Prevention and Detection of Adventitious Infections of Mice with: Mouse Parvovirus (MPV) and Murine Norovirus (MNV)

Bill Shek, DVM, PhD william.shek@crl.com

Prevention and Detection of Adventitious MPV and MNV Infections: **Seminar Overview**

- Why use Specific Pathogen-Free (SPF) research models?
- How are animals kept SPF?
- Why are adventitious MPV and MNV infections still prevalent?
- MPV and MNV Surveillance

Specific Pathogen-Free (SPF)

- Vast majority of animals used in research
- Test negative for:
 - Most or all known exogenous viruses
 - Pathogenic parasites
 - Limited list bacteria that may cause disease or otherwise interfere with research
 - Immunocompetent: Primary Pathogens
 - Immunocompromised: Opportunists

Why use SPF?

- Adventitious (i.e., accidental) infections:
 - Interfere with research
 - Disease
 - Contaminate biological materials
 - Subtle changes that alter:
 - Experimental responses
 - Phenotype in GM animals
 - Zoonotic agents pose a risk to public health
 - Subclinical in natural host
 - LCMV, Hantaviruses, S. moniliformis

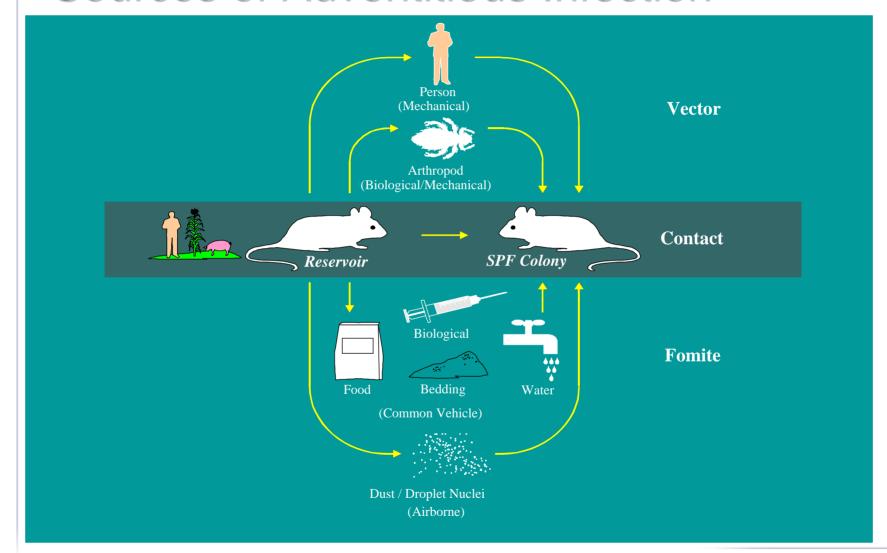
Prevention of Adventitious Infections: **How?**

 Adoption of Animal Production and Maintenance Processes that Emphasize Biosecurity

Biosecurity

- All measures taken to:
 - Exclude (i.e., prevention)
 - Contain (i.e., limit spread)
 - Eradicate
 adventitious infections

- Simplistic approach is to look for "Smoking Gun"
- Appears more:
 - Expedient
 - Economical
- Often unproductive



 Systematic Approach: Define all sources of infection and mitigate risk factors associated with those sources

Sources of Adventitious Infection

Sources of Adventitious Infection

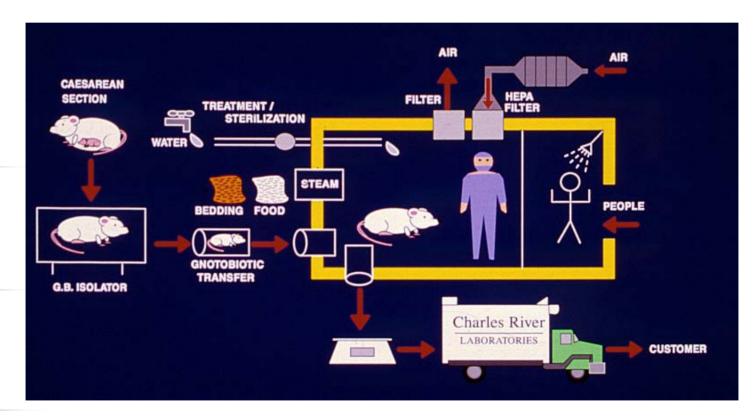
Shared Equipment

- Mitigate risk factors associated with sources
- Direct Sources
 - Wild or escaped rodents: Pest control
 - Imported rodents: Active quarantine or rederivation
 - Utilize isolators or microisolators to contain and exclude adventitious infections

