- 1 useful to us if we are trying to deal with the
- 2 questions. The question you asked is whether there
- 3 is enough data to do clinical research but then you
- 4 are focusing on the efficacy side. We worded our
- 5 question somewhat differently, and for a reason,
- 6 and that has to do with what our regulatory
- 7 authorities are. I would like to have this
- 8 discussion within the context of what our
- 9 regulatory authorities are.
- 10 So, your question bears some significant
- 11 similarity to question number three, which I would
- 12 like to take just a moment to read and explain the
- 13 context of why it is worded that way. Are these
- 14 data, referring to the clinical and preclinical
- 15 data currently availability, sufficient to
- 16 determine that ooplasm transfer does not present an
- 17 unreasonable and significant risk to offspring and
- 18 mother, and to support further clinical
- 19 investigations?
- The determination we need to make
- 21 specifically is whether there is an unreasonable
- 22 and significant risk. That is largely a safety
- 23 determination, but what risks are reasonably and
- 24 what risks are not reasonable is clearly linked to
- 25 the issues of what disease is being treated, what

- 1 the prospective outcome is and how strong is the
- 2 rationale. So, efficacy does figure in but we are
- 3 not going to decide simply that because we don't
- 4 think that this is going to work; you shouldn't
- 5 study it in humans to find that out. So, the
- 6 question is a little more safety oriented in the
- 7 context.
- 8 DR. SALOMON: Right. We don't always
- 9 agree on how I get there but I am trying to get
- 10 there.
- 11 [Laughter]
- 12 If you will indulge me just a little
- 13 longer, not too much longer--
- DR. SIEGEL: Now that I am on record, you
- 15 go where you want to go but I hope we will get to
- 16 where we need to get.
- 17 DR. SALOMON: Fair enough. I don't want
- 18 to delve too deep, I just want to stay on the
- 19 surface here but I still want to just get a sense
- 20 of the committee along the lines of where we are
- 21 starting here. We have been doing a pretty good
- 22 job of that and we have identified this sort of
- 23 knife-edge balance between efficacy and safety and,
- 24 in that case, what Dr. Siegel just said is
- 25 absolutely true because what we are going to do

- 1 then is dive into the safety side. But I would
- 2 just like to hear a few more minutes of the
- 3 gut-level feeling at this point of should this
- 4 discussion go more toward--we need to deal with the
- 5 safety issues and then step in and say, okay, what
- 6 is the good clinical design because we are going to
- 7 go forward with clinical design, or we are going to
- 8 say, no, this committee does not feel that a
- 9 clinical design is appropriate now so we had better
- 10 set a bar in preclinical studies for safety. I am
- 11 trying to decide where we are going to go as a way
- 12 of guiding myself. So, Dr. Murray and then Dr.
- 13 Rao.
- 14 DR. MURRAY: I think I want to ask what
- 15 for me, at least, is a prior question, one that I
- 16 have to get an answer to before I can answer the
- 17 one you gave me. There is an expression in my
- 18 field, bioethics, which is that ethics begin with
- 19 the facts and I don't know all the facts I need to
- 20 know at this point. I have heard a lot of raw
- 21 information. I would really like to hear the
- 22 considered judgments of a number of the scientists
- 23 around here about what we actually know about
- 24 safety and, if not efficacy, about the plausibility
- 25 of the mechanisms by which this intervention is

- 1 presume to have its positive effect.
- 2 I certainly have to defer to Jonathan
- 3 about animal models and what is an adequate animal
- 4 model, but it seems to me we were getting answers
- 5 to some of those questions from animal data. They
- 6 may not be animal models in some very cosmically
- 7 broad sense but I feel a lot better about the risks
- 8 for heteroplasmy now having heard the discussion
- 9 that took place after lunch here. I am much less
- 10 worried about it than I was when I first read the
- 11 papers.
- 12 So, I think there is a lot of wisdom that
- 13 has come in front of us today. It would be nice to
- 14 see that digested, get kind of a best read on it,
- 15 and then I would be ready to talk about the human
- 16 trials.
- DR. SALOMON: My response to you is you
- 18 will be one of our bench marks. I will look to you
- 19 to tell us you have heard enough information. That
- 20 is important. Dr. Rao?
- DR. RAO: As you said, I don't want to
- 22 dive too deep into this but say that even though we
- 23 may not have data for efficacy, maybe we have some
- 24 data from the mouse models for a rationale for why
- one might want to do ooplasm transfer, and maybe

