statistically significant improvement in response
- 12 rate in the lung/breast co-primary population.
- 13 There was a 23 percent, statistically significant
- 14 improvement in response rate in the breast cancer
- 15 patients in the study. Let me emphasize that all
- 16 those responses were determined by independent
- 17 radiologists.
- 18 [Slide]
- 19 RT-09 did not mandate confirmation of
- 20 response. Advice given at the time the protocol
- 21 was signed considered this impractical in a
- 22 population of brain metastases patients.

- 1 Therefore, we conducted an analysis that is not
- 2 planned in the protocol in patients that had a
- 3 follow-up CAT scan or MRI and minimum of 4 weeks
- 4 from the initial determination of response. We
- 5 defined that as confirmed response rate and the
- 6 results are shown here. There was an 8 percent
- 7 difference in the rate of confirmed responses in
- 8 favor of the RSR13-treated arm. There was a 9
- 9 percent advantage in the rate of confirmed
- 10 responses in the RSR13 arm in the lung/breast
- 11 co-primary population, and there was a 22 percent
- 12 difference in the confirmed response rate between
- 13 the RSR13 and the control breast cancer patients.
- 14 [Slide]
- In addition, we tried to explore the
- 16 impact of response and survival. We looked at
- 17 responders and non-responders at 3 months and what
- 18 their subsequent survival was, and the results are
- 19 shown here. For patients that had a PR or CR on
- 20 the 3-month scan, thus survival for those patients,
- 21 was an additional 7.8 months. For non-responders,
- 22 progressive disease and stable disease at the

1 3-month scan, those patients had an additional

- 2 median survival of 5.2 months.
- 3 [Slide]
- We then compared the response rate at 3
- 5 months between the arms and those results are shown
- 6 here. In all patients there was a 7 percent
- 7 difference in favor of the RSR13-treated patients.
- 8 In the lung/breast co-primary population there was
- 9 a 10 percent difference in favor of the
- 10 RSR13-treated patients. In the breast cancer
- 11 patients there was a 13 percent difference in favor
- 12 of the RSR13-treated patients.
- 13 [Slide]
- 14 Additional secondary endpoints for all
- 15 patients are shown here. There was no difference
- 16 in quality of life by KPS or Spitzer questionnaire,
- 17 cause of death, time to clinical or radiologic
- 18 progression between the two arms.
- 19 [Slide]
- In the breast cancer patients there was a
- 21 significantly higher percentage of patients with
- 22 stable or improved KPS at 3 months or stable or

- 1 improved Spitzer questionnaire at 3 months in the
- 2 RSR13 arm. There was no difference in cause of
- 3 death, time to clinical or radiologic progression
- 4 between the arms.
- 5 [Slide]
- 6 Clearly, we observed in this study a
- 7 different treatment effect of RSR13 in breast
- 8 cancer patients and lung cancer patients. This
- 9 difference could be due to many factors, some of
- 10 which are summarized here and they include
- 11 biological differences between these two very
- 12 different tumor types; different growth rates; and
- 13 differences in efficacy of they for extracranial
- 14 disease in these two tumor types. One thing we
- 15 observed is that there are body weight differences
- in the distribution of high weight/low weight
- 17 patients between the arms and this may have
- 18 influenced the pharmacokinetics of RSR13,
- 19 specifically maximal concentration in the red
- 20 cells.
- 21 [Slide]
- 22 As we see here, when we classify patients

1 based on body weight, the RSR13-treated patients by

- 2 primary site and gender, we can see that the
- 3 majority of lung cancer patients are in the low
- 4 weight category independent of gender, and less
- 5 than half of the patients with breast cancer are in
- 6 the low weight category.
- 7 [Slide]
- 8 We then studied the pharmacokinetics of
- 9 RBC by body weight, tumor type and dose,
- 10 specifically RSR13 RBC concentration which is the
- 11 key parameter because this is the site of action
- 12 of RSR13, and we observed that patients in the lung
- 13 cancer low weight category that received 75 mg/kg
- 14 has a lower median concentration in the red cell
- 15 than any of the other groups studied. If you
- 16 remember from Dr. Kavanaugh's presentation, this
- 17 median concentration in the red cell will be below
- 18 what would be expected to generate the desired
- 19 pharmacodynamic effect through RSR13.
- 20 [Slide]
- 21 Let me summarize the efficacy data before
- 22 we review the safety results. We saw significant

- 1 reduction in the risk of death in the prespecified
- 2 co-primary populations by Cox multiple regression.
- 3 We saw an improvement in response rate and a 38
- 4 percent improvement in the median survival time in
- 5 the eligible lung cancer/breast cancer co-primary
- 6 population. In the eligible breast cancer patients
- 7 we saw an improvement in response rate; a
- 8 clinically meaningful improvement in survival with
- 9 a doubling of the median survival; and a higher
- 10 number of long-term survivors in the RSR13 arm.
- 11 [Slide]
- 12 Let me review the safety profile of RSR13,
- 13 focusing on the result of RT-09.
- 14 [Slide]
- First let me say that more than 500
- 16 patients to date have received RSR13 as an adjunct
- 17 to radiation therapy in a series of Phase 1, 2 and
- 18 3 studies that are listed in this slide. These
- 19 patients have received anywhere from 2-32 doses of
- 20 RSR13 and a dose of RSR13 has been up to 100 mg/kg.
- 21 [Slide]
- One important point is the issue of

- 1 hypoxemia which is the most characteristic adverse
- 2 event related to the use of RSR13. If you recall,
- 3 the CTC grading scale defines supplemental oxygen
- 4 as a grade 3 toxicity. By protocol, all these
- 5 patients were on supplemental oxygen, therefore, we
- 6 had to design a hypoxemia grading scale that was
- 7 adequate for these studies, and that is shown here.
- 8 This scale uses the length of oxygen
- 9 supplementation, the flow of oxygen required, and
- 10 the presence or absence of symptoms or requirement
- 11 for hospitalization to grade high hypoxemia. It is
- 12 important to point out that grade 4 hypoxemia in
- 13 this grading scale is the use of CPAP or mechanism
- 14 ventilation and that is identical to the CTC scale.
- 15 Of note, there were no grade 4 hypoxemic adverse
- 16 events in RT-09.
- 17 [Slide]
- This slide shows treatment-emergent
- 19 adverse events that occurred in at least 20 percent
- 20 of the patients in RT-09, all patients by arm and
- 21 the breast cancer patients by arm. The ones
- 22 highlighted in yellow are those that were

1 significantly higher in the RSR13-treated patients

- 2 and they include headache, nausea, hypoxemia,
- 3 vomiting and infusion symptoms. However, the
- 4 majority of adverse events were grade 1 and 2.
- 5 [Slide]
- 6 This table lists the grade 3 adverse
- 7 events that occurred in more than 5 percent of the
- 8 patients, once again by arm and in the breast
- 9 cancer patients by arm. The most frequent grade 3
- 10 adverse event in all patients receiving RSR13 was
- 11 hypoxemia, with 11 percent. Let me emphasize that
- 12 hypoxemia does not mean hypoxia in this setting.
- 13 This is either low saturation, longer requirement
- 14 for oxygen or need for more than 4 L of oxygen to
- 15 maintain saturation, or one of the other factors
- 16 defined in the scale. This is not tissue hypoxia.
- 17 The most common grade 3 adverse event in the breast
- 18 cancer patients were nausea and vomiting, at 8
- 19 percent each.
- 20 [Slide]
- 21 Grade 4 adverse events were even less
- 22 common. These are grade 4 AEs that occurred in

1 more than 2 patients by arm and in the breast

- 2 cancer patients.
- 3 [Slide]
- 4 Further emphasizing the role of RSR13
- 5 adverse events, we reviewed the drug-related grade
- 6 4 adverse events in RT-09 by primary tumor type.
- 7 There were no grade 4 drug-related adverse events
- 8 in the breast cancer patients treated in RT-09.
- 9 [Slide]
- 10 Regarding hypoxemia, only 11 percent of
- 11 the patients treated in RT-09 had a grade 3
- 12 hypoxemia adverse event. Of these, 73 percent were
- 13 asymptomatic. Hypoxemia was self-limited and
- 14 easily managed with supplemental oxygen in all
- 15 patients.
- 16 [Slide]
- 17 To summarize the safety, we have data from
- 18 535 patients that indicate that RSR13 is safe in
- 19 cancer patients receiving radiation therapy. We
- 20 saw a very low incidence of grade 3-4 adverse
- 21 events in a heavily pre-treated population of
- 22 cancer patients in RT-09. All Adverse events in

1 RT-09 resolved within the 1-month follow-up period

- 2 and were easily managed with supportive care.
- 3 Hypoxemia associated with RSR13 is self-limited;
- 4 requires only supplemental oxygen and is
- 5 asymptomatic in the majority of the patients.
- 6 [Slide]
- 7 At this point, I would like to turn to the
- 8 microphone over to Dr. Paul Bunn. Dr. Bunn is
- 9 Professor and Director of the University of
- 10 Colorado Comprehensive Cancer Center and he will
- 11 provide some concluding remarks. Dr. Bunn?
- 12 Conclusions
- DR. BUNN: Thank you, Pablo. ODAC
- 14 members, FDA staff and guests, as a clinician who
- 15 sees many patients with brain metastases, I am
- 16 pleased to share my views on these studies and
- 17 their results.
- 18 [Slide]
- 19 Clearly, brain metastases are associated
- 20 with disabling symptoms and short survival in these
- 21 patients. This is an unmet need. Having enrolled
- 22 538 patients, this study represents the largest

1 randomized, controlled study of its kind.

- 2 [Slide]
- 3 As shown in this slide, the survival in
- 4 the non-small cell lung cancer and breast cancer
- 5 prespecified co-primary population was superior in
- 6 the RSR13-treated patients, with a median of 6
- 7 months in the treated group compared to 4.4 months
- 8 in the control group. This survival represents a
- 9 19 percent reduction in the hazard ratio of death
- 10 by log-rank and 23 percent by Cox multiple
- 11 regression analysis, with corresponding p values of
- 12 p equals 0.07 and 0.02 respectively.
- I would note as a clinician that the
- 14 log-rank p value in the final analysis with 12
- 15 months of additional follow-up is 0.05. In my
- 16 opinion, not the statistician's, this represents
- 17 the most important data as it has the most events.
- 18 I would also note that the magnitude of the hazard
- 19 rate reductions are comparable to those induced by
- 20 approved cancer therapies, including
- 21 cisplatin-based chemotherapy for non-small cell
- 22 lung cancer. Thus, I consider this study to be

1 positive in this prespecified co-primary group of

- 2 patients.
- 3 When the data were analyzed in the
- 4 non-small cell lung cancer and breast cancer
- 5 populations separately it became evident that the
- 6 breast cancer patients had the greatest survival
- 7 benefit, with a median survival of 9 months in
- 8 RSR13-treated patients compared to 4.5 months in
- 9 control patients. Breast cancer patients also
- 10 benefited the most in the secondary analyses, with
- 11 statistically significant increases in objective
- 12 response rate, performance status, Spitzer
- 13 questionnaire and fraction of patients alive at 12,
- 14 18 and 24 months. Obviously, breast cancer alone
- 15 subset was not prespecified other than by
- 16 stratification but garnered the most benefit.
- 17 With a positive survival benefit for the
- 18 lung/breast cancer co-primary population, but most
- 19 of the advantage in breast cancer patients, would
- 20 it be best to approve RSR for both types of
- 21 patients or for breast cancer patients alone? This
- 22 is why we have ODAC and this is your decision.

- 1 Personally, I would vote for approval of the
- 2 prespecified lung/breast cancer patient co-primary
- 3 population.
- 4 However, given the fact that the results
- 5 in the prespecified population were largely driven
- 6 by breast cancer patients, I would feel comfortable
- 7 voting for approval in breast cancer patients
- 8 alone. I say this because of the huge efficacy
- 9 benefit in breast cancer patients produced by RSR13
- 10 combined with an acceptable safety profile in a
- 11 heavily pre-treated population.
- 12 At this time I will turn the podium to Dr.
- 13 Cagnoni for questions.
- DR. PRZEPIORKA: We will hold the
- 15 questions until after the FDA presentation. Dr.
- 16 Ridenhour?
- 17 FDA Presentation
- 18 Clinical Review
- DR. RIDENHOUR: Good afternoon.
- 20 [Slide]
- 21 My name is Kevin Ridenhour and I will
- 22 present to you the results of the clinical review

- 1 for this NDA.
- 2 [Slide]
- 3 All of these individuals assisted with the
- 4 review process. The presenters for the FDA are
- 5 highlight. Following my report on the clinical
- 6 portion of this NDA, Dr. Sridhara will discuss the
- 7 statistical issues.
- 8 [Slide]
- 9 I will briefly cover the regulatory
- 10 background of RSR13 and describe the two trials
- 11 submitted to support this NDA. I will then discuss
- 12 the findings from study RT-008. The remainder of
- 13 the discussion will focus on the RT-009 study.
- 14 [Slide]
- The applicant's proposed indication for
- 16 RSR13 is as adjunctive therapy to whole brain
- 17 radiation for the treatment of brain metastases
- 18 originating from breast cancer.
- 19 [Slide]
- 20 In June, 1995 the IND for RSR13 was first
- 21 submitted. In June, 2003 we discussed with the
- 22 applicant our concerns regarding the lack of a

- 1 survival benefit in RT-009 and our concerns with
- 2 their subgroup analysis. In July, 2003 the
- 3 pharmacology data was submitted as the first
- 4 component of the NDA. In December, 2003 the
- 5 clinical and statistical components were received
- 6 finalizing the NDA submission.
- 7 [Slide]
- 8 The two clinical trials submitted to
- 9 support this NDA are RT-009 and RT-008. RT-009 was
- 10 a randomized, open-label study of standard whole
- 11 brain radiation therapy and oxygen, with or without
- 12 RSR13, in patients with brain metastases. There
- were 267 patients on the control arm and 271
- 14 patients on the RSR13 arm.
- 15 RT-008 was a single-arm study of RSR13
- 16 administered to patients receiving standard whole
- 17 brain radiation therapy with oxygen for brain
- 18 metastases. There were 69 patients in this study.
- 19 [Slide]
- 20 In RT-009 patients on the RSR13 arm
- 21 received 100 or 75 mg/kg through central
- 22 intravenous infusion over 30 minutes daily within

