

Technical Memorandum 86-68290-11

Systematic Sensitivity Analysis of the EDT Model Applied to Selected Fish Populations in the Yakima River Basin

U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado August 2006

Mission Statements

The mission of the Department of the Interior is to protect and provide access to our Nation's natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

Technical Memorandum 86-68290-11

Systematic Sensitivity Analysis of the EDT Model Applied to Selected Fish Populations in the Yakima River Basin

by

Naomi J. Yoder

Saint Hilda's College, Cowley Place, Oxford, OX41DY, England

Mark D. Bowen

U.S. Department of Interior/Bureau of Reclamation Sixth and Kipling, Building 67 Denver, Colorado 80225-8290 303 445 2222

Katherine P. Zehfuss

SAIC, Inc. - U.S. Department of Interior/Bureau of Reclamation Sixth and Kipling, Building 67 Denver, Colorado 80225-8290 303 445 2240

Joel Hubble

U.S. Department of Interior/Bureau of Reclamation P.O. box 1749, 1917 Marsh Road Yakima, Washington 98907 509 575-5848 ext 371

Bruce Watson⁵, Gregory R. Blair⁵ Mobrand Jones-Stokes P.O. Box 724, 9920 SW Bank Road Vashon, Washington 98070 206 463 5003

U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado

Contents

List of Figures	. iii
List of Tables	. iv
Introduction	1
Methods	5
EDT Model Inputs 5	
Systematic Alteration of the Attribute Input5	
Sensitivity Analysis7	
Statistical Analysis	
Graphical Representations	
Results	9
Index Attributes 9	
American River Spring Chinook	
Naches River Spring Chinook11	
Naches River Steelhead 12	
Actual Non-Proportional Attributes	
American River Spring Chinook13	
Naches River Spring Chinook	
Naches River Steelhead	
Actual Proportional Attributes 17	
American River Spring Chinook	
Naches River Spring Chinook	
Naches River Steelnead	
Obstructions	
Highest Relative Population Change from Initial One-step Change in Attribute	
Value	
All Attributes Combined	
Comparison between American River and Naches River Spring Chinook 26	
Comparison between Naches Spring Chinook and Naches River Steelhead 27	
Discussion	
References	

Appendix A: Environmental quality attributes with attribute type and initial values.	36
Appendix B: Yakima River Basin reaches used for the sensitivity analysis. Reaches in bold are obstructions on the river	40
Appendix C: Index Attributes with summary statistics.	42
Appendix D: Non-proportional Habitat Attributes	48
Appendix E: Proportional Habitat Attributes	50
Appendix F: Relative population abundance change for the Obstruction attribute	53
Appendix G: Initial change in value (either +-1 or +-5%) for each attribute.	54
Appendix H: Sensitivity for all attributes for all populations	57

List of Figures

Figure 1: Study area used for EDT Sensitivity Analysis of Yakima Basin fish
populations2
Figure 2: The Beverton-Holt stock-recruitment curve
Figure 3: Sensitivity of the Index Attributes for American River spring Chinook.
Figure 4: Sensitivity of the Index Attributes for Naches River spring Chinook 12
Figure 5: Sensitivity of the Index Attributes for Naches River steelhead
Figure 6: Sensitivity of the non-proportional habitat attributes for the American
River spring Chinook15
Figure 7: Sensitivity of the non-proportional habitat attributes for the Naches
River spring Chinook16
Figure 8: Sensitivity of the non-proportional habitat attributes for the Naches
River steelhead17
Figure 9: Sensitivity of the proportional habitat attributes for the American River
Figure 10: Sensitivity of the proportional habitat attributes for the Naches River
spring Chinook
Figure 11: Sensitivity of the proportional habitat attributes for the Naches River
steelhead
Figure 12: Population abundance change with added obstructions for three
Yakima River populations
Figure 13: Effect of initial change in attribute value (either +-1 or +-5%) on
change in relative population abundance for American River spring Chinook.
Figure 14: Effect of initial change in attribute value (either ± 1 or $\pm 5\%$) on
change in relative population abundance for Naches River spring Chinook 23
Figure 15: of initial change in attribute value (either ± 1 or $\pm 5\%$) on change in
relative population abundance for Naches River steelhead 24
Figure 16: Comparison of differences in sensitivity between spring Chinook
nonulations. Larger hubbles imply a larger absolute difference in consistivity
populations. Larger bubbles imply a larger absolute difference in sensitivity.
Eigung 17. Comparison of differences in consistivity between Naches Diver
rigure 17. Comparison of unterences in sensitivity between maches River
populations. Larger bubbles impry a larger absolute difference in sensitivity.

List of Tables

Introduction

The mission of the Bureau of Reclamation (Reclamation) is to manage, develop, and protect water and related resources in an environmentally and economically sound manner. Reclamation works to ensure that project operations do not jeopardize existing fish populations or their critical habitats by entering into partnerships with federal, state, and local agencies and tribes to study the needs of the populations and to cooperate in habitat restoration projects.

In the Yakima River basin of the upper Columbia River (Figure 1), Naches River steelhead (*Oncorhynchus mykiss*) are listed as threatened (National Oceanic and Atmospheric Administration 1999) (*Oncorhynchus mykiss* sea-going forms are referred to as steelhead while stream-resident forms are referred to as rainbow trout (Nelson et al. 2004)). American River spring Chinook and Naches River spring Chinook salmon (*Oncorhynchus tshawytscha*) are listed as depressed populations under National Oceanic and Atmospheric Administration listings (Haring 2001, Good et al. 2005). Because these fisheries resources are of concern, there has been an emphasis by Reclamation to conduct studies, alter operations, modify structures, provide supplemental water, and to participate in recovery activities of these migrating fish species. In the Yakima River basin, this process began with managers and scientists familiar with the watershed collaborating to form an action management plan for that watershed.

One approach that is being considered to evaluate plan alternatives is the application of the Ecosystem Diagnosis and Treatment (EDT) model to the Yakima River basin. EDT is a system for rating the quality, quantity, and diversity of habitat along a watershed relative to the needs of a focal species (Mobrand et al. 1997). EDT has been used extensively in the Pacific Northwest for a number of years as a method for assessing the impact on the performance of fish populations attributable to fresh water habitat conditions. EDT is a complex model and it would be prohibitive to explain the details of it in this paper. Please refer to http://www.mobrand.com/MBI/edt.html for complete documentation and description of the model.

In EDT, the habitat supporting the population being analyzed, or "focal population", is described in terms of 45 environmental attributes for both the current and the undisturbed historical condition. The historical dataset, or "Template", is compiled from existing historical data and from widely-accepted inferences concerning pre-development conditions in specific eco-regions and sub-basins. In EDT, the Template represents the environmental conditions under which endemic populations evolved, and therefore is considered to embody locally optimal conditions. Using a clinical metaphor, the dataset representing current disturbed environmental conditions is referred to as the "Patient" (Lichatowich et al. 1995). Both the Patient and Template can be updated as new information is gathered and old assumptions are revised. The fish populations within the watershed are defined biologically (in terms of seasonal movement patterns describing species-specific life history patterns) and geographically (in terms of spawning and rearing areas).

Figure 1: Study area used for EDT Sensitivity Analysis of Yakima Basin fish populations.

Watershed units are divided into sections called stream reaches within which environmental conditions are considered to be relatively homogenous. Environmental attributes are assigned by the user to each reach for both current and historical conditions and input into the model. Raw environmental variables are transformed into standardized EDT units called "Level 2 attributes" (Appendix A). Some environmental variables change seasonally, and therefore require values in EDT that differ by month. Other environmental variables, such as gradient or natural confinement, are not seasonally variable and can be entered into EDT as constants.

The EDT model uses combinations of Level 2 attributes to compute 16 survival factors (Lestelle et al. 2004). The product of all of the survival factors across the life stages representing a specific life history pattern is used to compute the productivity of that life history pattern. More complex calculations involving both survival factors and habitat area generate estimates of carrying capacity. The model then averages productivity and carrying capacity across all life history patterns to compute the productivity and carrying capacity for the population as a whole.

The outputs from EDT are the parameters of the Beverton-Holt stockrecruitment curve (Beverton and Holt 1957) (Figure 2). These outputs include a prediction of population productivity (the maximum number of return spawners produced per spawner), carrying capacity (the maximum number of fish the habitat can support), equilibrium abundance (Neq), and life history diversity (the proportion of life history pathways that have a productivity of 1.0 or more and therefore are theoretically self-sustaining), under current and historical conditions. The EDT model is typically used to complete a diagnosis of factors and geographic areas affecting population performance. Conditions within the watershed unit can then be examined systematically, allowing the identification of stream reaches and survival factors that have been most degraded relative to their historical potential and a prioritization of restoration potential. The result of this "Patient/Template analysis" is used in the design or evaluation of watershed-level fish enhancement projects.

Figure 2: The Beverton-Holt stock-recruitment curve.

The EDT model was designed to allow the user to manipulate the input of the environmental quality attributes (Level 2 attributes) in order to compare effects of possible watershed management decisions on focal populations. Because of this, we were interested in determining how much model outputs are affected by a change in an input value of an environmental attribute. Specifically, we were interested in how EDT determines the relative effect on equilibrium abundance of a specified degree of change (positive or negative) in each environmental attribute. We applied a "systematic sensitivity analysis" to three Yakima River sub-basin EDT populations: American River and Naches River spring Chinook salmon, and Naches River steelhead.

Sensitivity analysis can be used when dealing with uncertain or competing model scenarios, contributing to the evaluation of model-based inference (Saltelli et al. 2000). Mobrand and Kareiva (1999) recommend performing sensitivity analysis to "guide refinement and modification of management strategies and/or objectives and development of monitoring and evaluation plans". Therefore, we conducted a systematic sensitivity analysis (SSA) of the EDT model in order to determine how sensitive EDT input parameters are to changes in value. Such changes in value could occur due to real improvement or degradation of the habitat. The relative sensitivity of model output to changes in specific environmental attributes can be used to identify those attributes for which accurate information is most important. Furthermore, SSA can suggest where future research should be directed because a manager will want the best possible information regarding the most sensitive parameters.

Methods

EDT Model Inputs

The sensitivity analysis was conducted using the Yakima River sub-basin datasets and the Yakima River basin population definitions registered on the Mobrand Jones-Stoke website (http://www.mobrand.com/MBI/edt.html). As mentioned, the three populations used as our focal species were American River spring Chinook salmon, Naches River spring Chinook salmon, and Naches River steelhead. In order to preclude confounding the effect of revisions to the underlying dataset with systematic attribute changes, we created a static database using the registered Yakima River sub-basin data available on March 1, 2004. Baseline population abundance (Neq) used in the SSA analysis are shown in Table 1. This database partitions the Yakima River sub-basin into a total of 352 reaches (Appendix B).

	American spring chinook	Naches spring chinook	Naches steelhead
Baseline Population Abundance (N _{eq})	250	1,070	898

Table 1: Initial abundances for the focal species used for the EDT sensitivity analyses.

The Scenario Builder module in EDT is used to evaluate the impact on population performance of a "scenario" of environmental conditions that are assumed to have changed from current values. Using the Scenario Builder, we systematically altered Level 2 environmental attributes for each reach. New attributes were entered as either index ratings, actual values, or actual proportions (Appendix A) based on the Guidelines for Rating Level 2 (L2) Environmental Attributes in EDT (Lestelle 2005). Attributes measured by "index ratings" are assigned values between 0 and 4, in which a rating of "0" represents "zero imperfections", or optimal conditions. Attributes measured by actual values are expressed in terms of numbers (e.g., miles of stream, or reach width in feet) or proportions (e.g., the proportion of the wetted area of a reach consisting of pools). Attributes was 100% in any reach. All 45 attributes were altered systematically within each reach.

Systematic Alteration of the Attribute Input

Each attribute value was systematically changed to show either degradation or improvement in each reach. For attributes expressed in terms of 0-4 Index values, we changed the baseline (or Patient) value by adding plus or minus "4, 3, 2, or 1" to the current Index rating. This stepwise, integer-change process was repeated until Index ratings reached "4" or "0" in every reach. Thus, there were eight possible runs for every Index attribute. Depending on the starting point of the current ratings, some attributes had only four runs.

In practice, subtracting 1, 2, 3, or 4 from an L2 attribute generally "improves" the habitat, leading to higher predicted Neq. Conversely, adding 1, 2, 3, or 4 to an L2 attribute generally "degrades" habitat and reduces the predicted Neq. However, the inverse of these statements is true for the alkalinity attribute: when the value of an alkalinity rating is increased, carrying capacity and Neq increase, and vice versa.

In the interest of displaying information efficiently, we designate systematic changes to Index value attributes by abbreviating the attribute and following the abbreviation with a plus or minus sign and an integer indicating the number of index values added to or subtracted from the baseline values. Thus, "Alk –1" would indicate a scenario in which alkalinity values were decreased by 1 index value across all reaches utilized by a focal population. Alternatively, the attribute will simply be spelled out or abbreviated and followed by one or more numbers in parenthesis indicating the magnitude of changes for scenarios – e.g., "Alk (-1, -2, +3)" represents three scenarios in which alkalinity values are, respectively, decreased by one index value, decreased by two index values and increased by three index values. For actual proportional attributes, each attribute was changed by adding plus or minus 5%, 10%, 25% or 100% to the current proportion. For the attribute Obstructions, an obstruction action was created in the scenario builder that increased or decreased passage by 25%, 50%, or 100% for each species and life stage affected by the obstruction. Scenarios targeting proportional, non-proportional and obstruction attributes are designated in a manner similar to that used for Index value attributes. Thus, "ChnLength -10" represents a scenario entailing 10% reductions in reach length, "HabPool +25" represents a scenario providing 25% increases in the proportion of wetted area consisting of pools, and "Obstruct +50" represents a scenario in which passage at all obstructions was increased by 50% for all species and life stages affected. For the sake of economy of expression, systematic changes to proportional, nonproportional and obstruction attributes were described by spelling or abbreviating the attribute and adding one or more numbers in parenthesis indicating the magnitude of changes for one or more scenarios – e.g., "HabPool (-10, -25, -100)" represents three scenarios in which pool area is decreased by 10, 25 and 100%.

For all kinds of attributes, current and altered ratings were summed and averaged over all the reaches used by each of the focal populations for every Scenario Builder run.

In this document, we will refer to EDT parameters by their full attribute names in italics. Tables and graphs will contain abbreviated attribute names and followed by one or more numbers in parenthesis indicating the magnitude of changes for scenarios. We will refer to raw environmental variables and Level 3 attributes in biological terms. For example, the change in daily flow fluctuations is a raw environmental variable. The EDT attribute name for this environmental variable is *Flow-Diel*.