- 1 that may best be addressed by the doctor, I don't
- 2 know which one; someone right at the end, where
- 3 they had the mouse model which showed that if you
- 4 have mitochondrial deficit you actually see
- 5 degeneration which looks similar, and if you
- 6 replace those mitochondria you actually see much
- 7 less degeneration. So, there is a rationale in
- 8 some sense that, yes, if you transfer something
- 9 which is present in the cytoplasm you might see
- 10 some improvement. That certainly doesn't address
- 11 what happens in human but it does give you a
- 12 rationale for why you may want to try and address
- 13 that therapy.
- On the safety side too, I think if one
- 15 defines the problem and says that, well, what you
- 16 are doing is a procedure which is very similar to
- 17 what you are already doing in ICSI where you have a
- 18 lot of expertise, then you have a lot of data,
- 19 clinical data with humans in the appropriate model
- 20 on safety. What you don't have in those models is
- 21 safety in terms of the issues that were raised here
- 22 in terms of heteroplasmy and in terms of what Dr.
- 23 Mulligan raised in the sense of what happens with
- 24 naked DNA transfer or what happens with chromosomal
- 25 damage.

- 1 So, maybe we should compartmentalize it a
- 2 little bit and say that there is a rationale. We
- 3 don't have any data on efficacy maybe, and we have
- 4 some data on safety, except in sort of critical
- 5 issues.
- 6 DR. MULLIGAN: Yes, I think the data issue
- 7 is very key to think about what would you consider
- 8 the definition of data versus a rationale. I think
- 9 that is the mystery we are having here. I think
- 10 there is no data. I think that every scientist has
- 11 to figure out where he wants to set the bar. Even
- 12 if you set the bar really low, there is no data.
- 13 Yet, there is some rationale, and the rationale,
- 14 probably my bright ten-year old could come up with
- 15 listening to me talk about how injecting things
- 16 into cells can change their function. While we
- dance around all the embryo work, and whatever,
- 18 yes, there is a rationale. It is a pretty simple
- 19 rationale that, of course, you can profoundly
- 20 affect the way a cell functions by introducing
- 21 things into it. So, I think there is no data and I
- 22 would like to have some controversy stirred up
- 23 about that.
- 24 From the safety point of view, I think
- 25 this is so clearly a gene transfer issue that the

- 1 safety issues ought to be focused on essentially
- 2 what is an unwanted substance in the product that
- 3 could have a safety effect. I can tell you from a
- 4 background in gene transfer, and I am an expert in
- 5 that little narrow part of things, and you can get
- 6 very, very different efficiencies of gene transfer
- 7 by doing the method in different ways, things that
- 8 are typically efficiencies that are one tenth or
- 9 fifth can be 40 percent if you do it differently.
- 10 So, I see this no different than the whole
- 11 regulatory process with gene therapy vectors where
- 12 having someone say, well, that isn't going to
- 13 happen, or there isn't enough DNA there, or we do
- 14 this all the time is and it just can't happen.
- 15 These guys are laughing. They have heard that
- 16 before.
- 17 So, I would say that my concern, based on
- 18 the whole process in the gene therapy field, is
- 19 that this is an analogous case where setting the
- 20 bar as low as you want for efficacy, there is still
- 21 no data. But maybe there are some things that can
- 22 be done. There is clearly some rationale but it
- 23 ought to be focused on essentially what are you
- 24 essentially doing? What are you injecting? And,
- 25 what toxic substances or things that can cause some