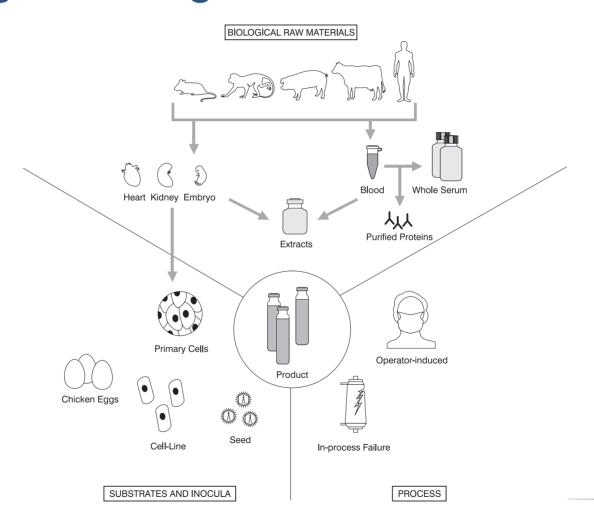
- Is active quarantine necessary for vendor-supplied rodents?
 - Not for vendors from which you routinely receive animals
 - Caveats
 - Animals not shipped on dedicated transport may become infected in transit
 - Sentinels to be distributed among many rooms

- Indirect Sources: Disinfection of Supplies and Shared Equipment
 - Physical: Autoclaving or gamma irradiation of food and bedding
 - Chemical: Chlorine disinfectants e.g., bleach and chlorine dioxide, of surfaces and water; ethylene oxide, H₂O₂ for equipment

Indirect Sources: Personnel


- Gowning
- Unidirectional workflow: moving from clean->dirty
- Handling animals in laminar flow hood with disinfected gloves or forceps

Cesarean-Originated Barrier-Sustained (COBS)



Indirect Sources: Biological Reagents

Virus ^A	Source	Reference
TMEV-TO	Yellow fever isolation	Theiler, M., 1937
PVM	Virus isolation in mice	Horsfall, F. L. and Hahn, R. G., 1940
K virus	MMTV stock	Kilham, L., 1952
Polyoma	MuLV stock	Gross, L., 1953
Sendai	Virus isolation in mice	Fukumi, H. <i>et al</i> ., 1954
MAV-1	Friend-MuLV stock	Hartley and Rowe, 1960
LDHV	Ehrlich carcinoma cells	Riley, V. <i>et al.</i> , 1960
RV	Rat sarcoma	Kilham, L. and Olivier, L. J., 1959
MTLV	Mouse tumor extract	Rowe and Capps, 1961
MVM(p)	Mouse adenovirus stock	Crawford, L. V., 1966
MVM(i)	Mouse EL4 lymphoma	Bonnard, G. D. <i>et al.</i> , 1976
MPV-1	T lymphocyte clone	Mckisic, M. D. et al., 1993
MNV-1	RAG/STAT -/- mice	Karst, S. M. <i>et al.</i> , 2003

Sources of Contamination for Biological Reagents

- Indirect Sources: Biologicals
 - Obtain raw materials from reliable source with certificate of analysis
 - Follow practices that prevent operator-induced contaminations, e.g., gowning and use of biological safety cabinets
 - Bank cell substrates and microbial inocula: Well characterized and standardized starting point
 - Treat reagents by physical (filtration, heat) or chemical (detergent, BPL) means to remove or inactivate infectious agents

- Indirect Sources: Biologicals (continued)
- Testing for microbial contaminants particularly important for:
 - Multiuse reagents and equipment, e.g., chromatography columns
 - Cells and other biological reagents to be inoculated into animal hosts, which often produce much higher titers of an infectious agent than cell culture

Biosecurity: Elimination

- Rederivation By Hysterectomy or ET
 - Most effective and methodology used at Charles River
 - Eliminates yet-to-be-discovered agents
 - Expensive
 - Sacrifice valuable breeders
- Neonatal Transfer to SPF Foster Dam
 - Less expensive, saves breeders
 - Shown to be effective for eliminating H. hepaticus if done within 24 hours (Singletary et al, 2003)
 - Iodine Immersion (Watson et al, 2005)

Biosecurity: Elimination

- Moratorium on breeding and the introduction of susceptible animals for enveloped viruses that cause non-persistent infections. Genetically modified animals may be immunodeficient.
- Antimicrobial Treatment
 - Successful on small scale for host-adapted bacteria that do no survive outside of host, e.g., P. pneumotropica and H. hepaticus
 - Parasite Infestations
 - Treatment has to be 100% effective
 - Extensive testing required to validate efficacy (i.e., cure)
 - May be toxic to genetically modified animals

