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A Modified Approach to Sample Selection and Variance Estimation with
Probability Proportional to Size and Fixed Sample Size

Abstract

This method of sample selection is a modification of Tille'’s (1996) method.  This modification
guarantees a nonnegative unbiased sample variance of the Horvitz-Thompson estimator of the
total.  An alternative to the unbiased sample variance is given which greatly reduces the number
of calculations with negligible increase in bias.  The modified method with the alternative
variance estimator could be easily applied to large populations, making PPS fixed sample size
selection more feasible.

Key Words:  Yates-Grundy-Sen sample variance, Joint probability, Inclusion probability,
Rejection probability.

I. Introduction

Probability Proportional to Size (PPS) sampling uses auxiliary information in the sample
selection process so that unbiased simple linear estimators will be more efficient than when
simple random sampling is used.  The biased ratio and regression estimators use this information
in the estimator and not in the sample selection process which is why their estimators are more
complex.  With PPS the probability of selecting a sampling unit is proportional to the auxiliary
variable with the exception of certainty sampling units.  The estimator of the total we will be
referring to is the Horvitz-Thompson estimator

where yi is the variable of interest for the ith sampling unit, Bi is the probability of selecting the ith

sampling unit, and n is the sample size.

PPS sampling has advantages in manufacturing surveys because of the skewness of the
population.  When the population is skewed and the auxiliary variable is moderately to strongly
proportional to the variable of interest, the variance will be smaller for PPS than for simple
random sampling.

Many manufacturing surveys at the Census Bureau currently use Poisson PPS sampling.  Poisson
sampling means that the selection of any one sampling unit is independent of any other sampling
unit.
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The advantages of Poisson PPS sampling are:

1. Smaller variance than simple random sampling for skewed populations
2. Easy selection procedure
3. Easy variance calculation
4. Allows to easily rotate out, in unbiased fashion, selected units

A major disadvantage is variable sample size, a major contributor to the variance.  The Annual
Survey of Manufactures (ASM) incorporates the Horvitz-Thompson estimator into a difference
estimator which reduces the variance due to the variability in sample size while retaining an
unbiased estimator.  But other manufacturing surveys do not use a difference estimator with
Poisson sampling, so variable sample size is still a problem for them.

The unbiased sample variance of the population total with Poisson sampling is:

If sample selection were done in a way that guaranteed fixed sample size as opposed to using
Poisson sampling then the appropriate sample variance would be the one developed by Yates and
Grundy and by Sen (Cochran 1977, pp. 260-261):

where $ij = BiBj / Bij , and Bij is the probability of selecting both the ith and the jth sampling units.

The advantage of this is that if yi is proportional to Bi then the sample variance is zero.  Also,
certainty units and units from different strata will not contribute to the variance because in that
case Bij = BiBj so $ij = 1.  Therefore PPS fixed sample size will be a major improvement over
PPS Poisson sampling.

This approach has several disadvantages:

1. The values of Bij are hard to calculate for many sampling schemes, because the formulas
for Bij may not be in closed form.  These sampling schemes may also involve a large
number of calculations for computing Bij , which could introduce precision errors.

2. To guarantee that the sample variance be nonnegative, the following must hold true:
Bij # BiBj if i … j .
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3. The following should hold true for the sample variance to remain unbiased:  Bij > 0. If
this is not so then the bias will be negative and the variance will be underestimated on the
average.

4. All combinations of Bij from the sample must be stored in a data file and be capable of
being linked to the ith and jth sampling units.  The number of different Bij that must be
stored is n (n!1) / 2.  For example, if the sample size is 5000, then 12,497,500 different
Bij must be stored.

The literature on unequal probability sampling without replacement is quite extensive.  Hanif
and Brewer (1983) reviewed about 50 methods, but none addresses all of the above
disadvantages.  Some of the schemes are only for sample sizes of two, the largest n sampling
units have the same probability, or the sample size is not fixed (so the Yates-Grundy-Sen sample
variance is inappropriate).  Sampford’s (1967) method addresses disadvantages (2) and (3).  But
it samples with replacement and resamples if duplicates are present.  This means that the
expected numbers of samples drawn to obtain a sample that is kept could be quite large and
unacceptable.  Hartley and Rao’s (1962) method addresses all the disadvantages and even has a
variance formula which does not include Bij , but their method is not strictly PPS.  Other well
known references to sampling with unequal probabilities are by Hanurav (1966, 1967), Vijayan
(1968), and Sunter  (1977, 1986).

