Context for Hybrids: HTUF & Industry Actions

Advanced Transportation Technologies

Clean Transportation
Solutions **

Bill Van Amburg Senior Vice President

SCAQMD Hydraulic Hybrid Vehicle Tech Forum November 15, 2007

MISSION STATEMENT

WestStart-CALSTART is dedicated to the growth of an advanced transportation technologies industry and markets that will:

- Create high-quality jobs;
- Clean the air;
- Reduce dependence on foreign oil; and
- Prevent global warming

WestStart: A Strategic Broker for Advanced Transportation

2007

145+ Worldwide Participant Network

4 Offices in US

Four focus areas:

Efficient vehicles
New fuels
Mobility/transit
Industry support

National and International Programs

CALSTART is WestStart's California Operating Division

Copyright WestStart-CALSTART 2007

WestStart CALSTA

Phay Hulbry harden L'Ille

As of 11/05/07

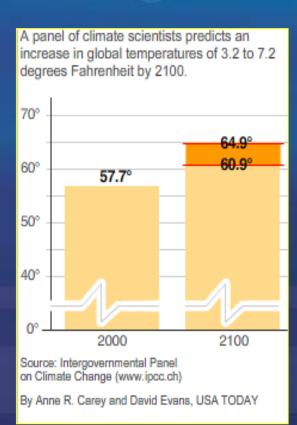
High Energy Costs Here to Stay

- \$100 bbl oil?
- \$4 gal gasoline?
- US EIA forecasts heavy demand will keep imported oil prices on rise until 2014; new supplies after then may ease supply crunch, cause decline in crude

costs

80

NOV



Major Global Warming Report

Intergovernmental Panel on Climate Change (IPCC) findings:

- Human activity "highly likely" (90% certainty) responsible for recent global warming
- CO2 emissions already affecting climate and earth's ecosystems; serious economic, social, political consequences
- Long term outlook dim; temperatures to rise 3-5 degrees F
- Shifting climate patterns will benefit some, hurt others, primarily poor nations; adaptation essential
- IPCC Report showing potential solutions released May 4, 2007

Fighting Global Warming

IPCC Climate Change Mitigation Report (May 4):

Summary for Policymakers IPCC Fourth Assessment Report, Working Group III

Table SPM 3: Key mitigation technologies and practices by sector. Sectors and technologies are listed in no particular order. Non-technological practices, such as lifestyle changes, which are cross-cutting, are not included in this table (but are addressed in paragraph 7 in this SPM).

	principles, oncertin	there is a time coord in party of the same of the			
	Sector	Key mitigation technologies and practices currently commercially	Key mitigation technologies and practices projected to be		
ı		available.	commercialized before 2030.		
	Energy Supply	Improved supply and distribution efficiency; fuel switching from coal	Carbon Capture and Storage (CCS) for gas, biomass and coal-fired		
-	[4.3, 4.4]	to gas; nuclear power; renewable heat and power (hydropower, solar,	electricity generating facilities; advanced nuclear power; advanced		

Transport [5.4] More fuel efficient vehicles; hybrid vehicles; cleaner diesel vehicles; biofuels; modal shifts from road transport to rail and public transport systems; non-motorised transport (cycling, walking); land-use and transport planning

Second generation biofuels; higher efficiency aircraft; advanced electric and hybrid vehicles with more powerful and reliable batteries

- More fuel efficient vehicles
- Hybrid vehicles
 - Cleaner diesel vehicles
 - Biofuels
 - Modal shifts to rail and public transport
 - Non-motorized vehicles
 - Land use and transit planning

a, and iron

vity and ogies for al and

The New "Strike Zone" in Transportation

Air Quality

Balances all three competing needs

Integrated Solutions Needed

Energy Security

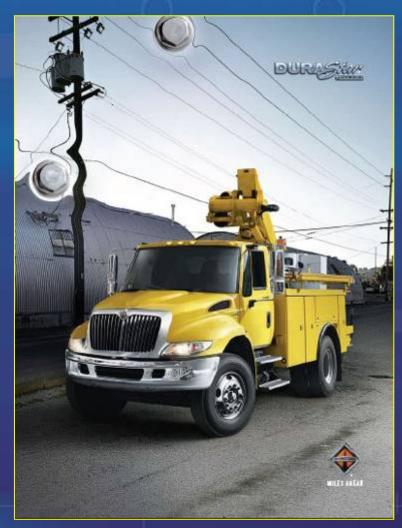
Climate Change

Why Hybrids Are Gaining Traction with Fleets

- Rising fuel costs: Optimizing urban truck drivelines is becoming critical for fuel efficiency, emissions
- Major engine changes and increased cost/complexity – coming in 2007-2010 to comply with EPA emissions requirements
- Idle Management is a growing issue nationwide
- Productivity/performance complaints from cleaner engines
- "Green Footprint" pressures from management to reduce carbon and overall environmental impacts
- Trend toward integrated engine/drivelines in trucks
- Increasing electrical power needs in heavy vehicles and equipment

