Contaminant Fate and Transport Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Detection, Survival, Transport, and Reduction of Human Pathogens from Animal Manure
Methyl Bromide
Methyl Iodide
Telone (1,3-D)
Choropicrin
Emission Reduction
Film Permeability
Pictures
 

Research Project: Detection, Source Identification, Environmental Transport, Fate, and Treatment of Pathogenic Microorganisms Derived from Animal Wastes

Location: Contaminant Fate and Transport

Title: Modeling the Coupled Effects of Pore Space Geometry and Velocity on Colloid Transport and Retention

Authors
item Bradford, Scott
item Torkzaban, Saeed - UC RIVERSIDE
item Leij, Feike - UC RIVERSIDE
item Simunek, Jiri - UC RIVERSIDE
item Van Genuchten, Martinus

Submitted to: Water Resources Research
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: December 2, 2008
Publication Date: February 12, 2009
Reprint URL: http://www.ars.usda.gov/SP2UserFiles/Place/53102000/pdf_pubs/P2250.pdf
Citation: Bradford, S.A., Torkzaban, S., Leij, F., Simunek, J., Van Genuchten, M.T. 2009. Modeling the Coupled Effects of Pore Space Geometry and Velocity on Colloid Transport and Retention. Water Resources Research. Vol. 45:1-15

Interpretive Summary: Computer models for clay and microorganism (colloid) transport in soil and groundwater environments typically only considers the average water velocity and retention behavior at a particular location. Recent research finding, however, indicates that colloid retention is greatly enhanced in low velocity regions of soils that occur in small pores and near soil grain contact points. A computer model was developed to simulate these observations by dividing the soil into high and low velocity regions and accounting for colloid exchange between these regions. Simulation results indicate that this model provided a good description of a wide variety of experimental observations, and a reasonable approximation of the physics that control colloid transport and retention in many natural environments. This model and information will be of use of scientists, regulators, and consultants who need to quantify the transport fate of pathogens, colloids, and colloid-associated contaminants in subsurface environments.

Technical Abstract: Recent experimental and theoretical work has demonstrated that pore space geometry and hydrodynamics can play an important role in colloid retention under unfavorable attachment conditions. Computer models that only consider the average pore-water velocity and a single attachment rate coefficient are therefore not always adequate to describe colloid retention processes, which frequently produce non-exponential profiles with distance. In this work, we highlight a dual permeability model formulation that can be used to account for enhanced colloid retention in low velocity regions of the pore space. The model accounts for different rates of advective and dispersive transport and first-order colloid retention and release in fast and slow velocity regions of the pore space. The model also includes provisions for the exchange of colloids from fast to slow regions in the aqueous phase and/or on the solid phase due to either rolling or sliding. A sensitivity analysis was performed with the dual permeability model parameters that indicated that low amounts of advective transport to low velocity regions had a pronounced influence on the colloid retention profiles, especially near the inlet. The developed model provided a good description of measured colloid breakthrough curves and retention profiles that were collected for a variety of conditions (colloid and porous media size, water velocity, and solution ionic strength), suggesting that it provided a reasonable approximation of the pore-scale physics controlling colloid retention under unfavorable attachment conditions.

   

 
Project Team
Ibekwe, Abasiofiok - Mark
Bradford, Scott
 
Publications
   Publications
 
Related National Programs
  Manure and Byproduct Utilization (206)
 
Related Projects
   Transport and Fate of Nitrate and Pathogens at Dairy Lagoon Water Application Site
   Transport and Fate of Nitrate and Pathogens at Dairy Lagoon Water Application Site
   A New Paradigm for Pathogen Deposition in Porous Media: the Roles of Pore Structure and Colloid-Colloid Interactions
   Impacts of Irrigation Water Quality Persistence and Transmission of E.COLI O157:h7 from Soil to Plants
   Impacts of Irrigation Water Quality Persistence and Transmission of E.COLI O157:h7 from Soil to Plants
   Impacts of Irrigation Water Quality Persistence and Transmission of E.COLI O157:h7 from Soil to Plants
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House