Exploring A Green Alternative for Container Transport

Presented to

Container Movement Forum and Technical Roundtable

January 26, 2007
Leslie Olson
Associate Research Scientist,
Texas Transportation Institute

21st Century Freight Transportation System Requirements

VIABLE FREIGHT TRANSPORTATION SYSTEMS MUST BE:

- Low-cost and have a long operating life - rugged and simple
- Based on known-understood technology
- Well-suited to the task at hand
- Reliable - reduce supply-chain uncertainty
- High Capacity - increases throughput
- Interconnected with the existing intermodal system
- Environmentally sound
- Air
- Noise
- Segregated; freight from passenger traffic
- Reduces roadway congestion
- Improves safety
- Secure

Freight Transportation is a Cost Minimizing Industry

The SAFE Freight Shuttle

The SAFE Freight Shuttle

- High reliability
- LIM - linear motion from vehicle-track interaction
- Small number of moving parts
- Automated control system
- Steel-on-steel for low
 rolling friction/low cost

Technical Elements

- Four systems interact to provide functionality:
- 1. Vehicle
- 2. Guide way
- 3. Communications/ command/ control
- 4. Terminal layout and design

Technical Elements

1. Vehicle

- Automated
- Aerodynamic leading and trailing ends
- Moderate speeds (3070 mph)
- Electric LIM propulsion
- Design simplicity

Technical Elements

2. Guide way

- Concrete track bed
- Steel running surface
- Small footprint
- Rail expansion joints

EXPLORING

Technical Elements

VEHICLES
3. Communications Command Control (C3)

ENERGY SOURCE \& DELIVERY

Technical Elements

4. Terminal Layout and Design

- Highway access considerations
- Warehousing
- Crane configurations
- Acreage
- Services
- Fueling
- Maintenance

SAFE Freight Shuttle System Operations

SAFE Freight Shuttle Conveyor

The SAFE Freight Shuttle

Energy Needs for The SAFE Freight Shuttle

SAFE Freight Shuttle weighing 14,000 pounds and loaded with a 71,500 pound 40 foot container:

- At 40 mph , the shuttle energy requirements are:
- Acceleration energy to arrive at system speed
- 2.57 KWH or 8,774 BTU
- Continuous running energy
- 0.42 KWH per mile to maintain a constant speed of 40 miles per hour ($1,434 \mathrm{BTU}$)
- Average energy consumption per mile for a 100 mile terminal to terminal trip
- 0.44 KWH or 1,502 BTU per mile
- A 70 mph operation will use:
- Acceleration energy to arrive at system speed
- 6.56 KWH or 22,396 BTU
- Continuous running energy
- 0.85 KWH per mile to maintain a constant speed of 70 miles per hour ($2,902 \mathrm{BTU}$)
- Average energy consumption per mile for a 100 mile terminal to terminal trip - 0.91 KWH or $3,107 \mathrm{BTU}$ per mile

Freight Transportation is a Cost Minimizing Industry

21st Century Freight Transportation Challenges

- Public Safety
- Environmental Impact
- Air
- Noise
- System Capacity
- System Maintenance \& Preservation
- Adverse Impact on Quality of Life
- Oil Dependency
- Security

The SAFE Freight Shuttle

- Community Benefits
- Separates freight and passenger traffic
- Safety - Saves lives
- Congestion - Saves time
- Non-polluting propulsion system - Saves environment
- Separate Corridor - Saves wear on roads and bridges
- Low noise System - Reduces impact on community

Provides an approach to container transport that serves both public and commercial interests

SAFE Freight Shuttle: Cost per Mile By Comparison to Rail Infrastructure

- Track
- ROW acquisition
- Ballast
- Ties
- Rail
- Signal System
- Vehicles
- Number required
- Estimated cost
- Grade Separation Structures
- Command and Control Systems
- Centralized Dispatch
- Terminal requirements
- Land
- Equipment

The SAFE Freight Shuttle

- A new approach to regional Intermodal Freight transport
- Concept developed over the last 6 years at the Texas Transportation Institute
- Based on known and understood technology
- May effectively address both community and commercial needs

Combines technology and innovation to meet basic freight transportation requirements in an environmentally responsible manner

The SAFE Freight Shuttle

- Secure
- Automated
- Fast
- Environmentallyclean

Hybrid System Combining the Best Features of Rail and Trucks

The SAFE Freight Shuttle

- Automated Freight Shuttles
- Single-container transports
- Linear induction motors (LIMs)
- Designed for steel wheels-on-steel running surface
- Dedicated, small footprint guide way
- Surface operations, elevated, or subterranean

2417 operations offer an option that may overcome throughput, capacity, and impact issues affecting marine terminals

The SAFE Freight Shuttle

- Design features enhance system viability
- High capacity / continuous operation
- Simplicity of design / system reliability
- Energy efficiency / low operating cost
- Reduce supply-chain uncertainty / increase control
- And mitigate the most pressing adverse impacts of high levels of truck traffic
- Grade separation of alignment
- Segregation of freight from passenger traffic
- Non-polluting propulsion system

The SAFE Freight Shuttle

- Public financial benefits*
per mile cost
- Congestion
- Pavement/infrastructure damage
- Air quality
- Safety
- Noise
$\$.2006$
$\$.4090$
\$. 0449
\$. 0115
\$. 0304

Accruing at a net rate of $\$ 0.62$ per mile for fully loaded trucks on urban roadways, relocation of truck VMT creates a real opportunity for public-private collaboration

The SAFE Freight Shuttle

EXPLORING

More than 6 years of Development and Planning have been completed