1 30 minutes of whole brain radiation therapy. Whole

- 2 brain radiation therapy was given as 30 Gy in 10
- 3 fractions.
- 4 Patients on the control arm received whole
- 5 brain radiation therapy given as 30 Gy in 10
- 6 fractions and at least 4 L/minute of supplemental
- 7 oxygen was given to both arms 35 minutes prior to,
- 8 during and for at least 15 minutes after the
- 9 completion of whole brain radiation therapy.
- 10 [Slide]
- 11 The primary endpoint in RT-009 was
- 12 survival in the overall population as described in
- 13 the original protocol and subsequent versions.
- 14 With the second protocol amendment the applicant
- 15 provided the description for an analysis to be done
- in the non-small cell lung/breast co-population.
- 17 Dr. Sridhara will also discuss these analyses
- 18 further in her presentation. Secondary endpoints
- 19 included time to radiographic and clinical
- 20 progression in the brain, response rate in the
- 21 brain, cause of death and quality of life.
- 22 [Slide]

1 The major eligibility criteria were a

- 2 Karnofsky Performance Status greater than or equal
- 3 to 70, radiographic studies consistent with brain
- 4 metastases, resting and exercise Sp0-2 greater than
- 5 90 percent on room air. Concurrent steroid therapy
- 6 was allowed, and the presence of a cytologically
- 7 confirmed primary malignancy. Patients with small
- 8 cell carcinoma, germ cell tumors and lymphomas were
- 9 excluded. In addition, patients with
- 10 leptomeningeal spread were also excluded.
- 11 [Slide]
- 12 This slide illustrates the even
- 13 distribution of tumor histology across both
- 14 treatment arms. Non-small cell lung cancer was the
- 15 most predominant type, followed by breast and other
- 16 subgroup, mostly melanoma, colorectal and renal
- 17 cell carcinoma.
- 18 [Slide]
- 19 In the overall population the distribution
- 20 of post-randomization systemic treatment types
- 21 appear even between both study arms.
- 22 [Slide]

	1	But	in	the	breast	subgroup	subsequent
--	---	-----	----	-----	--------	----------	------------

- 2 exposure to radiation therapy, chemotherapy and
- 3 hormonal therapy appeared slightly more frequent on
- 4 the RSR13 arm.
- 5 [Slide]
- 6 The number of brain lesions appeared to be
- 7 fairly well distributed in the overall population
- 8 between the control arm and the RSR13 arm.
- 9 [Slide]
- 10 However, within the breast cancer subgroup
- 11 a higher proportion of patients with 3 or more
- 12 brain lesions was noted in the control arm. The
- 13 distribution of patients with only 1 brain lesion
- 14 was greater on the RSR13 arm. This suggests the
- 15 presence of a greater tumor burden in breast cancer
- 16 patients on the control arm which may have
- 17 influenced outcome.
- 18 [Slide]
- 19 I will now summarize the efficacy results
- 20 for RT-009. There was no survival advantage
- 21 demonstrated in the overall population or in the
- 22 non-small cell lung/breast co-population. These

1 were the two prespecified populations for analysis

- 2 defined in the protocol. After analysis of their
- 3 data, the applicant is claiming a survival
- 4 advantage in a non-prespecified breast cancer
- 5 subgroup which we consider exploratory at this
- 6 time. Again, Dr. Sridhara will also discuss this
- 7 further during her presentation.
- 8 [Slide]
- 9 As previously discussed, one of the
- 10 secondary endpoints was response rate in the brain.
- 11 In response to a query from the FDA during the
- 12 review process, the applicant stated that
- 13 confirmation of response was not required for
- 14 RT-009. However, the applicant provided estimates
- of confirmed responses and this was done by
- 16 comparing the response of the first scan taken
- 17 after the dose response to the best response. If
- 18 the response was the same as best response, the
- 19 response was considered confirmed. This is
- 20 demonstrated under the confirmed column on this
- 21 slide. Whether you look at total versus confirmed
- 22 responses between treatment groups, there is a

1 trend in response rate that favors the RSR13 arm

- 2 but it is not statistically significant. The
- 3 confidence intervals do overlap.
- 4 [Slide]
- 5 This slide illustrates distribution of
- 6 neurologic and non-neurologic causes of death.
- 7 These findings show that the majority of patients
- 8 with brain metastases died of non-neurologic
- 9 causes, causes that were not influenced by RSR13.
- 10 The results are a large number of indistinguishable
- 11 causes of death.
- 12 [Slide]
- 13 As expected, most patients on both
- 14 treatment arms received steroids. The distribution
- of steroid use was comparable between both
- 16 treatment arms.
- 17 [Slide]
- 18 In addition to the fact that most patients
- 19 that did not die of neurologic causes, we have the
- 20 following concerns regarding the relevance of the
- 21 response assessment.
- 22 Given that there is no apparent advantage in

- 1 response rate in the brain with RSR13, whole brain
- 2 radiation and oxygen versus whole brain radiation
- 3 and oxygen, there does not appear to be a
- 4 contribution of RSR13 to tumor response. More than
- 5 90 percent of patients in both arms received
- 6 steroids, and response duration cannot be assessed
- 7 since confirmatory imaging studies were not
- 8 required. Also, the designation of complete
- 9 response and partial response was given
- 10 irrespective of the appearance of a new brain
- 11 lesion.
- 12 [Slide]
- 13 As for the other secondary endpoints, the
- 14 applicant found no statistically significant
- 15 difference between the control arm and RSR13 arm in
- 16 time to radiographic tumor progression introduction
- 17 he brain, time to clinical tumor progression in the
- 18 brain and quality of life.
- 19 [Slide]
- 20 RT-008 was a single-arm study with 69
- 21 patients given RSR13 and whole brain radiation
- 22 therapy with oxygen. This included mostly patients

- 1 with lung cancer and breast cancer. The median
- 2 survival was reported as 6.4 months but in a
- 3 single-arm study it is difficult to interpret time
- 4 to event points such as survival. Response rate in
- 5 the brain was 29 percent. However, in a setting
- 6 where patients received RSR13, oxygen and radiation
- 7 the relevance of this response rate is difficult to
- 8 interpret.
- 9 [Slide]
- Moving on to safety in RT-009, RSR13
- 11 exposure was similar between the overall population
- 12 and non-small cell lung/breast co-population.
- 13 Radiation exposure was also similar between the
- 14 overall population and non-small cell lung/breast
- 15 co-population. The FDA was able to reproduce the
- 16 applicant's analyses for RSR13 and radiation
- 17 exposure.
- 18 [Slide]
- 19 As for oxygen exposure, patients on the
- 20 RSR13 arm appeared to have received a longer
- 21 duration of oxygen therapy than patients on the
- 22 control arm. We should note again that oxygen is

- 1 hypothesized to be a modifier of the biologic
- 2 effect of ionizing radiation and, as noted in the
- 3 slide for oxygen exposure, some of the extreme
- 4 values observed for the duration of oxygen
- 5 delivered beyond 24 hours could be related to
- 6 hypoxia exacerbated by RSR13, requiring prolonged
- 7 oxygen delivery.
- 8 [Slide]
- 9 The treatment-emergent adverse events
- 10 shown on this slide occurred with more frequency on
- 11 the RSR13 arm. Of specific interest are hypoxemia,
- 12 41 percent RSR versus 4 percent control;
- 13 hypotension, 13 percent RSR versus 1 percent
- 14 control; and vomiting, 38 percent RSR versus 17
- 15 percent control.
- 16 [Slide]
- 17 This slide shows the most common grade 3
- 18 and 4 adverse events. Again, hypoxemia was more
- 19 common on the RSR13 arm. There are also more cases
- 20 of acute renal failure seen on the RSR13 arm.
- 21 [Slide]
- In conclusion, there was no survival

1 advantage demonstrated for the RSR13 arm versus the

- 2 control arm in RT-009. There was no advantage
- 3 demonstrated for RSR13 versus control in secondary
- 4 endpoints. The most common adverse events included
- 5 hypoxemia, hypotension, nausea, vomiting and
- 6 headache. Severe adverse events also included
- 7 acute renal failure.
- 8 The exploratory analysis demonstrating a
- 9 survival advantage in the breast cancer subgroup,
- 10 consisting of 60 patients on the RSR13 arm and 55
- 11 patients on the control arm, is being further
- 12 evaluated by the applicant in a randomized study.
- 13 [Slide]
- 14 Now Dr. Sridhara will discuss the
- 15 statistical issues of this NDA. Thank you.
- 16 Statistical Review
- DR. SRIDHARA: Thank you, Dr. Ridenhour.
- 18 Good afternoon. I am Rajeshwari Sridhara,
- 19 statistical reviewer of this application.
- 20 [Slide]
- In this presentation I will be focusing
- 22 only on the efficacy results of the confirmatory

- 1 registration study, RT-009. There are three major
- 2 areas of concern in this application. They are
- 3 overall finding, subgroup findings and multiplicity
- 4 issues. I will present the concerns in each of
- 5 these areas in the following slides.
- 6 [Slide]
- 7 First with respect to overall finding,
- 8 evidence of efficacy has not been established.
- 9 Multiple analyses have been conducted and there
- 10 appears to be a lack of internal consistency in the
- 11 results.
- 12 [Slide]
- 13 Regarding the evidence of efficacy as
- 14 presented by the applicant, the median survival was
- 15 4.5 months and 5.3 months respectively in the
- 16 control whole brain radiation arm and the treatment
- 17 arm with RSR13 followed by radiation. Of note, the
- 18 study RT-009 was designed with an estimated median
- 19 survival of 4.5 7 months in the control arm. The
- 20 study was adequately powered to detect a difference
- of 1.6 months in median survival in the overall
- 22 study population. As presented here, there was no

1 statistically significant difference between the

- 2 two treatment arms.
- 3 [Slide]
- The two sets of results presented in the
- 5 previous slide correspond to the first one which
- 6 refers to the data submitted at the time of
- 7 application to the agency, which had a data cutoff
- 8 date of January, 2003. Subsequently, the applicant
- 9 submitted updated survival data in March of 2004
- 10 which included updates up to January, 2004. Also,
- it should be noted that the p values presented here
- 12 are not adjusted for multiple looks of the data and
- 13 these p values, as such, should not be compared to
- 14 0.05.
- 15 [Slide]
- 16 The applicant has conducted numerous
- 17 adjusted analyses, adjusting for many covariates
- 18 using Cox regression models. These adjusted
- 19 analyses can only be considered as supportive when
- 20 the overall unadjusted finding is positive. As
- 21 stated in the ICH-E9 guidelines, in most cases
- 22 subgroup analyses are exploratory and should be

1 clearly identified as such. They should explore

- 2 the uniformity of any treatment effects found
- 3 overall.
- 4 [Slide]
- 5 The applicant had clearly stated that the
- 6 primary analysis would be based on unadjusted
- 7 log-rank test and, in fact, had identified both in
- 8 the protocol and subsequent statistical analysis
- 9 plan that the adjusted analyses would be considered
- 10 only as exploratory. The quote from the
- 11 applicant's statistical plan reads as follows,
- 12 "while designated prospectively, supporting
- 13 analyses should be considered exploratory in
- 14 nature, and inferences made based on p values
- 15 should be done so with caution. Primary reasons
- 16 for exploratory analyses are for estimation rather
- 17 than hypothesis testing."
- 18 [Slide]
- 19 The applicant had stated in the original
- 20 protocol and its amendments under the section
- 21 "survival" that, "RPA class of primary cancer and
- 22 other important covariates, such as primary tumor

- 1 control, age, presence of extracranial metastases,
- 2 baseline KPS and number of metastatic lesions will
- 3 be included in a multivariate Cox model, along with
- 4 the treatment to test the relative importance of
- 5 these factors for survival."
- 6 [Slide]
- 7 These covariates are listed as protocol
- 8 covariates in this table. Subsequently, the
- 9 applicant included the 18 covariates listed in this
- 10 table under SAP covariates in their final
- 11 statistical analysis plan under the section of
- 12 covariates and significance, with a comment that
- 13 these are exploratory in nature and the primary
- 14 reason for such analyses were for estimation and
- 15 not hypothesis testing.
- 16 [Slide]
- 17 Here I will present results of one such
- 18 exploratory model. In this exploratory model I
- 19 have included the protocol-specified exploratory
- 20 analysis with the evaluating covariates, RPA Class
- 21 I versus II; site of primary breast and non-small
- 22 lung cancer; primary control, yes/no; age group

- less than 65 versus greater than or equal to 65;
- 2 presence of extracranial metastases, yes versus no;
- 3 KPS group more than 90 versus less than 90; and the
- 4 number of brain lesions, single versus multiple.
- 5 It should be recognized that in
- 6 determining the RPA class for a given patient KPS,
- 7 age, whether or not primary was controlled and
- 8 extracranial metastases were present or not were
- 9 considered and these factors are likely to be
- 10 correlated.
- 11 [Slide]
- 12 This table lists the results of analysis
- 13 of data submitted at the time of the application
- 14 and analysis of updated survival data. Within each
- 15 of these data time points two sets of data have
- 16 been analyzed. One data set consists of all
- 17 patients as randomized and the second data set
- 18 consists of only eligible patients.
- 19 The applicant, in their statistical plan
- 20 which was finalized after the completion of
- 21 enrollment, had stated that these adjusted analyses
- 22 would be conducted in eligible patients. Hence,

- 1 analyses in both data sets are presented here.
- 2 None of the analyses presented here demonstrated a
- 3 statistically significant treatment effect, as seen
- 4 in this table.
- 5 The applicant has conducted Cox regression
- 6 analyses including 17 of the 18 covariates that
- 7 were added in the final statistical analysis plan.
- 8 The applicant has submitted 48 Cox regression
- 9 models with the same 17 covariates, but varying
- 10 some covariates between a continuous variable and a
- 11 dichotomous variable. For example, two models are
- 12 considered, one with age as a continuous variable
- 13 and another with age as two groups, less than 65
- 14 years versus more than 65 years. None of these
- 15 models were adjusted for multiple analyses.
- 16 [Slide]
- 17 In summary regarding the overall finding,
- 18 the single, randomized RT-009 study conducted in
- 19 patients with brain metastases does not demonstrate
- 20 substantial evidence of benefit with respect to
- 21 survival in the overall randomized study
- 22 population.