Efficacy of Laboratory Rodent Biosecurity

- Once common adventitious agents (e.g., Sendai virus, PVM, *M. pulmonis*) have become rare
- Exclusion and eradication of other agents has remained problematic, .e.g.,
 - Mouse Parvovirus (MPV)
 - Murine Norovirus (MNV)

Parvoviruses

- Molecular Biology
 - Comparatively small virus: approx 20nm
 - Non-enveloped
 - SS DNA genome of 5Kb
 - Proteins
 - Non-structural: NS1, NS2
 - Virion (coat) proteins: VP1, VP2
 - Replication requires mitotically active cells
- Predilection for dividing cells accounts for pathogenicity and research effects

Rodent Parvoviruses

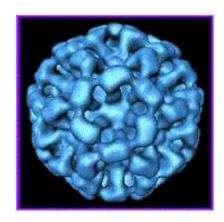
- Serotypes
 - Mouse
 - Minute virus of mice (MVM, MMV)
 - Mouse parvovirus (MPV-1)
 - *Newly recognized (since late 80's) MPV-2, 3 with switch from HAI to ELISA/IFA
 - Rat
 - Kilham rat virus (RV)
 - Toolan's H-1
 - Rat parvovirus 1 (RPV)
 - Rat minute virus 1 (RMV)
 - Newly recognized but not new
 - Retrospective MPV Serology: prevalent in mice over 30 years
 - Nonpathogenic: longstanding relationship with rodent hosts

MPV Pathobiology

- Nonpathogenic: Even for neonatal and immunocompromised hosts
 Enterotropic: Fecal-Oral Transmission
- Lymphotropic: Infection persists in lymphocytes even seropositive immunocompetent mice
- Shedding NOT persistent in immunocompetent hosts

MPV Research Effects

- Identification and propagation of a putative immunosuppressive orphan parvovirus in cloned T cells (McKisic et al, 1992)
 - CPE and erythrocyte aggregates observed in cloned murine T cell cultures
 - ↓ Proliferative response to IL-2 or antigen
 - Virus shown to be new parvovirus serotype
 - OPV->MPV-1a
 - Suspected sources:
 - MLC supernatant added as a source of lymphokines
 - Irradiated spleen feeder cells

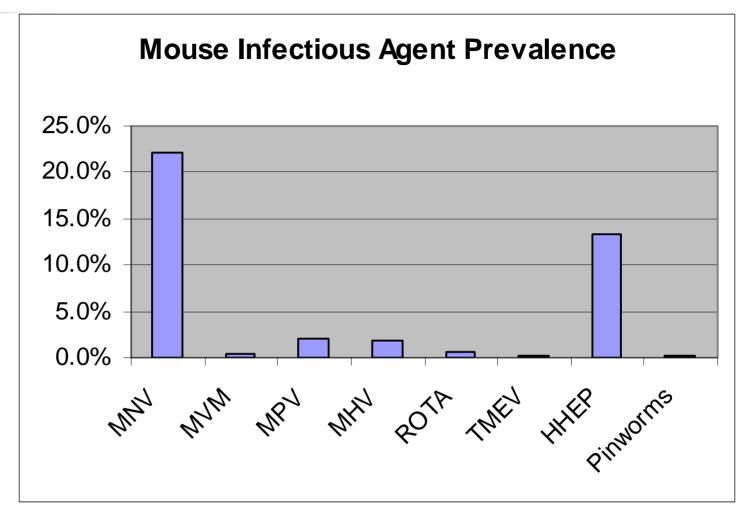

MPV Research Effects

- MPV-1a Modulates Immune Response (McKisic et al, 1996)
 - Suppression of T Cell Response In Vitro
 - CD8+ T Lymphocyte Clones Lose Function and Viability
 - Cytokine- and Antigen-Induce T Cell Proliferation In Vitro Suppressed After Exposure to MPV-1a
 - Potentiates Allograft Rejection
 - Induces Isograft Rejection

Noroviruses

- Family Caliciviridae (calix = cup)
 - 28-35 nm
 - Non enveloped
 - Positive-sense ssRNA genome
 - ~7.4 7.7 kb with 3 ORFs
 - Single capsid protein: VP1
 - Various non-structural proteins
- Formerly referred to as Norwalk-Like viruses
- In people, causes >90% nonbacterial epidemic gastroenteritis worldwide; 23M cases/yr in US (per CDC)
- Five genogroups
 - I, II, IV: Human
 - III: Bovine (Jena)
 - V: Murine

