A PRACTICAL ALTERNATIVE METHOD FOR ASSESSING INDIVIDUAL AND POPULATION BIOEQUIVALENCE

A. Lawrence Gould Merck Research Laboratories

FDA PHARMACEUTICAL SCIENCE ADVISORY COMMITTEE

September 23, 1999

354751

INTRODUCTION (1)

 Subjects' bioavailabilities of two formulations not independent:

Different kinds of bioequivalence Average ($\mu_T = \mu_R$)

Population (marginal distns coincide) \Rightarrow formulations equally prescribable

Individual (large differences between subject's response to formulations unlikely) \Rightarrow formulations are switchable

Avoid asymmetric decision scenarios

MIXED MODEL

- Standard model:
- $\begin{array}{ll} Y_{tj} &= \mbox{Value for subject j on formulation t} \\ &= \mbox{Population Formulation Effect} \\ &+ \mbox{Subject Effect (Var = } \sigma_{BT}^2 \mbox{ or } \sigma_{BR}^2) \\ &+ \mbox{Within-Subject Error} \\ & (\mbox{Var = } \sigma_{WT}^2 \mbox{ or } \sigma_{WR}^2) \end{array}$

Test (t = T) or Reference (t = R)

• Subject x Formulation Interaction = σ_D^2 = Var(Subject T effect – Subject R effect) = $(\sigma_{BT} - \sigma_{BR})^2 + 2(1-\rho)\sigma_{BT}\sigma_{BR}$

FDA CRITERIA

- FDA population & individual BEQ criteria based on expectations of squares of Test
 Beference biogyoilability difference
 - Reference bioavailability differences
 - ⇒ Combine mean bioavailability difference and variance components:
 - Population: $(\mu_T \mu_R)^2 + \sigma_T^2 \sigma_R^2 < \lambda \theta$
 - Individual: $(\mu_T \mu_R)^2 + \sigma_D^2 + \sigma_{WT}^2 \sigma_{WR}^2 < \lambda \theta$
 - Average: $(\mu_T \mu_R)^2 < \Delta$
 - $\Rightarrow \lambda = \text{constant or scaling factor } (\sigma_R^2 \text{ for popn BEQ, } \sigma_{WR}^2 \text{ for indiv BEQ})$
 - \Rightarrow Requires 3- or 4-period designs

ISSUES

- Justifiable regulatory burden?
- Practical importance for most drugs?
- Prescribability & switchability intuitively sensible in principle, but

No published evidence of clinical problems from substituting formulations that are average but not popn/indiv BEQ

 FDA criteria are <u>an</u> approach to evaluating individual BEQ, but <u>not the</u> <u>only one</u>

ALTERNATIVE APPROACH (1)

• Requiring

Individual $BEQ \Rightarrow$ Population BEQ

Population $BEQ \Rightarrow$ Average BEQ

prevents scenarios like

ALTERNATIVE APPROACH (2)

• Recall distributional picture:

- Individual & population BEQ can be evaluated using standard regression/correlation calculations on data from 2 x 2 crossover designs
 - ⇒ Statistical properties of estimators well known in normal case, nonparametric & robust analogues exist

ALTERNATIVE APPROACH (3)

- Take sum of each subject's obsns on T, sum of each subject's obsns on R
- Correlation between obsns on T & R → intuitive measure of individual BEQ
- Correlation coeff consistently estimates

$$\rho \sigma_{\mathsf{BT}} \sigma_{\mathsf{BR}} / \sqrt{\left(\sigma_{\mathsf{BT}}^2 + \sigma_{\mathsf{WT}}^2\right) \left(\sigma_{\mathsf{BR}}^2 + \sigma_{\mathsf{WR}}^2\right)}$$
$$= \rho / \sqrt{\left(1 + \sigma_{\mathsf{WT}}^2 / \sigma_{\mathsf{BT}}^2\right) \left(1 + \sigma_{\mathsf{WR}}^2 / \sigma_{\mathsf{BR}}^2\right)}$$

- Includes within-subject variability as well as sfi -- large within-subject variation diminishes correlation
- Since subject x formulation is

$$\sigma_D^2 = (\sigma_{BT} - \sigma_{BR})^2 + 2(1-\rho)\sigma_{BT}\sigma_{BR}$$

large s x f interaction diminshes correlation

ALTERNATIVE APPROACH (3)

 Slope of regression of (T + R) on (T - R) consistently estimates

$$\gamma = (\sigma_{\mathsf{T}}^2 - \sigma_{\mathsf{R}}^2) / (\sigma_{\mathsf{T}}^2 + \sigma_{\mathsf{R}}^2 - 2\rho\sigma_{\mathsf{BT}}\sigma_{\mathsf{BR}})$$

- Scaled difference between total variances on T & R ⇒ reasonable measure of population BEQ
- High correlation (good indiv BEQ) exaggerates γ, more difficult to conclude popn BEQ
 - \Rightarrow I.E., if not popn BEQ, then indiv BEQ probably not meaningful
- Conclusions appear to be close in most cases to FDA method, perhaps less sensitive to pathologies & biases

KEY POINTS

- Population and Individual BEQ are intuitively appealing concepts
- There does not appear to be any evidence that these concepts are needed for the evaluation of most (> 90%) drugs
- Population and Individual bioequivalence can be evaluated in various ways
- Guidance proposal has some statistical appeal, but
 - \Rightarrow Expensive
 - \Rightarrow raises issues of clinical relevance
 - \Rightarrow justification of regulatory burden?
- Can assess PBE and IBE using data from conventional 2 x 2 crossovers – results consistent w/Guidance