T [DIIGE	[Slide]
----------	---------

- 2 The second area of concern is subgroup
- 3 findings. I will be presenting results from two
- 4 subgroups, namely, non-small lung cancer/breast
- 5 primary subgroup which was added on as a co-primary
- 6 hypothesis during the course of the study, and the
- 7 second subgroup of patients with breast cancer
- 8 primary, which was a post hoc data-dependent
- 9 exploratory subgroup analysis.
- 10 The reason given by the applicant to have
- 11 a co-primary hypothesis in the subgroup of
- 12 non-small cell lung cancer/breast primary patients
- 13 was that this subgroup was a large homogenous
- 14 subgroup. Also, with the addition of this
- 15 co-primary, the protocol was amended so that the
- 16 type-1 error rate was adjusted using a modified
- 17 Bonferroni procedure in order to maintain an
- 18 overall type-1 error rate of 0.05.
- 19 [Slide]
- The results of comparison of survival
- 21 distributions in the subgroup of lung/breast
- 22 primary patients are presented in this slide.

1 Again, two sets of analyses were conducted with the

- 2 data submitted at the time of the application with
- 3 the updated data. In both analyses the median
- 4 estimated survival was 4.5 months in the control
- 5 arm and 5.9 months in the RSR13 arm. There was no
- 6 statistically significant difference between the
- 7 control and the RSR13 in both analyses.
- 8 The applicant submitted earlier data on
- 9 eligible patients only. The protocol specified
- 10 that the primary analysis in the overall
- 11 population, as well as in the lung/breast primary
- 12 subgroup would be conducted in all patients but the
- 13 Cox analysis would be done in eligible patients.
- 14 [Slide]
- In summary, the single, RT-009 study
- 16 conducted in patients with brain metastases does
- 17 not demonstrate substantial evidence of benefit
- 18 with respect to survival in the subgroup of
- 19 patients with lung or breast primary cancer. Once
- 20 gain, the p values listed here should not be
- 21 compared to 0.05.
- 22 [Slide]

1 The findings of the non-prespecified

- 2 subgroup with primary breast cancer has three major
- 3 problems, namely, absence of overall survival
- 4 benefit; a very small subgroup; and apparent
- 5 imbalances. I will go over each of these issues.
- 6 [Slide]
- 7 In the absence of overall survival
- 8 benefit, any subgroup advantage is questionable.
- 9 The ICH-E3 guidelines clearly state that these
- 10 analyses are not intended to salvage an otherwise
- 11 non-supportive study but may suggest hypotheses
- 12 worth examining in other studies.
- 13 [Slide]
- 14 The second issue of concern is that the
- 15 breast primary subgroup is a very small group with
- 16 a total of 115 patients representing only 21
- 17 percent of the study population, with 55 patients
- in the control arm and 60 patients in the RSR13
- 19 arm. Of these patients, 6 in the control arm and 2
- 20 in the RSR13 arm were ineligible according to the
- 21 protocol entry criteria. There was a total of 7
- 22 patients who were misclassified at randomized, 6

- 1 patients who died in less than 1 month after
- 2 randomization, and there were 6 patients in the
- 3 RSR13 arm who received up to 2 doses only of RSR13.
- 4 These patients continued further to receive
- 5 radiation as in the control arm.
- 6 [Slide]
- 7 Furthermore, some imbalances were observed
- 8 between the two treatment arms in some baseline
- 9 factors and post-therapy factors, as presented by
- 10 Dr. Ridenhour. Of those imbalances in a few
- 11 important factors are presented here. Although
- 12 none of these factors were individually
- 13 statistically significant, it is not plausible to
- 14 determine the collective influence of these
- 15 imbalances to the subgroup findings.
- 16 [Slide]
- 17 Although we considered this as an
- 18 exploratory analysis only, this slide presents the
- 19 breast subgroup finding. As presented by the
- 20 applicant with data as of the NDA submission, the p
- 21 value in this small subgroup of breast primary
- 22 patients was 0.006. However, with the updated

- 1 survival data submitted by the applicant in March
- of this year, the p value has diminished to 0.02.
- 3 Of course, we do have a problem in interpreting
- 4 these p values.
- 5 [Slide]
- 6 In summary regarding the subgroup of
- 7 patients with primary breast cancer, some
- 8 imbalances were observed and a true finding cannot
- 9 be isolated. There appears to be no robustness in
- 10 the subgroup finding. The p values presented in
- 11 all these analyses are not adjusted for
- 12 multiplicity and, at best, given the lack of an
- 13 overall finding, this subgroup finding is
- 14 exploratory and hypothesis generating.
- 15 [Slide]
- 16 The third major area of concern in this
- 17 application is multiplicity. There are three types
- 18 of multiplicity concerns. First, multiple
- 19 hypotheses were tested. The type-1 error rate was
- 20 only allocated for two hypotheses, one in the
- 21 overall population and the other in the lung/breast
- 22 subgroup. However, several hypotheses were tested.

1 Also, multiple analyses of the same hypothesis were

- 2 conducted at different times and different
- 3 analyses. Unadjusted and adjusted analyses were
- 4 conducted. Furthermore, multiple subgroups were
- 5 also examined. None of these analyses were
- 6 adjusted for multiplicity.
- 7 [Slide]
- 8 In this slide I would like to present some
- 9 important points to be considered when evaluating
- 10 results from a single study. it is known that
- 11 inherent variability may produce a positive trial
- 12 by chance alone. That is, a p or 0.05 implies that
- 13 1/40 studies of ineffective drugs will be positive.
- 14 The FDA guidance to industry also states
- 15 that it is critical that the possibility of an
- 16 incorrect outcome be considered and that all the
- 17 available data be examined for their potential to
- 18 either support or undercut reliance on a single
- 19 multicenter trial. Statistical persuasiveness can
- 20 only be verified by replication, especially when
- 21 the results under consideration are from a small
- 22 subgroup of patients.

1		Γ	S	Lί	de	1

- 2 Finally, here is a review of results
- 3 presented. The applicant has submitted results
- 4 from a randomized, controlled, open-label
- 5 multicenter single trial. The analyses of these
- 6 results do not demonstrate efficacy based on the
- 7 primary endpoint of overall survival both in the
- 8 overall population and in the subgroup of non-small
- 9 cell lung or breast primary patients. Also, no
- 10 significant benefit was observed in any of the
- 11 secondary efficacy endpoints.
- 12 [Slide]
- 13 The apparent survival benefit claimed by
- 14 the applicant in a small subset group of breast
- 15 cancer primary patients is questionable because of
- 16 imbalances possibly influencing treatment effect,
- 17 very small sample size from a single study, and
- 18 results of a post hoc exploratory analysis. Thank
- 19 you.
- 20 Questions to the FDA and the Sponsor
- DR. PRZEPIORKA: We will have questions to
- 22 the FDA and the sponsor. Dr. George?

- DR. GEORGE: I have a question for the
- 2 sponsor. The trial that was mentioned as ongoing,
- 3 randomized trial, did I miss something here? Did
- 4 you address that at all or could somebody tell us
- 5 what that is about?
- DR. CAGNONI: The question is about the
- 7 ongoing randomized trial. It is a randomized trial
- 8 in patients with breast cancer and brain
- 9 metastases.
- DR. GEORGE: Is it exactly like this one?
- DR. CAGNONI: It is a very similar study,
- 12 yes. It is focused on patients with breast cancer
- 13 and is very similar. Patients are randomized to
- 14 RSR13 and no RSR13. Both arms receive supplemental
- 15 oxygen and the primary endpoint is survival.
- DR. GEORGE: What is the target sample
- 17 size in that?
- DR. CAGNONI: It is 360 patients.
- DR. GEORGE: And where is it in its
- 20 conduct right now?
- 21 DR. CAGNONI: Twenty sites have been
- 22 initiated in the U.S. and Canada and patients are

- 1 being enrolled.
- DR. PRZEPIORKA: Dr. Mortimer?
- 3 DR. MORTIMER: I am just curious, in the
- 4 new study have you stratified for estrogen receptor
- 5 and HER2 status, and do we happen to know that in
- 6 this present study at all?
- 7 DR. CAGNONI: The ongoing study stratifies
- 8 by liver metastasis and KPS which were the two
- 9 strongest prognostic factors in RT-09, in addition
- 10 to resection which is not allowed in the current
- 11 study.
- DR. MORTIMER: Was HER2 known in RT-09?
- DR. CAGNONI: No, it was not.
- DR. MORTIMER: So, you don't know that it
- 15 is not a prognostic factor.
- DR. CAGNONI: There isn't a lot of
- 17 literature on the subject. The very little there
- 18 is out there doesn't seem to indicate that there is
- 19 a difference in survival in HER2-neu versus HER2
- 20 positive versus negative patients once they develop
- 21 brain metastases. What we do have from RT-09 is
- 22 the percentage of patients that received

1 trastuzumab after randomization, and those numbers

- 2 are roughly similar between the arms.
- 3 DR. PRZEPIORKA: Ms. Portis?
- 4 MS. COMPAGNI-PORTIS: Yes, considering
- 5 that that study is recruiting and accruing at this
- 6 time, why aren't we waiting for those results? Why
- 7 are we looking at this now?
- 8 DR. CAGNONI: We fully believe that the
- 9 data that we have presented today is sufficient for
- 10 approval of RSR13 in patients with breast cancer
- 11 and brain metastases. That study is in the process
- 12 of being initiated. It could take a very long
- 13 period of time to accrue 360 breast cancer
- 14 patients.
- MS. COMPAGNI-PORTIS: How long do you
- 16 think that will be?
- DR. CAGNONI: I can't speculate. I can
- 18 tell you that it took 29 months to enroll 115
- 19 breast cancer patients in the study we are
- 20 reviewing today.
- MS. COMPAGNI-PORTIS: Thank you.
- DR. PRZEPIORKA: Dr. D'Agostino?

1 DR. D'AGOSTINO: I don't want to stop the

- 2 discussion on the new study but I have a different
- 3 question. I am just a simple statistician from
- 4 Boston so maybe I am off but it seems to me like
- 5 the sponsor keeps claiming that they have
- 6 significant results, especially with the addition
- 7 of data, and the FDA does not. Could we have an
- 8 agreement? Is this significance on the overall in
- 9 the subset or is there not significance,
- 10 statistical significance?
- DR. PRZEPIORKA: If I can just rephrase
- 12 the question, is it true you have shown both in 008
- 13 and 009 that the median survival for the breast
- 14 cancer subgroup is doubled and significant?
- DR. D'AGOSTINO: Well, even in the
- 16 overall--there is a slide on page 28 and the p
- 17 values are 0.05 for overall survival in breast, and
- 18 I think somewhere there are also sheets that have
- 19 significance or other survival. My understanding
- 20 from what the FDA is saying and reading is that
- 21 there is not statistical significance with the
- 22 overall survival. Is that agreed upon?

1 DR. CAGNONI: If we could have the slide

- 2 up, it summarizes the analyses we conducted
- 3 following the SAP.
- 4 [Slide]
- 5 The SAP specified eligible patients, two
- 6 co-primary populations, and this shows the
- 7 lung/breast co-primary population median survival.
- 8 The original analysis is in white, 4.4 months for
- 9 the controls, 6 months for the RSR13. The hazard
- 10 ratio is 0.81, the p value is 0.07. By the
- 11 prespecified Cox multiple regression that was
- 12 conducted as the SAP described, the p value is
- 13 0.02.
- DR. D'AGOSTINO: But I thought the
- 15 prespecified analysis was an unadjusted log-rank
- 16 test.
- DR. CAGNONI: The primary analysis was
- 18 unadjusted log-rank, correct.
- DR. D'AGOSTINO: So, it is not the 0.02.
- DR. TEMPLE: But it says eligible up
- 21 there. That is where the difference comes I
- 22 believe.

- DR. CAGNONI: That is the difference.
- 2 DR. TEMPLE: It would be good if everybody
- 3 addressed that.
- DR. D'AGOSTINO: That is what I was going
- 5 to get to, are we dealing with different analyses
- 6 or are we dealing with different groups of
- 7 individuals?
- DR. TEMPLE: Different analyses, at least
- 9 in part.
- DR. PRZEPIORKA: Go ahead, Dr. Sridhara.
- 11 DR. SRIDHARA: The analysis that I
- 12 presented was in the ITT population. Those were
- 13 the p values that I was presenting both in the
- 14 overall population as well as in the non-small
- 15 cell/breast cancer population. The results that
- 16 you are seeing, both 0.07 and 0.05 in the non-small
- 17 cell lung/breast subgroup are based on eligible
- 18 patients only. Even so, we wouldn't consider that
- 19 as significant since we are not comparing with 0.05
- 20 since there are multiple hypotheses.
- 21 DR. D'AGOSTINO: So, in either sets of
- 22 data it is not significant.

