

Effects of Ethanol and Volatility on Exhaust Emissions: CRC E-67 Project

Thomas Durbin Wayne Miller Theodore Younglove Tao Huai Kathalena Cocker

CRC Coauthors

Emissions Committee

- Michael C. Ingham (Co-Chair), Chevron Products Co.
- Marie Valentine (Co-Chair), Toyota Technical Center USA
- Gary Herwick, General Motors R&D Center (Retired)
- Richard E. Baker, Ford Motor Company
- Loren K. Beard, DaimlerChrysler
- Norman Brinkman, General Motors R&D Center
- Fred J. Cornforth, ConocoPhillips Company
- Dominic DiCicco, Ford Motor Company
- King Eng, Shell Global Solutions (US)
- Albert M. Hochhauser, ExxonMobil Research & Engineering Co.
- Jeff Jetter, Honda R&D Americas, Inc.
- Jim Uihlein, BP
- Stuart Johnson, Volkswagen of America
- Mani Natarajan, Marathon Petroleum Company LLC
- Cynthia Williams, Ford Motor Company
- Ken Wright, ConocoPhillips Petroleum Company

CRC Coauthors cont. and Acknowledgements

Emissions Committee E-67 Statistics Subpanel

- Jim Rutherford, Chevron Products Co.
- Richard Gunst, Southern Methodist University
- Jim Uihlein, BP
- Gary Hatfield, ConocoPhillips Company
- Anne Coleman, Shell Global Solutions (US)

Acknowledgements

- Funding from the Coordinating Research Council
- Leo Zafonte of CARB and CARB Haagen-Smit Laboratory HC speciation development
- CE-CERT VERL Dave Martis, Joseph Calhoun, and Ross Rettig

Ethanol widely used to meet oxygenate and octane requirements

- Volatility and ethanol parameters are important inputs to the CARB Predictive Model and EPA Complex Model
- Data scarce on modern vehicles

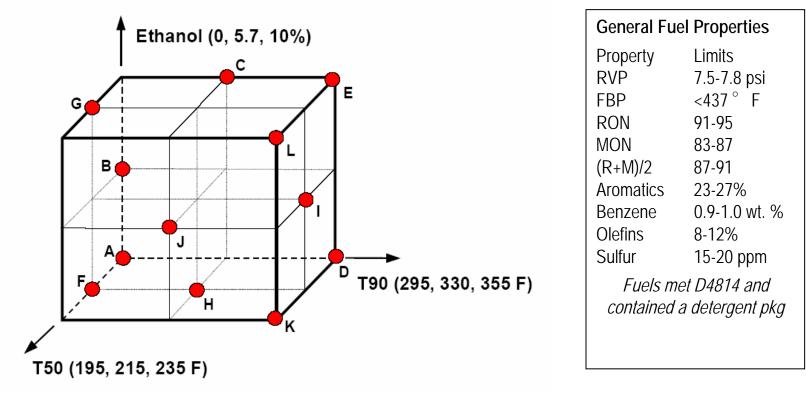
E-67 Project

Objective: Expand the database of information available on the impacts of gasoline volatility parameters and ethanol content on exhaust emissions from recent model light-duty vehicles.

- Weasure regulated emissions using standard FTP tests.
- Weasure speciated emissions were measured on a subset of the test fuels.
- The test fuels varied in ethanol content, T50, and T90.