Recent Heavy Hybrid News

- Freightliner to produce 1500 M2 hybrid trucks in next 3 years
- Peterbilt/Eaton to enter production hydraulic refuse truck 2008
- Azure plans production of hybrid shuttles in 2008
- Kenworth and Peterbilt announce production plans for medium hybrid trucks in 2008
- International launches first hybrid production: Fall 2007
- Eaton moves into production of hybrid drive system
- Kenworth announces pre-production delivery hybrid truck
- FedEx/Azure announce partnership on gas-electric hybrids
- Peterbilt testing Class 8 hybrid with Eaton system
- ArvinMeritor signs Wal-Mart agreement for Class 8 hybrids
- Oshkosh unveils hybrid refuse truck at HTUF meeting
- Peterbilt introduces Class 7 hybrid truck for customer trials
- International builds first production-line hybrids in Nov 06
- Freightliner unveils Class 7 utility hybrid on M2 chassis
- IC/Enova roll out hybrid electric shuttle bus
- Azure/StarTrans agreement on producing hybrid shuttles
- UPS testing advanced series hydraulic hybrid prototype
- Bosch-Rexroth buys Dana hydraulic hybrid drive unit
- Misubishi-Fuso Unveil Hybrid work truck (CI 4-5 delivery)
- ISE builds 50 advanced hybrid buses for Las Vegas
- Volvo announces hybrid heavy trucks for 2009 production



First US Hybrid Truck Production

International: will launch first production hybrid trucks – "DuraStar Hybrid" – Sept 2007

Can build up to 1000 units per year to start

100 "Production-Intent" hybrid trucks built in 2006 and delivered to customers

- Incremental cost remains high and purchase assistance needed
- Roughly half are "utility" type trucks, half other applications (regional delivery/cargo, flatbed, reefer, etc.)

Copyright WestStart-CALSTART 2007

Brochure

Production-Intent – Peterbilt/Eaton Hydraulic Refuse Truck

- Peterbilt in field pilot testing of hydraulic hybrid refuse truck (63,000 pound GVWR)
- Pre-production in 2006/2007 – Production in 2008
- Eaton to use same pump/accumulator design for hydraulic shuttle bus
- Fuel savings in 10-30% range – carbon reductions track fuel reductions closely

Peterbilt Hybrid Refuse Chassis

Recent Introductions

Oshkosh hybrid refuse truck

Peterbilt Class 7 hybrid utility truck

Freightliner Class 6/7 hybrid utility truck

IC/Enova hybrid shuttle bus

Kenworth Class 7 hybrid truck

ISE hybrid cutaway shuttle bus

Timeline to Commercialization: Hybrid Tech Just Starting in Trucks

Trucks are not Priuses!

Tech introduction 10 years behind cars

BUT: big fuel impact per truck

Development Test prototypes and systems

Field pilot assessments (10-50 vehicles)

Production Intent

Assembly line builds up to 100+

Early Production

Initial commercial volumes - still high incremental cost

R&D Support

Purchase Incentives

Pre-Production Deployment Support (HTUF)

OOLS:

Copyright WestStart-CALSTART 2007

Hybrid Truck Users Forum (HTUF)

- Goal: Speed the development and introduction of commercially viable medium- and heavy-duty hybrid trucks in the U.S.
- User driven process involving more than 80 fleets with > 1 million trucks
- Joint WestStart-U.S. Army program

HTUF National Meeting 2007 Hybrid Truck Users Forum - 7th Meeting

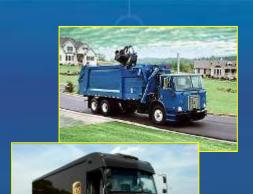
- Two and a half day forum at Qwest Field, Seattle
- More than 430 attendees, one quarter fleet users a new record
- 19 med. and heavy-duty hybrids in ride and drive – a new industry record
- All major trucks makers and suppliers involved in process