Till'e (1996) addresses disadvantages (1) and (2).  We extended his work to address
disadvantages (3) and (4).  His approach to (3) is impractical for large population sizes, but our
approach to (3) is easy and practical for large population sizes.  Our modification of Till'e’s
method makes PPS fixed sample size sampling a reality for large population sizes that is very
easy to implement in production.

In Section II we briefly explain Till'e’s sampling procedure.  In Section III we present a
modification which guarantees all Bij > 0 while ensuring Bij # BiBj if i … j .  In Section IV we
exploit many properties of Tille'’s sampling scheme to derive a new variance formula which
eliminates storing n (n ! 1) / 2 unique Bij values.  Section V presents conclusions.

II. Till'e’s sampling procedure

Till'e’s sampling procedure is a sample rejection procedure.  One starts with the entire population
and then rejects sampling units one by one from the sample with each iteration.  At the end of
each iteration the inclusion probabilities, B(i|k), are the probabilities of selecting unit i given that
the sample size equals k.  The B(i|k) are proportional to an auxiliary variable, xi , with the
exception of the inclusion probabilities greater than one.  In that case the inclusion probabilities
equal one.  The rejection probability rki is the probability of rejecting the ith sampling unit when k
sampling units will be left after this current iteration:
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This process continues until k = n.  For his procedure B(i|N) = 1 and B(i|n) = Bi for all i.

Till'e also provides the formula for the probability of selecting together a cluster of m units
i1, ... , im :

III. New method to guarantee Bij > 0

In our modification of Till'e’s method, we begin by drawing a PPS fixed size sample according to
his method, but not using the complementary procedure in section 6 of Till'e’s paper.  The
population size is N, and the sample size is n.  Our modification requires that the sampling units
be sorted in ascending order of their probability of selection, Bi.  Let us now define a variable q
which means that no pairs of the first q sampling units could be selected pairwise with each
other.  There are q (q!1) / 2 unique Bij which equal zero for j < i # q.  When q = 0 then all Bij > 0
and no modification needs to be done.

We will give an example where q = 3, which means that no pairs of the first three sampling units
could be selected together.  The following probabilities from a population of size 8 would yield a
sample size of 4:  .05, .10, .15, .70, .72, .74, .76, .78.  Since we sorted the probabilities of
selection in ascending order, the zero joint probabilities in the joint probability matrix form two
triangles in the upper left hand corner.  We change the values of some Bij , identified in bold
italics, so that no zero joint probability exists.  Then we can come up with a sampling scheme
that will account for these probabilities, and be practical for large populations.  The probability
matrix is:

0.0500    0.0000    0.0000    0.0250    0.0275    0.0300    0.0325    0.0350
0.0000    0.1000    0.0000    0.0500    0.0550    0.0600    0.0650    0.0700
0.0000    0.0000    0.1500    0.0750    0.0825    0.0900    0.0975    0.1050
0.0250    0.0500    0.0750    0.7000    0.4650    0.4800    0.4950    0.5100
0.0275    0.0550    0.0825    0.4650    0.7200    0.4950    0.5100    0.5250
0.0300    0.0600    0.0900    0.4800    0.4950    0.7400    0.5250    0.5400
0.0325    0.0650    0.0975    0.4950    0.5100    0.5250    0.7600    0.5550
0.0350    0.0700    0.1050    0.5100    0.5250    0.5400    0.5550    0.7800
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Let " be the value by which we will increase Bq+1, q+2 .  In this example, " = .009375.  Decrease
each Bij (if q+1 # i # q+2 and j # q) by " / q =.003125. Finally, increase all the zero joint
probabilities by 2" / (q (q!1)) =.003125.  Section III B describes how " can be chosen.  The rest
of the joint probabilities will stay the same.  Because of the symmetry of the matrix, Bij = Bji . 
The final probabilities are:

0.050000   0.003125   0.003125   0.021875   0.024375   0.030000   0.032500   0.035000
0.003125   0.100000   0.003125   0.046875   0.051875   0.060000   0.065000   0.070000
0.003125   0.003125   0.150000   0.071875   0.079375   0.090000   0.097500   0.105000
0.021875   0.046875   0.071875   0.700000   0.474375   0.480000   0.495000   0.510000
0.024375   0.051875   0.079375   0.474375   0.720000   0.495000   0.510000   0.525000
0.030000   0.060000   0.090000   0.480000   0.495000   0.740000   0.525000   0.540000
0.032500   0.065000   0.097500   0.495000   0.510000   0.525000   0.760000   0.555000
0.035000   0.070000   0.105000   0.510000   0.525000   0.540000   0.555000   0.780000

The following conditions hold which guarantee fixed sample size of integer n: 3i Bi = n,
3j Bij = nBi ,  and 3i 3j Bij = n2.  Also, Bij # BiBj and Bij > 0 if i … j, which guarantee nonnegative
unbiased sample variances.  It is easy to show with Tille'’s method that there can be a range of "
which guarantee that these prior conditions hold.

The following summarizes the changes in joint probabilities:

Increase Bij by " if     i = q + 2 and j = q + 1

Increase Bij by 2" / (q (q!1)) if     j < i # q

Decrease Bij by " / q if     q+1 # i # q+2 and j # q

Bij remains the same otherwise

A. Sample modification

In the above example Tille'’s sampling scheme would yield 35 possible outcomes.  We will
increase this by 9 more outcomes to a total of 44 possible outcomes.  This is done systematically
in a way that could easily be applied to large populations.

The first step is to sample according to Till'e’s method.  The sample drawn will be retained
without alteration unless one of the following conditions occurs:

1. Sampling units q + 1, not q + 2, and any of the first q are selected, or
2. Sampling units q + 2, not q + 1, and any of the first q are selected.

If either condition occurs, proceed as follows.
Let a be the index of one of the first q sampling units selected.  Let Ba, q+1, q&+&2& be the probability
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of selecting unit q + 1, not selecting unit q + 2, and selecting unit a.  Then
Ba, q+1, q&+&2&   =   Ba, q+1 ! Ba, q+1, q+2 .  Ba, q+1, q+2  is easy to calculate using Till'e’s method.

If condition 1 occurs then retain the sample with probability 1 ! " / (q Ba, q+1, q&+&2&) .
Replace unit a with unit q + 2 with probability " / (2 q Ba, q+1, q&+&2&) .  Replace unit q + 1 with one
of the remaining first q ! 1 units not selected (from the first q sampling units in the population)
with probability " / (2 q Ba, q+1, q&+&2&) .  The selection of one of the remaining q ! 1 sampling units
is with equal probability.

If condition 2 occurs then retain the sample with probability 1 ! >, where

where m3 through mn are the third through nth sampling units that are selected.  In order to
maintain precision the following method should be used to calculate a portion of the term:

This eliminates having to calculate the probability of selecting a particular sample which could
be extremely small and will inevitably lead to loss of precision.  Replace unit a with unit q + 1
with probability > / 2.  Replace unit q + 2 with one of the remaining first q ! 1 units not selected
(from the first q sampling units in the population) with probability > / 2.  The selection of one of
the remaining q ! 1 sampling units is with equal probability.

Table 1 displays the probability space when this method is used.  The columns labeled S1, S2, S3,
and S4 state what sampling units were selected from the population.  For example, in the first
row S1 = 1, S2 = 4, S3 = 5, and S4 = 6.  This means that the first, fourth, fifth, and sixth sampling
units were selected, expressed as {1,4,5,6}.  BS is the probability of selecting this sample using
Till'e’s method.  The column labeled BS modified is the probability of selecting the sample using
the sampling modification mentioned above.  The column labeled difference is (BS modified) !
BS.

Notice the pattern in the column labeled difference.  This is by design, not by accident, because
the modification exploits another unique property of Till'e’s method,
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Let M be the set of all subsets of {q + 3, ... , N} of cardinality n ! 2.  Let m be a set
{m3, m4, ..., mn} where mi $ q + 3.  When the difference is negative then it may be expressed as
)a, q+1, m = Ba, q+1, m [" / (q Ba, q+1, q&+&2&)] if condition 1 happens, or
)a, q+2, m = Ba, q+2, m [" / (q Ba, q+1, q&+&2&) ] [Ba, q+1, m / Ba, q+2, m] if condition 2 happens.  Then
)a, q+1, m = )a, q+2, m .  It can also be seen from equation (8) that )a, q+1, m = )b, q+1, m when both a and
b are less than or equal to q , because Ba, q+1, m is proportional to Ba.  Another identity with this
method is: 3m , M )a, q+1, m = " / q , because 3m , M Ba, q+1, m = Ba, q+1, q&+&2& .  These identities explain
the changes in the revised joint probability matrix.  Bq+1, q+2 increases by ", Bij increases by
2" / [q (q - 1)] if i and j # q ,  Bij decreases by " / q   if   q + 1 # i # q + 2 and j # q , and all other
probabilities stay the same.  See the Appendix for the proof.