E-67 Project Design - Specifics

Vehicle Set: CA-Certified 2001-03 MY


Description of Test Vehicles

#	MY	OEM	Model	CA Cert	Туре	Engine	Mileage	Engine Family
1	2002	Ford	Taurus	LEV	PC	3.0 L	19,414	1FMXV03.0VF4
2	2003	Chevrolet	Cavalier	LEV	PC	2.2 L	28,728	1GMXV02.2025
3	2003	Ford	F-150	LEV	LDT	4.6 L	13,856	3FMXT05.4PFB
4	2003	Dodge	Caravan	LEV	LDT	3.3 L	18,342	3CRXT03.32DR
5	2003	Ford	Explorer	LEV	LDT	4.0 L	16,445	3FMXT04.02FB
6	2003	Chevrolet	Trailblazer	LEV	LDT	4.2 L	13,141	3GMXT04.2185
7	2002	Toyota	Camry	ULEV	PC	2.4 L	14,731	1TYXV02.4JJA
8	2003	Buick	LeSabre	ULEV	PC	3.8 L	10,364	3GMXV03.8044
9	2001	VW	Jetta	ULEV	PC	2.0 L	28,761	1VWXV02.0223
10	2003	Ford	Windstar	ULEV	LDT	3.8 L	20,523	3FMXT03.82HA
11	2003	Chevrolet	Silverado	ULEV	LDT	5.3 L	10,298	3GMXT05.3176
12	2003	Honda	Accord	SULEV	PC	2.4 L	12,432	3HNXV02.4KCP
Vahialas aguinnad with astalysts agad to 100,000 miles for testing								

Vehicles equipped with catalysts aged to 100,000 miles for testing.

E-67 Project Design - Specifics

Fuel Set:

E-67 Project Design - Specifics

Test Protocol:

&Standard FTP testing (w/ multiple drain and fill fuel)

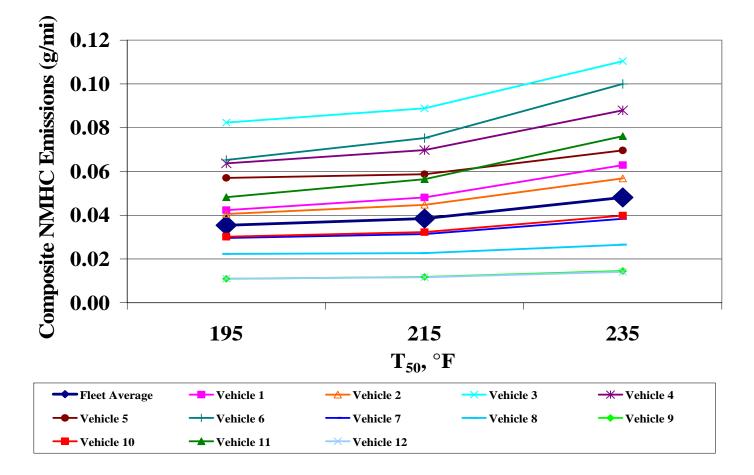
Randomize fuel test order within each vehicle

Test each fuel/vehicle combination twice

Auto/Oil outlier criteria used to determine need for third tests

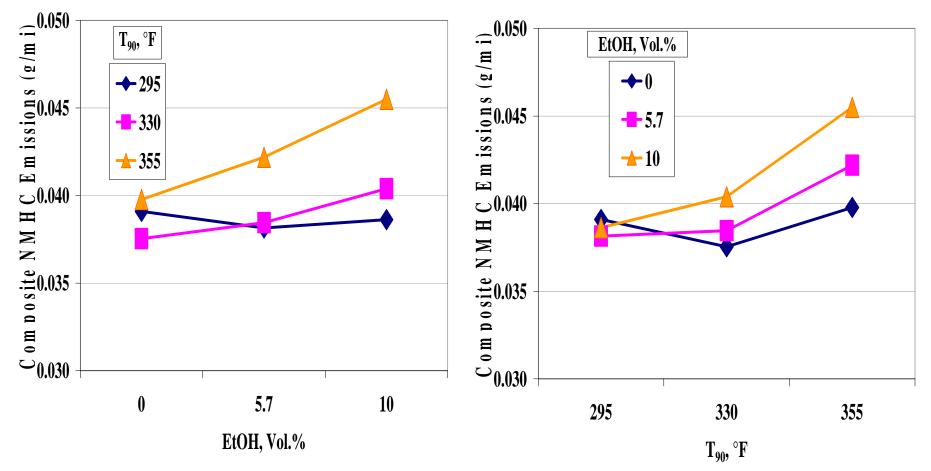
➢Measure organic gas speciation on fuels D, E, K & L

E-67 Statistical Analysis


Emissions analyses were run using the Proc Mixed procedure in PC/SAS.

