Reducing Emissions From Railroad Locomotives

Presented to the South Coast Air Quality Management District Container Movement Technology Forum and Roundtable Discussion

January 26, 2007

Christopher S. Weaver, P.E. President

Locomotive Emissions

- Line-haul into/out of LA basin
- Local train service within basin
- Switch locomotives
 - Railyards
 - Ports and intermodal facilities
 - Industrial plants

- Locomotive servicing, maintenance, and testing
- Many locomotives have two-stroke diesel engines
 - Higher organic carbon (from lube oil)
 - Lower elemental carbon

Locomotive Contribution to SCAQMD Emissions Inventory

	2004 Emissions TPD		
	NOx	PM	
Total	37.3	1.03	
Metrolink	3.04	0.10	

Locomotive Emissions Issues

- Switching vs. line-haul vs. local train operation
 - Most switching and short-haul locomotives were retired from line-haul service
 - Common locomotive designs ill-suited for switching duty cycle
- Power requirements and dimensional constraints
- Emission standards well behind truck and other non-road engines
- Slow turnover of locomotives
- Prevalence of idle operation
 - Present inventories/test methods understate idle PM emissions by 25 to 50%
- Industrial locomotives

EPA/CARB/UP/BNSF Memorandum of Understanding

- Average emissions equivalent to Tier 2 by 2010
- Week penalty provisions
- "Poison pill" provision any further regulation cancels MOU
- ULEL loophole

Switch Locomotives

- Dedicated units designed for switch duty cycle
 - "Green Goat" diesel/battery-electric series hybrid
 - Multi-engine locomotives using smaller nonroad engines
- Engines have modern control technology
- Engines run only when needed
- Much better candidates for DPF and SCR retrofit

Servicing/Maintenance Emissions

- Stationary source control technologies may be applicable
- Roseville Adanced Locomotive Emision Control System (ALECS) demonstration

Potential Emission Controls for Line-Haul Locomotives

• New "Tier 3" locomotives

- Standards not yet defined, indications are they will include SCR, DPFs
- Existing locomotive inventory, operating patterns an obstacle

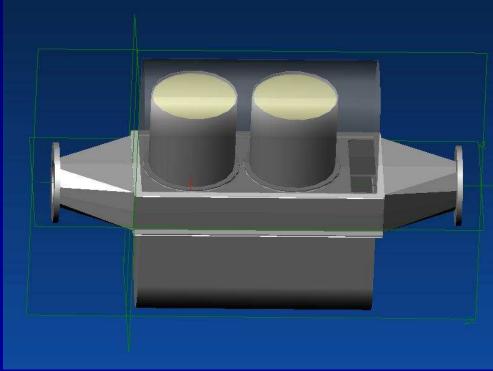
• Retrofit existing locomotives

- Diesel oxidation catalysts
- Selective catalytic reduction
- Diesel particulate filters

• Ultra-clean shuttle locomotives

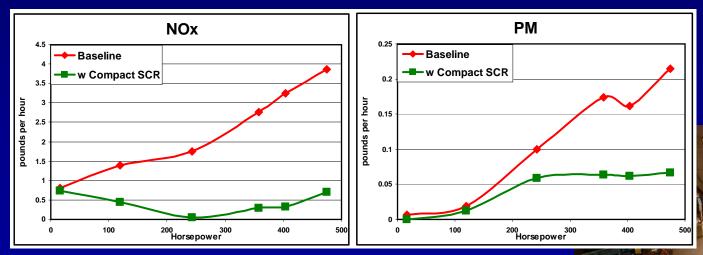
- Ports/intermodal facilities to railyards outside basin
- Congestion and operating advantages in port area as well as lower in-basin emissions
- Anti-idling systems
- Alternate fuels, electric traction NOT recommended