B. Choosing "

This section discusses the acceptable range for ".  Keep in mind we want to guarantee that
Bij # BiBj and Bij > 0 if  i … j.

1. To guarantee new Bq+1, q+2 # Bq+1 Bq+2 then " # Bq+1 Bq+2 ! Bq+1, q+2

2. To guarantee new Bij # BiBj , j < i # q, then " # B1B2 q (q ! 1) / 2

3. To guarantee new Bq+1,1 > 0 then " < q Bq+1, 1

4. To guarantee any new BS $ 0 then " # q B1, q+1, q&+&2&

An acceptable range of " would always be a value greater than zero and a value less than the
minimum value of all the above conditions.  If the minimum value of all the above conditions did
not come from condition 3 then " may be less than or equal to the minimum value.

We discuss below three alternative schemes of choosing " where " is in this acceptable range.  It
is a judgement call by the user for choosing ", but " must be chosen before sample selection, in
the acceptable range.

Scheme 1

Scheme 1 ensures that if Bj < Bi then Bjk # Bik , i … j, i … k, j … k.  This is accomplished by
requiring that in addition to the first four conditions the following must be true as well.

5. " # Bq+1, 1 q (q ! 1) / (q + 1) and

6. " # Bq+1, k ! Bq+1, q+2   where k is the smallest k that meets the criteria k > q+2 and
Bk, q+1 ! Bq+1, q+2 > 0.  If k is not defined under these criteria then we may disregard
condition 6.
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Condition 5 also guarantees condition 3, therefore " is the minimum value of conditions
1, 2, 4, and 5 (and 6 if needed).

Scheme 2

Scheme 2 ensures that $ij $ $i+1, j with the exception of $q+1, q+2 for all values of $ij from a sample. 
This is accomplished by requiring that in addition to conditions 1 and 4 the following must be
true:

5. " # * q (q ! 1) / 2

where

Condition 5 also guarantees conditions 2 and 3.  Therefore " in this case is the minimum value
of conditions 1, 4 and 5.  It was this scheme that was used to determine " in the example.

Scheme 3

To minimize the effects that large values of $ij can have on the sample variance, the minimax
rule may be employed.  This method chooses the " that minimizes the maximum $ij over all "
subject to $ij $ 1 for every i and j.  The " that minimizes the maximum $ij is:

5.

When we include the restriction $ij $ 1 then we must also include conditions 1 and 2 since
condition 5 only guarantees condition 3.  Condition 4 must also be guaranteed regardless of the
restriction $ij $ 1.  Therefore, " in this case is the minimum of conditions 1, 2, 4, and 5.
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C. Variance Considerations

We will now discuss how much the variance changes from modifying the sample procedure. 
The change in variance is F2(Y$ modified) ! F2(Y$ Tille') =

Whether or not the actual variance increases or decreases will depend not only on " but on the
values of yi .  It is the first double sum that increases the variance while the rest of the terms
decrease the variance which means that there is some effect of canceling out.  It should also be
noted that " is very small because of the restrictions on its bounds, therefore any change would
be small relative to the overall variance.

The bias in the sample variance when Tille'’s method contains some Bij = 0 is:

The amount of bias depends on the values of yi .

We will now address how much change there is in the variance of the variance because of the
sample modification.  With Tille'’s method as well as the sample modification, there are at most
3 sampling units that can be selected from the first q+2 sampling units no matter how large q is. 
This is because not all possible samples of size n are possible with this method as with other
methods such as Sampford’s.  With the modification the change in the sample variance will
come from at most 3 terms out of n(n!1)/2 terms.  This should not significantly affect the
variance of the variance when n is large.

