Jump to main content.


Heating, Ventilation and Air-Conditioning (HVAC) Systems

Indoor Air Quality Design Tools for Schools

The main purposes of a Heating, Ventilation, and Air-Conditioning (HVAC) system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools. The choice and design of the HVAC system can also affect many other high performance goals, including water consumption (water cooled air conditioning equipment) and acoustics (See Acoustics).

The following actions detail how engineers can design a quality system that is cost-competitive with traditional ventilation designs, while successfully providing an appropriate quantity and quality of outdoor air, lower energy costs, and easier maintenance.

Contents

Codes and Standards

The national consensus standard for outside air ventilation is ASHRAE Standard 62.1-200, Ventilation for Acceptable Indoor Air Quality (available online via www.ashrae.org  exiting EPA) and its published Addenda.  This standard is often incorporated into state and local building codes, and specifies the amounts of outside air that must be provided by natural or mechanical ventilation systems to various areas of the school, including classrooms, gymnasiums, kitchens and other special use areas.

Many state codes also specify minimum energy efficiency requirements, ventilation controls, pipe and duct insulation and sealing, and system sizing, among other factors. In addition, some states and localities have established ventilation and/or other indoor air quality related requirements that must also be followed.

Top of page

Potential for Natural Ventilation and Operable Windows

In some parts of the country, where temperature and humidity levels permit, natural ventilation through operable windows can be an effective and energy-efficient way to supplement HVAC systems to provide outside air ventilation, cooling, and thermal comfort when conditions permit (e.g., temperature, humidity, outdoor air pollution levels, precipitation). Windows that open and close can enhance occupants' sense of well-being and feeling of control over their environment. They can also provide supplemental exhaust ventilation during renovation activities that may introduce pollutants into the space.

However, sealed buildings with appropriately designed and operated HVAC systems can often provide better indoor air quality than a building with operable windows. Uncontrolled ventilation with outdoor air can allow outdoor air contaminants to bypass filters, potentially disrupt the balance of the mechanical ventilation equipment, and permit the introduction of excess moisture if access is not controlled.

Strategies using natural ventilation include wind driven cross-ventilation and stack ventilation that employs the difference in air densities to provide air movement across a space. Both types of natural ventilation require careful engineering to ensure convective flows. The proper sizing and placement of openings is critical and the flow of air from entry to exit must not be obstructed (e.g., by closed perimeter rooms).

Top of page

Selection of HVAC Equipment

In most parts of the country, climatic conditions require that outdoor air must be heated and cooled to provide acceptable thermal comfort for building occupants, requiring the addition of HVAC systems. The selection of equipment for heating, cooling and ventilating the school building is a complex design decision that must balance a great many factors, including heating and cooling needs, energy efficiency, humidity control, potential for natural ventilation, adherence to codes and standards, outdoor air quantity and quality, indoor air quality, and cost.

Energy Recovery Ventilation

Consider specifying energy recovery ventilation equipment.

Indoor air can be 2 to 5 times more polluted than outdoor air; therefore, most HVAC system designers understand that increased amounts of outdoor air supply is generally better for IAQ. Yet there are concerns over the implications that this added amount of outdoor air supply has on the first cost and operating cost of the HVAC system, as well as moisture control for the school (too wet or too dry). As a result, school designers often try to reduce the amount of outdoor air equal to – or even below -- 15 cubic feet per minute (cfm) of outside air  per person, the minimum  for school classrooms, as established by the American Society of Heating, Refrigerating and Air -conditioning Engineers (ASHRAE) www.ashrae.org exiting EPA. In many parts of the country these concerns can easily be addressed by application of basic engineering principles and off-the-shelf HVAC equipment.

First cost, energy costs, and moisture control do not have to be at odds with good IAQ. Energy recovery ventilation equipment can make the negative implications of 15 cfm per person of outdoor air behave like 5 cfm, while retaining the IAQ advantage of 15 cfm. This approach has been proven in many schools in various regions east of the Rockies, where advanced HVAC systems cost roughly the same as conventional systems, yet provide significant operating cost savings and IAQ advantages.

EPA has developed the School Advanced Ventilation Engineering Software (SAVES) package as a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems.  See also: 

http://www.macromedia.com/software/flash/about/

Top of page

Location of Outdoor Air Intakes and Exhaust

Sloped Intake Plenum and Accessible Intake Screen

Top of page

Outdoor Air Quantity

Classrooms and other school spaces must be ventilated to remove odors and other pollutants. The national consensus standard for outside air ventilation is ASHRAE Standard 62.1-2001 - available at www.ashrae.org exiting EPA

If outside air is provided through a mechanical system, then at least 15 cubic feet per minute (cfm) of outside air must be provided for each occupant. A typical classroom with 30 people requires a minimum of 15 x 30 or 450 cfm of outside air.