Key Findings at HTUF 2007

- HTUF process has taken 1-2 years off the development cycle of med and heavy-duty hybrids — Paul Skalny, Director, Army's National Automotive Center
- Hybrid trucks now at cusp of first production
 - International launching first production of medium duty hybrids
 Fall 2007
 - Peterbilt and Kenworth start production of medium duty hybrids in 2008
 - Peterbilt begins production of refuse truck hybrid in 2008, and Class 8 big-rig hybrid in 2009
 - Mack/Volvo to start hybrid truck production in 2009
- Class 8 hybrids are a key new capability emerging in moreefficient trucks – could impact biggest fuel users on road
- Better purchase incentives are needed to help fleets adopt technology sooner
- Need to speed pre-production trucks and equipment in additional applications (including small bus and Class 8)
- Technology improvement needed: energy storage; electrified and efficient components; light-weight materials; power generation; optimized engines; systems control

HTUF Working Groups

- 6 Core Working Groups of fleet truck users now operating, plus:
 - 1 WG partnership with NTEA (light truck)
 - 1 new Forum forming (construction equip.)
 - 1 Task Force: Plug-in HE Trucks (PHET)
- Main Working Groups:
 - Utility/Specialty trucks George Survant, Florida Power & Light, lead
 - Parcel Delivery trucks Sid Gooch, Fed Ex Express;
 Bob Dengler, FedEx Ground; Robert Hall, UPS user leads
 - Refuse Truck Working Group Matt Stewart, City of Chicago Sanitation, lead
 - Bus Working Group launched with support of Federal Transit Administration
 - Class 8 Working Group underway
 - Incentives Working Group underway



HTUF Moving Rapidly

Working Group Activities (continued)

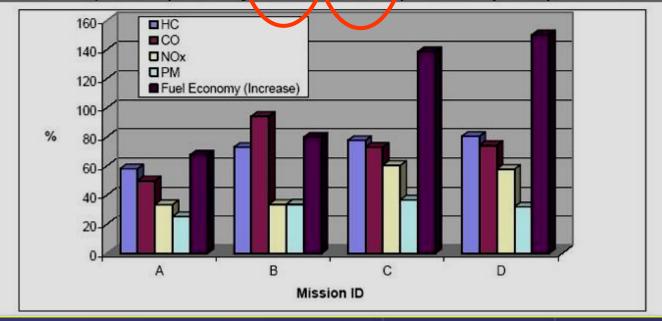
- Refuse Vehicle
 - Making final decisions on RFP for hybrids
 - Targeting 10+ pre-production trucks
 - Likely electric and hydraulic variants
- Hydraulic Hybrid Parcel Delivery
 - Reviewing proposals for hydraulic parcel demo
 - Hydraulic tech not as developed in this size
- Shuttle Bus
 - Spec info being gathered from fleets
- Plug-in Hybrid Truck (PHET)
 - Successful workshop at CHDV conference in Feb.
 - Next steps
 - Develop a PHET business case
 - Define best target vehicles and applications
 - Select fleets and regions that can be "first-movers"

Utility Hybrid Class 6/7 Deployment Data to Date

- All 24 trucks delivered 12 months of service on first trucks
- 391 total truck months of service through Aug 07; 409,352 miles
- Availability of trucks high: 99+% overall daily availability of hybrid systems
- Strong user acceptance and trucks meeting mission needs

Fuel economy varies by fleet and use

- 54% fuel economy gain for highest fleet
- 14% fuel economy gain for lowest fleet
- Biggest variables: mileage driven versus work site "boom" time (more work site time equals better mpg)


Emissions Reductions by Mission

Reductions just from hybrid system, no additional after treatment

CO2
reductions
closely
tracked fuel
reduction
percentages

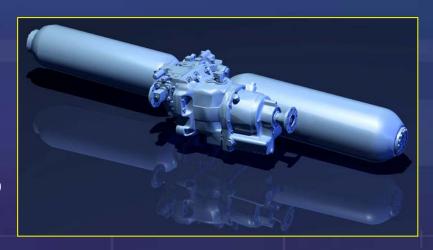
TABLE 10 AND FIGURE 9. PERCENT DECREASE IN RATE OF EMISSIONS (g/hr) AND PERCENT INCREASE IN FUEL ECONOMY (mpg) OBTAINED BY USING THE HEV TRUCK COMPARED TO THE BASELINE USING FOUR EATON-SPECINED MISSION CYCLES

Mission Cycle ID (given in Table 8)		CO (g/mi) %	NOx (g/mi %	PM (g/mi) %		100000000000000000000000000000000000000	Hours of Operation (hydraulic + electric)
A	58	50	34	25	68	70	1.5
В	73	94	34	34	80	70	4.5
С	78	73	61	37	139	48	3
D	80	74	58	32	150	38	3