The Yates-Grundy-Sen sample variance can be expressed in the following form:

where

u = (i!1) (i!2) / 2   +   j , j < i  and  i $ 2
N#  = N (N!1) / 2
Bu = Bij
tu = 1 if i and j sampling units selected, 0 otherwise
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Therefore the variance of the Yates-Grundy-Sen sample variance is:

Note that:

With the sample modification some Bu will decrease thus decreasing the variance of the variance
while other Bu will increase thus increasing the variance of the variance.  Also some Buv will
increase thus decreasing the variance of the variance while other Buv will decrease thus
increasing the variance of the variance.  Again we are left with a canceling out effect.  Whether
or not the variance of the variance will actually increase or decrease will depend not only on "
but on the values of yi as well.

IV. New Variance formula

It can be proven that when Tille'’s method is used then $ij $ $i (j+1) and $ij $ $(i+1) j given j < i.  We
also discovered when we reviewed Till'e’s method that for many values $ij = $i1 for j < i.  We
were later able to prove why this is the case when the population is large and the Bi are skewed. 
In the Appendix we will show when $ij = $i1 as well as when $ij … $i1 given j < i.   The proof that
$ij $ $i (j+1) and $ij $ $(i+1) j is similar to identifying when $ij = $i1 .

In Table 2 are listed 62 Bi and yi , where n = 20, which were randomly generated with a skewed
distribution.  Table 3 is a frequency table that outputs the number of times there was a unique
value of $ij for a given i.  For example, when i = 62 then $ij = $i1 = 1.0020947368 for all j < i.
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We will use these properties of the $ij along with the following statistical identity in the
derivation of the new variance formula.  See the Appendix for the proof of this identity.

Since most $ij = $i1 and the variability of $ij and is very small for a fixed i and j < i, and since
$ij $ $i (j+1) , if we substitute $i1 for all $ij, the Yates-Grundy-Sen sample variance will be slightly
overestimated.  If we allow the subscript 1 to indicate the lowest index from the sample selected
as opposed to the lowest index of the population then the sample variance may be closer yet to
the Yates-Grundy-Sen sample variance.  With this substitution the Yates-Grundy-Sen variance
formula reduces to:

where (i = 0 if i = 1
= $i1 ! $(i+1) 1 1 < i < n
= $i1 ! 1 i = n

A proof is in the Appendix.

If the sample modification took place then it is possible for some (i to be negative, but the
overall sample variance will be nonnegative because this variance is greater than or equal to the
Yates-Grundy-Sen sample variance which is nonnegative under this sampling scheme.

The variance from the data set in Table 2 is 1,597,337.92.  The bias of (11) is 800.11, .05% of
the variance.

We wrote a computer program that calculates the $ij that are different from $i1 from the sample. 
This can be done without having to calculate all Bij from the sample.  It is important to know that
there are a small number of such cases.  One may get the same result as the Yates-Grundy-Sen
sample variance using the following formula which has fewer calculations than equation (3).
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We believe that for large populations where Bi are skewed the second term is very small and
therefore (12) will be slightly less than (11).

Advantages of (11):

1. The pairing of the joint terms for indexes i and j is eliminated.
2. Calculating all Bij from the sample is eliminated.
3. The number of mathematical computations are greatly reduced.

Disadvantage:

If one is interested in publishing the standard error as opposed to the relative standard
error, RSE,  then this formula could result in a loss of precision.  If RSEs are published as
opposed to the standard errors then this should not be a problem since the Census Bureau
publishes at most one decimal of a percent.  If too much precision is lost in calculating
the variance using (11) then the RSEs calculated from both (3) and (11) would be the
same when rounded to the first decimal of a percent, i.e. 0.0.

V. Conclusions

We believe that when sampling is PPS then this method is beneficial, and we recommend it for
consideration because of the following reasons:

1. Is easy to implement.
2. Makes it easy to calculate the terms Bi1 used in variance estimation with high precision.
3. Has lower variance than Poisson PPS sampling.