- 1 DR. SRIDHARA: Correct.
- DR. TEMPLE: But the reasons are multiple.
- 3 It is important to tease them out. I think, Raji,
- 4 you are saying with two co-primary endpoints you
- 5 don't test at 0.05, you test at something smaller
- 6 but nobody is quite willing to say at what, I
- 7 gather. So, that is one issue.
- 8 The other issue is the intent-to-treat,
- 9 the all patients, or the eligible and that needs to
- 10 be discussed too. Does everyone agree that ITT was
- 11 the prespecified endpoint? Because, if that is so,
- 12 then that matters.
- DR. D'AGOSTINO: I was assuming somebody
- 14 else would pick it up but if nobody does, I would
- 15 like to.
- DR. TEMPLE: No, everybody needs to pick
- 17 it up.
- DR. D'AGOSTINO: I mean, it is usual that
- 19 you have an ITT sample as the sample that you are
- 20 analyzing as opposed to some definition of
- 21 eligible.
- DR. PRZEPIORKA: Dr. Cagnoni?

1 DR. CAGNONI: Yes, if I may have Dr. Scott

- 2 address the issue, please.
- 3 DR. SCOTT: Actually, this takes a very
- 4 standard design that we, within the RTOG, have used
- 5 for quite some time and most of the cooperative
- 6 groups as well. That is, with a multicenter
- 7 clinical trial such as this, we are going to have
- 8 retrospective ineligibilities that are going to
- 9 occur. The design of this study, as specified in
- 10 the protocol, adjusted the sample size by 5 percent
- 11 to account for the ineligibility that was expected
- 12 to occur. So, the definition that we have always
- 13 used is that eligible patients as randomized will
- 14 be analyzed.
- DR. D'AGOSTINO: Is that unusual for the
- 16 FDA, to get that type of description?
- DR. TEMPLE: Well, as a general matter an
- 18 after the fact exclusion raises potential problems.
- 19 You know, if you know exactly how it is done and
- 20 whether it is all blind, and stuff, that is one
- 21 thing. But if you don't know exactly how it is
- done there is always a concern whether someone is

- 1 eligible or not has something to do with the
- 2 outcome. So, I don't think that is usual but other
- 3 people who know more about it can tell me. It
- 4 wouldn't be usual in other clinical disciplines; it
- 5 would be quite unusual.
- 6 DR. PAZDUR: I would also like to point
- 7 out that if one takes a look at the ineligible
- 8 patients there are almost three times as many in
- 9 the control arm as they are on the RSR arm. I
- 10 don't know if these were prospectively suggested or
- 11 stipulated in the protocol about leptomeningeal
- 12 disease, no measurable brain lesions, dural disease
- 13 due to bone, small-cell carcinoma--I know the small
- 14 cell carcinoma was at least one patient but are the
- other ones prospectively stipulated in the
- 16 protocol?
- DR. CAGNONI: That is correct, these are
- 18 all exclusions based on the protocol. The SAP
- 19 provided additional level of detail. In following
- 20 ICH guidelines, all these ineligibilities were
- 21 determined on pre-randomization factors. The
- 22 specific eligibility criteria in the protocol that

- 1 would be used to define ineligibility were also
- 2 specified in the SAP and that was the analysis that
- 3 was conducted. The reviews for ineligibility were
- 4 conducted blindly by the same team of radiologists
- 5 that conducted the response assessment.
- DR. PRZEPIORKA: Dr. Buckner?
- 7 DR. BUCKNER: Just a question for the FDA
- 8 statistics group, if you analyze just the eligible
- 9 patients do you agree that even with the primary or
- 10 the co-primary, in either set, there is a
- 11 statistically significant difference in survival?
- DR. SRIDHARA: The p values that the
- 13 sponsor presented, we agree with those p values
- 14 but, again as I said, in the non-small cell/breast
- 15 subgroup the p value of 0.07 and 0.05, with the
- 16 multiple hypotheses that we are testing, will not
- 17 be considered as significant.
- DR. PRZEPIORKA: Dr. Pazdur, do you have
- 19 additional comments? No? Dr. Redman?
- DR. REDMAN: Just for clarification
- 21 purposes, to the sponsor, confirmed responses are
- 22 defined how?

1 DR. CAGNONI: Yes, the protocol did not

- 2 mandate confirmation of response.
- 3 DR. REDMAN: Right.
- 4 DR. CAGNONI: So, what we did was in the
- 5 responders, we looked at those responders that had
- 6 a CAT scan or MRI at a minimum of 4 weeks from the
- 7 response to termination. We looked at those
- 8 patients and there was a certain number of patients
- 9 that did have CAT scans confirmed in those
- 10 responses. But I want to make it clear that that
- 11 was not an analysis per protocol.
- DR. REDMAN: Then back to the FDA, there
- 13 is a statement on your slide 19, looking at the
- 14 exact same numbers that the sponsor provided for
- 15 confirmed responses--you state that there is no
- 16 apparent advantage in response rate but you don't
- 17 give a p value. Not that I am big on p values but
- 18 the sponsor gives a p value which is significant,
- 19 using the exact same numbers.
- DR. SRIDHARA: The p value is 0.06.
- DR. REDMAN: The sponsor has the same
- 22 numbers and has a p value of 0.02--exact same

- 1 numbers on their slide on page 33.
- DR. CAGNONI: If we can have the slide up?
- 3 [Slide]
- 4 Are you talking about confirmed responses?
- 5 DR. REDMAN: Yes.
- DR. CAGNONI: In all patients these are
- 7 the confirmed response rates for the two arms,
- 8 non-small cell/breast co-primary and breast cancer
- 9 patients.
- 10 DR. REDMAN: I was looking at all
- 11 patients.
- DR. CAGNONI: All patients is the top row.
- DR. PRZEPIORKA: Any FDA response?
- DR. SRIDHARA: I think there were some
- 15 slight number differences there. Let me get to
- 16 that.
- DR. PRZEPIORKA: While she is doing that,
- 18 Dr. Martino, did you have a question?
- 19 DR. MARTINO: Two questions, both to the
- 20 sponsor. I need to understand more clearly what
- 21 the causes of death were in the two populations of
- 22 breast cancer patients. Can someone answer that

- 1 one first? Did they die of systemic disease? Did
- 2 they die of brain-related issues? And, was there a
- 3 difference between them?
- 4 DR. CAGNONI: Yes, the specific cause of
- 5 death, results were collected. We asked the
- 6 investigators to define cause of death as
- 7 neurologic, non-neurologic or indistinguishable.
- 8 The problem with evaluating cause of death in these
- 9 patients, this is very complicated in this
- 10 population. Can I have the slide up, please?
- 11 [Slide]
- 12 Let me show the results. The protocol
- 13 defined cause of death was neurologic,
- 14 non-neurologic, indistinguishable or alive. RTOG
- 15 combines indistinguishable and neurologic and those
- 16 results are shown here. Using this classification,
- 17 for the control patients there were 49 percent
- 18 neurologic versus 39 percent in RSR13; 51 and 62.
- 19 However, what I am showing you is not the analysis
- 20 by protocol. The protocol included a category of
- 21 indistinguishable that had a high number of
- 22 patients.

1 Let me also add that at the time of this

- 2 analysis 21 of the 60 patients in the RSR13 arm
- 3 were still alive, making the interpretation unclear
- 4 at this point. I would also like to ask, if I may,
- 5 Dr. Friedman who has experience in treating
- 6 patients with brain metastases, for his opinion on
- 7 cause of death as an endpoint in this population
- 8 and the ability to discriminate cause of death.
- 9 DR. FRIEDMAN: To be blunt, I don't think
- 10 we can do it. I think that is such a challenging
- 11 proposition that in trying to discern why a patient
- 12 with brain metastasis died--from neurological
- 13 complications, from systemic disease in at least a
- 14 third to 40 percent we simply can't tell.
- DR. MARTINO: But I think those of us who
- 16 treat this disease, and there are those of us in
- 17 this room besides the present speaker, oftentimes
- 18 can tell a brain-related death from a liver- or a
- 19 pulmonary-related death. It is not such an
- 20 impossible task although, I will grant you, there
- 21 are patients where it is not so obvious. But you
- 22 have answered my question reasonably well enough

- 1 that I am happy with that.
- I have one more, please. In these
- 3 patients, I am assuming that this was, in fact,
- 4 first therapy for their brain metastases but what
- 5 was allowed subsequently, because I am sure many of
- 6 these relapsed and other things were done? Were
- 7 there restrictions imposed on that?
- 8 DR. CAGNONI: Regarding the first part of
- 9 the question, prior therapy for brain metastases
- 10 was not allowed, with the exception of resection as
- 11 long as the patient had measurable disease after
- 12 that resection, in other words, they were partial.
- 13 Regarding subsequent therapy, I will ask
- 14 Dr. Elias, who is Director of the Breast Cancer
- 15 Program at the University of Colorado, to comment
- 16 on that since he conducted the review.
- DR. ELIAS: Slide up, please.
- 18 [Slide]
- Just also to discuss the previous question
- 20 briefly, sometimes patients may die of systemic
- 21 disease but if they have uncontrolled brain
- 22 metastasis you are much less likely to offer them

1 further therapy. That is one of the reasons for

- 2 the imbalance in the subsequent treatment for the
- 3 RSR versus control groups.
- In any case, this is subsequent treatment
- 5 and, as you see, there is comparable amount of
- 6 systemic or subsequent brain metastasis therapy.
- 7 Clearly, our options after primary treatment are
- 8 quite limited.
- 9 [Slide]
- 10 This analyzes the percent of patients who
- 11 received different types of subsequent therapy.
- 12 Again, there is a slight predominance of more
- 13 chemotherapy being given, although this is not
- 14 statistically significant but this also may relate
- 15 to the somewhat better Karnofsky performance status
- 16 of those patients. Very few patients got brain
- 17 surgery or stereotactic radiation.
- 18 [Slide]
- 19 This is the percent of patients who
- 20 received further therapy in terms of number.
- 21 [Slide]
- This is the balance between the control

1 and RSR13 group in terms of the specific agents

- 2 that we have seen.
- 3 DR. PRZEPIORKA: Before we go back to the
- 4 FDA, I just want outcome re-ask the question that
- 5 was posed before. If I recall correctly, you have
- 6 now shown from 008 and 009, two studies, that the
- 7 median survival is doubled with RSR?
- 8 DR. CAGNONI: That is correct, 008 did not
- 9 quite double the survival.
- 10 [Slide]
- 11 It was 5.4 versus 9.7 in 008 and 4.5
- 12 versus 7.0. This is Class II patients. There were
- 13 very few Class I breast patients in 008. This
- 14 compares the Class II patients.
- DR. PRZEPIORKA: Dr. Sridhara, did you
- 16 find the information you were looking for?
- DR. SRIDHARA: I believe the applicant
- 18 presented that in all patients unconfirmed
- 19 responses were 37 versus 45 and we agree with that.
- 20 The p value is 0.067. However, in the confirmed
- 21 responses--I don't have the percentages but I can
- 22 tell you that in the control arm there were 43 of

1 the 267 who had responses, and 61 of the 271, and

- 2 the p value that we got was 0.06 versus what the
- 3 applicant has given here which is 0.02.
- DR. PRZEPIORKA: Dr. Redman, does that
- 5 answer your question?
- DR. REDMAN: Was that because you couldn't
- 7 confirm some of the responses they confirmed?
- 8 DR. DAGHER: Another point that may be
- 9 attributed to a slight difference in numbers, and
- 10 we can discuss this, is that when we gueried the
- 11 sponsor on this issue of confirmation they actually
- 12 gave us three sets of possibilities for patients
- 13 who may be considered "confirmed." The first was
- 14 if some scan after the baseline and then a
- 15 subsequent scan--if you had the sequence of a CR
- 16 and then a CR, they called that a confirmed CR. If
- 17 you had at some point a PR and subsequently another
- 18 PR confirmed, that was a PR. But they also had
- 19 this middle category where if you were PR and then
- 20 CR--or I think it was CR and then PR, that is
- 21 right, so if you had a CR on one scan and then the
- 22 scan you got right afterwards was a PR, they

1 considered that I think a complete response. I

- 2 don't know that we would agree with that
- 3 assessment. So, there may be a slight difference
- 4 in the interpretation of that middle group.
- DR. PRZEPIORKA: Go ahead.
- DR. CAGNONI: May I make a comment?
- 7 [Slide]
- 8 This is the response rate in the brain per
- 9 protocol. All these analyses we are discussing
- 10 were not per protocol. The protocol specified that
- 11 they had to be done a certain way and it was done
- 12 the same way in both arms, was reviewed
- 13 independently and is statistically significantly
- 14 higher in the lung/breast co-primary population. I
- 15 would like to emphasize that.
- DR. DAGHER: Also, I would like to
- 17 emphasize that the main point we were trying to
- 18 make is that, yes, the issue of do you have a
- 19 difference between the two arms is a significant
- 20 issue but also with this endpoint of response rate
- 21 in the brain, what are the factors that would give
- 22 you certainty or uncertainty regarding the

1 findings? So, the main points were this issue of

- 2 confirmation, which is only one of several; the
- 3 fact that you had steroids on board with most
- 4 patients, which was appropriate but is certainly an
- 5 element that causes uncertainty when you are
- 6 looking at scans, edema, etc.
- 7 The other two that Kevin mentioned, one of
- 8 which was the fact that the protocol-specified
- 9 criteria did not require absence of any new lesions
- 10 when response, either CR or PR, was called. For
- 11 that last one that I mentioned, and the sponsor
- 12 will probably comment as well, in terms of this
- 13 issue of not requiring absence of any new
- 14 lesions--that was a small number of patients. But
- 15 we are just showing that there are several points
- 16 here that make us uncertain about the contribution
- 17 of RSR to the response in this particular trial and
- 18 in the particular subgroup for which benefit is
- 19 claimed.
- DR. PRZEPIORKA: Dr. D'Agostino?
- 21 DR. D'AGOSTINO: My point is probably lost
- 22 now but I just wanted to make sure that it was