MNV Recently Discovered


- Reported by Research at Washington Univ starting in 2003
 - Observed lethal disease in RAG/STAT1 double KO mice lacking innate immunity
 - Histopathology: Meningoencephalitis, cerebral vasculitis, hepatitis and pneumonia
 - Identified MNV-1 by representational difference analysis (RDA)
 - RT PCR: Virus detected in multiple organs and shed in feces
 - Tropism for macrophages and dendritic cells
 - MNV only norovirus propagated in a cell-line: Murine macrophage cell line RAW 264.7

MNV Pathobiology

- Low pathogenicity: Disease observed only in mice deficient in innate immunity
- Shed in feces, but gastroenteritis and diarrhea not reported
- Infection and shedding are persistent in immunocompetent hosts
- Numerous strains exist
 - Recombination (demonstrated for human noroviruses)
 - High rate of mutation: Lack of "proofreading" activity by RNA-dependent RNA polymerases
- Widespread and prevalent
 - RADIL: 22% by Serology, 30% by fecal PCR
 - Charles River RADS: 33% by Serology
- Host-adaptation, genetic variation and high prevalence indicate MNV present for a long time
- Not in commercial breeder colonies
 - Eliminated by hysterectomy and ET rederivation
 - Not vertically transmitted

MNV prevalence was reported by RADIL. Other data were from testing performed at Charles River Research Animals Diagnostics Services on non Charles River serum specimens

Reasons Why MPV and MNV Are Comparatively Prevalent

Only Recently Discovered

- Asymptomatic, benign, infections
 - Generally nonpathogenic in vivo
 - Difficult to propagate in culture (intentionally or inadvertently)
 - MPV: Only MPV-1a is cultivatable
 - MNV: Field isolates have to be adapted to RAW cells and initially produce little CPE
- Before discovery, no surveillance
- Inadvertently spread

Difficult to Exclude and Eradicate

- Infections are persistent: Contaminate biologics
- Exceptionally stable, tiny non-enveloped viruses
- Resistant to disinfection
- Introduced via fomites: Notably food and bedding

MPV and **MNV** Surveillance

- Required because even the most rigorous biosecurity cannot be guaranteed to exclude all adventitious infections.
- Infections are inapparent.
- Detected by laboratory testing, referred to as Health Monitoring (or HM)

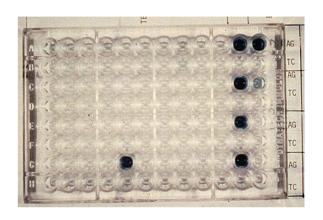
MPV and MNV Surveillance

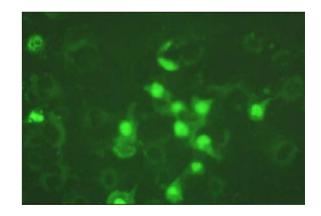
Surveillance Methodologies

- Disease and Active Infection
 - Gross and Microscopic Examination: No Lesions
 - Isolation: Many field strains are noncultivable
 - Detection of viral genomic sequence by PCR
 - Persists in host tissues following seroconversion
 - Stable in environment
- Immune Response to Infection in Convalescent Host
 - Antibody Serology

MPV and MNV Surveillance

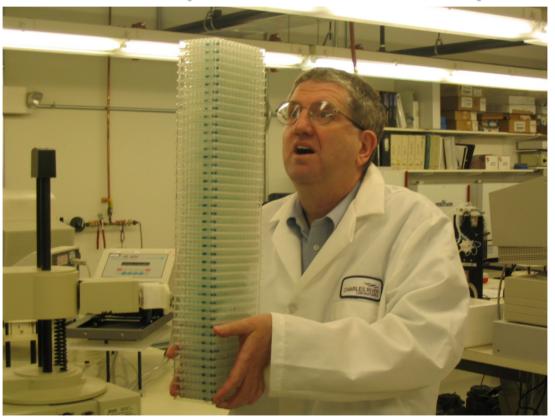
- Serology: Primary surveillance technique
 - Despite generally persistent nature of parvovirus infections
 - Traditional, easy to do and inexpensive
 - Single serum simultaneously tested for antibodies to many agents


PCR


- Corroboration of serology: MLN, Fecal pools
- Routine monitoring along with or instead of serology
- Charles River: Quarterly MPV and MPV PCR on fecal pools

Rodent Serology

- Traditional: HAI/CF
- Supplanted by ELISA and IFA
 - Screen by ELISA
 - Confirm by IFA
- Performed as singleplexes, i.e., 1 assay reaction per test well



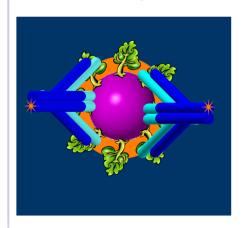
Issues with Large-Scale Testing by Singleplex ELISA