The new sample variance formula:

1. Does not require deriving n(n!1)/2 different Bij .
2. Does not require having to pair Bij with the ith and jth sampling units.
3. Has fewer computations than the Yates-Grundy-Sen sample variance with little increase

in bias.
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Table 1 Probability Space for Example on page 5

                                                         Probability of Selecting                        
                         Index of                               Sample
                      sample units                 Tille'             with 
                         selected                procedure    modification       BS modified ! BS

               S1       S2       S3       S4           BS          BS modified              difference

       1    4    5    6   0.00250   0.00250        0.00000
       1    4    5    7   0.00333   0.00333        0.00000
       1    4    5    8   0.00417   0.00417        0.00000
       1    4    6    7   0.00417   0.00330       -0.00087
       1    4    6    8   0.00500   0.00396       -0.00104
       1    4    7    8   0.00583   0.00462       -0.00122
       1    5    6    7   0.00500   0.00413       -0.00087
       1    5    6    8   0.00583   0.00479       -0.00104
       1    5    7    8   0.00667   0.00545       -0.00122
       1    6    7    8   0.00750   0.00750        0.00000
       2    4    5    6   0.00500   0.00500        0.00000
       2    4    5    7   0.00667   0.00667        0.00000
       2    4    5    8   0.00833   0.00833        0.00000
       2    4    6    7   0.00833   0.00747       -0.00087
       2    4    6    8   0.01000   0.00896       -0.00104
       2    4    7    8   0.01167   0.01045       -0.00122
       2    5    6    7   0.01000   0.00913       -0.00087
       2    5    6    8   0.01167   0.01063       -0.00104
       2    5    7    8   0.01333   0.01212       -0.00122
       2    6    7    8   0.01500   0.01500        0.00000
       3    4    5    6   0.00750   0.00750        0.00000
       3    4    5    7   0.01000   0.01000        0.00000
       3    4    5    8   0.01250   0.01250        0.00000
       3    4    6    7   0.01250   0.01163       -0.00087
       3    4    6    8   0.01500   0.01396       -0.00104
       3    4    7    8   0.01750   0.01628       -0.00122
       3    5    6    7   0.01500   0.01413       -0.00087
       3    5    6    8   0.01750   0.01646       -0.00104
       3    5    7    8   0.02000   0.01878       -0.00122
       3    6    7    8   0.02250   0.02250        0.00000
       4    5    6    7   0.13000   0.13260       +0.00260
       4    5    6    8   0.13500   0.13813       +0.00313
       4    5    7    8   0.14000   0.14365       +0.00365
       4    6    7    8   0.14500   0.14500        0.00000
       5    6    7    8   0.15000   0.15000        0.00000
    
       1    2    6    7   0.00000   0.00087       +0.00087
       1    2    6    8   0.00000   0.00104       +0.00104
       1    2    7    8   0.00000   0.00122       +0.00122
       1    3    6    7   0.00000   0.00087       +0.00087
       1    3    6    8   0.00000   0.00104       +0.00104
       1    3    7    8   0.00000   0.00122       +0.00122
       2    3    6    7   0.00000   0.00087       +0.00087
       2    3    6    8   0.00000   0.00104       +0.00104
       2    3    7    8   0.00000   0.00122       +0.00122
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Table 2 Randomly Generated Data Set

     Bi            yi      Bi          yi      Bi          yi

0.0101    7 0.1696  122 0.4409  206
0.0191   12 0.1738  272 0.4442  641
0.0245   36 0.1787  145 0.4547  419
0.0253    8 0.2156  212 0.4547  349
0.0262   33 0.2207  379 0.4859  319
0.0288   46 0.2340  313 0.4966  687
0.0394   11 0.2395  282 0.5060  208
0.0431   36 0.2481  255 0.5381  412
0.0499   31 0.2645   95 0.5436  324
0.0720   61 0.2704  301 0.5446  462
0.0783   65 0.2740  155 0.6102  841
0.0826  121 0.2840  204 0.6377  906
0.0827   90 0.2974  519 0.7191 1112
0.0889  122 0.2995  231 0.7242  383
0.0983   60 0.3030  210 0.7458 1166
0.1090  102 0.3066  424 0.7475  371
0.1190  205 0.3197  165 0.7615  659
0.1230   91 0.3616  141 0.8161  828
0.1232  119 0.4000  534 0.9080 1028
0.1530   85 0.4194  547 0.9602 1587
0.1536  186 0.4303  266
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Table 3 Frequency Count of Unique $ij by i