Sensitivity Analysis

Sensitivity Analysis was used to identify the attributes to which model output, in terms of Neq, was most sensitive. We defined sensitivity (S) as a ratio of the relative change in the predicted Neq to the absolute change of the mean input parameter (Level 2 environmental quality attribute) value (adapted from Haefner 2002). For index and proportional attributes, sensitivity was calculated as:

$$S = |P_{AVG0}-P_{AVG1}|$$

Where:

- A₀ is the original spawner equilibrium abundance (Neq) predicted by EDT
- A₁ is the estimated spawner equilibrium abundance (Neq) predicted by EDT after a specified change in attribute value
- P_{AVG0} is the average initial attribute value over all reaches
- P_{AVG1} is the average changed attribute value over all reaches

For non-proportional actual value attributes, the sensitivity equation was adjusted to account for large values. An overly large value in the denominator of the sensitivity equation would lead to a proportionately smaller sensitivity value. Therefore, sensitivity was calculated as:

$$S = \frac{(A_0 - A_1)/A_0}{|(P_{sum0} - P_{sum1})/P_{sum0}|}$$

Where:

- A₀ is the original spawner equilibrium abundance (Neq) predicted by EDT
- A₁ is the estimated spawner equilibrium abundance (Neq) predicted by EDT after a specified change in the attribute value
- P_{sum0} is the sum of initial attribute values over all reaches
- P_{sum1} is the sum of the changed attribute values over all reaches

We also reported relative population change without factoring in some measure of parameter change, expressing sensitivity in terms of a simple change of equilibrium abundance. This procedure allowed the identification of parameters that require large changes in value to produce substantial changes in abundance (making the parameter technically insensitive)¹.

¹ Because the denominator of the sensitivity equation consists of a number representing the change in attribute value, it is possible for an altered attribute to cause a large change in abundance without showing high sensitivity if the denominator contains a large number.

Statistical Analysis

We calculated the mean and standard deviation for each sensitivity and relative abundance change dataset. We compared sensitivities within attribute type (index, actual non-proportional, and actual proportional) for each of the three populations. We considered those environmental attributes that had sensitivity values greater than or equal to two standard deviations from the mean to be the most sensitive, and to be "significant" for the purposes of this analysis. We concentrate our discussion on these "significant" parameters. We interpret larger sensitivity values as indicating variables for which a given change in input results in relatively larger changes in predicted equilibrium abundance.

The three focal populations for the study allowed comparison of environmental and species differences in sensitivity. Specifically, we compared the sensitivity of the same species in different environments (American River vs. Naches River spring Chinook), as well as different species in the same environment (spring Chinook and steelhead in the Naches River).

For each population pair, we assumed that the similarity in sensitivity across all attributes would be reflected by the Pearson product moment correlation coefficient, r, between all sensitivity values for each population. The Pearson product moment correlation coefficient is a dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the extent of a linear relationship between two data sets.

$$r = \frac{n(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{\left[n\Sigma X^2 - (\Sigma X)^2\right]\left[n\Sigma Y^2 - (\Sigma Y)^2\right]}}$$

Where:

- X is a data point (or sensitivity) of population 1
- Y is a data point (or sensitivity) of population 2
- n is the number of data points

The correlation at issue is the degree to which sensitivities across all attributes varied in parallel between the populations. The closer r is to 1.0, the more likely the populations are to be positively correlated. Conversely, the closer r is to -1.0, the more likely the populations are to be negatively correlated (to react oppositely to the same attributes).

Graphical Representations

The results of the sensitivity analyses will be presented as XY scatter plots, with sensitivity values plotted against themselves for each population and for each type of attribute (index, actual non-proportional, and actual proportional). This allows for a spatial perspective of the spread of the sensitivity results. For comparing populations, we will use XY bubble plots. Each axis will represent the sensitivity values for each population, and the size of the bubble will represent the *difference* in sensitivities between the two populations for each attribute.

Results

Sensitivity results are presented by population for index, actual nonproportional, actual proportional attributes, and obstruction attributes. This is followed by a summary of attributes that showed the greatest sensitivity to a onestep increase or decrease in attribute rating. Finally, we present results comparing sensitivity results between populations of the same species and between species for the same geographic area. Results that show a "negative sensitivity" are those for which a relative decrease in predicted abundance when a parameter is changed. Conversely, "positive sensitivity" denotes a relative increase in abundance when a parameter changes value.

Index Attributes

American River Spring Chinook

The American River spring Chinook population showed the largest significant negative sensitivities to the *Temperature-daily maximum* and *Temperature-daily minimum* attributes (Figure 3 and Table 2). In this case, the predicted abundance of American River spring Chinook decreased most rapidly as *Temperature-daily maximum* and *Temperature-daily minimum* became more severe. American River spring Chinook were also strongly negatively sensitive to *Fine Sediment*, *Embeddedness*, *Miscellaneous toxins*, *Turbidity*, and *Alkalinity*. American River spring Chinook showed the largest positive sensitivity to alkalinity and maximum daily temperature, because predicted abundance increased most rapidly as ratings for these variables became systematically more suitable. Even these largest positive sensitivity over all attributes, and thus were not "significant" in the sense used in this report. The attributes toward which the population was least sensitive included *Flow-diel*, *Flow-intraannual pattern*, *Waterwithdrawals*, and Hydrologic regime-natural.

Attribute	Sensitivity American River spring Chinook	Attribute	Sensitivity Naches River spring Chinook	Attribute	Sensitivity Naches River steelhead
TMn+2	-66%	TMx+1	-81%	TMn+2	-79%
TMx+1	-64%	TMn+2	-73%	TMn+3	-75%
TMn+3	-61%	TMn+3	-67%	TMn+4	-74%
TMn+4	-61%	TMn+4	-66%	FnSed+2	-63%
TMx+3	-59%	TMx+2	-61%	TMx+3	-59%
TMx+4	-58%	TMx+3	-59%	TMx+4	-58%
FnSed+3	-56%	TMx+4	-58%	Emb+3	-57%
Alk-1	-56%	FnSed+3	-55%	FnSed+3	-56%
Emb+3	-54%	Emb+3	-55%	Turb+1	-52%
Emb+4	-52%	Emb+2	-52%	Emb+4	-52%
TMx+2	-51%	Emb+4	-52%	Turb+2	-51%
Alk-2	-48%	Alk-2	-51%	TMx+2	-50%
MscTox+2	-48%	MscTox+2	-47%	MscTox+2	-50%
Turb+2	-48%	TMx-1	46%	Alk-2	-50%
Turb+1	-44%			TMn+1	-49%
Emb+2	-44%			FnSed+1	-43%
Alk-3	-43%			Alk-3	-42%
Alk-4	-43%			Alk-4	-42%

Table 2: Sensitivity for the index attributes that were two standard deviations from the mean for the three Yakima Basin populations.

Figure 3: Sensitivity of the Index Attributes for American River spring Chinook.

The following attributes caused large decreases in predicted equilibrium abundance as ratings were systematically made more severe: *Dissolved oxygen*, *Embeddedness*, *Dissolved heavy metals*, *Miscellaneous toxins*, *Temperature-daily maximum*, *Temperature-daily minimum*, *Turbidity*, *Fine sediment*, and *Alkalinity*. Thus, with the exception of *Dissolved oxygen* and *Dissolved heavy metals*, there was no difference between attributes with the largest rate of impact per change in attribute value (viz., the most sensitive attributes) and the attributes capable of producing large abundance impacts.

Naches River Spring Chinook

The Naches River spring Chinook population showed the largest negative sensitivities to *Temperature - daily maximum* and *Temperature - daily minimum* ratings (Figure 4 and Table 2). The population was also significantly negatively sensitive to *Fine sediment, Embeddedness, Confinement-hydromodifications, Miscellaneous toxins, Turbidity* and *Alkalinity*. Naches spring Chinook showed the greatest positive sensitivity to *Temperature - daily maximum* and *Confinement-hydromodifications, although positive sensitivity to Confinement-hydromodifications* was not significant (more than two standard deviations from the mean). The attributes toward which the population was least sensitive included *Flow-diel, Flow intra-annual, Withdrawals, and Hydrologic regime natural.*

Figure 4: Sensitivity of the Index Attributes for Naches River spring Chinook.

The attributes with the largest impact on population abundance considered independently of parameter change were *Dissolved oxygen*, *Embeddedness*, *Dissolved heavy metals*, *Miscellaneous toxins*, *Temperature-daily maximum*, *Temperature-daily minimum*, *turbidity*, *Fine sediment*, and *Alkalinity*.

Naches River Steelhead

The Naches River steelhead population showed the largest negative sensitivities to *Temperature-daily minimum* and *Fine sediment* (Figure 5 and Table 2). The population was also significantly negatively sensitive to *Temperature-daily maximum*, *Embeddedness, Turbidity, Miscellaneous toxins*, and *Alkalinity*. Naches steelhead were most positively sensitive to *Temperaturedaily minimum* and *Fine sediment*, although these sensitivities were not significant at the two standard deviation level. The attributes to which the population was least sensitive included *Flow-diel, Flow intra-annual*, *Withdrawals*, and *Hydrologic regime natural*.

Figure 5: Sensitivity of the Index Attributes for Naches River steelhead.

The attributes with the largest impact on population abundance considered independently of parameter change were *Dissolved oxygen*, *Embeddedness*, *Dissolved heavy metals*, *Miscellaneous toxins*, *Temperature-daily maximum*, *Temperature-daily minimum*, *Turbidity*, *Fine sediment*, *and Alkalinity*. Complete results are listed alphabetically by environmental attribute for all three populations in Appendix C.

Actual Non-Proportional Attributes

American River Spring Chinook

The American River spring Chinook population was most sensitive to *Channel length* (Figure 6 and Table 3). As would be expected, abundance decreased markedly in response to decreasing *Channel length* and vice versa. The population was also significantly negatively sensitive to *Width maximum* and *Width minimum*. The population was also significantly positively sensitive to *Channel length*, *Width maximum* and *Width minimum*.

Channel length, Width maximum, and *Width minimum* also caused the largest absolute changes in abundance considered independently of the magnitude of parameter change.

Attribute	Sensitivity American River spring Chinook	Attribute	Sensitivity Naches River spring Chinook	Attribute	Sensitivity Naches River steelhead
ChnLength-10	-101%	ChnLength-10	-101%	ChnLength-5	-102%
ChnLength-5	-101%	ChnLength-5	-101%	ChnLength-10	-102%
ChnLength-100	-100%	ChnLength-100	-100%	ChnLength-25	-100%
WidthMin-100	-100%	WidthMin-100	-100%	ChnLength-100	-100%
WidthMx-100	-100%	WidthMx-100	-100%	WidthMx-100	-100%
ChnLength-25	-100%	ChnLength-25	-100%	Gradient-100	-100%
WidthMx-25	-72%	WidthMx+10	72%	WidthMin-100	-97%
WidthMx-10	-71%	WidthMx+5	79%	ChnLength+10	98%
WidthMx+5	66%	ChnLength+10	98%	ChnLength+100	100%
WidthMx+25	68%	ChnLength+100	100%	ChnLength+25	100%
WidthMx+10	69%	ChnLength+25	100%	ChnLength+5	100%
ChnLength+10	98%	ChnLength+5	101%		
ChnLength+100	100%				
ChnLength+25	100%				
ChnLength+5	101%				

Table 3: Sensitivity for the actual non-proportional attributes that were two standard deviations from the mean for the three Yakima Basin populations.

Figure 6: Sensitivity of the non-proportional habitat attributes for the American River spring Chinook.

Naches River Spring Chinook

Naches River spring Chinook were most sensitive (both negatively and positively) to the same three attributes identified for American River spring Chinook: *Channel length*, *Width maximum*, and *Width minimum* (Figure 7 and Table 3). These three attributes also produced the largest absolute changes in abundance independently of the magnitude of parameter change.

Figure 7: Sensitivity of the non-proportional habitat attributes for the Naches River spring Chinook.

Naches River Steelhead

Naches River steelhead were most sensitive (both positively and negatively) to *Channel length* (Figure 8 and Table 3). The population was significantly negatively sensitive to *Width maximum, Width minimum* and to *Gradient* (abundance decreased as gradient decreased). Naches steelhead were significantly positively sensitive to *Channel length, Width maximum,* and *Width minimum.* Without consideration of the magnitude of parameter change, the abundance of Naches steelhead was most impacted by *Channel length* and *Gradient.* Complete results are listed alphabetically by actual non-proportional attribute for all three populations in Appendix D.

Figure 8: Sensitivity of the non-proportional habitat attributes for the Naches River steelhead.

Actual Proportional Attributes

American River Spring Chinook

American River spring Chinook were most negatively sensitive to *Habitat-backwater pools* and *Habitat-primary pool* (Figure 9 and Table 4). The abundance of this population decreased most rapidly as the proportions of these two habitat attributes were systematically decreased. In the same way, American River spring Chinook were also most positively sensitive to *Habitat-backwater pools* and *Habitat-primary pool* because systematic increases in these attributes resulted in the largest abundance increases. The attributes toward which the population was least sensitive were *Habitat-pool tailouts* and *Habitat-off channel*.

Independently of the magnitude of parameter changes, changes in *Habitat-backwater pools* and *Habitat-primary pool* produced the largest changes in population abundance.

Attribute	Sensitivity American River spring Chinook	Attribute	Sensitivity Naches River spring Chinook	Attribute	Sensitivity Naches River steelhead
HabBckPl-10	-18.0%	HabBckPl-5	-8.1%	HabPool-10	-0.9%
HabBckPl-5	-16.6%	HabBckPl-10	-6.8%	HabPool-25	-0.6%
				HabPool-100	-0.5%
				HabPool-5	-0.4%

 Table 4: Sensitivity for the actual proportional attributes that were two

 standard deviations from the mean for the three Yakima Basin populations.

Figure 9: Sensitivity of the proportional habitat attributes for the American River spring Chinook.

Naches River Spring Chinook

Like American River spring Chinook, Naches River spring Chinook are most sensitive, in both the positive and negative senses, to *Habitat-backwater pools* and *Habitat-primary pool* (Figure 10 and Table 4). Unlike the American River population, Naches spring Chinook were also positively sensitive to decreasing proportions of *Habitat-backwater pools*, although the degree of positive sensitivity was not significant.

The attribute toward which the Naches population was least sensitive was *Habitat-off-channel*. Independently of the magnitude of parameter changes, changes in *Habitat-backwater pools*, *Habitat-primary pool* and (in contrast to the American River population) *Habitat-small cobble*² caused the greatest changes in Naches spring Chinook abundance.

Figure 10: Sensitivity of the proportional habitat attributes for the Naches River spring Chinook.