- 1 understood that when you ask about the two studies
- 2 in the breast cancer results, in fact, we have to
- 3 remember that the first study was a registry
- 4 comparison but, more important, the second study
- 5 was not a planned group that was actually looked
- 6 at. So, the statistical significance, be it double
- 7 in terms of magnitude, could be guestioned or
- 8 should be questioned, and also the sample size--we
- 9 are dealing with only 20 percent of the original
- 10 sample so we are getting down to a smaller subset.
- 11 DR. PRZEPIORKA: And I think I asked that
- 12 question because it was significant and it was
- 13 reproducible. So, even though it is not
- 14 statistically valid it is certainly striking.
- DR. D'AGOSTINO: I don't know the history
- 16 but why didn't they focus the second study on that
- 17 group, given that they had something with the
- 18 registry? Did they go back later on and find out
- 19 it was in the registry as opposed to designing the
- 20 study? It doesn't look like they designed the next
- 21 study with that result. If you give me enough
- 22 time, I probably will find a subgroup that is

- 1 significant in both samples also.
- DR. PRZEPIORKA: Dr. Buckner?
- 3 DR. BUCKNER: I have three questions
- 4 related to the response endpoint. First of all,
- 5 there was a statement that looks like 13 of the 115
- 6 patients were not assessable for response and that,
- 7 in fact, the median survival of those with missing
- 8 data was 0.99 months in the RSR arm and 2.7 in the
- 9 control arm. Is that correct? More than 10
- 10 percent of your cases had missing data?
- DR. CAGNONI: Yes.
- DR. BUCKNER: The second regards scans.
- 13 Were patients required to have identical type of
- 14 scans for comparison? For example, response
- 15 assessed, CT compared with CT scan?
- DR. CAGNONI: Correct.
- DR. BUCKNER: And that was prespecified in
- 18 the protocol, that they must have the same type of
- 19 scan for comparison?
- DR. CAGNONI: That is correct.
- DR. BUCKNER: The third question, were
- 22 patients required to be on a stable dose of

1 corticosteroids prior too the baseline scan for a

- 2 certain period of time before they were assessed
- 3 for response?
- DR. CAGNONI: No. However, number of
- 5 patients on steroids, mean median dose, dose
- 6 adjustments, increases, tapers and length of
- 7 steroids in days was comparable between the two
- 8 arms. There were no differences, as the FDA I
- 9 think implied in one of their slides.
- 10 DR. BUCKNER: Were there in fact patients
- 11 that were called responders that had a new lesion
- 12 on a subsequent scan?
- DR. CAGNONI: A small percentage of
- 14 responders had new lesions.
- DR. BUCKNER: What percentage was that?
- DR. CAGNONI: Four percent and six
- 17 percent. Cam we have the slide up, please?
- 18 [Slide]
- 19 Six percent of patients in the control had
- 20 new brain lesions and four percent in the RSR13
- 21 arm.
- DR. BUCKNER: And those were still

- 1 considered responders?
- DR. CAGNONI: That is correct. Dr. Dagher
- 3 explained that the way the protocol was written,
- 4 response could be determined as a PR or CR even in
- 5 the presence of new lesions. When the study was
- 6 designed the sponsor was advised that reseeding
- 7 could occur from extracranial systemic disease and,
- 8 therefore, to assess truly their response in the
- 9 brain new lesions should not be accounted for. The
- 10 percentage of new brain lesions was very small and
- 11 there were no new brain lesions in the breast
- 12 cancer patients that received RSR13.
- DR. BUCKNER: Thank you.
- DR. PRZEPIORKA: What percentage of the
- 15 patients had hemoglobinopathies such as sickle cell
- 16 anemia?
- DR. CAGNONI: We did not screen for
- 18 hemoglobinopathies. Hemoglobin electrophoresis was
- 19 not done.
- DR. PRZEPIORKA: And is there any
- 21 information from the clinical studies to suggest
- that the abnormal hemoglobins might react

- 1 differently or confer additional toxicities?
- DR. CAGNONI: I will have Dr. Steffen,
- 3 head of pharmacology/toxicology, answer that
- 4 question.
- 5 DR. STEFFEN: In laboratory studies using
- 6 human sickle cells, fetal cells and adult normal
- 7 hemoglobins, red blood cells RSR13 has no effect on
- 8 rheologic activity and the p50 effect is similar
- 9 across all hemoglobin types studied.
- DR. PRZEPIORKA: Dr. Buckner?
- DR. BUCKNER: I am sorry, on the response
- 12 criteria one other question, if I may, what
- 13 proportion of your patients were followed by CT
- 14 scan and what portion by MRI?
- DR. CAGNONI: The majority were MRIs. I
- 16 can't give you the exact number. We can try to get
- 17 it for you in a few minutes but the majority were
- 18 MRIs.
- DR. PRZEPIORKA: Other questions? Dr.
- 20 Temple?
- 21 DR. TEMPLE: I am sorry to be dense about
- 22 this, it is really a question for both groups, when

- 1 you modified the study to give yourself co-primary
- 2 endpoints you must have identified a critical alpha
- 3 for each of the endpoints. It wouldn't be the
- 4 usual 0.05 ones; you had two of them. So, what was
- 5 it? That is one question.
- 6 The second is, was your primary endpoint
- 7 for the primary analysis the intent-to-treat
- 8 population or the eligible patients population? It
- 9 must be in the protocol or the statistical
- 10 analysis, it must be somewhere. If Raji disagrees
- 11 with that, I want to hear what the disagreement is
- 12 because I have the same problem Ralph does. We are
- 13 sort of talking beside each other.
- DR. CAGNONI: We will have Dr. Scott
- 15 comment on that.
- DR. SCOTT: Sure. The analysis was
- 17 specified as eligible patients as randomized--in
- 18 the protocol.
- DR. TEMPLE: In the protocol?
- DR. SCOTT: In the protocol. Beyond that,
- 21 the appropriate adjustment here that we used in the
- 22 protocol basically states that we will take the p

- 1 values, order them and then compare the highest p
- 2 value to 0.05. If that is not significant, then
- 3 the next highest p value to 0.25, and so on until
- 4 you get down to statistical significance. In other
- 5 words, if we have 3 p values and they may be
- 6 ordered as 0.13, 0.08 and then 0.05 or 0.02 or
- 7 0.017, somewhere around there, then we would adjust
- 8 the p value because the first one was not
- 9 significant, the second one was not significant and
- 10 then the third one would be adjusted at 0.05
- 11 divided by 3, which would be 0.0167. Does that
- 12 help?
- DR. TEMPLE: I think so but by that
- 14 standard--you only had two co-primaries. It sounds
- 15 like that procedure would not leave, say, 0.05 for
- 16 the small cell plus breast as significant.
- DR. SCOTT: Right.
- DR. TEMPLE: Would that be true?
- DR. SCOTT: That is correct. Right, as
- 20 long as the overall one was not significant it did
- 21 not leave 0.05 and we didn't make the connection
- that the unadjusted log-rank at 0.05 for the

1 updated data analysis--we did not say that that was

- 2 statistically significant.
- 3 DR. TEMPLE: Let me be sure I get this,
- 4 for the total population that is not significant.
- 5 That is clear, even in the new adjusted one.
- 6 DR. SCOTT: Right.
- 7 DR. TEMPLE: And when you make whatever
- 8 the right correction is for the second co-primary,
- 9 the lung/breast, that wouldn't be either. Right?
- DR. D'AGOSTINO: That is what I was asking
- 11 before and I thought I got the answer that neither
- 12 would be significant.
- DR. SCOTT: Right, and then the contention
- 14 that we had, which was that we needed to make an
- 15 adjustment for the heterogeneity by using an
- 16 adjusted p value, an adjusted test such as either a
- 17 stratified log-rank or Cox analysis. So a Cox
- 18 analysis, as defined in the protocol, was performed
- 19 and that reaches statistical significance.
- DR. TEMPLE: Without dismissing it, that
- 21 wasn't identified as the primary analysis. I mean,
- 22 sometimes you do things that aren't specified, I

- 1 understand, but it was not the primary analysis.
- DR. SCOTT: It was specified in the
- 3 protocol though as a confirmatory type of analysis.
- DR. TEMPLE: As exploratory, but if you
- 5 fail on the others you don't usually do
- 6 exploratory. Wouldn't that be true?
- 7 DR. SCOTT: Not necessarily. I don't
- 8 agree with that and I will explain why. That is,
- 9 when we design these studies and we design the
- 10 trial with the log-rank and also a Cox analysis
- 11 with the intent to use that analysis, we know
- 12 through simulation analyses and in the statistical
- 13 literature that you lose power if there is a
- 14 heterogeneity in the data set. Thus, the only way
- 15 that you can retain that power as designed through
- 16 the parameters of the study is to do a Cox analysis
- 17 or stratified log-rank.
- DR. TEMPLE: But nothing stops you from
- 19 having specified that as the primary analysis in
- 20 case there was heterogeneity. I mean, it is not
- 21 commonly done but you could do that.
- DR. SCOTT: Right. We could have done

- 1 that. When I was part of the team that designed
- 2 this study, back in the late '90s and early 2000,
- 3 we didn't have the heterogeneity simulations
- 4 performed. So, at that time what we did was the
- 5 unadjusted log-rank. So, I really believe that the
- 6 statistical literature has helped us along that way
- 7 in showing that aside from stratification the way
- 8 to adjust for the heterogeneity is also in a
- 9 stratified log-rank.
- 10 DR. TEMPLE: I am not sure anybody would
- 11 disagree with you but when it is done after the
- 12 fact the implications are somewhat different.
- 13 DR. SCOTT: But it was specified that we
- 14 would do that. I mean, it is not like we looked at
- 15 it and we saw, oh gee whiz, we missed and we are
- 16 going to go back and do something different. We
- 17 actually did what we specified in the protocol.
- DR. TEMPLE: But you do wish it had been
- 19 the primary analysis now, of course.
- DR. SCOTT: No, but it was part of the
- 21 primary analysis.
- DR. TEMPLE: Not exactly.

1	DR.	PRZEPIORKA:	Dr.	D'Agostino?
---	-----	-------------	-----	-------------

- DR. D'AGOSTINO: It wasn't the primary
- 3 analysis. It says "exploratory" and you did make
- 4 protocol amendments along the way that were
- 5 accepted. If the statistical literature informed
- 6 you that that would have been a better analysis or
- 7 analysis to tie into the primary you had plenty of
- 8 opportunity to do it before the data set was
- 9 locked. So, I am really not following the
- 10 statement that the decision was made years ago. To
- 11 me, it is not the primary analysis.
- 12 Open Public Hearing
- DR. PRZEPIORKA: Any other questions from
- 14 the committee? Hearing none, we are going to move
- on to the open public hearing. We have one speaker
- 16 and I need to inform the group that both the
- 17 believe in a transparent process for information
- 18 gathering and decision-making. To ensure such
- 19 transparency at the open public hearing session of
- 20 the advisory committee meeting, the FDA believes
- 21 that it is important to understand the context of
- 22 an individual's presentation. For this reason, the

- 1 FDA encourages the open public hearing speaker, at
- 2 the beginning of your written or oral statement, to
- 3 advise the committee of any financial relationship
- 4 that you may have with the sponsor, its product
- 5 and, if known, its direct competitors. For
- 6 example, this financial information may include the
- 7 sponsor's payment for your travel, lodging or other
- 8 expenses in connection with your attendance at this
- 9 meeting. Likewise, the FDA encourages you, at the
- 10 beginning of your statement, to advise the
- 11 committee if you do not have any such financial
- 12 relationships at all. If you choose not to address
- 13 the issue of financial relationships at the
- 14 beginning of your statement it will not preclude
- 15 you from speaking. Our first speaker is Peggy
- 16 Wesselski.
- MS. WESSELSKI: Good afternoon. My name
- 18 is Peggy Wesselski and I am a cancer survivor. I
- 19 have been happily married for 28 years to my
- 20 husband, Fred. We have three wonderful daughters,
- 21 one of which is with me today, my oldest daughter,
- 22 Amanda.