                                               Frequency
  i          Bi                   $ij            Count

 2    0.0191    4.4754551738      1
 3    0.0245    1.8198425576      1
 3    0.0245    2.0058101943      1
 4    0.0253    1.7745948291      1
 4    0.0253    1.7962045080      1
 4    0.0253    1.8892131989      1
 5    0.0262    1.7697085136      1
 5    0.0262    1.7699378544      1
 5    0.0262    1.7719910584      1
 5    0.0262    1.7803407545      1
 6    0.0288    1.7133755781      5
 7    0.0394    1.5413843457      6
 8    0.0431    1.4974386940      1
 8    0.0431    1.4987854552      6
 9    0.0499    1.4397153396      8
10    0.0720    1.2965254581      9
11    0.0783    1.2587337055      1
11    0.0783    1.2661367368      9
12    0.0826    1.2471920370      1
12    0.0826    1.2479543829      1
12    0.0826    1.2487235589      9
13    0.0827    1.2467289480      1
13    0.0827    1.2470981174      1
13    0.0827    1.2477191152      1
13    0.0827    1.2483455343      9
14    0.0889    1.2322974972     13
15    0.0983    1.2124422016     14
16    0.1090    1.1928582820      1
16    0.1090    1.1931013533     14
17    0.1190    1.1778995311     16
18    0.1230    1.1714591303      1
18    0.1230    1.1725813602     16
19    0.1232    1.1710044845      1
19    0.1232    1.1713728271      1
19    0.1232    1.1723257321     16
20    0.1530    1.1410588275     19
21    0.1536    1.1393759878      1
21    0.1536    1.1405076651     19
22    0.1696    1.1273170058     21
23    0.1738    1.1243445857     22
24    0.1787    1.1204317467      1
24    0.1787    1.1211387443     22
25    0.2156    1.0994125956     24
26    0.2207    1.0951385228      1
26    0.2207    1.0967027780     24
27    0.2340    1.0903049069     26
28    0.2395    1.0867826258      1
28    0.2395    1.0879156211     26
29    0.2481    1.0843286003      1
29    0.2481    1.0843671329      1
29    0.2481    1.0844110173     26
30    0.2645    1.0784369119     29
31    0.2704    1.0765059541     30
32    0.2740    1.0750618382      1
32    0.2740    1.0754147411     30

                                               Frequency

  i          Bi                   $ij            Count
33    0.2840    1.0722173942      1
33    0.2840    1.0724393033      1
33    0.2840    1.0725393814     30
34    0.2974    1.0690619995     33
35    0.2995    1.0676448300      1
35    0.2995    1.0685507964     33
36    0.3030    1.0671214011      1
36    0.3030    1.0672282955      1
36    0.3030    1.0677155911     33
37    0.3066    1.0667709912      1
37    0.3066    1.0667952678      1
37    0.3066    1.0668101085      1
37    0.3066    1.0668777303     33
38    0.3197    1.0641870164     37
39    0.3616    1.0561229523     38
40    0.4000    1.0491893863     39
41    0.4194    1.0459349464     40
42    0.4303    1.0438822071      1
42    0.4303    1.0442098236     40
43    0.4409    1.0426411669     42
44    0.4442    1.0419833750      1
44    0.4442    1.0421974483     42
45    0.4547    1.0405966646      1
45    0.4547    1.0407403463      1
45    0.4547    1.0408308418     42
46    0.4547    1.0401536204      1
46    0.4547    1.0405966646      1
46    0.4547    1.0407403463      1
46    0.4547    1.0408308418     42
47    0.4859    1.0370895202     46
48    0.4966    1.0359031822     47
49    0.5060    1.0346720112      1
49    0.5060    1.0349032986     47
50    0.5381    1.0316537644     49
51    0.5436    1.0310794130      1
51    0.5436    1.0311435406     49
52    0.5446    1.0306375415      1
52    0.5446    1.0309913646      1
52    0.5446    1.0310519333     49
53    0.6102    1.0253104581     52
54    0.6377    1.0230310142     53
55    0.7191    1.0166263162     54
56    0.7242    1.0161136218      1
56    0.7242    1.0162519312     54
57    0.7458    1.0146275206      1
57    0.7458    1.0146943525      1
57    0.7458    1.0147259252     54
58    0.7475    1.0143338956      1
58    0.7475    1.0145366362      1
58    0.7475    1.0145862952      1
58    0.7475    1.0146097545     54
59    0.7615    1.0136936933     58
60    0.8161    1.0103502713     59
61    0.9080    1.0049880169     60
62    0.9602    1.0020947368     61
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Appendix

Proof that:

Bij increases by " if     i = q + 2 and j = q + 1

Bij increases by 2" / (q (q!1)) if     j < i # q

Bij decreases by " / q if     q+1 # i # q+2 and j # q

Bij does not change otherwise

The following identities will be used in the proof:

)a, q+1, m = )a, q+2, m
)a, q+1, m = )b, q+1, m
3m , M )a, q+1, m = " / q

Let Bij be the joint probability using Tille'’s method, and B*
i j be the joint probability after the

sample modification.