- 1 risk are in it? I would think that trying to
- 2 document what kind of tests, checking for whether
- 3 or not there is chromosomal DNA or naked
- 4 mitochondrial DNA are things that are supportable.
- 5 They are not embryo types of things. And, those
- 6 would be very important, as well as to characterize
- 7 the consistency, as best you can, of what you are
- 8 going to use, like count the mitochondria or
- 9 measure the amount of DNA, just so that in the
- 10 future you may be able to draw some correlations
- 11 between some of the most obvious types of things.
- 12 DR. SALOMON: I think we will continue.
- 13 That is a nice beginning to dive into where I
- 14 promised Jay I would go in a few minutes, the
- 15 safety issues, because I think that takes us there.
- 16 Dr. Shoubridge and then Dr. Casper.
- 17 DR. SHOUBRIDGE: I don't think the problem
- 18 with mitochondrial DNA is a real safety issue here.
- 19 I think the chance of getting naked mitochondrial
- 20 DNA to do anything real bad, or even getting it, is
- 21 zero essentially in this kind of a procedure. When
- 22 you can do subcellular fractionation, and you don't
- 23 get much more severe methods than this, you just
- 24 don't get naked mitochondrial DNA unless you
- 25 isolate DNA. So, certainly the nuclear genomes is

- 1 another issue.
- 2 For me, the safety issue that revolves
- 3 around heteroplasmy--it is almost impossible to get
- 4 that information in humans because if we take our
- 5 mice as an example and look at the tissue that had
- 6 the strongest effect for selecting for one
- 7 genotype, it took basically the mouse's lifetime to
- 8 do that. It is quite a slow process. So, if we
- 9 just extrapolate to the human it could take decades
- 10 to find out whether that is ever going to happen.
- 11 So, I don't think realistically we are ever going
- 12 to have that information to go on.
- But coming back to something, Dr.
- 14 Mulligan, that you said earlier on, to me it is
- 15 crucial to establish, and it would change the whole
- 16 nature of the enterprise whether mitochondria are
- 17 important here at all. There, I think Dr. Casper's
- 18 mouse model, even though it may not be perfect, he
- 19 has injected mitochondria and shown some effects
- 20 there. And, I can think of a list of what I think
- 21 would be pretty decent experiments, some of them
- 22 genetic and some of them not, that would tell you
- 23 whether mitochondria or at least the energy
- 24 metabolism part of mitochondria are at all
- 25 important in this process. If you could come to

- 1 the conclusion that they weren't, then we wouldn't
- 2 even be having a lot of this discussion because the
- 3 heteroplasmy issue would be a non-issue. It would
- 4 be another factor and then maybe we would be
- 5 interested in the biological effects of putting in
- 6 pieces of spindles, or having a centriole, or
- 7 having an RNA population, or something like that.
- 8 So, to me, it would be critically
- 9 important to establish whether or not mitochondria
- 10 are in fact important in human embryos in a
- 11 research situation. I don't know if you would call
- 12 that clinical research because the endpoint here
- 13 wouldn't be pregnancies. You would have to have
- 14 some other endpoint, like morphology objectively
- 15 determined or some biochemical endpoint in an
- 16 embryo. And you would have to use the mouse
- 17 models. As imperfect as they are, it is the best
- we have.
- 19 DR. SALOMON: Dr. Casper and then I will
- 20 take us into dealing with the first question on the
- 21 safety issue.
- DR. CASPER: You asked earlier about gut
- 23 feeling responses also. I can tell you just from
- 24 doing clinical IVF for many years and dealing with
- 25 patients who have repeated fragmented of rested

- 1 embryos, it is my impression that it is not a
- 2 condition that corrects spontaneously. So, I think
- 3 the fact that there have been pregnancies produced
- 4 in that group of patients with this procedure
- 5 suggests to me that there is probably something
- 6 that is working, although we don't have the numbers
- 7 to actually support that.
- 8 So, I think what we have essentially at
- 9 this point is the equivalent of a pilot study that
- 10 demonstrates potential efficacy, and I think it is
- 11 worthwhile to move on to some more significant
- 12 research studies.
- I think the most important thing, however,
- 14 is to find out what it is that actually makes this
- 15 work. I think it is also important to do away with
- 16 ooplasm transfer because, first of all, we don't
- 17 really want to have to subject women to egg
- 18 donation in order to make this work. If we could
- 19 figure out what the actual component is we could
- 20 use that component perhaps without having to get
- 21 donor eggs. Secondly, the cytoplasm injections
- 22 also have that small but inherent risk of
- 23 transferring genomic DNA as well.
- So, I think there probably is some
- 25 efficacy to this procedure. I think it probably