1 I was first diagnosed with stage 4

- 2 inflammatory breast cancer. At that time, my
- 3 youngest daughter was in the first grade. I never
- 4 asked God why me but I did say Lord, my girls need
- 5 me. And, after much prayer I realized that my
- 6 girls would be fine with their daddy and with God's
- 7 help. After all, He could be with them 24/7. He
- 8 would be a better caregiver than I could be. I
- 9 surrendered my illness to the Lord for His will to
- 10 be done, not mine. He has been blessing me ever
- 11 since.
- I have a lot of stories I could tell you
- 13 but we are here to talk about RSR13. It was
- 14 January, 2002 when it was discovered that the
- 15 cancer had spread to my brain. There were five
- 16 tumors, one of which had fluid around it. Dr.
- 17 Gabriel Hardabaji is my breast oncologist. He was
- 18 out that day and I received the results--I am
- 19 sorry, he was out that day and I received the
- 20 results from the MRI from Dr. Therialt who gave me
- 21 the news. I had already survived a lung met. but
- 22 this sounded more serious to me. Dr. Therialt said

1 that I would qualify for a study which he highly

- 2 recommended.
- 3 Arrangements were quickly made for me to
- 4 see Dr. Eric Chang. First the research nurse came
- 5 up and sat beside me. Her name was Chris. She
- 6 told me all about the study and explained that
- 7 originally she was allowed only ten patients. She
- 8 already had those ten patients but she had just
- 9 found out that she could have another ten. Chris
- 10 smiled at me and she said, "you'll be mu number
- 11 eleven." That said to me that God had gone before
- 12 me and made provisions so that I could take part in
- 13 this study.
- 14 Chris went on and told me that all
- 15 patients in this study would have whole brain
- 16 radiation and receive oxygen but that some patients
- 17 would receive a 30-minute drip which was RSR13.
- 18 She informed me that the computer would randomly
- 19 pick who would receive the drip. At that moment I
- 20 thought if this is a good drug I know I am going to
- 21 get it. I could already see God's hand on it.
- 22 Everything happened so quickly that day

1 while I was being set up for the study, I lay still

- 2 on the table having my helmet made for radiation.
- 3 It sounded like a dozen people were in the next
- 4 room discussing my case. I heard my name a few
- 5 times. I lay there thinking how blessed I was.
- 6 They were scurrying around as if I were a
- 7 celebrity.
- 8 Later Chris came back and let me know that
- 9 I would, indeed, be receiving RSR13. The
- 10 treatments went well. It didn't seem to cause any
- 11 side effects that I can remember. I did have a lot
- 12 of fatigue which my doctor told me that I would
- 13 experience. After treatment I remember being
- 14 warned that my first MRI, which would be one month
- 15 later, would probably not show improvement because
- 16 radiation works down the road. But one month after
- 17 the treatment with RSR13 and radiation my first MRI
- 18 did show improvement. Each MRI showed more
- 19 improvement until there was only slight evidence
- 20 that something was there.
- 21 It has been almost two and a half years
- 22 now and I am doing well. I am going about my

- 1 normal activities, doing anything and everything
- 2 with my family, enjoying my life to the fullest.
- 3 My youngest daughter, who is a freshman in high
- 4 school now, keeps me on the run. I am so thankful
- 5 for M.D. Anderson, for Dr. Chang and for the
- 6 clinical trial that God allowed me to be a part of.
- 7 I am thankful that I was number eleven and that I
- 8 did, indeed, receive RSR13.
- 9 Through my experience in fighting cancer
- 10 for eight and a half years, I have made friends
- 11 with many other breast cancer patients. It is my
- 12 hope that if they develop brain mets. they will be
- 13 guarantied this same opportunity to receive RSR13
- 14 that I had. I truly hope that you will recommend
- 15 to the FDA that they approve RSR13 to make it
- 16 available for all my friends and for other patients
- 17 with brain mets. as well. Thank you.
- DR. PRZEPIORKA: Thank you. We appreciate
- 19 your comments. Lenny Matthews has asked to speak.
- 20 Is Lenny Matthews here? No? Okay, we will
- 21 continue on and the next presentation is by Dr.
- 22 Stephen George.

1 Subgroup Analysis in Clinical Trials

- DR. GEORGE: Well, I am doing something a
- 3 little different. I am not speaking directly to
- 4 this application but giving a little, brief primer
- 5 on some generally accepted methodologic principles
- 6 in clinical trials as they relate to subgroup
- 7 analyses. It is, of course, relevant to this
- 8 discussion today but also to other discussion we
- 9 have on this committee.
- 10 [Slide]
- 11 First, what do we mean by subgroup
- 12 analysis? I think it has been clear that it is an
- 13 analysis of treatment effects within subgroups of
- 14 patients on a clinical trial. The first question
- 15 that arises is why would you want to do this? If
- 16 you designed it to do an overall test, why don't I
- 17 just do that and go home? Well, the answer is we
- 18 all have a suspicion that maybe there is something
- 19 going on that the treatment effects are not the
- 20 same in all patients on the study so it is a
- 21 natural kind of thing and humans want to search
- 22 around and find these kinds of things.

T [DIIGE	[Slide]
----------	---------

- 2 How often are these done? Well, this
- 3 first paper I found said that approximately 50
- 4 percent of reports of randomized clinical trials
- 5 contain at least one subgroup analysis. Actually,
- 6 Pocock has done a more recent analysis where the
- 7 answer is more like 70 percent. I am actually
- 8 surprised it is that low. When I read the
- 9 literature I thought it was 100 percent.
- 10 The second quote came for I.J. Good, back
- 11 in the '80s, who said that deciding on analysis
- 12 after looking at the data is dangerous, useful and
- 13 often done.
- 14 [Slide]
- Now, what are the basic problems with
- 16 subgroup analysis? Well, the first one you have
- 17 already heard a lot about. I will go into this a
- 18 little more and explain what this means but the
- 19 first is increased probability of type-1 error (the
- 20 null hypothesis) when there is really nothing going
- 21 on. If we look around, we have an increased chance
- 22 of spotting something and that would be erroneous

- 1 in that setting.
- 2 The second is a problem sort of in the
- 3 other direction. It is decreased power or what is
- 4 called an increased type-2 error in the individual
- 5 subgroups when, in fact, the alternative hypothesis
- 6 is true, say, for example if the overall truth is,
- 7 unbeknownst to us, that there is an effect overall
- 8 and it is the same in all subgroups and if we start
- 9 looking at subgroup and we are going to find a lot
- 10 of them that aren't significant and maybe make the
- 11 wrong conclusion in the other direction.
- The last is what we have seen already,
- 13 that all of these kinds of things create great
- 14 difficulty in interpretation.
- 15 [Slide]
- 16 What I would like to do first is point out
- 17 what are some general assumptions behind doing
- 18 clinical trials in the first place. Well, the
- 19 hypotheses that we are testing usually address an
- 20 overall or what might be called an average
- 21 treatment effect in the study population.
- 22 The second point about that is that there

- 1 is no assumption in this of homogeneity of effect
- 2 across subgroups. We are not assuming that the
- 3 treatment effect is the same in all subgroups just
- 4 because we are doing an overall test. But what we
- 5 are generally assuming to be the case is that the
- 6 direction of that effect, not necessarily the
- 7 magnitude but the direction of the treatment effect
- 8 is the same in all the subgroups. That is, we
- 9 would be very surprised, because of the way we
- 10 determine eligibility criteria and set up the trial
- in the first place, if we saw a result that showed
- 12 that treatment A worked in this subgroup and
- 13 treatment B worked in that subgroup. More likely,
- 14 we would see that if there is an overall effect
- 15 treatment A might work better in some groups than
- 16 others, but it is all sort of in the same general
- 17 direction.
- 18 [Slide]
- 19 The implications of these kinds of
- 20 assumptions that are behind most clinical trials
- 21 are that the overall treatment comparisons are of
- 22 primary interest, and that is really what we did

- 1 the trial for. We can use stratification or
- 2 regression techniques to adjust the overall
- 3 comparison for subgroups or covariates if we wish
- 4 but, again, those should be specified clearly in
- 5 advance. Subgroup analyses themselves are
- 6 generally of secondary interest as hypothesis
- 7 generating techniques for future studies.
- 8 [Slide]
- 9 I think the key point about these subgroup
- 10 analyses is whether they were planned or not. So,
- 11 I have mentioned something here, the pre-planned
- 12 analyses or hypothesis-driven kinds of
- 13 analyses--the subgroup hypotheses are specified in
- 14 advance and supposedly, because we have done that,
- 15 we can control the error rates or the error rates
- 16 can in principle be addressed but, as I will show
- 17 you in just a second, that is not always so easy.
- 18 It is a tricky business even when it is
- 19 pre-planned. By the way, pre-planned does not mean
- 20 you just said ahead of time that we were going to
- 21 look something. That is not the same as actually
- 22 pre-planning the analysis.

1 The second type of subgroup analyses are

- 2 unplanned analyses or what would be exploratory
- 3 analyses. These are either analyses suggested by
- 4 the data or an exhaustive search for differential
- 5 treatment effects by subgroups. This is often
- 6 called by the pejorative term as data dredging,
- 7 although that is perfectly reasonable, again, if
- 8 you realize that what you are doing is generating
- 9 hypotheses.
- 10 The problem with the unplanned analyses is
- 11 that you have inflated error rates and, in fact,
- 12 you don't know what those error rates are because
- 13 you really haven't specified what you were going to
- 14 do.
- 15 [Slide]
- There are a couple of things in the ICH
- 17 guidelines that address subgroup analyses directly.
- 18 Here is one from the guideline E3, which is on
- 19 publication results, and it says it is essential to
- 20 consider the extent to which the analyses were
- 21 planned prior to the availability of data. This is
- 22 particularly important in the case of any subgroup

- 1 analyses because if such analyses are not
- 2 pre-planned they will ordinarily not provide an
- 3 adequate basis for definitive conclusions.
- 4 [Slide]
- 5 In guideline E9, which is on statistical
- 6 considerations, says clearly that in most cases
- 7 subgroup or interaction analyses are exploratory
- 8 and should be clearly identified as such. These
- 9 analyses should be interpreted cautiously. Any
- 10 conclusion of treatment efficacy or lack thereof or
- 11 safety based solely on exploratory subgroup
- 12 analyses are unlikely to be accepted.
- 13 [Slide]
- 14 What about these error rates? What are we
- 15 talking about here? If you looked at k independent
- 16 subgroups and there is really no difference in the
- 17 treatments, the probability of finding at least one
- 18 is represented by this formula, here. For example,
- 19 if you used the 0.05 level and looked at 10
- 20 different subgroups your chance of finding at least
- 21 one is 0.4; it is not longer 0.05.
- 22 [Slide]

1 Here is just a graph of that, showing that

- 2 this increases quite rapidly as a function of the
- 3 number of subgroups. This is when you know the
- 4 number of subgroups.
- 5 [Slide]
- 6 So, what can we do about it? Well, of
- 7 course, one way is to control error rates. Well,
- 8 for planned subgroup analyses you can control the
- 9 overall type-1 error rate. One conservative way is
- 10 to use this thing that is often called a Bonferroni
- 11 correction, which is to simply divide the overall
- 12 error rate by the number of analyses you are going
- 13 to do. Of course, that gives you a much smaller
- 14 alpha level on each particular test.
- In this case, the power or the probability
- 16 of detecting real differences when they are present
- 17 is sharply reduced in individual subgroups. Of
- 18 course, for unplanned analyses we don't know k and
- 19 the error rates are really unknown, as I have
- 20 already mentioned.
- 21 [Slide]
- 22 Here is a hypothetical example and I will

- 1 show you a real example of where this happened and
- 2 I think caused some problems. Let's suppose we
- 3 have two groups, experimental and control. Outcome
- 4 is overall survival. The null median is 12 months,
- 5 meaning if there is really no difference in these
- 6 treatments and all we are doing when we are
- 7 randomly assigning them is sort of randomly
- 8 assigning people to the same thing, we would expect
- 9 about 12 months.
- 10 Alternatively, if the experimental
- 11 treatment is working, let's suppose the median
- 12 would be 16 months long. That is a 25 percent
- 13 reduction, 0.75 hazard ratio. Let's suppose we do
- 14 this trial with 36 months accrual, 12-month
- 15 follow-up, 500 patients on this study. We want a
- 16 0.05 overall alpha level and suppose the power is
- 17 0.8. Now, we have a couple of subgroups here.
- 18 There are males and females. Let's suppose that 70
- 19 percent of them are males in this study, about 350
- 20 males and 150 females.
- 21 [Slide]
- What could we do? Well, you could do

- 1 subgroup tests with no adjustment--not a good idea
- 2 but we could do it, and we use 0.05 in each of the
- 3 two subgroups. The overall type-1 error rate has,
- 4 of course, jumped up. It is no longer 0.05; it is
- 5 closer to 0.1. But also the power, the ability to
- 6 pick up the difference in the males is only 0.64
- 7 and in females it is only 0.33. In fact, the
- 8 probability that the correct conclusion is reached
- 9 in both subgroups, males and females, if in fact it
- 10 is true that there is this difference in both
- 11 subgroups is only about 20 percent, 0.21.
- 12 [Slide]
- 13 Let's say, okay, that is not too god but
- 14 at least we want to control the type-1 error rate
- 15 so we could do this sort of conservative thing I
- 16 suggested before and divide by 2. So, we use 0.25
- 17 in each subgroup and, therefore, the overall type-1
- 18 error rate is controlled. It is less than 0.05.
- 19 But now, because we have made it harder to reject
- 20 the hypothesis in the subgroups, the power is about
- 21 half in the males and only about a quarter in the
- 22 females and the probability that the correct

1 conclusion will be reached when, in fact, there is

- 2 something going on is very poor. So that is not
- 3 good. By the way, the only way to fix this is to
- 4 have a very large sample size.
- 5 [Slide]
- 6 Now let me give you a real example where I
- 7 think this occurred in almost exactly that kind of
- 8 scenario. This is what I call the aspirin example.
- 9 I am not going to go into great detail here but in
- 10 1978 there was a publication by the Canadian
- 11 Cooperative Study Group of an excellently done and
- 12 well run clinical trial of aspirin and another
- 13 drug. I am just going to focus on the aspirin.
- 14 This was published in 1978 in the New England
- 15 Journal of Medicine. Their conclusion in the
- 16 abstract, and emphasized in the discussion, was
- 17 among men--among men, remember--men and women were
- 18 on this study, the risk reduction for stroke or
- 19 death was 48 percent, whereas no significant trend
- 20 was observed among women. We conclude that aspirin
- 21 is an efficacious drug for men with threatened
- 22 stroke.