Naches River Steelhead

Naches River steelhead showed the largest negative sensitivity to decreases in *Habitat-primary pool* (Figure 11 and Table 4). Although large positive sensitivity values were observed in response to increases in *Habitat-pool tailouts* and to decreases in *Habitat –large cobble³*, these values were not significant. The attribute toward which the population was least sensitive was *Habitat-off-channel*.

² Riffles with small cobble/gravel substrate.

³ Riffles with large cobble/boulder substrate.

Independently of the magnitude of parameter changes, changes in *Habitatprimary pool* and *Habitat-small cobble* had the greatest impact on population abundance. Complete results are listed alphabetically by actual proportional attribute for all three populations in Appendix E.

Figure 11: Sensitivity of the proportional habitat attributes for the Naches River steelhead.

Obstructions

The abundance of all three populations was strongly affected by changes in the *Obstructions* attribute (Figure 12). Impacts on Naches River spring Chinook were larger than for either American River spring Chinook or Naches River steelhead for all magnitudes of *Obstructions* changes. In addition, the change in juvenile abundance was greater than the change in equilibrium adult abundance for all populations. Results of the obstruction analyses are presented in Appendix F.

Figure 12: Population abundance change with added obstructions for three Yakima River populations.

Highest Relative Population Change from Initial One-step Change in Attribute Value.

Attributes that produced the largest impacts when changed by the initial (i.e. smallest) increment were examined in this analysis. Such attributes could be considered important since relatively small positive or negative changes in their values had disproportionately large impacts on affected populations.

For American River spring Chinook, the attributes that caused the most change in relative population size in the initial scenario alteration were *Temperature-daily maximum*(+1), *Alkalinity*(-1), *Turbidity*(+1), and *Miscellaneous toxins*(+1) (Figure 13 and Table 5).

Attribute	Relative Population Change American River spring Chinook	Attribute	Relative Population Change Naches River spring Chinook	Attribute	Relative Population Change Naches River steelhead
TMx+1	-60%	TMx+1	-76%	Turb+1	-52%
Alk-1	-56%	Turb+1	-44%	FnSed+1	-41%
Turb+1	-44%	Alk-1	-41%	Alk-1	-41%
MscTox+1	-32%	TMx-1	46%	TMn+1	-39%
TMn+1	-27%			MscTox+1	-33%
Alk+1	23%			TMx+1	-31%
				TMn-1	29%

Table 5: Initial Attribute Value Change (either +-1 or+-0.05%) effects on relative population change for those attributes that were two standard deviations from the mean.

Figure 13: Effect of initial change in attribute value (either +-1 or +-5%) on change in relative population abundance for American River spring Chinook.

For Naches River spring Chinook, the attributes that caused the most change in abundance in the initial value changes were *Temperature-daily* maximum(+1, -1), *Turbidity*(+1), and *Alkalinity*(-1) (Figure 14 and Table 5).

For Naches River steelhead, the attributes that caused the most change in abundance in the initial value changes were *Turbidity*(+1), *Fine sediment*(+1), *Alkalinity*(-1), *Temperature-daily maximum*(+1), *Temperature-daily minimum*(+1, -1), and *Miscellaneous toxins*(+1), (Figure 15 and Table 5). Complete results are listed alphabetically by all attributes' initial change for all three populations in Appendix G.

Figure 14: Effect of initial change in attribute value (either +-1 or +-5%) on change in relative population abundance for Naches River spring Chinook.

Figure 15: of initial change in attribute value (either +-1 or +-5%) on change in relative population abundance for Naches River steelhead

All Attributes Combined

The sensitivity results for all of the attributes are displayed together in Appendix H. The attributes caused abundance changes of greater than 80% or less than 1% are listed in Table 6.

	Change in Attribute Value (either index or percent)			
Environmental Attributes with >80% Relative Population Abundance Change	American River spring Chinook	Naches River spring Chinook	Naches River steelhead	
Width Maximum	-(100)	-(100)	-(100)	
Width Minimum	-(100)	-(100)	-(100)	
Turbidity	+(3,2)	+(3,2)	+(3,2)	
Temperature Daily Maximum	+(4,3)	+(4,3)	+(4,3)	
Temperature Daily Minimum	+(4,3,2)	+(4,3,2)	+(4,3,2)	
Obstructions		+(100)		
Miscellaneous Toxins	+(4,3,2)	+(4,3,2)	+(4,3,2)	
Metals in Water Column	+(4)	+(4)	+(4,3)	
Habitat - Backwater Pools	+(100)	+(100)		
Gradient			+(100)	
Habitat - Primary Pools		+(100)		
Fine sediment	+(3)	+(3)	+(3,2)	
Embeddedness	+(4,3)	+(4,3)	+(4,3)	
Dissolved Oxygen	+(4)	+(4)	+(4)	
Channel Length	+(100),-(100)	+(100),-(100)	+(100),-(100)	
Alkalinity	-(2,3,4)	-(2,3,4)	-(2,3,4)	
	Change in Attribute Value (either index or percent)			
Environmental Attributes with <1% Relative Population Abundance Change	American River spring Chinook	Naches River spring Chinook	Naches River steelhead	
Benthic Richness			-(1,2,3)	
Dissolved Oxygen	-(1,2)	-(1,2)	-(1,2)	
Embeddedness	-(1,2)		-(1,2)	
Fine Sediment	-(1,2,3,4)			
Fish Pathogens			-(1,2,3)	
Flow - Diel Variation	+(4,3,2,1),-(1,2)	+(3,2,1)	+(4,3,2,1),-(1,2)	
Flow - Intraannual Variation	+(4,3,2,1),-(1,2)	+(4,3,2,1)	+(4,3,2,1),-(1,2,3,4)	
Flow - Interannual Variation in High Flows	+(2,1),-(1,2,3,4)	+(1)	+(4,3,2,1),-(1,2,3,4)	
Flow - Interannual Variation in Low Flows	+(4,3,2,1),-(1,2,3,4)		-(1)	
Gradient	+(5),-(5,10)	+(5)		
Habitat - Backwater Pools			+(10,5),-(5,10)	
Habitat - Beaver Ponds	+(5),-(5,10)	-(5,10)	+(10,5),-(5,10)	
Habitat - Glides			+(100,25,10,5),- (5,10,25,100)	
Habitat - Large Cobbles			+(25,10,5),-(5,10,25)	
Habitat - Off-channel Habitat Factor	+(100,25,10,5),- (5,10,25,100)	+(100,25,10,5),- (5,10,25,100)	+(100,25,10,5),- (5,10,25,100)	
Habitat - Pool Tailouts	+(25,10,5),-(5,10)	+(5)	+(10,5),-(5,10)	
Habitat - Primary Pools			+(25,10,5)	
Habitat - Small Cobble			+(25,10,5),-(5,10)	
Harassment	+(1),-(1,2,3,4)	+(1)		
Hatchery Fish outplants	+(4,3,2,1)	+(4,3,2,1)		
Hydrologic Regime - Natural	+(4.3.2.1)(1)	+(4.3.2.1)	+(4.3.2.1)	

Table 6: Environmental Attributes toward which test populations werehighly or minimally sensitive in terms of equilibrium abundance.

Comparison between American River and Naches River Spring Chinook

The sensitivities of the American River and Naches River spring Chinook displayed a high correlation coefficient (r = 0.9698). The attributes *Salmon* carcasses(+1,+2), *Temperature-daily maximum*(+1, -1,-2,-3,-4), *Alkalinity*(-1), *Confinement-hydro*(+1,-1,-2,-3), *Fine sediment*(-1), *Gradient*(-5,-10,-25,-100) and *Width Maximum*(-5) showed the greatest differences in sensitivity between the two populations (Table 7 and Figure 16). The attributes *Habitat–small* cobble(-25,+100), *Temperature-daily maximum*(+3,+4), *Embeddedness*(+4), *Turbidity*(+3), *Miscellaneous toxins*(+3,+4), *Dissolved oxygen*(+4), *Metals in* water column(+4), Hatchery fish outplants(+1), Width minimum and maximum(-100) showed the least difference in sensitivities.

Attribute	Sensitivity American River spring Chinook	Sensitivity Naches River spring Chinook	Difference in Sensitivity
SCarc+1	-39%	-6%	33%
Gradient-5	18%	49%	31%
SCarc+2	-36%	-7%	29%
TMx-1	19%	46%	27%
Gradient-10	17%	38%	21%
Gradient-25	13%	33%	19%
TMx-2	13%	32%	19%
ConfHy-1	9%	28%	19%
ConfHy-2	8%	25%	17%
TMx+1	-64%	-81%	17%
ConfHy+1	-13%	-29%	16%
TMx-3	11%	28%	16%
FnSed-1	1%	17%	16%
TMx-4	11%	27%	16%
WidthMx-5	-70%	-54%	16%
Gradient-100	12%	27%	16%
Alk-1	-56%	-41%	15%
ConfHy-3	7%	22%	15%

Table 7: Differences that were more than two standard deviations away from the mean difference for American River spring Chinook and Naches River spring Chinook.

Figure 16: Comparison of differences in sensitivity between spring Chinook populations. Larger bubbles imply a larger absolute difference in sensitivity.

Comparison between Naches Spring Chinook and Naches River Steelhead

The sensitivities of Naches River spring Chinook and steelhead displayed a lower correlation coefficient (r = 0.7742) than was observed between Naches and American River spring Chinook. The attributes *Gradient(all)*, *Temperaturedaily maximum(+1)*, and *Width maximum(+5)* showed the greatest differences in sensitivity between the two populations (Table 7 and Figure 17). The attributes *Channel length(-100)*, *Dissolved oxygen(+4)*, *Embeddedness(+4)*, *Metals in water column(+4)*, *Miscellaneous toxins(+3,+4)*, *Temperature-daily maximum(+3,+4)*, *Turbidity(+3)*, and *Width maximum(-100)* showed the least difference in sensitivities between the two species.

Attribute	Sensitivity Naches River spring Chinook	Sensitivity Naches River steelhead	Difference in Sensitivity
Gradient-100	27%	-100%	127%
Gradient-5	49%	-77%	126%
Gradient-10	38%	-76%	114%
Gradient-25	33%	-74%	107%
Gradient25	-21%	59%	81%
Gradient10	-19%	58%	77%
Gradient5	-15%	61%	75%
Gradient100	-19%	50%	68%
WidthMx+5	79%	29%	49%
TMx+1	-81%	-33%	48%

Table 8: Differences that were more than two standard deviations away fromthe mean difference for Naches River spring Chinook and Naches Riversteelhead.

Figure 17: Comparison of differences in sensitivity between Naches River populations. Larger bubbles imply a larger absolute difference in sensitivity.

Discussion

Conclusions from this sensitivity analysis are intended to help guide Reclamation in the use of the EDT model when evaluating treatment alternatives in the Yakima sub-basin. This report cannot, nor intends, to instruct in the basics of EDT. We caution the reader to become familiar with EDT and its' documentation before applying the results of this study. Results from this analysis generally reflect the biological rules at the heart of the EDT model. However, results from this analysis are only applicable to the Yakima sub-basin and the populations evaluated for two reasons. First, model sensitivity is strongly dependent on the initial baseline attribute rating. Second, sensitivity is dependent on population life history. We investigated three categories of attributes: index, actual non-proportional, and actual proportional. For each of these categories, we will discuss the "most sensitive" attributes.

The Index attributes for which al three focal populations were most sensitive were *Temperature-daily maximum*, *Temperature- daily minimum*, *Alkalinity* (*negative increments*), *Miscellaneous toxins*, *Fine sediment*, and *Turbidity*. The sensitivity of each of these varied by river and species. We discuss these contrasts after we specifically consider why each of these parameters should be important to Yakima populations given known habitat conditions in the sub-basin and the habitat requirements of the species.

We considered Temperature-daily maximum and Temperature-daily *minimum* to be the most sensitive attributes because they had the highest impacts on all three populations. These temperature attributes are measures of the monthly maximum and minimum water temperatures within a reach. Shifts in maximum and minimum temperatures within the stream can have profound effects on species composition of both vertebrates and invertebrates. Salmonids have definite ranges of tolerance and optimal temperatures at different life stages. Increased water temperatures in the mainstem and tributaries affect habitat suitability for spawning and rearing. Extremely cold water temperatures during winter can cause stress, poor growth, and death (Bjornn and Reiser 1991, McCullough 1999). Within the EDT model, maximum and minimum temperature are the primary factors affecting the EDT Level 3 survival factor "Temperature" during most active and inactive life stages (see Appendix A). The Temperature survival factor, in turn, affects the productivity of every salmonid life stage. The maximum and minimum temperature attributes also modify the Level 3 survival factors Predation, Pathogens, and Sediment during some life stages, thereby compounding the impacts of temperature on productivity. Water temperatures can approach lethal levels for anadromous salmonids in the Yakima sub-basin (Vaccaro 1986: Tables 16-18). Accordingly, because of the harsh temperature regime in the Yakima sub-basin and the synergistic impacts of temperature on other attributes, it is reasonable that Temperature-daily maximum and *Temperature-daily minimum* were found to be most sensitive in this analysis.

All focal populations were highly sensitive to alkalinity and miscellaneous toxic substances. *Alkalinity* is the acid neutralizing capacity (ANC) of the water. Alkalinity is broadly correlated with the productive capacity of streams, with respect to both primary production and fish production (McFadden and Cooper 1962, Ptolemy 1993). Because it stimulates the production of food organisms, alkalinity is positively correlated with salmon and steelhead carrying capacity. In terms of the mechanisms of the EDT model, *Alkalinity* affects the Level 3 survival factors "Food" and "Competition" which, in turn, affect the maximum density attainable for each life stage and thus the carrying capacity of the watershed (Lestelle et al. 2004). By definition, miscellaneous toxic pollutants within the water column are capable of killing fish at any life stage given sufficient concentrations and exposure. The extreme sensitivity of the focal populations to alkalinity and miscellaneous toxic substances is therefore reasonable because of the strong impacts on capacity of the former and the potentially lethal effects of the latter.

The *Fine sediment* attribute indexes the percentage of fine sediments within salmonid spawning substrates (pool tail-outs, glides, and small-cobble/gravel riffles). Fine sediment particles affect the survival of incubating salmonid eggs and alevins by reducing the rate of oxygen exchange and by entombment. Fine sediment can also affect the benthos, reducing both species diversity and production (Rittmueller 1986, Chapman and McLeod 1987, Bjorn and Reiser 1991, Kondolf 2000). In the EDT model, fine sediment affects the survival factor "Sediment Load", which has a major potential impact on productivity through egg incubation.