In spaces where the number of occupants is highly variable such as gyms, auditoriums and multipurpose spaces, demand controlled ventilation (DCV) systems can be used to vary the quantity of outside air ventilation in these spaces in response to the number of occupants. One technique for doing this is to install carbon dioxide (CO2) sensors that measure concentrations and vary the volume of outside air accordingly. If an auditorium fills up for school assembly, then CO2 concentrations will increase, a signal will be provided to the HVAC system and outside air volumes will be increased accordingly. When the spaces served by an air handler have highly variable occupancy, this type of control can both save energy and help control moisture (and mold) by reducing the quantity of humid outside air when it is not needed for ventilation. CO2 and other sensors must be periodically calibrated and maintained.

Top of page

Air Filtration

In addition to "atmospheric dust," airborne particulates can include pollen, mold (fungal) spores, animal dander, insect proteins, pesticides, lead, and infectious bacteria and viruses. Designers can integrate features into the ventilation system that will provide benefits for the school occupants as well as the efficiency and longevity of the HVAC system. In addition, these features can reduce the need for expensive cleaning of the duct work and air handling units.

Filter Efficiency

Pressure Drop

Monitoring Pressure

Top of page

Air Cleaning for Gaseous Contaminants

The most effective means of reducing exposure of occupants to gases and VOCs is to manage and control potential pollution sources. Filters are available to remove gases and volatile organic contaminants from ventilation air; however, because of cost and maintenance requirements, these systems are not generally used in normal occupancy buildings or schools. In specially designed HVAC systems, permanganate oxidizers and activated charcoal may be used for gaseous removal filters. Some manufacturers offer "partial bypass" carbon filters and carbon impregnated filters to reduce volatile organics in the ventilation air of office environments. Gaseous filters must be regularly maintained (replaced or regenerated) in order for the system to continue to operate effectively.  See also "Residential Air Cleaning Devices: A Summary of Available Information."

Top of page

Ventilation Controls

Although a typical HVAC system has many controls, the control of outdoor air quantity that enters the building can have a significant impact on IAQ, yet typically is not part of standard practice. Demand controlled ventilation is addressed as a method of humidity control, but is not otherwise discussed here because its primary use is to reduce the supply of outdoor air below the recommended minimum for the purposes of saving energy, not for improving IAQ.

Outdoor Air Volume Monitoring and Control

Supplying acceptable quantities of outdoor air to occupied spaces is a critical component of good indoor air quality. Yet nearly all school ventilation systems cannot indicate whether outdoor air is even being supplied to the school, much less gauge the quantity of that air. Virtually all existing school ventilation systems rely upon a fixed damper to regulate the amount of outdoor air. Yet wind, stack effect, unbalanced supply and return fans, and constantly changing variable air volume (VAV) systems can cause significant under- or over-ventilation, which can affect IAQ and energy costs. Combinations of these effects can even cause the intake system to actually exhaust air.

Top of page

Moisture and Humidity Control

Uncontrolled moisture indoors can cause major damage to the building structure, as well as to furnishings and to finish materials like floors, walls, and ceilings. Uncontrolled moisture can trigger mold growth which not only damages the school facility, but can lead to health and performance problems for students and staff. 

Primary causes of indoor moisture problems in new schools include:

Controlling moisture entry into buildings and preventing condensation are critical in protecting buildings from mold and other moisture-related problems, including damage to building components. 

Follow these links for more moisture information:

Top of page

Air Distribution and Duct Insulation

Dirt and moisture should not be present in duct systems, and must be controlled to prevent mold growth. However, it is not always possible to assure that ducts remain dirt and moisture free. In many existing schools, sheet metal ducts, as well as those constructed of or lined with insulation products, are often contaminated with mold because dirt and moisture found their way into the system.

Duct board and duct liner are widely used in duct systems because of their excellent acoustic, thermal, and condensation control properties.  If the HVAC system is properly designed, fabricated, installed, operated and maintained, these duct systems pose no greater risk of mold growth than duct systems made of sheet metal or any other materials.

However, the very properties that make duct board and duct liner superior insulators (e.g., a fibrous structure with large surface area that creates insulating air pockets), also makes them capable of trapping and retaining moisture if they do get wet (though the fibers themselves do not absorb moisture). 