1		Γ	S	Lί	de	1

2 Here is what this was based on. The first

- 3 row here gives males and the columns give aspirin
- 4 and no aspirin. Among the males there were 85
- 5 events, strokes or deaths, 29 on the aspiring group
- 6 and 56 on the no aspirin group out of the total
- 7 number of subjects of around 406. So, it is about
- 8 70 percent and a great predominance of events were
- 9 in the no aspirin group, indicating an advantage
- 10 for aspirin. In females, in fact, the advantage
- 11 seemed to go in the other direction. If anything,
- 12 there were more strokes or deaths in the aspirin
- 13 group among females, only 29 events total and the
- 14 total number of subjects was only 179. The total
- 15 number of events, if you just look at that, which
- 16 is what the trial was designed to do, still favors
- 17 the aspirin group.
- 18 [Slide]
- 19 If you translate that into things that we
- 20 like to look at on these trials, which is the risk
- 21 reduction in stroke or death, if you just look at
- 22 that first row again for males, the risk reduction

- 1 was about 48 percent. That first column, by the
- 2 way, is observed over the expected number of events
- 3 in the categories. But the risk reduction was about
- 4 48 percent. That is a very dramatic risk for
- 5 males, chi square value 8.2, p value 0.004, nominal
- 6 p value. For females it actually increased by 42
- 7 percent, a chi square, but not a significant
- 8 result. Overall the risk reduction was about 30
- 9 percent and a barely significant result by the
- 10 usual criteria.
- 11 [Slide]
- Now, ten years later a large meta-analysis
- 13 of all results of various types of antiplatelet
- 14 treatments was published in which they concluded,
- 15 among other things, that overall allocation to
- 16 antiplatelet treatment reduced vascular mortality
- 17 by 15 percent and non-fatal vascular events, stroke
- 18 or myocardial infarction, by 30 percent. I don't
- 19 have time to go into the details but basically they
- 20 found there is no difference in males and females.
- 21 Aspirin worked, and it worked to reduce the
- 22 mortality approximately by what the Canadians got

- 1 in their first study ten years earlier. During
- 2 those ten years, what was the advice given to women
- 3 in this situation? So, it can happen. There can
- 4 be some real mistakes made in looking at subgroup
- 5 analyses.
- 6 [Slide]
- 7 What can we do about this? How do we
- 8 interpret subgroup analyses? We know they are
- 9 going to be done. Here are some guidelines that
- 10 were presented several years ago--or some of them,
- 11 and I didn't put all of them on here--to look for
- 12 when you are reading about subgroup analyses that
- 13 are done. First, were there a priori hypotheses
- 14 stated? As I mentioned, I think that is the most
- 15 important one. Second, what is the clinical
- 16 importance of the difference if it is really real?
- 17 Third, did they assess the statistical significance
- 18 properly? In some cases, if it wasn't planned, of
- 19 course, this may be almost impossible. Is there
- 20 consistency across studies? This is important but
- 21 it implies there is more than one study. And, is
- 22 there any indirect supporting evidence either from

- 1 preclinical studies of other theoretical reasons
- 2 why you expect that subgroup to be different? That
- 3 one is probably a weak one. Humans are remarkably
- 4 adapt at coming up with reasons for anything they
- 5 find.
- 6 [Slide]
- 7 One thing I wanted to mention briefly is
- 8 the idea of a treatment-covariate interaction
- 9 because nobody has talked about that today. This
- 10 is sort of a generalization of subgroup concepts.
- 11 Basically, the idea is you don't have to be really
- 12 talking about subgroups, identified groups of
- 13 people. You can use so-called covariates that are
- 14 continuous. For example, if you have age you don't
- 15 have to say age above 65/below 65 you can use it as
- 16 just a continuous variable. Then you can use this
- 17 for testing for what are known as
- 18 treatment-covariate interactions. Basically, it
- 19 means does the treatment differ in the sense of
- 20 having an interaction with this covariate. There
- 21 are quantitative interactions, which is what is the
- 22 most common kind of thing, where the treatment

1 effects are in the same direction but of different

- 2 magnitude, and qualitative interactions where the
- 3 treatment effects are actually in opposite
- 4 directions, which would be rare.
- 5 [Slide]
- 6 This simply indicates the kind of thing
- 7 that I am talking about. If you have a control
- 8 treatment and a covariate, males and females again,
- 9 and an outcome depending on which treatment group
- 10 you are in, whether you are male or female, and an
- 11 interaction term, this beta-3, XZ. So, if you look
- 12 across the rows here, female and male, the
- 13 treatment effect in females is beta-1; the
- 14 treatment effect in males is beta-1 plus beta-3.
- 15 So the statistical test becomes one of simply
- 16 testing for beta-3. The reason I am pointing this
- 17 out at all is whether beta-3 is zero. If it is not
- 18 zero then there is something going on.
- 19 [Slide]
- 20 So, what are some strategies we could use
- 21 when we are interested in subgroup analyses? First
- 22 of all, we could design for the overall hypotheses

- 1 but test within predefined subgroups. As I have
- 2 already noted, that has a high overall error rates,
- 3 low power in the subgroups and biased estimates. I
- 4 haven't emphasized biased estimates but what
- 5 happens in these subgroups when you find a
- 6 difference is that it is known to be biased. That
- 7 is, it is going to be larger on average than what
- 8 the truth is because you searched and haven't found
- 9 it. This is not a good thing. In other words, in
- 10 the aspirin example you could have guessed that
- 11 that effect in the males was too high. It was just
- 12 sort of implausible, and that is what happens when
- 13 you look in these subgroups.
- 14 Second, we could design for the overall
- 15 hypotheses but test for prespecified
- 16 treatment-covariate interactions, which is what I
- just mentioned in the last slide. That I think is
- 18 a good strategy but it has low power to detect even
- 19 modest interactions. The only way around this is
- 20 to get much larger studies, which is a depressing
- 21 point. So, there is nothing easy there.
- 22 [Slide]

1 Third, we could design for the overall

- 2 hypotheses as before and conduct unplanned,
- 3 exploratory analyses of subgroup differences.
- 4 This, of course, gives us unknown error rates.
- 5 That is why we really say this is a
- 6 hypothesis-generating exercise for future study.
- 7 It doesn't mean it is wrong to do this. There
- 8 isn't anything wrong with it, it is just that you
- 9 have to recognize it for what it is.
- 10 Last, we could actually design for
- 11 prespecified subgroups or interactions. That
- 12 allows us to control for the error rates but
- 13 produces depressingly large studies that are often
- 14 almost impossible to do.
- 15 [Slide]
- 16 So, what is the conclusion from all this?
- 17 One is that I think pre-planning is key. It is
- 18 very important to think very clearly about what you
- 19 are doing and how you are going to do it,
- 20 particularly in a regulatory setting. You can get
- 21 away with this more if you are just trying to
- 22 publish a scientific paper, as people obviously do,

1 but it is a lot more difficult in a regulatory

- 2 setting.
- 3 Second, we do need larger studies if we
- 4 are really going to do proper subgroup analyses.
- 5 There is actually no way around that, I don't
- 6 think.
- 7 Third, exploratory analyses are good for
- 8 hypothesis generating but really are not convincing
- 9 by themselves. The last point is more than one
- 10 study is very important for validation. It would
- 11 make results much more believable if you find two
- 12 studies with a strong subgroup interaction. That
- 13 is it.
- 14 Committee Discussion
- DR. PRZEPIORKA: Thank you, Dr. George. I
- 16 do wish you had given your presentation earlier.
- 17 It would have assisted in our discussion but if we
- 18 have any questions for him, now would be the time
- 19 to do so. Hearing none, we will take a 10-minute
- 20 break. If we can return here at 3:25, we can get
- 21 started with the questions.
- 22 [Brief recess]

- DR. PRZEPIORKA: We are going to get
- 2 started. We are now into the question portion.
- 3 Thank you for the brief and unbiased questions for
- 4 the afternoon. The committee has received a copy
- 5 of the questions and the data that is felt to be
- 6 germane.
- When the primary analysis in the overall
- 8 study population is negative, subgroup analyses are
- 9 considered to be exploratory, i.e., not capable of
- 10 providing a conclusive finding. Although there
- 11 could be exceptional cases, these analyses still
- 12 pose multiplicity and potential bias problems.
- So, question number one is, in fact, the
- 14 survival analysis in the overall population of the
- 15 randomized trial is negative. Do the observed
- 16 survival results from the single study in the
- 17 subgroup of patients with metastatic to the brain
- 18 represent substantial evidence of RSR13 efficacy in
- 19 this subgroup?
- 20 We will first open the question up to
- 21 comments and at the end of the comments call the
- 22 vote. Any comments from the committee? Dr.

- 1 Martino?
- DR. MARTINO: Well, first of all, I want
- 3 to thank the sponsors for realizing that this is a
- 4 fairly serious set of circumstances that they are
- 5 dealing with and, you know, for all of those of us
- 6 who take care of breast cancer patients as well as
- 7 all the other people with brain metastases, that
- 8 someone is directing attention at this is laudable,
- 9 and for that I am grateful to them.
- This data is very meaningful to me because
- 11 it is an area that I deal with a great deal so I
- 12 appreciate its importance, and I do have the sense
- 13 that there probably is something going on here
- 14 which is of value. The issue for me is, is it of
- 15 sufficient value for us to change the way that we
- 16 practice oncology?
- 17 Because if an agent is approved several
- 18 things follow that. One of the things is that the
- 19 agent is then used for the population for which an
- 20 application is sought and given. But more than
- 21 that occurs, and that is that clinicians who have
- 22 other patients for whom they mean to do the very

- 1 best start to then ask the question, well, if it
- 2 works in population A, surely it must work in B, C,
- 3 Detc. So, then a generalization of a behavior
- 4 occurs.
- 5 So, for all of those things to be allowed
- 6 one has to assume a great deal of responsibility
- 7 and thinking through not only the simple decision
- 8 of this drug in this population but the
- 9 consequences that follow. I think I simply want to
- 10 remind all of you that that is, in fact, what we do
- 11 when we make these decisions. It isn't simply that
- 12 we approve something for a patient population.
- 13 Medical behavior expands beyond that and we have to
- 14 take all of that into consideration here.
- The other issue that is of great concern
- 16 to me is that I realize this company has another
- 17 study that they have started in the population of
- 18 interest. If we decide today to proceed with this,
- 19 what will happen to that trial? Well, you all know
- 20 the answer to that. You have seen it over and over
- 21 and over. The answer is that that trial will not
- 22 accrue. We will never know an answer which is

1 based on more substance than what we see today, and

- 2 so that is the other responsibility that we have to
- 3 take on our shoulders.
- DR. PRZEPIORKA: Dr. D'Agostino?
- DR. D'AGOSTINO: I was embarrassed to
- 6 raise my hand and said let somebody else raise the
- 7 first issue, but she stole my thunder. This is an
- 8 unspecified subgroup. I realize that you look back
- 9 at the registry and see results but it is based on
- 10 18 breast cancer patients. We have this study with
- 11 the subgroup showing some real interest,
- 12 unfortunately not specified. Then we have an
- 13 ongoing study which will be doomed if we make a
- 14 mistake by over-interpreting the results that we
- 15 have before us, and I think it really is an
- 16 over-interpretation even if there wasn't that other
- 17 study out there, and I am very excited that there
- 18 is. Reading too much into this data I think is a
- 19 real problem. I think this really is unspecified
- 20 and is very problematic in how to interpret it.
- DR. PRZEPIORKA: Ms. Portis?
- 22 MS. COMPAGNI-PORTIS: Yes, I would just

- 1 like to say as a person living with breast cancer
- 2 and also as a patient representative and someone
- 3 who has an opportunity to work a lot with people
- 4 with metastatic disease that I know that even small
- 5 results can be significant to a patient or a few
- 6 patients and that that is important. Yet, I think
- 7 that these results are too preliminary and I really
- 8 think it is important that this other trial goes
- 9 forward. I know that recruitment for the trial has
- 10 already slowed down because this was brought before
- 11 the FDA, and I think it is really important that
- 12 that study goes forward. So, I think we always
- 13 need to let the science lead and I don't think we
- 14 have the data yet that we need. Thank you.
- DR. PRZEPIORKA: Dr. Buckner?
- 16 DR. BUCKNER: Looking at the data we have
- 17 and one of the problems that we have with subsets
- 18 plus the statistical issues is are we really
- 19 comparing apples with apples? And, looking for
- 20 sources of real imbalance between the arms has been
- 21 alluded to generally but not quite specifically,
- 22 not in a summary fashion. So, when I was looking

- 1 at this I basically went through what are the
- 2 factors that I thought favored the RSR arm and
- 3 balance in favor of RSR with nothing to do with
- 4 treatment efficacy; what favored the control; what
- 5 seemed to be balanced and what were the unknown
- 6 factors. All of these have been alluded to but
- 7 just to list them briefly, there were several that
- 8 actually favored RSR13, specifically fewer brain
- 9 metastases in each patient and also less of the
- 10 bidimensional products, so basically less disease
- in the brain; less disease in extracranial sites
- 12 and normal number of metastatic sites; more
- 13 systemic therapy really, more chemotherapy and more
- 14 hormonal therapy in the patients on the RSR13 arm.
- 15 Is that because they had better outcomes going into
- 16 the radiation treatment or better outcomes coming
- 17 out? That is hard to sort out. In fact, a
- 18 slightly better performance score in the RSR.
- 19 There was at least one meaningful variable
- 20 that I think favored the control, which is that a
- 21 better baseline mental status generally portends a
- 22 better outcome in patients with brain metastases.

1 Then there were a number balanced, as we know, RPA

- 2 class, post-RSR treatment of brain metastases, age,
- 3 distal metastases and, as Joanne pointed out,
- 4 several important unknowns--the ER and PR status,
- 5 the HER2 status, the prior number and types of
- 6 chemotherapy.
- 7 But putting it all together, even if there
- 8 weren't the statistical issues of subgroup
- 9 analyses, it seems that there are some fairly
- 10 substantial imbalances that one a priori might
- 11 expect that the patients receiving RSR13 would have
- 12 a better outcome regardless of whether the
- 13 treatment were effective or not.
- DR. PRZEPIORKA: Dr. Redman?
- DR. REDMAN: Just for my clarification
- 16 because, no offense, Dr. George, I thought I
- 17 understood this and now I am not so sure. The
- 18 study pre-identified a group of breast cancer
- 19 patients and it was a stratification factor. Is
- 20 that correct? Or, was that done after the trial
- 21 was started? Breast and lung.
- DR. CAGNONI: It was in the original

1 protocol, stratification criteria, that is correct.