The *Turbidity* attribute indexes the severity of impact to salmonids attributable to the combined impact of the duration and concentration of suspended particles. High levels of suspended sediments have been shown to affect fish behavior (e.g., halt feeding) and physiology (e.g., impair ventilation), causing stress and, if prolonged, reducing survival (Newcombe and Jensen 1996). Turbidity affects all free-swimming salmonid life stages. In the EDT model, *Turbidity* contributes to the "Sediment Load" survival factor (Lestelle et al. 2004).

All focal populations were significantly negatively sensitive to *Fine sediment* under the highest increment scenario (+3). Such a result is to be expected, because a +3 scenario would likely result in more than 30% fines in all reaches, a situation that would profoundly depress incubation survival and severely compromise summer rearing. The impacts of *Fine sediment* and *Turbidity* on the three focal populations are not limited to conditions within the Naches and American rivers. Many juvenile spring Chinook and steelhead migrate out of their natal rivers as subyearling parr or as pre-smolt migrants during the late fall and winter of their first year of life (Fast et al. 1991). These fish, which may represent the bulk of a year-class, rear and overwinter in the middle and lower Yakima mainstem, areas in which the impact of fine sediment and turbidity are known to be high (Haring 2001). The EDT model captures these life history details, and the impacts it predicts for Naches and American River populations are consistent with observed and documented habitat/survival relationships. The high sensitivity of focal populations to changes in *Channel length*, *Width maximum*, and *Width minimum* were expected for all three populations. Increasing the size of the stream reaches simply provides more habitat for each life stage, increasing carrying capacity and mean abundance.

Some of the attributes toward which the focal populations were relatively insensitive included *Hydrologic regime natural*, *Hydrologic regime regulated*, all flow attributes and *Habitat-off-channel*. The low sensitivity of the focal populations to *Hydrologic regime natural* is expected because changing the value of this attribute simply shifts the hydrograph from one pattern to another – e.g., from rainfall, to snowmelt. The model captures this effect by using a different set of rule curves to compute survival factors. Most of these rule curves are unchanged by hydrologic regime.

The relative insensitivity of the populations to flow parameters, however, is significant because the flow attributes are the most obvious conditions that Reclamation could change with new water storage and flow management procedures. The relative insensitivity of EDT to flow reflects the precision with which environmental attributes are defined in EDT. In EDT, flow attributes are defined strictly in hydraulic and/or hydrological terms. While the narrowly hydraulic or hydrological impacts of flow are not large, the indirect and/or delayed impacts of flow on environmental variables, such as temperature, predation and competition, riparian function, bed scour and sediment transport, can be enormous. Although the EDT model is capable of evaluating the response of a focal population to the suite of impacts expected several decades after a major hydrographic change, it cannot predict the specific attributes that a hydrological change will affect. The indirect effects of a major hydrological alteration must be determined independently and entered into the model as changes to non-flow attributes. Therefore, a practitioner using EDT to estimate benefits to salmon production attributable to the restoration or partial restoration of a normative hydrograph must be prepared to specify the time horizon over which impacts are to be evaluated, as well as the identity and degree of impact expected for non-flow attributes.

As mentioned, the focal populations were also insensitive to *Habitat-off-channel*. Off-channel habitat consists of groundwater channels, seasonally flooded wetlands, floodplain ponds, and the channels that connect them to the main channel or a side channel. These habitat types provide important rearing areas for some salmonid species, especially coho salmon (Peterson and Reid 1984). The insensitivity of spring Chinook and steelhead populations in this analysis to *Habitat-off-channel* was expected because the version of the model tested did not treat off-channel features as habitat for these species. Although a growing body of evidence (Sommer et al.2001, Brown 2002) indicates that chinook salmon juveniles do in fact make use of off-channel habitat, and particularly seasonally flooded wetlands, it is still generally accepted that steelhead make little use of off-channel habitat (Everest et al. 1984; Pearsons et al. 1996; Sedell at al. 1984).

The relatively poor correlation (r = 0.7742) between the sensitivities of Naches spring Chinook and steelhead was driven by interspecific differences in the sensitivity to gradient (see Figure 16). Following Johnson et al. (1988), EDT

predicts higher densities of juvenile steelhead in streams with steeper gradients (Table 8). Conversely and also consistent with documented observations (Hillman and Miller 2002; Petrosky and Holubets 1988), EDT predicts spring Chinook juvenile densities decline with increasing gradient. Accordingly, the Naches steelhead population was highly positively sensitive to increasing gradient while both spring Chinook populations were highly negatively sensitive. These disparities determined the low correlation coefficient in attribute sensitivity between these two populations.

This systematic sensitivity analysis (SSA) of the EDT model assisted in determining how sensitive the population abundance estimates were to improvement or degradation of the Yakima River basin habitat, which we hope will give managers and scientists an additional tool to use when applying EDT. Carl Walters (1986) said that "the value of modeling in fields like biology has not been to make precise predictions, but rather to provide clear caricatures of nature against which to test and expand experience." In this analysis, the responses to modeled scenarios made sense biologically, and the overall pattern of sensitivity was useful in highlighting parameters requiring greater precision in modeling and monitoring.

References

- Beverton, R.J.H., and S. Holt. 1957. On the dynamics of exploited fish populations. Fisheries Investment Series 2, Vol. 19. U.K. Ministry of Agriculture and Fisheries, London.
- Bjornn, T.C. and D.W. Reiser. 1991. Habitat requirements of salmonids in streams. Pages 83-138 in W. R. Meehan, (ed.) Influences of Forest and Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society, Bethesda, MD.
- Brown, T. G. 2002. Floodplains, flooding and salmon rearing habitats in British Columbia: A review. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC Research Document 2002/007, 155 pages.
- Chapman, D.W., and K.P. McLeod. 1987. Development of criteria for fine sediment in the northern Rockies ecoregion. U.S. Environmental Protection Agency EPA 910/9-87-162.
- Everest, Fred, James Sedell, Gordon Reeves, John Wolfe, "Fisheries Enhancement in the Fish Creek Basin", Project No. 1984-01100, 234 electronic pages, (BPA Report DOE/BP-16726-1)

- Fast, D., J. Hubble, M. Kohn, and B. Watson. 1991. Yakima River spring chinook enhancement study. Final report submitted to Bonneville Power Administration, Portland, Oregon. DOE/BP-39461-9.
- Good, T.P., R.S. Waples, and P. Adams (editors). 2005. Updated status of federally listed ESUs of West Coast salmon and steelhead. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-66, 598 p.
- Haefner, J.W. 1996. Modeling biological systems: principles and applications. Chapman and Hall. New York, New York.
- Haring, D. 2001. Habitat limiting factors- Yakima River Watershed- Water resource inventory areas 37-39 final report. Washington State Conservation Commission.
- Hillman, T. & M. Miller. 2002. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River basin, Washington, 2001. Rept. To Chelan County PUD. Feb. 2002. 55 pages.
- Johnson, T.H., L. Brown and M. Chilcote. 1988. Steelhead smolt carrying capacity for sub-basins to the Columbia River. Washington Department of Wildlife, Olympia, WA. March 1988.
- Kondolf, G.M. 2000. Assessing salmonid spawning gravel quality. Transactions American Fisheries Society 129:262-281.
- Lestelle, L. C., L.E. Mobrand, and W.E. McConnaha. 2004. Information structure of Ecosystem Diagnosis and Treatment (EDT) and habitat rating rules for Chinook salmon, coho salmon, and steelhead trout. Mobrand Biometrics, Inc., Vashon, WA. Available at http://www.mobrand.com/MBI/library.html
- Lestelle, L.C. 2005. Guidelines for rating level 2 environmental attributes in Ecosystem Diagnosis and Treatment (EDT). Mobrand – Jones & Stokes. Internet publication: <u>http://www.mobrand.com/MBI/pdfs/AttributeRatings-July2005-</u>7_13_05.pdf
- Lichatowich, J. A., L. E. Mobrand, L. Lestelle, and T. Vogel. 1995. An approach to the diagnosis and treatment of depleted Pacific salmon populations in freshwater ecosystems. Fisheries 20: 10-18.
- McCullough, D.A. 1999. A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook salmon. Report prepared for U.S. Environmental Protection Agency, Columbia River Inter-Tribal Fish Commission. Portland, OR.

- McFadden, J.T. and E.L. Cooper. 1962. An ecological comparison of six populations of brown trout (*Salmo trutta*). Transactions of the American Fisheries Society. 91: 53-62.
- Mobrand, Lars E., Lichatowich, James A., Lestelle, Lawrence C., and Vogel, Thomas S. 1997. An approach to describing ecosystem performance "through the eyes of salmon". Canadian Journal of Fisheries and Aquatic Sciences 54: 2964-2973.
- Mobrand Biometrics, 2003. EDT Online User Manual. Internet publication: <u>http://www.mobrand.com/MBI/pdfs/edt_web_docs.pdf</u>.
- Mobrand, L., and P. Kareiva. 1999.Reconciling EDT and CRI as alternative decision support systems: two is better than one. 27 October 1999 Draft Document: EDT and CRI compared as decision-support tools for salmon recovery.
 http://www.krisweb.com/biblio/gen_xxxx_mobrandetal_1999_edtcri.pdf
- Myers, J.M., R.G. Kope, G.J. Bryant, D. Teel, L.J. Lierheimer, T.C. Wainwright, WS. Grant, F.W. Waknitz, K.' Neely, S.T. Lindley, and R.S. Waples. 1998. Statusreview of chinook salmon from Washington, Idaho,Oregon, and California. US. Dept. Commer., NOAA Tech, Memo. NMFS-NWFSC-35,443 p.
- National Oceanic and Atmospheric Administration. 1999. Final Rule: Threatened status for two ESUs of Steelhead in Washington and Oregon. Federal Register 64: 14517-14528.
- Nelson, J.S., E.J. Crossman, H. Espinosa-Pérez, L.T. Findley, C.R. Gilbert, R.N. Lea, and J.D. Williams. 2004. Sixth Edition. Common and scientific names of fishes from the United States, Canada, and Mexico. American Fisheries Society, Special Publication 29, Bethesda, Maryland.
- Newcombe, C.P., and J.O.T. Jensen. 1996. Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management 16:693-727.
- Pearsons, T. N. 1996. Species and habitat associations of spring Chinook salmon and rainbow trout in the upper Yakima River. in T.N.Pearsons, G. A. McMichael, S. W. Martin, E. L. E.L. Bartrand, a. J.A. Long, and S. A. Leider, editors. Yakima River species interactions studies. Bonneville Power Administration, Portland, OR.
- Peterson, N. P., and L. M. Reid. 1984. Coho riverine habitat: Its evolution, distribution, and use. *In* J. M. Walton and D. B. Houston (eds.)
 Proceedings of the Olympic Wild Fish Conference, p.215-225. Fisheries Technology Program, Peninsula College, Port Angeles, WA.

- Petrosky, C.E. and T.B. Holubetz. 1988. Idaho habitat evaluation for off-site mitigation record. IDFG. Part 1. Subproject 1. BPA Project 83-7.
- Ptolemy, R.A. 1993. Maximum salmonid densities in fluvial habitats in British Columbia. Pages 223-250 in Proceedings of the 1992 Coho Workshop, Association of Professional Biologists of British Columbia and North Pacific International Chapter of the American Fisheries Society.
- Quinn, Thomas P. 2005. The behavior and ecology of Pacific Salmon and trout. University of Washington Press. Seattle, Washington.
- Rittmueller, J.F. 1986. Effects of logging roads on the composition of spawning gravel in streams of the west slope Olympic Mountains, Washington. M.S. Thesis, University of Washington, Seattle, WA.
- Saltelli, A., S. Tarantola, and F. Campolongo. 2000. Sensitivity analysis as an ingredient of modeling. *Statistical Science*. Vol. 15, 4:377-395.
- Sedell, J. R., J. E. Yuska, and R. W. Speaker. 1984. Habitats and salmonid distribution in pristine, sediment-rich river valley systems: S. Fork Hoh and Queets rivers, Olympic National Park. Pages 33-46 in W.R. Meehan, T. R. Merrell, and T. A. Hanley, editors. Fish and wildlife relationships in old-growth forests. American Institute of Fisheries Research Biologists, Juneau, AK.
- Sommer, T. R., M. L. Nobriga, W. C. Harrell, W. Batham, and W. J. Kimmerer. 2001. Floodplain rearing of juvenile chinook salmon: evidence for enhanced growth and survival. Canadian Journal of Fisheries and Aquatic Sciences 58:325-333.
- Vaccaro, J.J. 1986. Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981. US Geological Survey, Water Resources Investigations Report 85-4232. Tacoma, Washington
- Walters, C.J. 1986. Adaptive management of natural resources. Macmillian. New York, NY.

Appendix A: Environmental quality attributes with attribute type and initial values.