- The primary analysis <u>estimated regression coefficients</u> for the fuel effects, with the levels of EtOH, T50, and T90 used as continuous variables within the model.
- Analyses used the natural logs of the data for the regulated emissions, NMOG and toxics.
- Effects are statistically significant if p<0.05 and are marginally significant if 0.05<p<0.10</p>

NMHC Increases with Increasing T50

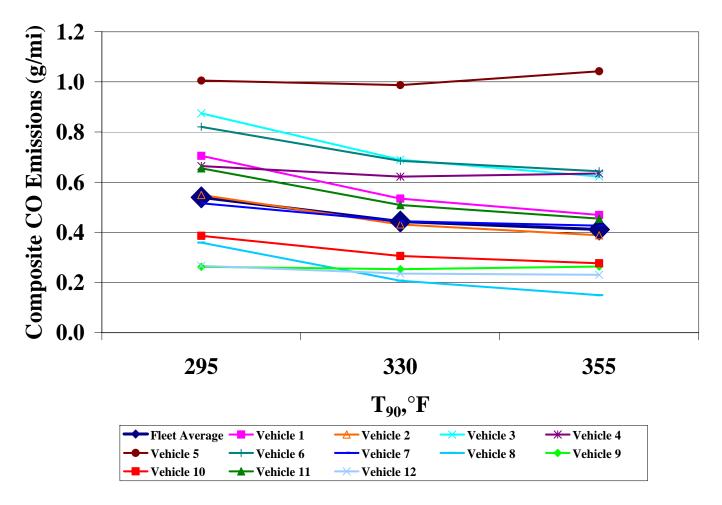

E-67 Key Findings – NMHC

Composite NMHC by T50 - Fleet-Average and Individual Vehicles

E-67 Key Findings – NMHC Statistically Significant EtOH by T90 Interaction

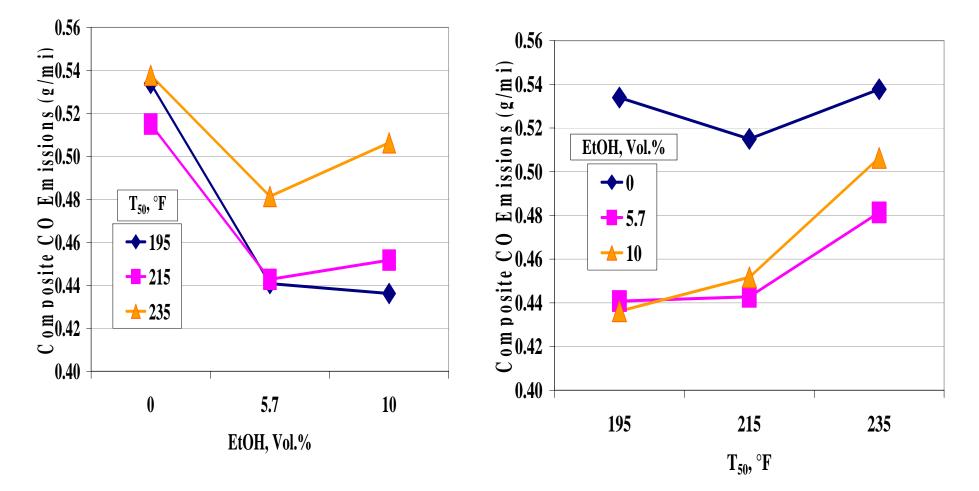
Composite NMHC by EtOH x T90 - Fleet Average

E-67 Key Findings - NMHC


➢ NMHC increased with increasing T50.