- 1 does warrant going ahead with clinical and animal
- 2 trials, but on a more specific level to try to find
- 3 out what it is that is actually working in the
- 4 transfer.
- DR. SALOMON: That is good. You touched
- 6 on something for me. You know, I have been trying
- 7 to decide for my own self, independent of my job as
- 8 chair, when I say, well, we should do some clinical
- 9 research at the same time we are advancing our
- 10 understanding in the basic models. I am kind of
- 11 leaning in that direction. Then I think of things
- 12 like, well, if you really don't know whether it is
- 13 the mitochondria or some sort of soluble element,
- 14 maybe you ought to know that before you do the
- 15 clinical studies and that has all kinds of safety
- 16 implications, and we will come back to that.
- 17 The other thing is if you don't need to
- 18 use an oocyte donor if you, for example, could do
- 19 it from a human embryonic stem cell, you know, if
- 20 you could do that then wouldn't that be an ethical
- 21 step in the right direction in the sense that now
- 22 you wouldn't be involving the invisible woman? I
- 23 thought that was an interesting visual. Or, you
- 24 could use somatic cells from the mother even.
- 25 So, there are some other questions here

- 1 that could have really profound implications as to
- 2 how the procedure was done without saying that this
- 3 procedure actually would work and, yet, get the
- 4 benefits for the infertile mothers which I think
- 5 was well articulated in the public comment period.
- 6 So, that is a dynamic I guess we will have to deal
- 7 with for the rest of the next hour or so.
- 8 Speaking in terms of risks to the
- 9 offspring then, the FDA proposes four specific
- 10 issues that directly affect risks to the offspring,
- 11 all dancing around the concept of how the procedure
- 12 might damage or alter the oocyte--mechanical
- 13 damage, inadvertent transfer of chromosomes and
- 14 chromosome fragments or cellular constituents,
- 15 enhanced survival of abnormal embryos and risks
- 16 with heteroplasmy. We don't have to do an hour
- 17 discussion of this because we have already touched
- 18 on a lot of aspects of this, but let's deal with
- 19 these four specific issues of safety.
- Number one, mechanical damage to oocyte
- 21 architecture. What do you guys think? Dr. Rao?
- DR. RAO: I just want to reiterate that
- 23 there is a lot of data for ICSI and there is no
- 24 difference in the procedure, except for additional
- volume injections, in terms of mechanical damage.

- 1 So, I would say, from what I have heard, that it
- 2 seems that the amount of mechanical damage should
- 3 be the same and there is data from lots of
- 4 successful births.
- DR. SALOMON: So, is that true? I have no
- 6 clue. I mean, is it true that the amount of
- 7 physical puncturing of the recipient cells is
- 8 identical for ICSI as for that? That is a fair
- 9 point from everything I have heard today. There
- 10 are issues that you are injecting cytoplasm,
- 11 whereas before you were injecting the sperm in some
- 12 sort of natural buffer. Right?
- 13 AUDIENCE PARTICIPANT: [Not at microphone;
- 14 inaudible.]
- DR. SALOMON: So, would you say there is
- 16 an incrementally, albeit incrementally small,
- 17 difference with the ooplasm injection because of
- 18 the volume issue? Fair enough.
- DR. MURRAY: There are people here more
- 20 qualified than I am to recite all the data on
- 21 ICSI's impact on children but, as I recall it,
- 22 there is some increase in various abnormalities
- 23 over the natural background rate, although it is
- 24 not an outrageous increase, and there is I think
- 25 roughly a doubling of low birth rate among the

- 1 children, and low birth weight is a predictor of a
- 2 lot of later problems. But, again, so far at least
- 3 those have been deemed to be acceptable I guess by
- 4 the people who employ them.
- DR. SALOMON: So, the point here now is
- 6 that ICSI is essentially close to, maybe slightly
- 7 incrementally different but I think we can live
- 8 with that incremental difference for safety. Now
- 9 the question is what increase in risk does ICSI
- 10 cause versus age-matched infertile women?
- DR. SABLE: Just to address the ICSI
- 12 questions, once one factors out the couples who
- 13 conceive who would never conceive on their own
- 14 because there is no sperm in the ejaculate, and
- 15 these are couples where the sperm has to be
- 16 literally surgically removed from the testicle,
- once you factor those couples out--and these are
- 18 not people to be doing cytoplasmic transfer--the
- 19 risks drop down to the background risk.
- 20 Regarding the low birth weight, that is a
- 21 study that actually included all IVF patients,
- 22 including the ICSI patients. There did not seem to
- 23 be an incremental increase in risk of low birth
- 24 weight versus the background IVF population, just
- 25 to clarify that.