Level 2				Index /	Initial
Environmental	Level 3	Description	Pattern	Actual	Average
Ouality Attribute	Category		Driven?	Value	Value
2000009 1200200				Attribute	
Alkalinity (Alk)	Water	Alkalinity or acid	No	Index	2.06
	Quality	neutralizing capacity.			
Bed Scour (BdSc)		Average depth of bed scour	Yes	Index	1.96
		in spawning areas, during			
	Stream	annual peak flood event (or			
	Structure	over 10-year period).			
Benthos Community		Measure of the diversity	No	Index	0.76
Richness (BnRch)		and production for the			
	Biological	macroinvertebrate			
	Community	community.			
Channel Length		Length of the primary	No	Actual Non-	3.24
(ChnLength)		channel contained with the		Proportion	
	Actual Value	stream reach in miles.			
Confine-Natural		Ratio between the width of	No	Index	1.59
(Conf)		the valley (natural features			
	Stream	only) and the bankfull			
	Structure	channel width.			
Confine-		The extent to which flow is	No	Index	1.88
Hydromodifications		impeded by structures in			
(ConfHy)		the stream channel.			
	Stream	Includes channelization,			
	Structure	incision, bridges, etc.			
Dissolved Oxygen	Water	Average dissolved oxygen	Yes	Index	0.06
(DO)	Quality	within the water column.			
Embeddedness		The extent to which large	No	Index	2.06
(Emb)		gravels are buried in fine			
		sediment. Only applies to			
	Stream	riffle and pool tailouts with			
	Structure	gravels.			
Fine Sediment	Stream	Percentage of fine sediment	No	Index	2.22
(FnSed)	Structure	in spawning substrate.			
Fish Community		Measure of the richness of	No	Index	2.05
Richness	Biological	the fish community.			
(FshComRch)	Community				

Level 2 Environmental	Level 3	Description	Pattern	Index / Actual	Initial Average
Quality Attribute	Category	*	Driven?	Value Attribute	Value
Fish Pathogens		The presence of fish	No	Index	0.83
(FSnPatn)		for sockeye and kokanee			
		proximity to hatchery fish			
	Biological	releases, and whirling			
	Community	disease.			
Fish Species		The extent of introductions	No	Index	0.48
Introductions (Feb Sector)	Biological	of exotic fish.			
(FsnSpintro) Flow Diel	Community	Average diel variation in	Vas	Index	0.10
(FlowDiel)		flow during a month Can	105	Index	0.19
		indicate level of			
	Biological	urbanization or			
	Community	"flashiness".			
Flow High (FlowHi)	**	Relative average peak	Yes	Index	1.87
	Hydrology	annual discharge.	NZ	T 1	2.22
Flow Intra-Annual (ElowIntra)		Variation in annual flow, or	Yes	Index	2.22
(Piowinica)	Hydrology	primary runoff season			
Flow Low (FlowLo)	nyurology	Relative average daily flow	Yes	Index	2.24
	Hydrology	change in low flow seasons.			
Gradient (Gradient)		The average gradient of the	No	Actual Non-	1.67
-	Hydrology	main channel of the reach.		Proportion	
Habitat – Backwater		Percentage of backwater	No	Actual	0.52
pools (HabBckPl)	Actual Value	pools in the reach.	Na	Proportion	0.46
nonds (HabByr)	Actual Value	in the reach	INO	Proportion	0.40
Habitat –	Actual Value	Percentage of glides in the	No	Actual	33.90
Glide (HabGlide)	Actual Value	reach.	110	Proportion	55170
Habitat – Large		Percentage of large cobble	No	Actual	16.70
cobble riffles		riffles in the reach.		Proportion	
(HabLgCob)	Actual Value				
Habitat – Off		Multiplier for estimating	No	Actual	10.63
Channel Factor		off channel habitat, as an		Proportion	
(HabOliCh)	Actual Value	habitat in the reach			
Habitat – Primary		Percentage of primary	No	Actual	16.61
pools (HabPool)	Actual Value	pools in the reach.		Proportion	
Habitat – Pool		Percentage of pool tailouts	No	Actual	3.07
tailouts		in the reach.		Proportion	
(HabPoolTail)	Actual Value				22.40
Habitat – Small		Percentage of small cobble	No	Actual	32.40
(HabSmCob)	Actual Value	mines in the reach.		Proportion	
(Haushicou)	Actual value				

Level 2 Environmental	Level 3 Category	Description	Pattern Driven?	Index / Actual Value	Initial Average Value
Quality Attribute	Caregory		211,011	Attribute	
Harassment (Harrass)	Actual Value	Reach proximity to human population center as indication of extent of poaching and harassment of fich	No	Index	1.72
Hatchery Fish Outplants (HatchOut)	Biological Community	Magnitude of hatchery releases of juvenile fish.	No	Index	1.21
Hydrologic Regime Natural (HydNat)	Biological Community	Natural flow regime (seasonal pattern of flow over the year).	No	Index	2.54
Hydrologic Regime Regulated (HydReg)	Hydrology	The change in the hydrograph caused by the operation of flow regulation facilities.	No	Index	2.55
Icing (Ice)	Hydrology	Average extent and magnitude of icing events over 10-year period.	Yes	Index	0.47
Metal Pollutant in Soils (MetSoil)	Stream Structure	The extent of heavy metals in stream sediments and soils adjacent to the stream.	No	Index	0.00
Metal Water Column (MetWat)	Water Quality	The extent of dissolved heavy metals in the water column.	No	Index	0.00
Miscellaneous Pollutant Water/Toxins (MscTox)	Water Quality	Extent of pollutants (other than heavy metals) in the water column.	No	Index	0.34
Nutrient Enrichment (Nutrient)	Water Quality	The extent of nutrient enrichment (N and P) from anthropogenic activities.	Yes	Index	0.89
Obstructions (Obstruction)	Obstructions	Obstructions to fish migration	Yes	Actual Non- proportional	-
Predation Risk (Predate)	Water Quality	Per capita risk for small and large fish of predation by species, due to a manmade structure.	Yes	Index	2.16
Riparian Function (RpFx)	Biological Community	How much riparian function has been altered within the reach.	No	Index	1.15
Salmon Carcass SCarc)	Stream Structure	Relative abundance of anadromous salmonid carcasses by watershed.	No	Index	3.87

Level 2 Environmental Quality Attribute	Level 3 Category	Description	Pattern Driven?	Index / Actual Value Attribute	Initial Average Value
Temperature- Daily Maximum (TMx)	Water Quality	Max duration and heat of water temperature within the stream reach during a month.	Yes	Index	2.64
Temperature-Daily Minimum (TMn)	Water Quality	Minimum duration and heat of water temperature within the reach during a month.	Yes	Index	2.29
Temperature Spatial Variation (TSV)	Water Quality	Extent of water temperature variation as influenced by inputs of groundwater, tributaries, or thermal stratifications in deep pools.	Yes	Index	3.30
Turbidity (Turb)	Stream Structure	Severity of suspended sediment within a reach.	Yes	Index	1.54
Water Withdrawal (Wdrwl)	Hydrology	Number and size of water withdrawals in the stream reach.	Yes	Index	0.46
Width Maximum (WidthMx)	Actual Value	Average width of the wetted channel during high flow month.	Yes	Actual Non- proportional	173.40
Width Minimum (WidthMn)	Actual Value	Average width of the wetted channel during low flow month.	Yes	Actual Non- proportional	105.32
Wood (Wood)	Stream Structure	Amount of large woody debris (greater than 0.1 meter in diameter and 2.0 meters in length) in the reach.	No	Index	2.72

Appendix B: Yakima River Basin reaches used for the sensitivity analysis. Reaches in bold are obstructions on the river.

ReachName	ReachName (Cont.)	ReachName (Cont.)	ReachName (Cont.)
Yakima R1A	Ahtanum Cr. NF-5	Bumping R1	Manastash Cr8
Yakima R1B	Ahtanum Cr. NF-6	Bumping R2a	Manastash Cr9
Yakima R1D	Foundation Cr.	Bumping R3a (Bumping Lake Reach 1)	Manastash Cr10
Yakima R1E	Nasty Cr.	Bumping R3b (Bumping Lake Reach 2)	NF Manastash Cr.
Yakima R1F	MF Ahtanum Cr.	Bumping R4	SF Manastash Cr1
Yakima R2	Ahtanum Cr. SF-1	Deep Cr.	SF Manastash Cr2
Yakima R2A	Ahtanum Cr. SF-2	American R1	SF Manastash Cr3
Yakima R2C	Wide Hollow Cr1	American R2	Taneum Cr1
Yakima R2D	Wide Hollow Cr3	American R3	Taneum Cr2
Yakima R2E	Wide Hollow Cr4	American R3A	Taneum Cr3
Yakima R3	Spring Branch Cr.	American R3B	Taneum Cr4
Yakima R4	Wenas Cr1	American R4	Taneum Cr5
Yakima R4A	Wenas Cr1a	American R4A	Taneum Cr6
Yakima R5	Wenas Cr2	American R5	NF Taneum Cr.
Yakima R5B	NF Wenas Cr.	American R6	SF Taneum Cr.
Yakima R5D	SF Wenas Cr.	American R6A	Swauk Cr1
Corral Canyon Cr.	Naches R1	American R6B	Swauk Cr2
Snipes Cr1	Naches R1a	Kettle Cr.	Swauk Cr3
Spring Cr.	Naches R1D	Miner Cr.	Swauk Cr4
Snipes Cr2	Naches R1c	Morse Cr.	Williams Cr.
Marion Drain-1	Naches R2A	Rainier Fork	Iron Cr.
Wanon Drain-3	Naches R20 Nachos P. 2	Union Cr. Vakima P. OR	Cle Elum R1 Cle Elum P2P (Laka Cla Elum)
Marian Drain 4	Naches D. 4	Valima D. 40	
Marion Drain-4	Naches R4	Yakima R10 Vakima R. 11	Cle Elum R3
Harran Drain	Naches R5	Yakima R11	Cle Elum R4
Sulpriur Cr.	S Naches Channel	Yakima RTTA	Cle Elum R5
Satus Cr1	Cowiche Cr1	Yakima R11B	Cle Elum R0
Satus Cr. 2	SE Cowiche Cr. 1	Vakima P. 12	
Satus Cr. 4	SF Cowiche Cr1	Vakima P. 12	Clo Elum P. 0
Satus Cr5	Revnold Cr	Yakima R -13B	Cle Elum R -10
Satus Cr -6	NE Cowiche Cr	Yakima R -14	Cle Flum R-11
Satus Cr -7	Buckskin Slough	Yakima R -15	Cle Flum R-12
Mule Dry Cr	Tieton R -1	Yakima R -16	Cooper R
Dry Cr. (Satus)-1	Tieton R -2	Yakima R -17	Wantus R -1
Dry Cr. (Satus)-2	Tieton R3	Yakima R17A	Waptus R2
Loav Cr.	Tieton R4	Yakima R17B	Waptus R3
Bull Cr.	Tieton R5	Yakima R18	Waptus R4
Kusshi Cr.	Oak Cr.	Yakima R19B (Lake Easton)	Waptus R5
Wilson Charlie Cr.	Wildcat Cr.	Yakima R20	Little Cr1
Toppenish Cr1	NF Tieton R1	Yakima R21	Little Cr2
Toppenish Cr2	NF Tieton R2	Yakima R22B (Keechelus Lake)	Big Cr1
Toppenish Cr3	NF Tieton R3	Umtanum Cr.	Big Cr2
Toppenish Cr4	NF Tieton R3B	Wilson Cr1	Big Cr3
Toppenish Cr5	NF Tieton R4	Wilson Cr2	Big Cr4
Toppenish Cr6	NF Tieton R5	Wilson Cr3	Big Cr5
Toppenish Cr7	Indian Cr. (NF Tieton)	Wilson Cr4	Big Cr6
Toppenish Cr8	Clear Cr.	Bull Ditch	Tucker Cr1
Toppenish Cr9	SF Tieton R1	Wilson Cr4A	Tucker Cr2
Toppenish Cr10	SF Tieton R2	Wilson Cr5	Kachess R1
Toppenish Cr11	SF Tieton R3	Wilson Cr6	Kachess R2B (Kachess Lake first reach)
Simcoe Cr1	SF Tieton R4	East Branch Wilson Cr1	Kachess R3 (Kachess Lake second reach)
Simcoe Cr2	Rattlesnake Cr1	East Branch Wilson Cr2	Kachess R4
Simcoe Cr3	Rattlesnake Cr2	Wilson Cr7	Box Canyon Cr.
Simcoe Cr5	Rattlesnake Cr3	Wilson Cr8	Cabin Cr.
Simcoe Cr6	Rattlesnake Cr4	Wilson Cr9	Gold Cr.
Willy Dick Canyon Cr1	Rattlesnake Cr5	Wilson Cr10	Teanaway R1
Willy Dick Canyon Cr2	Little Rattlesnake Cr.	Wilson Cr11	Teanaway R2
Willy Dick Canyon Cr3	NF Rattlesnake Cr.	Cherry Cr1	NF Ieanaway R1
NF Toppenish Cr1	Hindoo Cr.	Cherry Cr2	NF Teanaway R2
INF Toppenish Cr2	Nile Cr.	Cherry Cr3	INF Teanaway R3

Appendix c: Index Attributes with summary statistics.

Attribute	Sensitivity	Sensitivity	Sensitivity	Relative	Relative	Relative
	American	Naches	Naches	Change	Change	Change
	Spring	Spring	Steelhead	American	Naches	Naches
	Chinook	Chinook		Spring	Spring	Steelhead
				Chinook	Chinook	
Alk-4	-43%	-44%	-42%	-88%	-91%	-86%
Alk-3	-43%	-44%	-42%	-88%	-91%	-86%
Alk-2	-48%	-51%	-50%	-84%	-88%	-86%
Alk-1	-56%	-41%	-41%	-56%	-41%	-41%
Alk+1	23%	17%	18%	23%	17%	18%
Alk+2	18%	13%	18%	30%	22%	30%
Alk+3	16%	11%	16%	31%	22%	31%
BdSc-4	1%	1%	1%	3%	3%	2%
BdSc-3	1%	1%	1%	3%	3%	2%
BdSc-2	1%	2%	1%	2%	3%	2%
BdSc-1	1%	2%	1%	1%	2%	1%
BdSc+1	-2%	-2%	1%	-1%	-2%	1%
BdSc+2	-2%	-4%	-5%	-3%	-7%	-9%
BdSc+3	-2%	-5%	-6%	-3%	-11%	-12%
BdSc+4	-2%	-6%	-6%	-3%	-12%	-13%
BnRch-3	3%	4%	1%	2%	3%	1%
BnRch-2	3%	5%	1%	2%	3%	1%
BnRch-1	4%	6%	2%	2%	2%	1%
BnRch+1	-5%	-4%	-4%	-5%	-4%	-4%
BnRch+2	-6%	-5%	-5%	-12%	-10%	-10%
BnRch+3	-8%	-6%	-6%	-20%	-17%	-16%
BnRch+4	-9%	-7%	-7%	-28%	-23%	-23%
Conf-4	3%	8%	8%	5%	12%	12%
Conf-3	3%	9%	9%	5%	12%	12%
Conf-2	4%	10%	10%	5%	11%	11%
Conf-1	5%	12%	13%	3%	7%	7%
Conf+1	-10%	-13%	-13%	-8%	-11%	-11%
Conf+2	-15%	-19%	-13%	-22%	-28%	-19%
Conf+3	-18%	-21%	-14%	-36%	-42%	-27%
Conf+4	-23%	-25%	-15%	-54%	-61%	-36%
ConfHy-4	6%	20%	6%	11%	37%	10%
ConfHy-3	7%	22%	6%	11%	37%	10%
ConfHy-2	8%	25%	6%	10%	32%	8%
ConfHy-1	9%	28%	7%	7%	21%	5%
ConfHy+1	-13%	-29%	-7%	-10%	-23%	-6%
ConfHy+2	-16%	-29%	-9%	-22%	-42%	-13%
ConfHy+3	-19%	-31%	-9%	-37%	-58%	-18%
ConfHy+4	-26%	-33%	-9%	-55%	-69%	-20%