- 2 Breast cancer was a stratification criteria.
- 3 DR. REDMAN: The prespecified subgroup was
- 4 the combination of breast and lung as a co-primary
- 5 endpoint. So, you know, that carries considerably
- 6 more weight than something you look at afterward.
- 7 DR. REDMAN: Right, but the study was not
- 8 powered to see a difference between them.
- 9 DR. TEMPLE: Well, you can stratify a lot
- 10 of things--
- DR. REDMAN: Right.
- DR. TEMPLE: You may or may not choose to
- 13 analyze your strata as a separate group. That is a
- 14 decision you make in plotting out your analysis
- 15 plan. Of course, the groups get smaller and
- 16 smaller, as Dr. George said, so at some point you
- 17 don't expect to win because, you know, if your
- 18 group is only--what?--one-sixth of the total you
- 19 would have to have a really huge effect to win so
- 20 you don't usually expect to. But you may want to
- 21 be sure they are equally distributed in the two
- 22 groups so you could stratify and not analyze. But

- 1 then you might put it in a covariate analysis if
- 2 you claim the covariate analysis as your primary
- 3 analysis, which you have heard some debate about.
- 4 DR. PRZEPIORKA: Dr. George, do you have
- 5 comments?
- 6 DR. GEORGE: Yes, just a couple of
- 7 comments on that point. The purpose of the
- 8 stratification is to get slightly more homogeneous
- 9 groups on the theory that in those groups they will
- 10 have sort of responses about the same, but still
- 11 you are sort of doing an overall test as the
- 12 primary thing unless you have specified something
- 13 else ahead of time, which in this case was the
- 14 combination of two of those groups, I guess.
- 15 Anyway, you do that presumably to get a little more
- 16 precision in your result.
- With respect to the other issue of
- 18 imbalances among groups, presumably part of this
- 19 was addressed with the sponsor's analysis of doing
- 20 covariate adjustments of various kinds. The issue
- 21 though for us has to do with that prespecification
- 22 of whether it was primary or not because that also

1 becomes after a while fairly exploratory if it

- 2 wasn't pretty well laid out ahead of time.
- 3 DR. PRZEPIORKA: Dr. Cheson?
- 4 DR. CHESON: We are in a bit of a
- 5 conundrum here. Whereas I completely agree with
- 6 Dr. Martino's analysis that if we do approve this
- 7 drug that trial is dead, if we don't then it also
- 8 sends another message that perhaps, you know, we
- 9 were not in favor of this drug and the trial may be
- 10 dead as a result of that decision.
- 11 So, if the latter is the decision of this
- 12 committee, then I strongly recommend that the
- 13 wording be exquisitely careful to encourage
- 14 participation and not to suggest that it was
- 15 because we didn't think there was something there
- 16 but that it required additional support for the
- 17 approval.
- DR. PRZEPIORKA: I am going to take the
- 19 chair's prerogative and perhaps put some words into
- 20 Dr. Temple's mouth. I remember the days when the
- 21 question used to come out as do you recommend
- 22 approval? And I was very happy to see today's

- 1 questions not even come close to that sort of
- 2 working. So, in fact, the question actually asks
- 3 only does this provide evidence of efficacy in this
- 4 subgroup, meaning it could be used for approval, or
- 5 it could be used for supportive data perhaps if the
- 6 company came back with preliminary response rates
- 7 in the current ongoing study as opposed to not
- 8 approval or approval. So, I don't want anyone on
- 9 this committee to think that we are going to kill
- 10 the drug. Whether we say one thing or another, it
- 11 is simply to provide our opinion about whether or
- 12 not the evidence provided today actually shows
- 13 there is any efficacy.
- DR. PAZDUR: Donna, the way we wrote the
- 15 question specifically--obviously, everything is a
- 16 risk-benefit decision here. The efficacy question
- 17 is first and, obviously, if that is answered in the
- 18 affirmative then to go down to look at the toxicity
- 19 issue.
- DR. TEMPLE: Actually, you were putting
- 21 words in my mouth. I just do want to say
- 22 something, I realize people who live in the world

- 1 can't help but think about the implications and
- 2 what happens if we do this and what happens if we
- 3 don't. But we are really supposed to think mostly
- 4 about whether the therapy shows evidence of
- 5 effectiveness and not so much about whether people
- 6 will apply it more broadly than they should and use
- 7 it off-label. It is not that we don't ever worry
- 8 about that but we are really asking you to focus
- 9 mostly on whether there is evidence of
- 10 effectiveness. You know, the survival of companies
- 11 is obviously of interest and whether people become
- 12 depressed is also of interest but the main thing we
- 13 need to do and we need your help with is figuring
- 14 out whether there is actual evidence of
- 15 effectiveness for this drug for what they claim.
- DR. PRZEPIORKA: And having said that, I
- 17 would just throw my two cents back in again and
- 18 indicate that I was impressed with the fact that
- 19 there are two trials, albeit not perfectly well
- 20 designed but two trials with very similar results
- 21 in terms of the magnitude and the direction of the
- 22 effect, and most strikingly, similar results with

- 1 regard to outcome. It is very rare to see two
- 2 trials, one right after the other, to have the same
- 3 median survival in both the control group and the
- 4 experimental group. I thought that was remarkable.
- 5 Dr. D'Agostino?
- 6 DR. D'AGOSTINO: Again, the first study
- 7 had 18 breast cancer patients in it. Really as a
- 8 direction it didn't seem to inform the second
- 9 study. So, retrospectively it is kind of
- 10 interesting but prospectively it didn't inform the
- 11 study at all, and I think it is saying that the
- 12 third study they are running is exciting. What I
- 13 tried to say at the end of my earlier spiel is
- 14 forget the new trial--I have sympathy and am
- 15 excited about it, but based on the data I think
- 16 that there are too many questions with the post hoc
- 17 aspect of this in the subset that wasn't
- 18 prespecified for us to give a positive to this
- 19 first question.
- DR. PRZEPIORKA: Dr. Buckner?
- 21 DR. BUCKNER: I also have some questions
- 22 about the efficacy issue per se from the data as

1	presented	as	far	ag	response	anes	There	WAYA	SOME

- 2 problems with the methodology in that there was not
- 3 a control for dexamethasone. More than 10 percent
- 4 of the scans were missing and, of the missing
- 5 scans, the survival went in favor of the control
- 6 arm rather than the experimental arm. The issue of
- 7 no requirement for confirmed response perhaps could
- 8 be argued but it doesn't strengthen the data on
- 9 response. Furthermore, if we are really looking at
- 10 the effect in the brain it would have been very
- 11 reassuring to have some signal that people were
- 12 living better with their brain disease in terms of
- 13 progression either on clinical basis or radiologic
- 14 basis, and we didn't see that, or some sense that
- 15 the death rate from brain metastases was reduced.
- 16 We didn't see that either. And, depending on how
- 17 you interpret the quality of life data, the
- 18 patient-reported data didn't necessarily seem to
- 19 indicate strong evidence of benefit in the brain
- 20 either. So, it is always a little unsettling when
- 21 endpoints go in opposite directions and that is
- 22 what I think we have here--I shouldn't say in

1 opposite directions but when one endpoint is not

- 2 supported by multiple other endpoints.
- 3 DR. PRZEPIORKA: Other comments from the
- 4 committee before we call the question? Dr.
- 5 Grillo-Lopez?
- 6 DR. GRILLO-LOPEZ: I have a general
- 7 comment about statistics and clinical research, a
- 8 comment that applies not only to this particular
- 9 discussion but perhaps to this morning's discussion
- 10 and other discussions. As I look at the membership
- 11 of this committee, I see that most of us are
- 12 clinicians and most of us have been or are
- 13 currently involved in the care of cancer patients.
- 14 If the FDA had been interested exclusively in the
- 15 statistics behind a clinical trial they would have
- 16 only statisticians around this table but, in fact,
- 17 the majority are clinicians.
- 18 I think the message the FDA is giving us
- 19 is that they are interested in clinical input, in
- 20 the input of those who are actually taking care of
- 21 these patients and who can, yes, consider the
- 22 statistics but perhaps consider those statistics as

- 1 a tool in the decision-making process, a process
- 2 that also involves making clinical decisions based
- 3 not necessarily on numerical or mathematical
- 4 computations.
- 5 I think that today, particularly this
- 6 morning, we have seen the extreme, very eloquently
- 7 presented, that statistics can go to. Yes, it is
- 8 not that we should ignore statistics but I think
- 9 there is a limit to how much statistical analysis
- 10 we can do and how complex that analysis can become
- 11 because statistics is a science; it is based on
- 12 numbers, it is based on mathematics. Clinical
- 13 research is an art. It is based on patients and
- 14 what happens to patients. And the more complex the
- 15 statistical analysis, the more distant you get from
- 16 the reality of clinical research, from the reality
- 17 of what is happening to patients.
- 18 So, again, in making our decisions, in
- 19 making or recommendations to the FDA on these
- 20 issues we put the statistical analysis on the
- 21 balance, the results of that analysis on one side
- 22 of the balance but we also have to put our own

1 clinical opinion of the data and weigh that equally

- 2 or perhaps even more strongly than what the numbers
- 3 alone may say.
- DR. PRZEPIORKA: Dr. D'Agostino?
- DR. D'AGOSTINO: I thought this was a case
- 6 where the statistical issues were quite simple
- 7 actually. If they had declared that subgroup
- 8 breast cancer as the primary group and had given
- 9 the right allocation of p values, I think all our
- 10 votes would be positive. They didn't do it so it
- 11 is not really a complex statistics issue; it is a
- 12 very simple statistics issue. It is an unfortunate
- 13 thing. It may be a real result but because it was
- 14 unspecified and because it was found only in a post
- 15 hoc manner we have no way of judging it
- 16 statistically and I am impressed that you feel you
- 17 can judge it clinically without some sort of
- 18 numerical basis, but that is your prerogative.
- DR. PRZEPIORKA: Dr. Williams?
- DR. GRILLO-LOPEZ: I said I was speaking
- 21 in general.
- DR. WILLIAMS: Donna, I just wanted to

- 1 clarify. You mentioned that the question was
- 2 asking for evidence of efficacy. Substantial
- 3 evidence I think is an important term. It doesn't
- 4 just mean some evidence, it means enough evidence
- 5 to approve it really. That is the term that is
- 6 used in the regulation for approval, given that it
- 7 is safe enough.
- 8 DR. PRZEPIORKA: Dr. Pazdur?
- 9 DR. PAZDUR: I wanted to address the
- 10 decision-making process here because I have spent
- 11 some time on this in my introductory comments.
- 12 Here, again, we do have statisticians here, we do
- 13 have clinicians, we have patients and everybody's
- 14 voice is important. But there is an underlying
- 15 process that is unifying decision-making process
- 16 that all of you must come to.
- Number one, is there an effect and is it
- 18 adequately characterized? Number two, and you can
- 19 only answer this question if number one is
- 20 answered, and that is the clinical relevance. But
- 21 you cannot make an inference of clinical relevance
- 22 if you don't know what you are talking about or if

1 it is poorly characterized. It has to be there and

- 2 that is how statisticians help us in making these
- 3 decisions, especially in a randomized study.
- 4 Again, remember, this was a randomized
- 5 study with a primary endpoint of survival with a
- 6 population that was defined and basically we are
- 7 looking at subpopulations that were not
- 8 prespecified.
- 9 DR. PRZEPIORKA: Any other comments from
- 10 the committee? Dr. Bukowski?
- 11 DR. BUKOWSKI: I would like to echo those
- 12 comments. I think this was a well-designed and
- 13 conducted study with predetermined endpoints that,
- 14 unfortunately, were not met. I got a little bit
- 15 confused between eligible and intent-to-treat
- 16 populations but, notwithstanding, I think the
- 17 results pretty much hold up. When you start to try
- 18 to define clinical effect and forget the analyses
- 19 that were presented I think it becomes an issue.
- 20 Yes, there were two positive studies showing an
- 21 effect in breast cancer but the way the data was
- 22 obtained is less than optimal. So, I am concerned

1 by the findings and their importance. I think we

- 2 certainly have to agree that r may well be an
- 3 effect here but the data speak for themselves.
- 4 DR. PRZEPIORKA: Further comments before I
- 5 call the question? Dr. Reaman?
- 6 DR. REAMAN: I just want to respond to Dr.
- 7 Grillo-Lopez's statement since he characterized the
- 8 committee as predominantly clinicians and that we
- 9 are to sanction clinical research as an art rather
- 10 than a science, and I, as a member of the
- 11 committee, don't believe that we are here judging
- 12 the arm of clinical research; it is science.
- 13 DR. PRZEPIORKA: I think everyone on the
- 14 committee would agree with you but thank you for
- 15 saying that. Other comments? If not, let's go to
- 16 the first question, the survival analysis in the
- 17 overall population was negative. Do the observed
- 18 survival results from this single study in the
- 19 subgroup of patients with breast cancer metastatic
- 20 to the brain represent substantial evidence of
- 21 RSR13 efficacy in this subgroup?
- 22 Let's start with Dr. Carpenter, please.

- 1 DR. CARPENTER: No.
- MS. HAYLOCK: No.
- 3 DR. GEORGE: No.
- 4 DR. CHESON: No.
- DR. DOROSHOW: No.
- DR. RODRIGUEZ: No.
- 7 DR. PRZEPIORKA: Yes.
- 8 DR. REDMAN: No.
- 9 DR. REAMAN: No.
- 10 DR. TAYLOR: No.
- DR. MARTINO: No.
- DR. BUCKNER: No.
- DR. BUKOWSKI: No.
- DR. D'AGOSTINO: No.
- DR. HUSSAIN: No.
- DR. MORTIMER: No.
- MS. COMPAGNI-PORTIS: No.
- DR. PRZEPIORKA: One yes, 16 no. You have
- 19 your answer and you don't want us to discuss the
- 20 second question. Any other information that you
- 21 want from us?
- DR. PAZDUR: No.

DR. PRZEPIORKA: Thank you very much. I

call this meeting adjourned and thank you to all

the committee members.

[Whereupon, the proceedings were

adjourned.]