Status of SCR for Locomotives

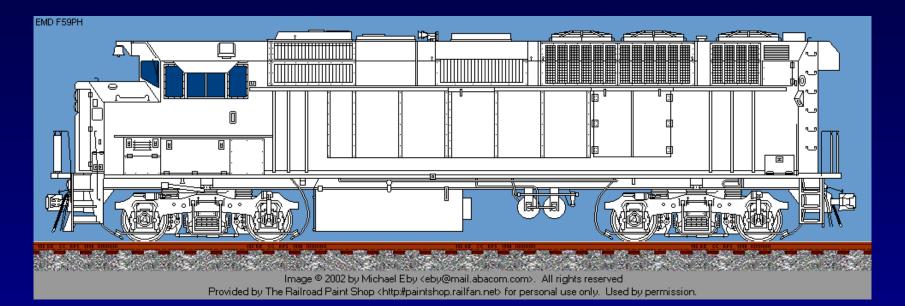

- Widely used on similar engines in stationary applications
- 1994 ARB report identified SCR as most cost-effective measure for locomotives
 - Conceptual design based on stationary SCR systems
- Railroads have strongly resisted SCR proposals
 - Cost
 - Volume requirements on locomotive
- New emission control system at Roseville rail yard will capture locomotive emissions in a <u>stationary</u> hood and apply SCR
- But, new compact SCR systems provide major improvements in both cost and space demand, and would allow SCR control on-board
- Prototype under development for Metrolink locomotive

Compact Urea SCR System for Mobile Sources

Ferryboat Engine SCR System

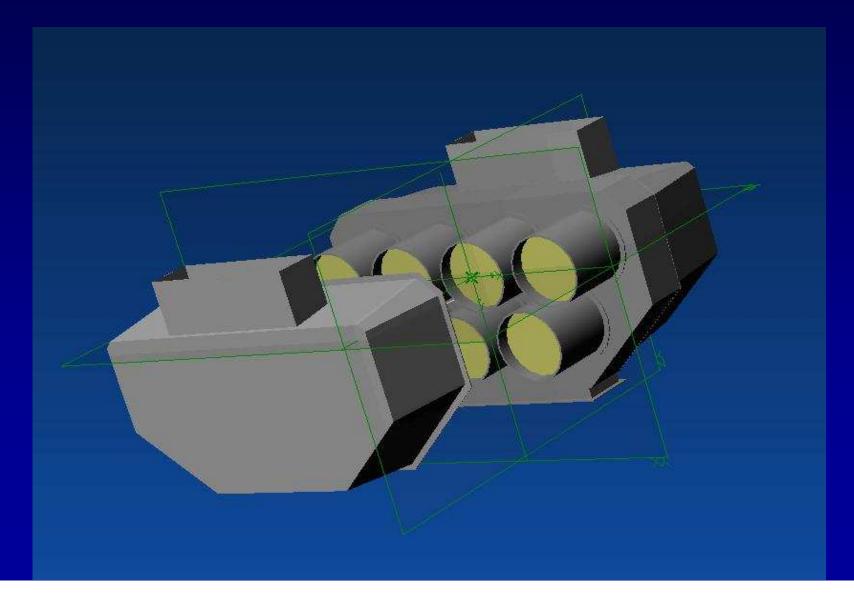

Sized for 450 to 600 HP engine Dyno tested March 6-8 in Seattle Four vessels planned for San Francisco Bay

Emission Test Results of Ferryboat SCR


Pct	Cat Inlet	NOx Emissions (g/BHP-hr)			PM Emissions (g/BHP-hr)		
Power	Temp. (oC)	Baseline	w SCR	% Red	Baseline	w SCR	% Red
Ultra-Low Sulfur Diesel							
100%	271	3.29	0.64	80.4%	0.18	0.06	66.3%
85%	266	3.28	0.35	89.3%	0.16	0.07	58.9%
75%	264	3.17	0.35	89.0%	0.20	0.07	62.7%
50%	273	3.11	0.10	96.8%	0.18	0.11	38.6%
25%	206	5.04	1.71	66.0%	0.07	0.05	34.2%
Idle	86	15.6	15.6	0.0%	0.14	0.00	100.0%

Tested at Pacific Power Products

Kent, WA March 3-6, 2006


Locomotive Profile

- Exhaust system configuration on Metrolink F59s is the same as on SD60 freight locomotives
- Same SCR retrofit system could be used on both

SCR Catalytic Converter

Cost-Effectiveness of SCR in Metrolink Locomotives

	NOx	PM
Annual Emissions (tpy)	29.2	1.0
Emission Reduction (tpy)	23.4	0.5
Capital Cost	\$ 150,000	
Annualized	36,584	
Liters Urea/Year	42,048	
Operating Cost	\$ 47,048	
Total Annual Cost	83,632	
Cost-Effectiveness	\$ 2,949	\$/ton

SCR Application to Freight Locomotives

- SCR highly cost-effective
- More than half the cost is for urea consumption
 - Can be turned on and off when entering/leaving pollution control areas
 - Automatic control based on GPS
- Cost-effective NOx control for nonattainment regions
- PM benefits would be experienced throughout area of operation