- 1 DR. SALOMON: So, for question number one
- 2 I assume that there is a fairly high level of
- 3 comfort here, comfort as defined by mechanical
- 4 damage to the oocyte cytoarchitecture induced by
- 5 this procedure is incrementally small over the
- 6 overall risk of these procedures that are already
- 7 ongoing.
- 8 DR. SAUSVILLE: Right, I would say numbers
- 9 one and four under the bullet "risks to offspring"
- 10 are obviously there and are things that are
- 11 reasonably tolerable or at least known, recognizing
- 12 the long-term risks associated with heteroplasmy
- 13 have been extensively discussed that are at one
- 14 level unknowable but that are intrinsic to the
- 15 procedure.
- I guess I am more concerned with numbers
- 17 two and three. As Dr. Mulligan articulated, the
- 18 procedures that are currently in place do seem to
- 19 be somewhat uncontrolled on whether or not matters
- 20 of technique or instrumentation can minimize the
- 21 likelihood of chromosomal fragments being an issue.
- Lastly, we heard the figure cited by Dr.
- 23 Moos about if one just does the crude calculation,
- 24 there is approximately 20-some odd incidence of
- 25 major abnormalities in the series that have been

- 1 reported so far. So, I am a little concerned that
- 2 that is a higher level of abnormality than I at
- 3 least would feel comfortable with.
- 4 MS. KNOWLES: I don't want to get off
- 5 topic if we want to follow this up but since you
- 6 were taking about number one and four, my feeling
- 7 about number four, and this may in fact be just a
- 8 question of my ignorance of the animal models, what
- 9 I have heard is that we have some limited work in
- 10 mice that shows that this is not a problem. Yet, I
- 11 have also heard a discussion that the mouse models
- 12 are, in fact, not something that we can really use
- 13 to translate for other questions to the humans.
- 14 So, I am not a hundred percent convinced that that
- does away with all of the questions about
- 16 heteroplasmy. So, I also wonder if there isn't
- 17 some kind of closer animal model, like a non-human
- 18 primate, that we could do a study in heteroplasmy
- 19 that might be quite useful. Perhaps I just don't
- 20 understand.
- DR. SAUSVILLE: I could respond to that, I
- 22 think we agree that the actual risk or the
- 23 dimensions in which heteroplasmy would enter being
- 24 something that could be considered an adverse event
- 25 are actually unknown. I agree entirely with your

- 1 analysis. I guess to me, from the standpoint of
- 2 writing an informed consent, it becomes at one
- 3 level something that could be state, look, we don't
- 4 know anything about this and I could imagine
- 5 scenarios where, if donors were properly screened
- 6 for the known mitochondrial issues etc., that one
- 7 might reasonably take the risk of tolerating that
- 8 statement, recognizing that it is an unknown.
- 9 My issues with respect to number two, that
- 10 is very much, in my mind, a matter of how the
- 11 technique would actually be practiced on an
- 12 individual sense and, therefore, is a potential
- 13 basis of extraordinary variability.
- 14 With respect to number three, I am
- 15 concerned that the incidence of 20-some odd
- 16 percent recognizing, if that is true and the issue
- 17 of how broad the error bars are, ultimately society
- 18 is going to be asked to, at one level, take care of
- 19 these children in some way or fashion. So, to
- 20 countenance a technique that has that level of
- 21 abnormality generation, if that is truly the
- 22 number, I think is a matter of concern.
- DR. MULLIGAN: On that point, if you drop
- 24 statistics for the efficacy part of things, that is
- 25 a gut feeling that maybe there is something to