B*
i j = Bij ! P{i & j selected and not retained in sample} + P{i & j not selected and in sample}

1) i  > q + 2 and j  > q + 2

B*
i j =  Bij ! 0 + 0  =  Bij

2) i > q + 2 and q + 1 # j # q + 2

B*
i , q+1 =  Bi, q+1 ! ½ 3q

a=1 3i , m , M )a, q+1, m + ½ 3q
a=1 3i , m , M )a, q+2, m

=  Bi, q+1 ! ½ 3q
a=1 3i , m , M )a, q+1, m + ½ 3q

a=1 3i , m , M )a, q+1, m   =   Bi, q+1

Same procedure for Bi, q+2

3) i > q + 2 and j # q

B*
i j =  Bij ! ½ 3q

b
+
=

2
q+1 3i , m , M )j, b, m + ½ [3q

b
+
=

2
q+1 3i , m , M 3q

a…j )a, b, m ] / (q-1)

=  Bij ! ½ 3q
b

+
=

2
q+1 3i , m , M )j, b, m + ½ [3q

b
+
=

2
q+1 3i , m , M 3q

a…j )j, b, m ] / (q-1)  =  Bij
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4) i = q + 2 and j = q + 1

B*
q+2, q+1 =  Bq+2, q+1 ! 0 + ½ 3q

a=1 3m , M 3q
b

+
=

2
q+1 )a, b, m  =  Bq+2, q+1 + ½ 3q

a=1 3m , M 2 )a, q+1, m

=  Bq+2, q+1 + 3q
a=1 3m , M  )a, q+1, m  =  Bq+2, q+1 + 3q

a=1 " / q  =  Bq+2, q+1 + "

5) q + 1 # i # q + 2 and j # q

B*
q+1, j =  Bq+1, j ! 3m , M )j, q+1, m + 0  =  Bq+1, j ! " / q

6) i # q and j # q

B*
i j =  0 ! 0 + ½ 3m , M 3q

b
+
=

2
q+1 ()i, b, m + )j, b, m) / (q ! 1)

=  ½ 3m , M 2 ()i, q+1, m + )j, q+1, m) / (q ! 1)

=  3m , M ()i, q+1, m + )j, q+1, m) / (q ! 1)

=  2 3m , M )i, q+1, m / (q ! 1)

=  2 " / [q (q ! 1)]

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Proof of equation (10)

The summations on the left are for j < i while the summations on the right just add the values of
(yi / Bi ! yj / Bj)2 where j $ i.  Since (yi / Bi ! yj / Bj)2 = (yj / Bj ! yi / Bi)2  and (yi / Bi ! yi / Bi)2 = 0 
the quantity on the right doubles, therefore multiplying by one half brings us back to the original
total on the left.
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+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Derivation of equation (11)

If we substitute $i1 for $ij then we get:

Note the index change on the last term.  This is because when i = n then ($i,1 ! $n,1) = 0.  The
above expression can be rewritten as:



20

Let (1 = 0, and then by equation (10),

****************************************************************

When does $ij = $i1 where j < i ?

By definition:

From Tille'’s paper we have:

rki   = 0         if  i 0 Ak
  = 1 ! B(i|k)         if  i 0 Bk

Where Ak = {i : B(i|k) = 1}
Bk = {i : B(i|k) < 1 and B(i|k+1) = 1}



21

Ck = {i : B(i|k+1) < 1}

When i  0 Ak then

because rki = 0.

When j  0 Ck then

because rkj = rk1 .  Therefore when j < i  and i 0 Bk when j 0 Ck then $ij = $i1 .  Otherwise if i 0 Bk
and j 0 Bk then 

and $ij < $i1 .
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