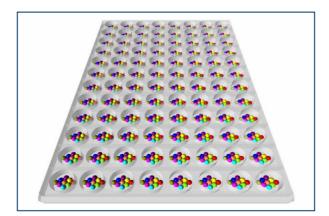
Large stacks of plates: 800-1000 per week

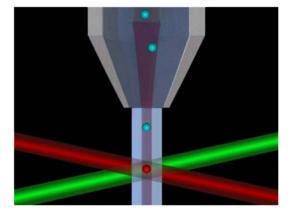
Issues with Large-Scale Testing by Singleplex ELISA

Complicated automation for plate and liquid handling

Issues with Large-Scale Testing by Singleplex ELISA

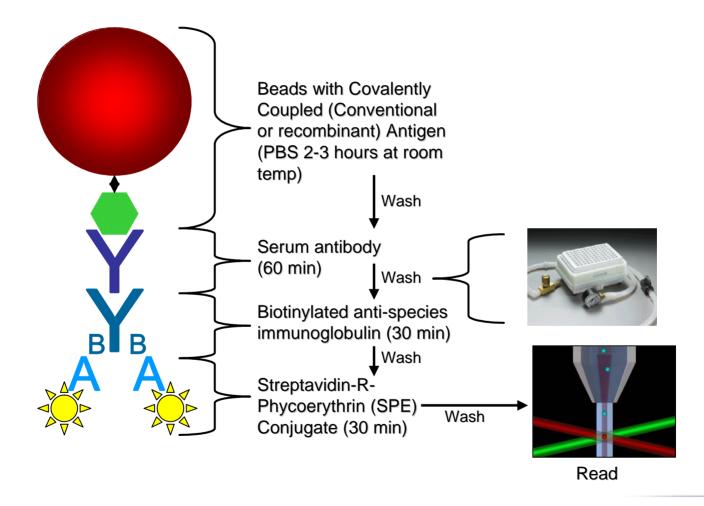

Large liquid volumes: reagents and waste




Multiplexing: Multiple immunoassays performed simultaneously in a single well

Luminex Multi-Analyte Profile (xMAP)

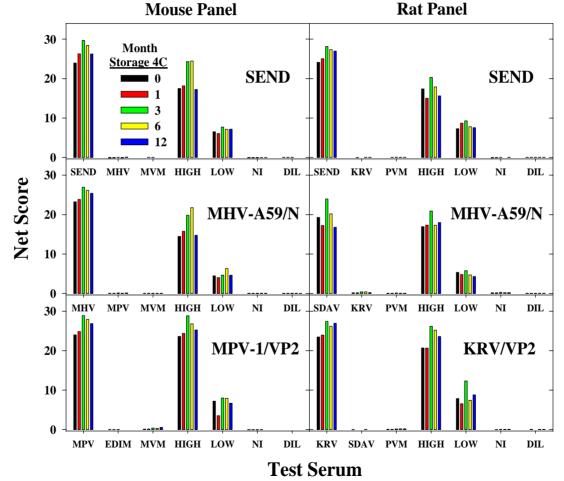
- Suspension microarray: Antigen (capture antibody or NA probe) covalently linked to polystyrene beads
- Beads in 100 color sets: up to 100 assays in single well
- Detector determines bead color (i.e., assay) and reporter dye (phycoerythrin) fluorescence intensity one bead at a time, 25-100 beads per assay.
- Intensity reported as median fluorescence index (MFI)
- Multiplexed Fluorometric Immunoassay (MFIATM)

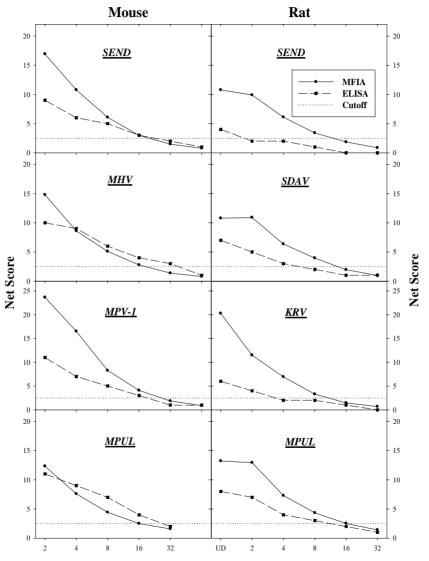


Fluorometer: modified flow cytometer

MFIA Procedure

MFIA


- High throughput with much less
 - Liquid/reagent volumes
 - Plates
 - Equipment
- Passes KEEP IT SIMPLE STUPID (KISS) test


MFIA Validation: Analytical Performance

 Stability of MFIA Panel Analytical Sensitivity and Specificity during Storage at 4°C for 1 Year