Attribute (continued)	Sensitivity American Spring Chinook	Sensitivity Naches Spring Chinook	Sensitivity Naches Steelhead	Relative Change American Spring Chinook	Relative Change Naches Spring Chinook	Relative Change Naches Steelhead
DO-2	3%	13%	4%	0%	1%	0%
DO-1	3%	13%	4%	0%	1%	0%
DO+1	-4%	-5%	-4%	-4%	-5%	-4%
DO+2	-15%	-17%	-11%	-29%	-34%	-22%
DO+3	-25%	-26%	-24%	-75%	-77%	-73%
DO+4	-25%	-25%	-25%	-100%	-100%	-100%
Emb-2	0%	1%	0%	1%	2%	0%
Emb-1	0%	1%	0%	1%	2%	0%
Emb+1	-31%	-41%	-21%	-6%	-8%	-4%
Emb+2	-44%	-52%	-37%	-36%	-42%	-30%
Emb+3	-54%	-55%	-57%	-92%	-93%	-96%
Emb+4	-52%	-52%	-52%	-100%	-100%	-100%
FlowDiel-2	0%	0%	0%	0%	0%	0%
FlowDiel-1	0%	0%	0%	0%	0%	0%
FlowDiel+1	0%	0%	0%	0%	0%	0%
FlowDiel+2	0%	0%	0%	0%	0%	0%
FlowDiel+3	0%	0%	0%	0%	0%	-1%
FlowDiel+4	0%	0%	0%	0%	-1%	2%
FlowH1-4	0%	1%	0%	0%	1%	0%
FlowH1-3	0%	1%	0%	0%	1%	0%
FlowHI-2 FlowHI: 1	0%	1%	0%	0%	1%	0%
FlowHI-1 FlowHi+1	0%	1%	0%	0%	1%	0%
FlowHi+2	0%	1.04	0%	10/0	30%	0%
FlowHi+3	10%	-1 70	0%	-170	-370	0%
FlowHi+4	-1%	-2%	0%	-3%	-4%	0%
FlowIntr-4	1%	1%	0%	1%	2%	0%
FlowIntr-3	1%	1%	0%	1%	2%	0%
FlowIntr-2	0%	1%	0%	1%	2%	0%
FlowIntr-1	1%	2%	0%	1%	2%	0%
FlowIntr+1	0%	0%	0%	0%	0%	0%
FlowIntr+2	0%	0%	0%	0%	-1%	0%
FlowIntr+3	0%	0%	0%	0%	-1%	0%
FlowIntr+4	0%	0%	0%	0%	-1%	0%
FlowLo-4	0%	1%	0%	0%	2%	1%
FlowLo-3	0%	1%	0%	0%	2%	1%
FlowLo-2	0%	1%	1%	0%	2%	1%
FlowLo-1	0%	2%	1%	0%	2%	1%
FlowLo+1	0%	-1%	-1%	0%	-1%	-1%
FlowLo+2	0%	-2%	-2%	0%	-3%	-3%
FlowLo+3	0%	-2%	-2%	0%	-3%	-3%
FlowLo+4	0%	-2%	-1%	0%	-3%	-3%

Attribute (continued)	Sensitivity American	Sensitivity Naches	Sensitivity Naches	Relative Change	Relative Change	Relative Change
(continued)	Spring	Spring	Steelhead	American	Naches	Naches
	Chinook	Chinook		Spring	Spring	Steelhead
				Chinook	Chinook	
FnSed-4	0%	8%	9%	1%	17%	20%
FnSed-3	0%	8%	9%	1%	17%	20%
FnSed-2	1%	9%	11%	1%	17%	20%
FnSed-1	1%	17%	18%	1%	17%	18%
FnSed+1	-24%	-27%	-43%	-23%	-26%	-41%
FnSed+2	-35%	-29%	-63%	-57%	-46%	-100%
FnSed+3	-56%	-55%	-56%	-100%	-97%	-100%
FshComRch-4	6%	7%	4%	12%	15%	9%
FshComRch-3	6%	7%	4%	12%	14%	8%
FshComRch-2	5%	6%	4%	10%	12%	7%
FshComRch-1	6%	7%	4%	6%	7%	4%
FshComRch+1	-5%	-5%	-4%	-5%	-4%	-4%
FshComRch+2	-3%	-4%	-4%	-6%	-7%	-8%
FshComRch+3	-3%	-3%	-4%	-6%	-7%	-9%
FshPath-3		4%	0%	2%	3%	0%
FshPath-2		4%	0%	2%	3%	0%
FshPath-1		5%	1%	2%	3%	0%
FshPath+1	-6%	-8%	-1%	-6%	-8%	-1%
FshPath+2	-17%	-18%	-4%	-33%	-35%	-8%
FshPath+3	-13%	-15%	-6%	-36%	-40%	-17%
FshPath+4	-11%	-13%	-6%	-36%	-40%	-19%
FshSpIntro-3	14%	17%	10%	7%	8%	5%
FshSpIntro-2	13%	16%	9%	6%	8%	4%
FshSpIntro-1	12%	14%	8%	5%	5%	3%
FshSpIntro+1	-7%	-7%	-5%	-7%	-7%	-5%
FshSpIntro+2	-8%	-8%	-6%	-16%	-1/%	-11%
FshSpintro+3	-8%	-8%	-6%	-22%	-24%	-18%
FshSpintro+4	- /%	-8%	-0%	-26%	-29%	-22%
Harass-4	0%	1%	1%	1%	3%	2%
Harass-3	0%	2%	1%	1%	2%	2%
Harass 1	0%	2%	1%	0%	2%	1 %
Harass-1	0%	1%	2%	0%	1%	2%
Harass+1	-1%	-1 /0	-2%	-1%	-1 /0	-2.70
Harass+2 Harass+3	-1%		-3%	-3%	-5%	-6%
Harass+4	-2%	-2%	-3%	-3%	-5%	-6%
HatchOut-4	12%	14%	8%	15%	17%	10%
HatchOut-3	12%	14%	8%	13%	15%	9%
HatchOut-2	13%	15%	9%	10%	11%	7%
HatchOut-1	16%	18%	9%	7%	8%	4%
HatchOut+1	0%	0%	-3%	0%	0%	-2%
HatchOut+2	0%	0%	-2%	0%	0%	-3%
HatchOut+3	0%	0%	-1%	0%	0%	-3%
HatchOut+4	0%	0%	-1%	-1%	0%	-3%

Attribute (continued)	Sensitivity American Spring Chinook	Sensitivity Naches Spring Chinook	Sensitivity Naches Steelhead	Relative Change American Spring	Relative Change Naches Spring	Relative Change Naches Steelhead
	10/	5 0/	0.01	Chinook	Chinook	22.04
HydNat-3	1%	7%	8%	2%	19%	22%
HydNat-2	1%	4%	5%	1%		11%
HydNat-1	1%	2%	2%	1%	2%	2%
HydNat+1	0%	1%	0%	0%	1%	0%
HydNat+2	0%	0%	0%	0%	1%	0%
HydNat+3	0%	0%	0%	0%	1%	0%
HydNat+4	0%	0%	0%	0%	1%	0%
HydReg-3	0%	0%	0%	0%	1%	0%
HydReg-2	0%	0%	0%	0%	1%	0%
HydReg-1	0%	1%	0%	0%	1%	0%
HydReg+1	0%	1%	0%	0%	1%	0%
HydReg+2	0%	0%	0%	0%	1%	0%
Ice-2	1%	2%	1%	1%	1%	0%
Ice-I	1%	3%	1%	1%	1%	0%
Ice+1	-1%	-1%	-1%	-1%	-1%	-1%
Ice+2	-1%	-1%	-1%	-2%	-3%	-1%
Ice+3	-1%	-2%	-1%	-4%	-5%	-2%
ICe+4	-2%	-2%	-1%	-6%	-0%	-3%
MetSoll+1	-1%	10%	-1%	-1%		-1%
MetSoll+2	-2%	-1%	-2%	-3%	-3%	-4%
MetSoll+3	-3%	-3%	-4%	-10%	-10%	-11%
MetSoll+4	-10%	-10%	-14%	-39%	-39%	-35%
Metwat+1	-2%	-1%	-2%	-2%	-1%	-2%
MetWat+2	-9%	-8%	-9%	-18%	-1/%	-1/%
MetWet 4	-24%	-23%	-21%	-72%	-/4%	-82%
MeeTer 2	-2.3%	-23%	-23%	-100%	-100%	-100%
MSCTOX-3 MeeTex 2	1170	12.70	10%	470	4 70	3%
MSCIOX-2 MacTox 1	11%	12%	11%	4%	4%	3%
MSCIUX-1 MscTox+1	32%	30%	33%	32%	30%	370
MscTox+1 MscTox+2	-3270	-30%	-50%	-95%	-95%	-100%
MscTox+2 MscTox+3	-40%	-47/0	-30%	-100%	-100%	-100%
MscTox+3			-27%	-100%	-100%	-100%
Nutrient-4	0%	1%	0%	0%	100%	0%
Nutrient-3	0%	1%	0%	0%	1%	0%
Nutrient-2	0%	2%	0%	0%	1%	0%
Nutrient-1	0%	2%	0%	0%	1%	0%
Nutrient+1	0%	0%	0%	0%	0%	0%
Nutrient+2	-1%	0%	0%	-1%	-1%	0%
Nutrient+3	-1%	-1%	0%	-2%	-2%	-1%
Nutrient+4	-1%	-1%	0%	-3%	-2%	-1%
Predate-3	2%	3%	2%	5%	7%	5%
Predate-2	2%	3%	2%	5%	6%	4%
Predate-1	4%	5%	3%	4%	5%	3%
Predate+1	-14%	-15%	-6%	-14%	-15%	-6%
Predate+2	-29%	-30%	-7%	-53%	-55%	-12%
Predate+3	-29%	-30%	-7%	-53%	-55%	-12%

Attribute	Sensitivity	Sensitivity	Sensitivity	Relative	Relative	Relative
(continued)	American	Naches	Naches	Change	Change	Change
	Spring	Spring	Steelhead	American	Naches	Naches
	Chinook	Chinook		Spring	Spring	Steelhead
				Chinook	Chinook	
$\mathbf{RpF}(\mathbf{x})$ -4	11%	23%	11%	12%	26%	12%
$\mathbf{RpF}(\mathbf{x})$ -3	11%	24%	11%	12%	26%	12%
RpF(x)-2	12%	24%	11%	12%	25%	12%
$\mathbf{RpF}(\mathbf{x})$ -1	13%	25%	11%	9%	18%	8%
$\mathbf{RpF}(\mathbf{x})$ +1	-15%	-24%	-12%	-15%	-23%	-11%
RpF(x)+2	-18%	-24%	-13%	-34%	-47%	-26%
RpF(x)+3	-20%	-24%	-15%	-52%	-62%	-38%
$\mathbf{RpF}(\mathbf{x})$ +4	-21%	-24%	-16%	-60%	-68%	-46%
SCarc-4	9%	9%	8%	36%	33%	32%
SCarc-3	11%	10%	10%	33%	31%	
SCarc-2	14%	12%	12%	28%	25%	24%
SCarc-1	18%	15%	14%	18%	15%	14%
SCarc+1	-39%	-6%	-13%	-5%	-1%	-2%
SCarc+2	-36%	-7%	-14%	-5%	-1%	-2%
TMn-4	2%	4%	14%	7%	9%	38%
TMn-3		4%	15%	7%	9%	38%
TMn-2		5%	19%	6%	9%	36%
TMn-1	4%	9%	29%	4%	9%	29%
TMn+1	-33%	-31%	-49%	-27%	-25%	-39%
TMn+2	-66%	-73%	-79%	-82%	-90%	-98%
TMn+3	-61%	-67%	-75%	-82%	-90%	-100%
TMn+4	-61%	-66%	-74%	-82%	-90%	-100%
TMx-4	11%	27%	11%	25%	62%	25%
TMx-3	11%	28%	11%	25%	62%	24%
TMx-2	13%	32%	12%	24%	59%	22%
TMx-1	19%	46%	15%	19%	46%	15%
TMx+1	-64%	-81%	-33%	-60%	-76%	-31%
TMx+2	-51%	-61%	-50%	-78%	-94%	77%
TMx+3	-59%	-59%	-59%	-100%	-100%	-100%
TMx+4	-58%	-58%	-58%	-100%	-100%	-100%
TSV-4		9%	7%	11%	30%	23%
TSV-3	4%	11%	7%	11%	29%	20%
TSV-2	5%	13%	8%	9%	24%	16%
TSV-1	6%	15%	9%	6%	15%	9%
TSV+1	-14%	-23%	-12%	-5%	-9%	-5%
TSV+2	-15%	-27%	-17%	-10%	-18%	-11%
TSV+3	-14%	-26%	-17%	-10%	-18%	-11%
TSV+4	-14%	-25%	-16%	-10%	-18%	-11%
Turb-3	8%	10%	9%	13%	15%	15%
Turb-2	9%	10%	10%	13%	15%	15%
Turb-1	12%	14%	14%	12%	14%	14%
Turb+1	-44%	-44%	-52%	-44%	-44%	-52%
Turb+2	-48%	-42%	-51%	-93%	-82%	-100%
Turb+3	-41%	-41%	-41%	-100%	-100%	-100%

Attribute (continued)	Sensitivity American Spring Chinook	Sensitivity Naches Spring Chinook	Sensitivity Naches Steelhead	Relative Change American Spring	Relative Change Naches Spring	Relative Change Naches Steelhead
	0.01			Chinook	Chinook	
Wdrwl-4	0%	0%	0%	0%	0%	0%
Wdrwl-3	0%	0%	0%	0%	0%	0%
Wdrwl-2	0%	0%	0%	0%	0%	0%
Wdrwl-1	0%	0%	0%	0%	0%	0%
Wdrwl+1	0%	0%	0%	0%	0%	0%
Wdrwl+2	0%	-1%	0%	0%	-1%	-1%
Wdrwl+3	0%	-1%	-1%	-1%	-2%	-2%
Wdrwl+4	-1%	-1%	-2%	-2%	-4%	-8%
Wood-4	7%	17%	6%	19%	46%	17%
Wood-3	7%	19%	7%	18%	44%	17%
Wood-2	9%	21%	8%	16%	37%	14%
Wood-1	11%	24%	9%	10%	23%	8%
Wood+1	-16%	-30%	-10%	-11%	-19%	-6%
Wood+2	-20%	-29%	-10%	-22%	-31%	-10%
Wood+3	-23%	-28%	-12%	-28%	-34%	-14%
Wood+4	-24%	-30%	-13%	-31%	-38%	-17%
Minimum	-66.4%	-80.7%	-78.8%	-100.0%	-100.0%	-100.0%
Average	-6.3%	-5.2%	-5.2%	-11.3%	-9.9%	-9.5%
Standard	17.8%	20.5%	18.1%	30.2%	33.8%	31.2%
Deviation						
Median	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Maximum	22.8%	46.4%	29.1%	35.7%	62.1%	37.7%
Average-2 Std Dev	-41.8%	-46.1%	-41.4%	-71.7%	-77.5%	-71.9%
Average+2 Std Dev	29.2%	35.7%	31.0%	49.1%	57.6%	52.8%