- The fleet-average percentage increases in NMHC in going from the low and mid-point level of T50 to the high T50 level were 36 and 25%, respectively.
- A significant interaction was found between ethanol and T90
 - NMHC increases with ethanol at mid- and high T90
 - NMHC increases with T90 at mid- and high ethanol levels

CO decreased with increasing T90

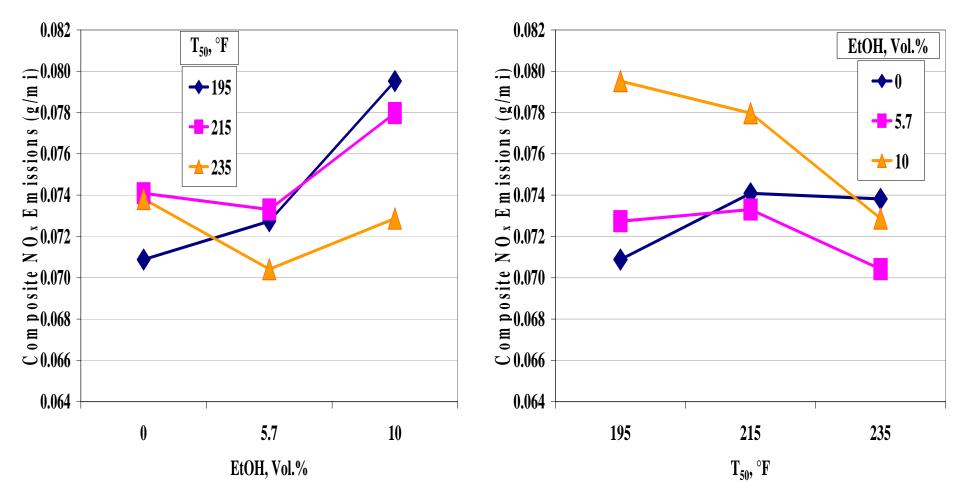

E-67 Key Findings – CO

Composite CO by T90 - Fleet Average and Individual Vehicles

E-67 Key Findings – CO Statistically Significant EtOH by T50 Interaction

Composite CO by EtOH x T50 - Fleet Average

E-67 Key Findings - CO

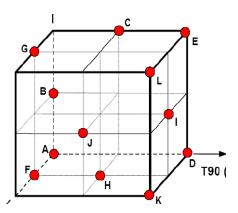

✤ CO decreased with increasing T90.

- The percentage decreases in going from the low and mid-point level for T90 to the high T90 level were 24% and 7%, respectively.
- A statistically significant interaction was found between ethanol and T50
 - CO decreased when ethanol was increased from 0% and 5.7%, but was unchanged or increased when ethanol was 10%
 - CO increased with T50 at 5.7% and 10% ethanol levels, but was unaffected when no ethanol was present

E-67 Key Findings – NOx

Statistically Significant EtOH by T50 Interaction

Composite NOx by EtOH x T50 - Fleet Average


E-67 Key Findings - NOx

- ➢ A significant interaction was found between ethanol and T50.
- ➢ NOx increased with increasing ethanol at the low level of T50.
- At the mid-point level of T50, NOx was largely unaffected as ethanol was increased from the zero to the mid-point level, but increased as ethanol was increased to the high level.
- ✤ At the high level of T50, NOx is largely unaffected by ethanol.
- Alternatively, NOx decreased with increasing T50 at the high level of ethanol, but was largely unaffected by T50 at the zero and mid-point levels of ethanol.

E-67 Key Findings – NMOG & Toxics

Caveat:

- The effects of ethanol and T50 on NMOG and toxics described on the next slide were only observed for the subset of fuels having the high level of T90.
- The results of this study do not permit any conclusions as to what effects T50 or ethanol might have on NMOG or toxics emissions for fuels having low or mid-point T90 levels.

E-67 Key Findings – NMOG & Toxics

NMOG:

Increased by 14% when ethanol was increased from zero to the high level.
 Increased by 35% when T50 was increased from the low to the high level.
 Formaldehyde:

- Increased by 23% when T50 was increased from the low to the high level.
 Acetaldehyde:
- Increased by 73% when ethanol was increased from zero to the high level.
 Benzene:
- Increased by 18% when ethanol was increased from zero to the high level.
 Increased by 38% when T50 was increased from the low to the high level.
 1,3-butadiene:
- ✤ Increased by 22% when ethanol was increased from zero to the high level.
- Increased by 56% when T50 was increased from the low to the high level.

The E-67 final report and the dataset are both available on the CRC website at:

http://www.crcao.org/

Click on "Recent Reports and Study Results"