Mechanistic Understanding of Subject-by-Formulation Interactions

Lawrence J. Lesko, Ph.D.

Office of Clinical Pharmacology and
Biopharmaceutics

CDER/FDA

Advisory Committee for Pharmaceutical Science September 23-24, 1999 Rockville, Maryland

Outline

- · Mechanistic Definition
- General Paradigm
- · Case Study
- · Analysis
- Conclusions

Mechanistic Definition of SxF

- When the in vivo dissolution of a formulation, and absorption of its drug, display sensitivity to physiological variables in the GIT within the range found in healthy and/or patient volunteers, and/or
- When the excipients in a formulation influence physiological variables, or the physicalchemical properties of a formulation and/or its drug, in the GIT

Risk Factors: Drug Properties

- SxF Unlikely
 - HS/HP (BCS I Class)
 - rapid intrinsic dissolution
 - site- and transit timeindependent absorption
 - no physical or chemical incompatibilities
 - achiral
 - uncomplicated PK
 - no regional pharmacological effects

- SxF Likely
 - LS/LP (IV), LS/HP (II) and HS/LP (III)
 - slow intrinsic dissolution
 - site- and transit timedependent absorption
 - physical or chemical incompatibilities
 - complicated PK
 - pharmacological effects on GIT

Risk Factors: Excipient Properties

- Unlikely
 - no effects on GIT pH
 - no effects on permeability
 - no effects on transit time
 - no physical or chemical interactions
 - no effects on presystemic
 CYP 3A4 metabolism
 - no effects on PGP and other transport processes

- Likely
 - alters local GIT pH
 - promotes permeability
 - pharmacological effect on GIT motility
 - physical or chemical interactions
 - inhibits presystemic CYP
 3A4 metabolism
 - reduces PGP and other efflux systems

Risk Factors: Formulation Properties

- Unlikely
 - pharmaceutical equivalents
 - simple formulations
 - solutions
 - · solid, oral IR
 - low excipient/drug ratio
 - uncomplicated manufacturing
 - rapid and pHindependent dissolution

- Likely
 - not pharmaceutical equivalent
 - complex formulations
 - · transdermal
 - MR
 - high excipient/drug ratio
 - complicated manufacturing
 - slow and pH-dependent dissolution

Risk Factors: GIT Properties of Subjects

- Physiological Variables
 - pH gradient
 - gastric emptying time
 - SITT
 - colonic residence time
 - intestinal permeability gradient
 - activity and capacity of enterocyte CYP 3A4
 - activity and capacity of intestinal transport processes

- · Physiological Range
 - genetic or environmental control
 - gender
 - age
 - race
 - disease states
 - diet
 - co-administered drugs

Case Method Approach

- Stepwise analysis of actual examples of SxF
 - determine risk factors of drug, excipients, formulation and subjects
 - obtain insight into mechanism
- When multiple risk factors are present at the same time, a SxF is most likely to occur

CASE STUDY: CALCIUM-CHANNEL BLOCKER (DRUG X)

Clinical Study Summary

- Two-way crossover, <u>non-replicated</u>, single dose, fasting BE study
- Healthy, young males (n = 12) and females (n = 13)
- · Oral capsules
- Plasma levels of parent (P) and metabolite (M)
- Standard ANOVA analysis of [S(G) x F]

PK Data for Parent: Product A 250 200 150 Female subjects Male subjects Male subjects Time in Hours

Step-Wise Analysis

Risk Factors

- "Class II" (LS/HP) drug
- pH- sensitive excipients
- complex formulation (ER)
- overlapping CYP 3A4/PGP substrate
- significant, saturable first pass effect
- -F < 50%
- female and male subjects

Role of Excipients

- Rate-limiting step in absorption is in vivo dissolution
- Control release rate
- Different mechanisms for each Product
- Excipient effects in Product A pH-sensitive

Contributions of Subjects

- Gender differences between males and females?
 - focus on physiological variables

- · under genetic and/or environmental control
- subpopulation differences in distribution
- gastric/intestinal transit times, membrane permeability, luminal pH, mucosal blood flow
- intestinal metabolism by CYP 3A4
- enterocyte PGP transport

Intestinal CYP 3A4

- · Large intersubject variability in substrate clearances
- Intrasubject < intersubject (30X) variability
 - influence of genetic factors > environmental factors
- Content and expression is site-dependent, saturable

- · Gender differences
 - · oral clearance < F
 - FPE < F
 - BA > F
 - less CYP 3A4 or homeostatic mechanism?

Intestinal PGP

- More limited data, particularly, gender differences
 - increasing gradient in content/activity from proximal segment to distal segment of gut
 - saturable
 - dose-dependent effective permeability
 - activity in M > F

Mechanistic Hypothesis

- SxF with Product B
 - slower dissolution at pH 4.5
 - faster & more complete dissolution at pH 6.8
 - larger fraction of dose released in ileum
 - lower CYP 3A4 content & activity
 - readily saturable
 - gender differences in PGP efflux (F < M)
 - greater absorption, higher Cmax & AUC
 - [concentration x residence time]

Supportive Evidence

- [M/P] AUC ratio for Product B
 - 10/13 F had lower ratio
 - 2/12 M had lower ratio
- Similar SxF observed in multiple dose BE study
 - higher AUC & Cmax for Product B in F
- Literature
 - lower oral clearance of CYP 3A4 substrates in F

Conclusions

- Need to collect more data to understand the mechanistic basis of SxF
- Additional experience with replicate BE study designs in subject subgroups will provide data sets relevant to SxF
- Stepwise analysis of drug, excipient, formulation and subject factors will lead to better understanding of SxF

Acknowledgements

Ajaz Hussain, Ph.D. Mei-Ling Chen, Ph.D. Rabi Patnaik, Ph.D.