

Centers for Medical Countermeasures Against Radiation

Paul Okunieff, MD

CMCR Steering Committee Chair

CBARMFI (Rochester) Principal Investigator

CMCR Locations

Columbia • Dana Farber/Harvard • Duke • Medical College of Wisconsin • Pittsburgh • Rochester • Seattle • UCLA

Global Plan

Standard of Care

High throughput screen for exposure *v* worried well

mitigator that produces better than a mere 10% modification Biodosimeter that MEASURES dose and distinguishes neutron dose, lung dose, genotoxicity... Most toxicity in long-term survivors will not be bone marrow and much acute toxicity will not be bone marrow. Current transplant technology poor

Triage

Mitigators

Dosimetry

Mitigation and Rx for heme and non-hematologic

Currently Available Treatments:

Potassium Iodide (KI): Only for Iodine-131, and only if taken before exposure Prussian Blue: Only for Cs-137 or Thallium, and Only if taken at time of ingestion DTPA: Only for Americium, Plutonium, Californium, Curium, and Berkelium ingestion Amifostine: Must be taken before and during exposure. Causes hypotension and neuropathy. Insufficient dose modification.

Cytokines: G-CSF, pegG-CSF, GM-CSF

"No data showing increased survival"; pre-clinical data in radiation models has produced mixed results; limited quantities available

Transfusions and Bone Marrow Transplantation: "The outcomes of patients undergoing BMT after radiation accidents have been very poor"

-Flynn DF, Goans RE. Nuclear Terrorism: Triage and Medical Management of Radiation and Combined-Injury Casualties. Surg Clin N Am 86:601-636 (2006).
-Centers for Disease Control: Radiation Emergencies (http://www.bt.cdc.gov/radiation/) Accessed September 2006.

If the most likely scenarios will yield between 10-1000 casualties (with an estimated 41% receiving >3 Gy), these interventions and their availability are completely insufficient.

State of funded Researchers in USA:

Before 2005

- Number of active R01 grants on <u>normal tissue effects</u> of ionizing radiation funded by NCI was under 3 per year
- A similar number of extramural grants were funded by DOD and NASA
 - RERF (Radiation Effects Research Foundation) closed
 - AFRRI (Armed Forces Radiation Research Institute) at risk
 - Decreased perceived career growth for new scientists

2006

- Double grant numbers DOD, NASA, & NIAID
 - NIAID U19's (\$28M) represent over half of all scientists involved in normal tissue radiation effects research

MAIN POINTS OF CRITICAL NEED

- The volume of science in the field is far too small but rapidly growing (need to keep the momentum in the Strategic Plan)
- Incentives for radiobiological scientists to enter the field are needed

State of CMCR Mission:

MAIN POINT OF STRATEGIC NEED

- 1. There are many very promising translational research projects in development for agents and instruments to deal with radiological events including: (1) Triage, (2) Biodosimetry, (3) mitigation, and (4) treatment.
- 2. There are 8 centers, a few government research groups, and a few independent scientists now funded to develop the critically needed products.
- 3. The Stockpile does not yet have any fully satisfactory agents or instruments for radiological threats.
- 4. The range and number of critical products in development requires <u>Centers</u> with substantial <u>multidisciplinary skills</u> (biology, physics, pharmacology, chemistry, engineering, molecular bio...).