- 1 this, not evoking statistics, then we might as well
- 2 not evoke statistics for the potential toxic effect
- 3 too. Since there is not statistically significant
- 4 info, I think it is important to weigh the data
- 5 comparably. That is, on one side it looks like
- 6 there may be difficulty; on the other side there
- 7 may be some efficacy.
- 8 DR. SALOMON: I am happy for this
- 9 discussion. So, we are still focused now maybe
- 10 more on questions two and three, the inadvertent
- 11 transfer of chromosomes or the enhanced survival of
- 12 abnormal embryos, with the emphasis in the last few
- 13 minutes on the abnormal embryos. What is the
- 14 feeling of the panel on that?
- DR. RAO: I would just like to second what
- 16 Dr. Sausville said, that it is really a big issue
- 17 and what Dr. Mulligan said, that in a system where
- 18 you don't know, and where you have a spindle and
- 19 you have DNA, there is a chance of incorporation of
- 20 extra chromosomal into nucleus is much higher. So,
- 21 one cannot extrapolate from low amounts and make
- 22 conclusions, and that we be a really important
- 23 concern. Likewise, I think the issue of enhanced
- 24 survival and the society responsibility are really
- 25 major concerns.

- DR. MULLIGAN: Also, I think there are
- 2 always more or less competent people. You know,
- 3 for this sort of thing I am sure it makes a big
- 4 difference and you are going to have people that
- 5 are going to do this that, I am positive, are going
- 6 to be much less competent than the experts that we
- 7 heard. Therefore, you have to have in place some
- 8 characterization of what damage can occur, what DNA
- 9 you can get and so forth.
- 10 DR. SALOMON: Now speaking for myself, I
- 11 absolutely agree with that. That is why I said
- 12 earlier on that no matter how we end up, the field
- 13 has to accept the mantle toward understanding what
- 14 it is their product is, what they are injecting.
- 15 Even if that is not absolutely settled in the first
- 16 trials, that is fine but that is the direction this
- 17 has to go for all those reasons. It is not just to
- 18 do it in three or four really wonderful
- 19 laboratories, which is where it has been done up to
- 20 now, but it is doing it in 40 or 50.
- DR. CASPER: I think we have to be a bit
- 22 careful because the numbers are so small in terms
- 23 of looking at chromosomal abnormalities, and so on.
- 24 Just as an analogy, there was a paper published
- 25 concerning sex chromosome abnormalities in ICSI

- 1 offspring that showed a 33 percent incidence of sex
- 2 chromosome abnormalities but it was based on 15
- 3 pregnancies, and here we are talking about less
- 4 than 20 pregnancies. Whether that 20 percent
- 5 figure is going to hold up or not, I very much
- 6 doubt it. I think it will be very much lower,
- 7 probably close to baseline if you got to the
- 8 position where you had enough pregnancies to
- 9 actually look at. I understand that we are talking
- 10 about small numbers but that can just magnify a
- 11 problem out of proportion.
- 12 DR. SCHON: Could you elaborate on why you
- 13 believe that is a tenable position?
- DR. CASPER: Only based on the previous
- 15 experience with ICSI which really didn't hold up at
- 16 all. The initial paper that came out, suggesting
- 17 that there was a 33 percent abnormality rate turned
- 18 out not to be correct at all when people started to
- 19 examine hundreds of ICSI pregnancies.
- DR. MURRAY: I am definitely not a
- 21 statistician but this is the classic case of why
- 22 take that point of view. I mean, it could be a
- 23 statistical abnormality in either direction. I
- 24 don't understand why it is that in this particular
- 25 case this will turn out to be in the wrong

- 1 direction. I just don't get the logic behind why
- 2 that would be the case. You are saying that in one
- 3 other case there is a side effect that turned out
- 4 not to prove to be statistically significant. I
- 5 mean, how many hundreds of examples of that sort of
- 6 thing are the case? But there are also cases where
- 7 the data set shows you a certain percentage and
- 8 then the next data set shows twice that percentage.
- 9 I just don't understand it. I don't get it.
- 10 DR. CASPER: It just seems to me that that
- 11 is a very high number. It is out of proportion to
- 12 the sorts of chromosomal abnormalities that we see
- 13 with most assisted reproductive technology type
- 14 procedures. That is all. I am just saying that I
- 15 think we have to be careful in interpreting the
- 16 numbers because the numbers are so small at this
- 17 point.
- DR. SALOMON: Dr. Moos?
- 19 DR. MOOS: It is worth stirring into the
- 20 pot the consideration that we don't know the
- 21 prevalence of chromosomal abnormalities in the
- 22 population of women presenting these procedures.
- 23 It may be significantly higher than in the normal,
- 24 healthy population. So, we don't know the
- 25 denominator. It is, however, impossible to ignore