While there is an ongoing debate about the wisdom of using insulation materials in duct systems that might retain moisture longer, all sides agree that extraordinary attention to preventing moisture contamination of the duct work should be the primary strategy for preventing mold growth.  See ANSI/ASHRAE Addenda 62t and 62w, Addenda to ANSI/ASHRAE Standard 62-2001, Ventilation for Acceptable Indoor Air Quality (available at www.ashrae.org exiting EPA).

As a secondary strategy, designers should consider methods of reducing the potential for future problems to occur due to unforeseen moisture contamination by investigating insulation products now on the market that minimize the potential for moisture to penetrate the insulation material. These include foil vapor retarders, tightly bonded non-woven vapor retarders, butt or shiplap edges, and other techniques that have been developed by insulation manufacturers to address concerns about moisture.
 

Top of page

Types of Air Distribution

Nearly all schools currently use the mixed-airflow method for distribution and dilution of the air within the occupied space. Designers should investigate a method called vertical displacement ventilation or thermal displacement ventilation. This approach successfully uses natural convection forces to reduce fan energy and carefully lift air contaminants up and away from the breathing zone.

http://www.macromedia.com/software/flash/about/

[Click on the image to begin the animation. Cool supply air (blue) slowly flows out of the two heating/cooling registers in the corners of the room, and spreads across the floor. As it is warmed by people (brown columns represent students) and other warmer objects in the room, it rises upward, continuously lifting polluted air up and away from the occupants. It is then collected and exhausted outdoors. This animation requires Windows Media Player or RealPlayer.  Animation used courtesy of Dunham Associates, Minnesota, MN.]

Top of page

Exhaust Air

Quick removal of concentrated air contaminants and building pressurization are two ways that exhaust systems affect IAQ. Special use areas such as science labs, vocational/technical shops, cafeterias, and indoor pools already have well established regulatory codes regarding ventilation with outdoor air and negative pressure requirements with respect to adjacent spaces. Less well recognized areas in schools where special exhaust ventilation is desirable are janitor closets, copy/work rooms and arts/crafts preparation areas where off-gasing from significant quantities of materials or products may occur. These areas should be maintained under negative pressure relative to adjacent spaces.

Top of page

Designing for Efficient Operations and Maintenance

To help ensure that proper operation and maintenance of HVAC system components will be performed, it is critical that the designer makes the components easily accessible. AHUs, controls, and exhaust fans should not require a ladder, the removal of ceiling tiles, or crawling to gain access. Rooftop equipment should be accessible by way of stairs and a full-sized door, not a fixed ladder and a hatch.

Labeling of HVAC components is an inexpensive and effective method for helping facilities personnel properly operate and maintain the HVAC systems. The labels should be easy to read when standing next to the equipment, and durable to match the life of the equipment to which they are attached. At a minimum, the following components should be labeled in each ventilation zone of the school and should correspond with the HVAC diagrams and drawings. "AHU" refers to any air handling unit that is associated with outdoor air supply.

bullet The number or name of the AHU (e.g., AHU ##, or AHU for West Wing)
bullet The outdoor air (OA), supply air (SA), return air (RA), and exhaust or relief air (EA) connections to the AHU, each with arrows noting proper airflow direction
bullet The access door(s) for the air filters and the minimum filter dust-spot (or MERV) efficiency (Air Filters, minimum xx% dust spot efficiency)
bullet The filter pressure gauge and the recommended filter change pressure (Filter Pressure, max 0.x in. w.g.)
bullet The access door(s) for the condensate drain pan (Drain Pan)
bullet Other pertinent access doors such as to energy recovery ventilation wheels or plates (Energy Recovery Ventilation Unit)
bullet The minimum amount of outdoor air for each AHU (### CFM minimum during occupied times)
bullet The outdoor air damper (OA Damper), with special marks noting when the damper is in the fully closed (Closed), fully opened (open), and minimum designed position (Min)
bullet If a motorized relief damper is installed (EA Damper), note the same positions as above.
bullet The access door to any outdoor air controls (OA Control(s)) such as damper position adjustments, outdoor airflow measuring stations, resets, fuses, and switches)
bullet Breakers for exhaust fans (Exhaust Fan ##), AHU, unit ventilators
bullet Access doors for inspection and maintenance of air ducts
bullet Any dampers and controls for air side economizers (as appropriate)
bullet The number or name of all exhaust fans, including the air quantity exhausted (EF##, ###CFM)

Top of page

Commissioning

(see also www.epa.gov/iaq/schooldesign/commissioning.html)

Building commissioning is a quality assurance program that is intended to show that the building is constructed and performs as designed. Click here for more information on commissioning HVAC and other building systems.

Commission key building systems.

Top of page

References and Resources

Top of page

About the Indoor Environments Division | Where You Live | FAQs | Site Index


Local Navigation


Jump to main content.