Comparison of MFIA and ELISA Detection Limits

Reciprocal of Dilution of MFIA High-Range-Immune Control Serum

MFIA Validation: Diagnostic Performance

 Diagnostic Specificity for MFIA Performed on Known-Negative Sera from SPF Rodents

	Mouse			Rat	Both	
Classification	#	%	#	%	#	%
True-Negative	416	100.0%	366	99.5%	782	99.7%
False-Positive	0	0.0%	1	0.3%	1	0.1%
Borderline	0	0.0%	0	0.0%	0	0.0%
Nonspecific	0	0.0%	1	0.3%	1	0.1%
Total	416		368		784	

MFIA Validation: Diagnostic Performance

 Agreement between ELISA and MFIA Classifications of Known-Positive and –Negative Sera

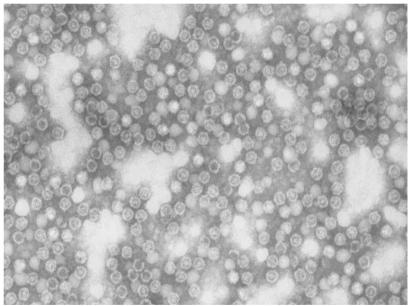
Classification		Mouse		Rat		All	
ELISA	MFIA	#	%	#	%	#	%
	+	154	22.9%	114	19.8%	268	21.5%
+	-	6	0.9%	8	1.4%	14	1.1%
Sensi	tivity		96.3%		93.4%		95.0%
	+	4	0.6%	26	4.5%	30	2.4%
_	-	508	75.6%	428	74.3%	936	75.0%
Speci	ficity		99.2%		94.3%		96.9%
Agree	ement	662	98.5%	542	94.1%	1204	96.5%

MPV Serology

- Parvovirus genome encodes nonstructural (NS1,2) and viral coat (VP1,2) proteins
- Antibodies formed to both NS and VP
 - α NS
 - NS proteins highly conserved; shared antigen
 - Cross-reactive
 - <u>α VP</u>
 - VP differ among serotypes, strains
 - Selective: Do not cross-react with heterologous serotypes, i.e., serotype specific
- NS antibody response can be absent or delayed
- To avoid false negative results, it is preferable to test for VP antibodies to each parvovirus serotype that naturally infects a rodent species

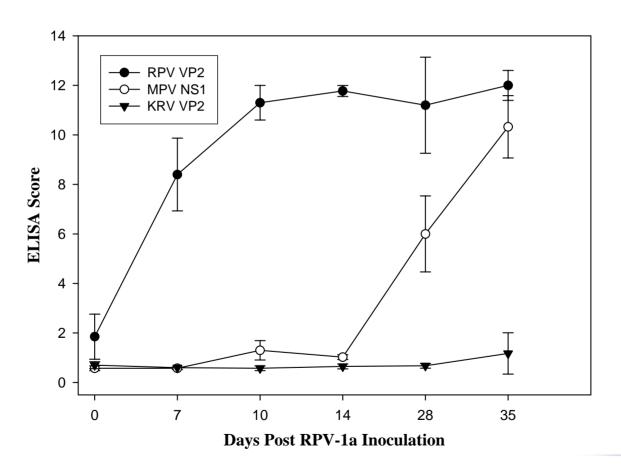
MPV Serology: Recombinant Antigens


- MPV cannot be propagated in culture to levels sufficient for preparing ELISA/MFIA antigen
- MPV VP2 and NS1 genes inserted in baculovirus
- Expressed by infecting SF insect cell-line with recombinant baculovirus
 - Histidine-tagged NS-1 protein purified by Ni chelating chromatography
 - VP2 forms virus-like particles (VLPs), which can be purified by ultracentrifugation

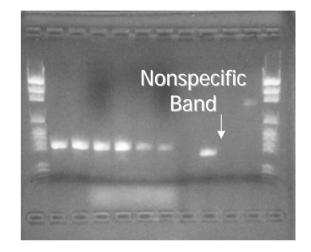


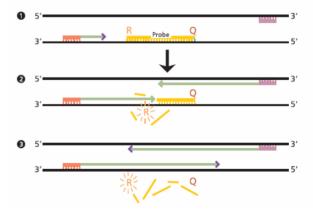
MPV Serology: Recombinant Antigens

Native Parvovirus


Parvovirus rVP2 VLPs

Parvovirus Serosurveillance


Comparative Serology on RPV-1a-Infected CD Rats



MPV PCR

- Assay Targets
 - Screening: Conserved NS1 Sequences
 - Serotype Identification: Unique VP2 Sequences
- Techniques
 - Gel-Based
 - Fluorogenic 5' nuclease TaqMan PCR used at Charles River
 - Incorporates hybridization of fluorophorelabeled probe
 - More specific than gel-based
 - More sensitive
 - Quantitative