Copyright WestStart-CALSTART 2007

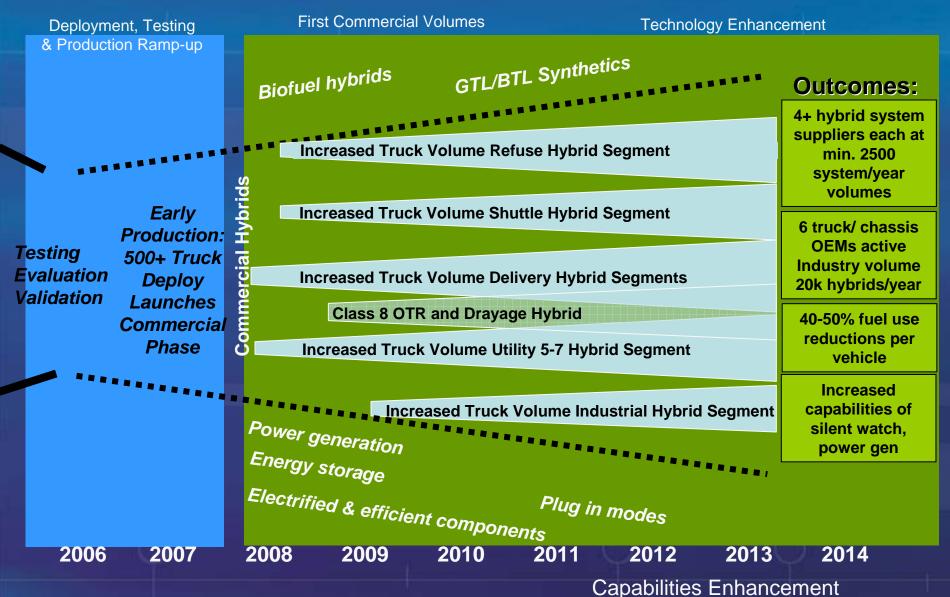
Hydraulic Hybrid Vehicles

- Extremely promising technology
- Benefits: possible lower cost than electric technology; excellent at high power, demanding duty cycles; robust component base
- Weight, system integration and control are key issues; farther behind in development curve
- Most focus is on medium and heavy-duty vehicles
- Major US manufacturers are leaders in this technology



Eaton Hydraulic Hybrid

- Eaton receives \$2.15 million from DoD to accelerate commercial development of its energy-saving Hydraulic Launch Assist[™] (HLA[®]) system technology
- Working under a program with the US Army National Automotive Center and Impact Engineering
- Eaton will focus on designing third generation HLA system and optimizing for specific vehicle applications
- Eaton's HLA regenerative braking system has demonstrated significant fuel economy, reduction in emissions, brake wear in stop and go driving applications


Prototype Series Hydraulic Hybrid in Testing

- Test project of EPA, Army/NAC, Eaton, International and UPS
- Series hydraulic design eliminates transmission and driveshaft, operates engine in narrow range
- Early testing has shown up to a 70% increase in fuel economy over conventional truck
- Still several years from commercialization

UPS will field test prototype truck for several months in delivery operation

HTUF: "Expanding the Funnel" From Hybrids to More Efficient Trucks

Copyright WestStart-CALSTART 2007

What's Target for Volumes, Price?

Yearly Similar Driveline Volumes

Conclusion: Status of Hybrid Trucks

- Not Yet at "Tipping Point" for hybrid commercialization but making strong progress
 - Have sped commercialization process by 1-2 years
 - One truck maker in production
 - Three truck makers entering production-intent manufacturing process, one in pre-production
 - Still behind automotive curve but business case is driver
 - Need assistance to cross cost gap to first production
 - Must increase early volumes
- Hybrids are one of several critical "wedge" strategies to boost fuel economy, reduce GHG
 - First targets urban vocational trucks
 - Will likely also have Class 8 impacts
 - Enabling technology for many future advancements
 - Expect yearly volumes to exceed 1-2-thousand in next 3 years
- Need targeted incentives: Federal and State
 - Partnership of fleets, manufacturers and government
 - Structured to work in commercial, not consumer, market
 - Also need regional incentives and "aligned" incentives across regions

Clean Transportation Solutions MAdvanced Transportation Technologies May www.weststart.org

For info contact:

Bill Van Amburg (626) 744-5600 bvanamburg@weststart.org

www.htuf.org