Appendix D: Non-proportional Habitat Attributes

American Spring Chinook Naches Spring Chinook Change Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Chinook Change Merican Spring Change	Attribute	Sensitivity	Sensitivity	Sensitivity	Relative	Relative	Relative
Spring Chinook Spring Chinook Naches Steelhead American Spring Chinook Naches Steelhead Naches Spring Chinook Naches Steelhead ChnLength-10 -100% -100% -100% -100% -25% -25% -10% ChnLength-25 -100% -101% -101% -102% -10% -10% -25% -25% -10% ChnLength-5 -101% -101% -102% -5% -5% -100% ChnLength+10 98% 98% 10% 100% -100% -100% ChnLength+10 98% 98% 10% 100% -100% -100% ChnLength+10 10% 100% 100% 100% 100% -10% Gradient-10 17% 38% -76% 2% 4% -2% Gradient-10 17% 38% -76% 2% 4% -2% Gradient-10 -77% -19% 59% -1% -2% -4% Gradient-10 -77% -19%<		American	Naches	Change	Change	Change	Change
Chmook Chmook Steelnead Spring Chinook Steelnead Chinook Steelnead Chinook Steelnead Chinook Steelnead Chinook Steelnead Chinook ChnLength-100 -100% -100% -100% -100% -25% -25% -10% ChnLength-5 -101% -101% -102% -25% -5% -10% ChnLength-5 101% 101% 100% 5% 5% -100% ChnLength+10 98% 98% 98% 10% 100% -100% ChnLength+100 100% 100% 100% 100% -00% -4% Gradient-100 12% 27% -100% 12% 27% -8% Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% 15% 61% 0% -1% -4% Gradient5 -6% 15% 61% 0% -1% -2% Gradient5 -6% 15% 50% -1%		Spring	Spring	Naches	American	Naches	Naches
ChnLength-100 -100% -100% -100% -100% -5% ChnLength-25 -100% -100% -25% -25% -10% ChnLength-10 -101% -101% -102% -10% -25% -25% ChnLength-5 -101% -101% -102% -5% -5% -100% ChnLength-5 -101% 101% 100% 5% 5% -100% ChnLength+5 101% 101% 100% 5% 5% -100% ChnLength+10 98% 98% 98% 10% 10% -100% ChnLength+25 100% 100% 100% 100% 10% -4% Gradient-10 17% 38% -76% 2% 4% -2% Gradient5 -6% 15% 61% 0% -1% -10% Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -33% -35% -32% -5%		Chinook	Chinook	Steelhead	Spring Chinook	Spring Chinook	Steelhead
ChnLength-25 -100% -100% -25% -25% -10% ChnLength-10 -101% -101% -102% -10% -25% -25% ChnLength-5 -101% -101% -102% -5% -5% -100% ChnLength+10 98% 98% 98% 10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 44% Gradient-100 12% 27% -100% 100% 100% 100% 44% Gradient-25 13% 33% -74% 3% 8% -19% Gradient-25 13% 33% -74% 3% 8% -19% Gradient-25 18% 49% -77% 1% 2% -10% Gradient-25 18% 49% -77% 1% 2% -10% Gradient10 -7% -19% 58% -19% -2% -8% Gradient100 -7% -	ChnLength-100	-100%	-100%	-100%	-100%	-100%	-5%
ChnLength-10 -101% -101% -102% -10% -10% -25% ChnLength-5 -101% -101% -102% -5% -5% -100% ChnLength+5 101% 101% 100% 5% 5% -100% ChnLength+10 98% 98% 10% 100% 100% 100% ChnLength+25 100% 100% 100% 100% 25% 25% -97% ChnLength+100 100% 100% 100% 100% 100% 4% Gradient-10 12% 27% -100% 12% 27% -8% Gradient-5 13% 33% -74% 3% 8% -10% Gradient5 -6% -15% 61% 0% -10% 5% 61% -2% -8% Gradient10 -7% -19% 59% -2% -5% -2% 6% -1% -3% -3% 6% 10% 10% 10% 10%	ChnLength-25	-100%	-100%	-100%	-25%	-25%	-10%
ChnLength-5 -101% -101% -102% -5% -5% -100% ChnLength+10 98% 98% 100% 5% 5% -100% ChnLength+10 98% 98% 98% 10% 100% 100% ChnLength+25 100% 100% 100% 100% 100% 100% 44% Gradient-100 12% 27% -100% 12% 27% -8% Gradient-25 13% 33% -74% 3% 8% -19% Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% -15% 61% 0% -19% 5% -10% Gradient10 -7% -19% 58% -1% -2% 6% Gradient10 -7% -19% 59% -2% -5% -2% Gradient10 -7% -19% 59% -2% -5% -2% Gradient10 -7% <t< th=""><th>ChnLength-10</th><th>-101%</th><th>-101%</th><th>-102%</th><th>-10%</th><th>-10%</th><th>-25%</th></t<>	ChnLength-10	-101%	-101%	-102%	-10%	-10%	-25%
ChnLength+5 101% 101% 100% 5% 5% -100% ChnLength+10 98% 98% 98% 10% 10% 100% ChnLength+25 100% 100% 100% 100% 25% 25% .97% ChnLength+100 100% 100% 100% 100% 100% .97% Gradient-10 12% 27% -100% 12% 27% .8% Gradient-25 13% 33% .74% 3% 8% .19% Gradient5 16% .75% 61% 0% .1% .4% Gradient5 .6% .15% 61% 0% .1% .4% Gradient10 .7% .19% 58% .1% .2% .8% Gradient10 .7% .19% .5% .2% .7% .19% .3% WidthMin-10 .31% .30% .32% .8% .9% .3% WidthMin+5 .34%	ChnLength-5	-101%	-101%	-102%	-5%	-5%	-100%
ChnLength+10 98% 98% 98% 10% 10% -100% ChnLength+25 100% 100% 100% 25% 25% -97% ChnLength+100 100% 100% 100% 100% 100% -97% Gradient-10 12% 27% -100% 12% 27% -8% Gradient-25 13% 33% -76% 2% 4% -2% Gradient-10 17% 38% -76% 2% 4% -2% Gradient5 18% 49% -77% 1% 2% -10% Gradient10 -7% -19% 58% -1% -2% -8% Gradient10 -7% -19% 59% -2% -5% -2% Gradient100 -100% -10% -9% 3% 6% -10% -100% 24% WidthMin-5 -33% -35% -32% -8% -9% 3% WidthMin-5 24% <td< th=""><th>ChnLength+5</th><th>101%</th><th>101%</th><th>100%</th><th>5%</th><th>5%</th><th>-100%</th></td<>	ChnLength+5	101%	101%	100%	5%	5%	-100%
ChnLength+25 100% 100% 100% 25% 25% -97% ChnLength+100 100% 100% 100% 100% 100% 100% 44% Gradient-100 12% 27% -100% 12% 27% -8% Gradient-25 13% 33% -74% 3% 8% -19% Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% -15% 61% 0% -1% -2% Gradient10 -7% -19% 58% -1% -2% -8% Gradient10 -7% -19% 50% -7% -19% -3% Gradient10 -7% -19% 50% -7% -19% -3% WidthMin-10 -31% -30% -32% -8% -9% 3% WidthMin+10 29% 40% 27% 22% 2% 2% WidthMin+25 29% 36% 26	ChnLength+10	98%	98%	98%	10%	10%	-100%
ChnLength+100 100% 12% 27% -8% Gradient-25 13% 33% -74% 3% 8% -19% Gradient-5 18% 49% -77% 1% 2% 4% Gradient5 -6% -15% 61% 0% -1% 4% Gradient10 -7% -19% 59% -2% -8% -2% 8% Gradient100 -7% -19% 50% -7% -19% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -3% -4% 3% 4% 4% 4% 4% 4% 4% 3% 4% 1% 1%<	ChnLength+25	100%	100%	100%	25%	25%	-97%
Gradient-100 12% 27% -100% 12% 27% -8% Gradient-25 13% 33% -74% 3% 8% -19% Gradient-10 17% 38% -76% 2% 4% -2% Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% -15% 61% 0% -1% -4% Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -8% -21% 59% -2% -5% -2% Gradient10 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMins5 -30% -33% -33% -35% 23% -3% 6% WidthMins10 29% 24% 23% 2% 2% 2% 2% 3% 3% 3% 4% <t< th=""><th>ChnLength+100</th><th>100%</th><th>100%</th><th>100%</th><th>100%</th><th>100%</th><th>-4%</th></t<>	ChnLength+100	100%	100%	100%	100%	100%	-4%
Gradient-25 13% 33% -74% 3% 8% -19% Gradient-10 17% 38% -76% 2% 4% -2% Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% -15% 61% 0% -1% -4% Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -8% -21% 59% -2% -5% -2% Gradient25 -8% -21% 59% -2% -5% -2% Gradient10 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -9% 3% -3% 6% WidthMin-5 -30% -24% -31% -1% 1% 1% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7%	Gradient-100	12%	27%	-100%	12%	27%	-8%
Gradient-10 17% 38% -76% 2% 4% -2% Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% -15% 61% 0% -1% -4% Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -8% -21% 59% -2% -5% -2% Gradient100 -7% -19% 50% -7% -19% -3% Gradient25 -8% -21% 59% -2% -5% -2% Gradient100 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -3% -3% 6% WidthMin+5 -34% 47% 27% 2% 2% 28% WidthMin+5 29% 36% 26% 7% 9% 8% WidthMin+10 29% 40% 26% 7% 9%	Gradient-25	13%	33%	-74%	3%	8%	-19%
Gradient-5 18% 49% -77% 1% 2% -10% Gradient5 -6% -15% 61% 0% -1% 4% Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -8% -21% 59% -2% -5% -2% Gradient100 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMin-5 -33% -35% -32% -8% -9% 3% WidthMin-5 -30% -24% -11% 1%	Gradient-10	17%	38%	-76%	2%	4%	-2%
Gradient5 -6% -15% 61% 0% -1% -4% Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -8% -21% 59% -2% -5% -2% Gradient100 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMin-5 -33% -35% -32% -8% -9% 3% WidthMin-5 -33% -35% -32% -8% -9% 3% WidthMin-5 -30% -30% -30% -3% -3% 6% WidthMin+5 34% 47% 27% 2% 28% 1% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+10 24% 30% 24% 24%	Gradient-5	18%	49%	-77%	1%	2%	-10%
Gradient10 -7% -19% 58% -1% -2% -8% Gradient25 -8% -21% 59% -2% -5% -2% Gradient100 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMin-25 -33% -35% -32% -8% -9% 3% WidthMin-5 -30% -30% -30% -3% -3% 6% WidthMin+5 -30% -24% -31% -1% -1% 1% WidthMin+5 34% 47% 27% 2% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+10 24% 30% 24% 24% 30% 3% WidthMx-10 -100% -100% -100% -100% -10	Gradient5	-6%	-15%	61%	0%	-1%	-4%
Gradient25 -8% -21% 59% -2% -5% -2% Gradient100 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMin-25 -33% -35% -32% -8% -9% 3% WidthMin-5 -30% -30% -30% -3% -3% 6% WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+10 29% 36% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+10 24% 30% 24% 24% 30% 3% WidthMin+25 77% 66% 73% 7% 9% 8% WidthMx+100 -100% -100% -100% 3%	Gradient10	-7%	-19%	58%	-1%	-2%	-8%
Gradient100 -7% -19% 50% -7% -19% -3% WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMin-25 -33% -35% -32% -8% -9% 3% WidthMin-10 -31% -30% -30% -3% -3% 6% WidthMin-5 -30% -24% -31% -1% 1% 1% WidthMin+5 34% 47% 27% 2% 28% 28% WidthMin+5 34% 47% 27% 2% 28% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+10 24% 30% 24% 24% 30% 3% WidthMx+100 -100% -100% -100% -100% 50% 15% WidthMx+5 66% 79% 29% 3% <th>Gradient25</th> <th>-8%</th> <th>-21%</th> <th>59%</th> <th>-2%</th> <th>-5%</th> <th>-2%</th>	Gradient25	-8%	-21%	59%	-2%	-5%	-2%
WidthMin-100 -100% -100% -97% -100% -100% 24% WidthMin-25 -33% -35% -32% -8% -9% 3% WidthMin-10 -31% -30% -30% -3% -3% 6% WidthMin-5 -30% -24% -31% -1% 1% WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+10 29% 36% 26% 7% 9% 8% WidthMin+10 29% 36% 26% 7% 9% 8% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+100 -100% -100% -100% -100% 50% WidthMx-5 -72% -66% -39% -18% -16% 6% WidthMx+10 -71% -54% -40% -3% -3% 3% </th <th>Gradient100</th> <th>-7%</th> <th>-19%</th> <th>50%</th> <th>-7%</th> <th>-19%</th> <th>-3%</th>	Gradient100	-7%	-19%	50%	-7%	-19%	-3%
WidthMin-25 -33% -35% -32% -8% -9% 3% WidthMin-10 -31% -30% -30% -3% -3% 6% WidthMin-5 -30% -24% -31% -1% -1% 1% WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+100 24% 30% 24% 24% 30% 3% WidthMin+100 -100% -100% -100% -100% 50% WidthMx-10 -71% -66% -39% -18% -16% 6% WidthMx+10 -71% -61% -35% -7% -6% 15% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7%	WidthMin-100	-100%	-100%	-97%	-100%	-100%	24%
WidthMin-10 -31% -30% -30% -3% -3% 6% WidthMin-5 -30% -24% -31% -1% 1% 1% WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+25 29% 36% 24% 24% 30% 3% WidthMx-100 -100% -100% -100% -100% 50% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100%	WidthMin-25	-33%	-35%	-32%	-8%	-9%	3%
WidthMin-5 -30% -24% -31% -1% -1% 1% WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+100 24% 30% 24% 24% 30% 3% WidthMin+100 -100% -100% -100% -100% 50% WidthMx-10 -101% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% -100.0%	WidthMin-10	-31%	-30%	-30%	-3%	-3%	6%
WidthMin+5 34% 47% 27% 2% 2% 28% WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+100 24% 30% 24% 24% 30% 3% WidthMx-100 -100% -100% -100% -100% 50% WidthMx-25 -72% -66% -39% -18% -16% 6% WidthMx-10 -71% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+10 62% 60% 28% 62% 60% 5%<	WidthMin-5	-30%	-24%	-31%	-1%	-1%	1%
WidthMin+10 29% 40% 26% 3% 4% 1% WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+100 24% 30% 24% 24% 30% 3% WidthMx-100 -100% -100% -100% -100% -100% 50% WidthMx-25 -72% -66% -39% -18% -16% 6% WidthMx-10 -71% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% <th>WidthMin+5</th> <th>34%</th> <th>47%</th> <th>27%</th> <th>2%</th> <th>2%</th> <th>28%</th>	WidthMin+5	34%	47%	27%	2%	2%	28%
WidthMin+25 29% 36% 26% 7% 9% 8% WidthMin+100 24% 30% 24% 24% 30% 3% WidthMx-100 -100% -100% -100% -100% -100% 50% WidthMx-25 -72% -66% -39% -18% -16% 6% WidthMx-10 -71% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+100 62% 60% 28% 62% 60% 5% WidthMx+100 62% 60% 28% 62% 60% 5% Standard Deviation -101.3% -101.2% -102.0% <t< th=""><th>WidthMin+10</th><th>29%</th><th>40%</th><th>26%</th><th>3%</th><th>4%</th><th>1%</th></t<>	WidthMin+10	29%	40%	26%	3%	4%	1%
WidthMin+100 24% 30% 24% 24% 30% 3% WidthMx-100 -100% -100% -100% -100% -100% 50% WidthMx-25 -72% -66% -39% -18% -16% 6% WidthMx-10 -71% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% WidthMx+25 68% 67% 32% 17% 170.0% -100.0% Standard Deviation -101.3% -101.2% -102.0%	WidthMin+25	29%	36%	26%	/%	9%	8%
WidthMx-100 -100% -100% -100% -100% -100% 30% WidthMx-25 -72% -66% -39% -18% -16% 6% WidthMx-10 -71% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% Standard Deviation -101.3% -101.2% -102.0% <	WidthMr 100	100%		24%	24%	<u> </u>	50%
WidthMx-23 -72% -60% -35% -18% -10% 0% WidthMx-10 -71% -61% -35% -7% -6% 15% WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% WidthMx+100 -101.3% -101.2% -102.0% -100.0% -100.0% WidthMx+25 68% 67% 32% 62% 60% 5% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9%	Width M_{x_2} 25	-100%	-100%	-100%	-100%	-100%	50% 6%
WidthMx-10 $11/0$ $01/0$ $30/0$ $17/0$ $07/0$ $15/0$ WidthMx-5 -70% -54% -40% -3% -3% 3% WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9%	WidthMx-10	-71%	-61%	-35%	-7%	-6%	15%
WidthMx+5 66% 79% 29% 3% 4% 10% WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Madian 2.0% 6.2% 2.2% 0.2% 0.1%	WidthMx-5	-70%	-54%	-40%	-3%	-3%	3%
WidthMx+10 69% 72% 33% 7% 7% 100% WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9%	WidthMx+5	66%	79%	29%	3%	4%	10%
WidthMx+25 68% 67% 32% 17% 17% 25% WidthMx+100 62% 60% 28% 62% 60% 5% Minimum -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Median -3.0% 6.3% -3.2% 0.3% 0.1%	WidthMx+10	69%	72%	33%	7%	7%	100%
WidthMx+100 62% 60% 28% 62% 60% 5% Minimum Average -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Madian 3.0% 6.3% 3.2% 0.3% 0.1%	WidthMx+25	68%	67%	32%	17%	17%	25%
Minimum -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Median -3.0% 6.3% -3.2% 0.3% 0.8% 0.1%	WidthMx+100	62%	60%	28%	62%	60%	5%
Minimum -101.3% -101.2% -102.0% -100.0% -100.0% -100.0% Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Modian 2.0% 6.3% 2.2% 0.3% 0.1%							
Average -3.0% 1.0% -8.9% -3.4% -2.8% -6.5% Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Modian 3.0% 6.3% 3.2% 0.3% 0.1%	Minimum	-101.3%	-101.2%	-102.0%	-100.0%	-100.0%	-100.0%
Standard Deviation 67.2% 68.7% 69.8% 38.8% 39.3% 41.9% Modion 3.0% 6.3% 3.2% 0.3% 0.8% 0.1%	Average	-3.0%	1.0%	-8.9%	-3.4%	-2.8%	-6.5%
Madian $2.00/$ $6.20/$ $2.20/$ $0.20/$ $0.90/$ $0.10/$	Standard Deviation	67.2%	68.7%	69.8%	38.8%	39.3%	41.9%
Methan 3.0% 0.5% -3.2% 0.5% 0.6% -0.1%	Median	3.0%	6.3%	-3.2%	0.3%	0.8%	-0.1%
Maximum 101.3% 101.3% 100.4% 100.0% 100.0% 99.9%	Maximum	101.3%	101.3%	100.4%	100.0%	100.0%	99.9%
Average-2 Std Dev -131.5% -130.5% -148.5% -81.0% -81.4% -90.2% Average+2 Std Dev 131.5% 138.4% 130.70/ 74.10/ 75.90/ 77.20/	Average-2 Std Dev	-13/.5%	-130.5%	-148.5%	-81.0%	-81.4%	-90.2%