MPV Surveillance: PCR and Serology Results Largely Agree

Table 4. Parvovirus serology and PCR results after an adventitious MPV infection of barrier-reared mice housed in uncovered cages⁴

		No. positive			
Mouse strain	No. tested	MPV-1 and -2 ELISA	NS1 PCR		
BALB/cAnNCrl	32	17	17		
DBA/2NCd	8	1	3		
CR Swiss	8	3	4		
C57BL/6NCd	8	0	1		
B6D2F1	4	0	1		
CB6F1	4	0	0		
RFM/UN	8	4	4		
All	72	25	30		
Percentage positive		35%	42%		

MPV Surveillance: Sentinels Sero- or PCR-Positive, but Study Mice Negative

- SPV (Sentinel Parvovirus) instead of MPV?
- Sentinel results are false positive
 - Laboratory Error
 - Infection of sentinels from extraneous sources
- Low prevalence of infection
 - Husbandry, e.g., microisolation cages in ventilated racks
 - Study animals less susceptible to infection than sentinels

MPV Surveillance: Sentinels Sero- or PCR-Positive, but Study Mice Negative

- Study animals less susceptible to infection than sentinels
 - Genetically modified mice are often on a C57BL/6 background
 - The dose of MPV required to infect C57s is higher than that for outbred stocks typically used as sentinels, e.g., Swiss Albino CD-1
 - Experience
 - Besselsen et al, Comp. Med.50:498-502, 2000

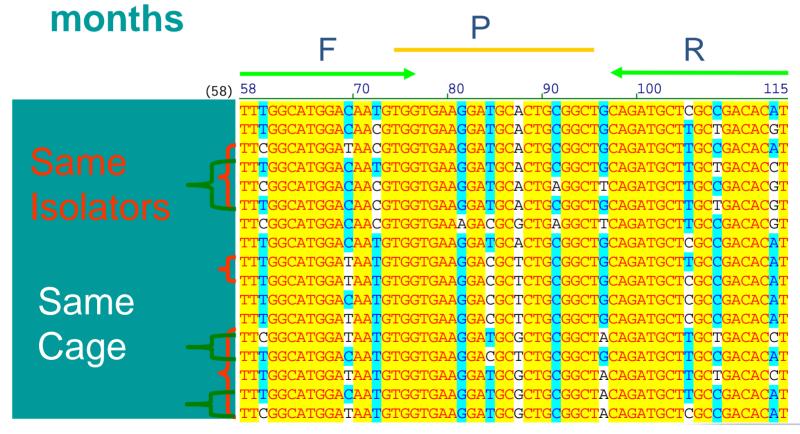
Quantification of MPV-1 Susceptibility of C57s vis-à-vis BALB/c (Pritchett et al, AALAS 2006)

- C57BL/6 mice are resistant
- 10 to 100 times more MPV-1 is required to infect C57

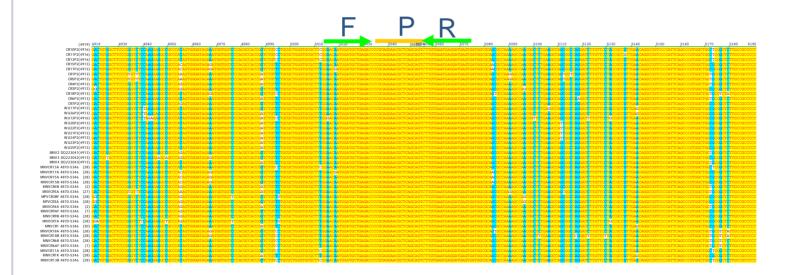
than BALB/c Mice

- When infected, C57s become both PCR and seropositive
- Do not use C57s as serology sentinels

		Titer		
Route	Strain	ELISA PCR		
Gavage	BALB/c	3.2	3.2	
	C57BL/6	1.2	1.5	
	$\Delta \mathrm{ID}_{50}$	2.0	1.7	
IP	BALB/c	2.7	2.7	
	C57BL/6	1.7	1.7	
	$\Delta~{ m ID}_{50}$	1.0	1.0	


MNV Surveillance

- Serology
 - ELISA/MFIA: MNV-1 virions, recombinant VP-1
 - IFA: MNV-1, cell culture adapted field isolate
- PCR
 - Nonstructural gene sequence: Polymerase, NTPase
 - ORF1/ORF2
- Because MNV isolates are so heterogeneous, finding are sufficiently conserved assay target is difficult


