Advisory Committee for Pharmaceutical Science

CRITERIA AND UPDATE OF GUIDANCE

Mei-Ling Chen, Ph.D.

Director

Division of Pharmaceutical Evaluation II

Office of Clinical Pharmacology and Biopharmaceutics

Food and Drug Administration

September 23-24, 1999

FDA DRAFT GUIDANCE (1999)

Average, Population, and Individual Approaches to Establishing Bioequivalence

http://www.fda.gov/cder/guidance/index.htm

STATISTICAL GUIDANCE (1999)

♦ Updates 1997 Preliminary Draft Guidance

In Vivo Bioequivalence Studies Based on Population and Individual Bioequivalence Approaches

♦ Incorporates 1992 Guidance

Statistical Procedures for Bioequivalence Studies Using Standard Two-Treatment Crossover Design

- **♦** Focuses on statistical methods
- ♦ "When to use" in the general BA/BE guidance

GUIDANCE OUTLINE

- ♦ Statistical Model
- ♦ Bioequivalence Criteria
- Study Design
- Statistical Analysis
- ♦ Miscellaneous Issues

BIOEQUIVALENCE CRITERIA

- Average BE
 - Population means (μ_T, μ_R)
- Population BE
 - Population means
 - Total variances $(\sigma_{TT}^2, \sigma_{TR}^2)$
- Individual BE
 - Population means
 - Within-subject variances $(\sigma_{WT}^2, \sigma_{WR}^2)$
 - Subject-by-formulation interaction (σ_D^2)

BIOEQUIVALENCE ASSESSMENT

GENERAL PRINCIPLE

Difference between T and R

- Administration

Individual BE - T and R to the same individual Population BE - T and R to different individuals

Difference Ratio

Individual Difference Ratio (IDR)
Population Difference Ratio (PDR)

Goal: IDR or PDR not substantially greater than 1.0

BIOEQUIVALENCE CRITERIA

Individual BE	$(\mu_{T} - \mu_{R})^{2} + \sigma_{D}^{2} + (\sigma_{WT}^{2} - \sigma_{WR}^{2})$
	$\sigma_{WR}^{\ \ 2}$
Population BE	$(\mu_{T} - \mu_{R})^{2} + (\sigma_{TT}^{2} - \sigma_{TR}^{2})$ $\leq \theta_{P}$ σ_{TR}^{2}

RATIONALE FOR REFERENCE-SCALING

- ♦ Pioneer/reference product has been demonstrated to be safe and efficacious clinically.
- ♦ The variability of the reference product defines the therapeutic window and thus, should set or otherwise adjust the public standard (e.g., BE limits).
- Away from the "one-size-fits-all" approach
- The goalpost may be widened for highly variable drugs and/or products, and narrowed for NTR drugs/products.

AGGREGATE VS. DISAGGREGATE CRITERIA

♦ Aggregate

The means and variances are considered together in one criterion.

- reward for reduced variability
- tradeoff between means and variances

♦ Disaggregate

The means and variances are considered separately, e.g., one criterion for means, and another criterion for variances.

DISAGGREGATE CRITERIA

- ♦ Reasons for -
 - Preserve the current average BE criterion
 - Avoid mean-variance trade-off
- Reasons against -
 - Multiplicity of tests increase in regulatory burden
 - Ignore the fundamental "switching" concept
 - No reward/encouragement for lower variability
- ♦ The FDA draft guidance recommends the aggregate criterion.

MEAN VS. VARIANCE TRADE-OFF

$$(\mu_{T} - \mu_{R})^{2} + \sigma_{D}^{2} + (\sigma_{WT}^{2} - \sigma_{WR}^{2})$$
 σ_{WR}^{2}

Approaches considered for resolution of concerns -

- Weighting of the appropriate variance terms
 disturbs the IDR concept which underlies the IBE criterion
- Constraint on the allowable mean difference (e.g., ≤ 10 % ~ 20%)

STATISTICAL ISSUES - RESOLUTION

- ♦ Two major improvements in the 1999 Guidance
- **♦** Estimation of Variances
 - Restricted maximum likelihood method (1997)
 - Method of moments (1999)
- **♦** Computation of Confidence Intervals
 - Bootstrap method (1997)
 - Non-bootstrap method (1999)