Appendix E: Proportional Habitat Attributes

Attribute	Sensitivity American Spring Chinook	Sensitivity Naches Spring Chinook	Sensitivity Naches Steelhead	Relative Change American Spring Chinook	Relative Change Naches Spring Chinook	Relative Change Naches Steelhead
HabBckPl-10	-18%	-7%	0%	-9%	-3%	0%
HabBckPl-5	-17%	-8%	0%	-7%	-3%	0%
HabBckPl5	4%	3%	0%	18%	17%	0%
HabBckPl10	3%	3%	0%	32%	30%	-1%
HabBckPl25	2%	2%	0%	62%	56%	-1%
HabBckPl100	1%	1%	0%	111%	94%	-4%
HabBvr-10	1%	2%	0%	0%	1%	0%
HabBvr-5	0%	3%	0%	0%	1%	0%
HabBvr5	0%	0%	0%	1%	1%	0%
HabBvr10	0%	0%	0%	4%	2%	-1%
HabBvr25	0%	0%	0%	6%	4%	-1%
HabBvr100	0%	0%	0%	7%	5%	-4%
HabGlide-100	-1%	-1%	0%	-33%	-26%	0%
HabGlide-25	-1%	-1%	0%	-15%	-11%	0%
HabGlide-10	-1%	0%	0%	-7%	-4%	0%
HabGlide-5	-1%	0%	0%	-3%	-2%	0%
HabGlide5	1%	1%	0%	3%	3%	0%
HabGlide10	1%	1%	0%	7%	6%	0%
HabGlide25	1%	0%	0%	14%	12%	0%
HabGlide100	0%	0%	0%	26%	23%	1%
HabLgCob-100	1%	1%	0%	10%	13%	2%
HabLgCob-25	1%	1%	0%	8%	8%	1%
HabLgCob-10	1%	1%	0%	3%	4%	0%
HabLgCob-5	1.0/	1 %	0%	1%	2%	0%
HabLgCob3	-1 70	-1 %	070	-5%	-5%	
HabLgCob10	0%	0%	0%	-12%	-10%	-1%
HabLgCob100	0%	0%	0%	-27%	-26%	-3%
HabOffCh-100	0%	0%	0%	0%	1%	0%
HabOffCh-25	0%	0%	0%	0%	1%	0%
HabOffCh-10	0%	0%	0%	0%	1%	0%
HabOffCh-5	0%	1%	0%	0%	1%	0%
HabOffCh5	0%	0%	0%	0%	1%	0%
HabOffCh10	0%	0%	0%	0%	1%	0%

HabOffCh25	0%	0%	0%	0%	1%	0%
HabOffCh100	0%	0%	0%	0%	1%	0%

Attribute (continued)	Sensitivity American Spring Chinook	Sensitivity Naches Spring Chinook	Sensitivity Naches Steelhead	Relative Change American Spring Chinook	Relative Change Naches Spring Chinook	Relative Change Naches Steelhead
HabPool-25	-3%	-3%	-1%	-33%	-32%	-8%
HabPool-10	-4%	-3%	-1%	-30%	-26%	-7%
HabPool-5	-4%	-3%	0%	-18%	-13%	-2%
HabPool5	3%	2%	0%	13%	12%	0%
HabPool10	2%	2%	0%	22%	20%	0%
HabPool25	2%	2%	0%	41%	43%	0%
HabPool100	1%	1%	0%	74%	88%	-2%
HabPoolTail-10	0%	0%	0%	0%	1%	0%
HabPoolTail-5	0%	0%	0%	0%	1%	0%
HabPoolTail5	0%	0%	0%	0%	-1%	0%
HabPoolTail10	0%	0%	0%	1%	-2%	1%
HabPoolTail25	0%	0%	0%	0%	-4%	1%
HabPoolTail100	0%	0%	0%	-12%	-19%	2%
HabSmCob-100	1%	1%	0%	34%	32%	-7%
HabSmCob-25	1%	1%	0%	16%	16%	-2%
HabSmCob-10	1%	1%	0%	6%	7%	-1%
HabSmCob-5	1%	1%	0%	3%	3%	-1%
HabSmCob5	-1%	-1%	0%	-4%	-3%	0%
HabSmCob10	-1%	-1%	0%	-7%	-7%	0%
HabSmCob25	-1%	-1%	0%	-16%	-15%	1%
HabSmCob100	0%	0%	0%	-34%	-34%	1%
Minimum	-18.0%	-8.1%	-0.9%	-34.3%	-34.5%	-9.1%
Average	-0.5%	0.0%	0.0%	3.7%	3.9%	-0.8%
Standard Deviation	3.5%	1.9%	0.2%	24.6%	23.4%	2.2%
Median	0.1%	0.2%	0.0%	0.1%	0.7%	0.0%
Maximum	3.5%	3.4%	0.1%	110.7%	94.4%	1.7%
Average-2 Std Dev	-7.4%	-3.8%	-0.4%	-45.6%	-42.9%	-5.2%
Average+2 Std Dev	6.5%	3.8%	0.3%	52.9%	50.7%	3.6%

Appendix F: Relative population abundance change for the Obstruction attribute.

Attribute	Adult American spring Chinook	Juvenile American spring Chinook	Adult Naches spring Chinook	Juvenile Naches spring Chinook	Adult Naches steelhead	Juvenile Naches steelhead
Obstruction+25	13%	13%	17%	22%	14%	16%
Obstruction+50	28%	29%	38%	46%	31%	33%
Obstruction+100	64%	66%	106%	108%	79%	78%

Appendix G: Initial change in value (either +-1 or +-5%) for each attribute.

Attribute	Relative Population Change - American River spring Chinook	Relative Population Change - Naches River spring Chinook	Relative Population Change - Naches River steelhead
Alk-1	-56%	-41%	-41%
Alk+1	23%	17%	18%
BdSc-1	1%	2%	1%
BdSc+1	-1%	-2%	1%
BnRch-1	2%	2%	1%
BnRch+1	-5%	-4%	-4%
ChnLength-5	-5%	-5%	-5%
ChnLength+5	5%	5%	5%
Conf-1	3%	7%	7%
Conf+1	-8%	-11%	-11%
ConfHy-1	7%	21%	5%
ConfHy+1	-10%	-23%	-6%
DO-1	0%	1%	0%
DO+1	-4%	-5%	-4%
Emb-1	1%	2%	0%
Emb+1	-6%	-8%	-4%
FlowDiel-1	0%	0%	0%
FlowDiel+1	0%	0%	0%
FlowHi-1	0%	1%	0%
FlowHi+1	0%	0%	0%
FlowIntr-1	1%	2%	0%
FlowIntr+1	0%	0%	0%
FlowLo-1	0%	2%	1%
FlowLo+1	0%	-1%	-1%
FnSed-1	1%	17%	18%
FnSed+1	-23%	-26%	-41%
FshComRch-1	6%	7%	4%
FshComRch+1	-5%	-4%	-4%
FshPath-1	2%	3%	0%
FshPath+1	-6%	-8%	-1%
FshSpIntro-1	5%	5%	3%
FshSpIntro+1	-7%	-7%	-5%

Attribute (continued)	Relative Population	Relative Population	Relative Population
	Change - American River spring	Change - Naches River spring	Change - Naches River steelhead
	Chinook	Chinook	Kiver steeneau
Gradient-5	1%	2%	-4%
Gradient5	0%	-1%	3%
HabBckPl-5	-7%	-3%	0%
HabBckPl5	18%	17%	0%
HabBvr-5	0%	1%	0%
HabBvr5	1%	1%	0%
HabGlide-5	-3%	-2%	0%
HabGlide5	3%	3%	0%
HabLgCob-5	1%	2%	0%
HabLgCob5	-3%	-3%	0%
HabOffCh-5	0%	1%	0%
HabOffCh5	0%	1%	0%
HabPool-5	-18%	-13%	-2%
HabPool5	13%	12%	0%
HabPoolTail-5	0%	1%	0%
HabPoolTail5	0%	-1%	0%
HabSmCob-5	3%	3%	-1%
HabSmCob5	-4%	-3%	0%
Harass-1	0%	2%	1%
Harass+1	0%	-1%	-2%
HatchOut-1	7%	8%	4%
HatchOut+1	0%	0%	-2%
HydNat-1	1%	2%	2%
HydNat+1	0%	1%	0%
HydReg-1	0%	1%	0%
HydReg+1	0%	1%	0%
Ice-1	1%	1%	0%
Ice+1	-1%	-1%	-1%
MetSoil+1	-1%	0%	-1%
MetWat+1	-2%	-1%	-2%
MscTox-1	4%	4%	3%
MscTox+1	-32%	-30%	-33%
Nutrient-1	0%	1%	0%
Nutrient+1	0%	0%	0%
Obstruction+25	13%	17%	14%

Attribute (continued)	Relative Population Change - American River spring Chinook	Relative Population Change - Naches River spring Chinook	Relative Population Change - Naches River steelhead
Predate-1	4%	5%	3%
Predate+1	-14%	-15%	-6%
RpF (x)-1	9%	18%	8%
RpF (x)+1	-15%	-23%	-11%
SCarc-1	18%	15%	14%
Scarc+1	-5%	-1%	-2%
TMn-1	4%	9%	29%
TMn+1	-27%	-25%	-39%
TMx-1	19%	46%	15%
TMx+1	-60%	-76%	-31%
TSV-1	6%	15%	9%
TSV+1	-5%	-9%	-5%
Turb-1	12%	14%	14%
Turb+1	-44%	-44%	-52%
Wdrwl-1	0%	0%	0%
Wdrwl+1	0%	0%	0%
WidthMin-5	-1%	-1%	-2%
WidthMin+5	2%	2%	1%
WidthMx-5	-3%	-3%	-2%
WidthMx+5	3%	4%	1%
Wood-1	10%	23%	8%
Wood+1	-11%	-19%	-6%
Minimum	-60.4%	-75.9%	-51.8%
Average	-2.1%	-1.1%	-1.5%
Standard Deviation	12.8%	14.9%	12.0%
Median	0.1%	0.7%	0.0%
Maximum	22.5%	46.4%	28.5%
Average-2 Std Dev	-27.7%	-30.9%	-25.5%
Average+2 Std Dev	23.5%	28.8%	22.5%

Appendix H: Sensitivity for all attributes for all populations.