MNV PCR

 "Conserved" nonstructural NTPase gene sequence initially targeted for PCR: 17 variants in 3

MNV PCR: ORF1/ORF2 Junction

- Current Charles River TaqMan PCR
 - Use since12/2005
 - Now based on 44 variants

MNV Serology

- rVP1 for ELISA/MFIA
 - Appears to be broadly reactive: Hsu et al. (Comp. Med. 2006) demonstrated crossreactivity between three field isolates and MNV-1
 - Selected the "middle of the road" MNV variant for Charles River rVP1
- IFA: MNV-1 WU-11field isolate

Serum Antibody Response to 5 MNV Field Isolates: Conventional versus Recombinant Antigen ELISA

		Net Score						
		MNV-CR1a rVP1			Conv	ventional I	MNV-1	
MNV	#	Pos	sitive	Net	Positive		Net	
Isolate	Tested	#	%	Score	#	%	Score	
1	4	4	100%	13.6	0	0%	1.3	
2	4	4	100%	12.4	0	0%	1.4	
3	4	4	100%	13.0	0	0%	0.8	
4	4	4	100%	11.2	1	25%	1.2	
5	4	4	100%	11.3	2	50%	3.5	
MNV-1	4	2	50%	5.6	1	25%	0.8	
All	24	22	92%	11.2	4	17%	1.5	

^{*}Serum was prepared from collected 5 weeks post-inoculation from 4 mice per isolate, including 2 BALB/c and 2 CD-1 mice

Serologic Response of CD-1 and BALB/c Mice to 5 MNV Field Isolates by ELISA, MFIA and IFA

		CD-1				BALB/c			
MNV		Score				Score			
Isolate	N	ELISA	MFIA	IFA	N	ELISA	MFIA	IFA	
1	4	21.7	20.7	3.8	4	15.2	17.0	3.5	
2	4	21.6	23.2	3.8	4	17.3	17.2	3.0	
3	4	22.0	21.8	3.3	3	15.7	15.2	3.0	
4	4	21.9	23.2	3.3	4	12.7	13.8	2.0	
5	4	21.7	21.8	3.8	4	15.0	13.6	2.5	
MNV-1	4	19.8	22.9	3.8	4	13.5	14.8	2.0	
All	24	21.4	22.3	3.6	23	14.9	15.3	2.7	

MNV Surveillance: Sentinels go from Sero/PCR-Positive to Negative

- Initial results false-positive
 - Sampling Error
 - Laboratory Error
- Results are false-negative
 - Sampling Error
 - Laboratory Error
 - Loss of Assay Sensitivity

MNV Surveillance: Sentinels Serology/PCR-Positive to Negative

Loss of assay sensitivity due to antigen instability

Effect of MNV-Bead Lot on MFIA Scores for Temporally Sampled Sentinels*

Sampling	Antigen	MFIA Score		
Date	Bead Lot	S1	S2	
17-Nov-06	1	3	19	
9-Jan-07	1	3	1	
	2	11	7	

*S1 and S2

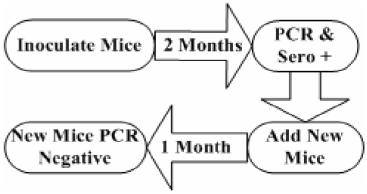
Low

High

High

Effect of Coupling Conditions on Stability of

Low


MNV Surveillance: Sentinels Serology/PCR-Positive to Negative

- Not exposed to infectious dose of virus
 - Soiled bedding not transferred
 - Principal mice no longer contagious even though fecal PCR +

Disparity Between Sentinel Groups

	S	entinels	Principals		
Month	Group MFIA PCR			MFIA	PCR
0	1	+	+	+	+
3	2	1	-		+

Lack of Transmission from Experimentally Infected Mice

Prevention and Detection of Adventitious MPV and MNV Infections: **Summary**

- Adventitious infections of SPF lab rodent models, even if asymptomatic, can alter and confound research findings
- Advances in biosecurity practices have dramatically reduced the prevalence of once common adventitious agents
- MPV and MNV, however, continue to be prevalent because:
 - They were recently discovered
 - Produce asymptomatic, persistent infections of mice
 - Are resistant to disinfection because of their physicochemical characteristics

Prevention and Detection of Adventitious MPV and MNV Infections: **Summary**

- As infections of mice with these agents are asymptomatic, monitoring requires laboratory testing by Serology and PCR
- Colony test results may be inconsistent due to:
 - Sampling Error: Inadequate exposure of sentinels
 - Laboratory Error: Assay- or operator-related
 - Pathobiology of Virus
 - Convalescent mice may not be contagious
 - Differences in susceptibility to infection between sentinel and principal mice