- 1 this even if, given the sample size, it is a
- 2 statistically improbably event, not likely to be
- 3 repeated. Dr. Mulligan's point that the coin could
- 4 come up heads or tails I think is perfectly well
- 5 taken.
- DR. SAUSVILLE: But to me that is all the
- 7 more cause for some of the product characteristic
- 8 issues that we just talked about previously. After
- 9 some sort of modeling process and after figuring
- 10 out whether mitochondria are necessary, and whether
- 11 it is the RNA that is doing it, we come forward
- 12 with a pristine, let's say, product and there still
- 13 may be evidence of this occurring, then that would
- 14 become a more obvious conclusion. As the issue
- 15 stands now, if this outcome were to occur we would
- 16 not know whether any of those other things, plus
- 17 the intrinsic susceptibility of the recipient egg
- 18 to this sort of thing would be relevant.
- DR. MURRAY: I am more focused on the
- 20 second worry, the worry about chromosomal DNA or
- 21 the cellular fragments, and I cannot disentangle my
- 22 thinking about that from exactly the point Dr.
- 23 Sausville was raising. What is it that is
- 24 operating here? I mean, we are injecting a soup
- or, maybe even better, a stew into the egg and it

- 1 is full of lots of things, and we sort of roughly
- 2 know what is in the stew but we have no idea what
- 3 component or components of the stew are making a
- 4 difference, if they are making a difference,
- 5 including the DNA fragments and the other cellular
- 6 components. Until we have a clear idea, we have a
- 7 plausible notion of a mechanism and some evidence,
- 8 $\,$ and I think it would not be impossible to create
- 9 some experiments in both animal cells and human
- 10 embryos that would take us toward answers, it is
- 11 difficult to justify doing a human trial with the
- 12 risk of transfer or chromosomal elements until we
- 13 have a sense of whether they are, in fact, at all
- 14 necessary in that stew.
- DR. SAUSVILLE: To be clear, the issue is
- 16 not only the transfer of chromosomal elements, but
- 17 multiple experiments, extending back to some of the
- 18 classical experiments in bacterial genetics, is
- 19 that DNA is mutagenic. So, it is not only a
- 20 question of passively adding something, it is
- 21 something actively altering something.
- DR. SALOMON: I think the other thing that
- 23 just came out in last weeks is studies on the
- 24 nature of the algorithms used to call the number of
- 25 genes in the human genome. Just to explain that

- 1 for those of you who didn't catch the last issue of
- 2 Nature Biotechnology, the call was that there were
- 3 30,000 to 40,000 human genes, which upset a lot of
- 4 humans--
- 5 [LAUGHTER]
- 6 --because there didn't seem to be enough
- 7 genes to make us different than mice and everybody
- 8 was uncomfortable with that concept. It comes down
- 9 to the fact that when they really began looking at
- 10 different ways of calling genes that there may be a
- 11 lot of RNA transcripts in cytoplasm that encode
- 12 for--
- [Laughter]
- 14 --see, I told you you would like this
- 15 stuff! There would be a lot of RNA transcripts
- 16 that are clearly not called formal genes in the
- 17 original genome project algorithm. What that also
- 18 raised was the possibility that a lot of these RNAs
- 19 wouldn't necessarily have to encode proteins but
- 20 would encode RNA molecules, like ribosomes for
- 21 example, that have enzymatic activities that alter
- 22 different cell functionalities. So, I just bring
- 23 up to you that one thing that we haven't talked
- 24 about that is certainly reasonable to put on the
- 25 table here is that another uncertainty in the

- 1 safety issue is RNAs that are not transcriptionally
- 2 active for proteins but, rather, are important
- 3 perhaps in other cellular functions. I mean, maybe
- 4 one of the reasons you are getting these XO
- 5 chromosome abnormalities is some sort of imprinting
- 6 phenomenon. That is just a wild speculation, but I
- 7 think it is more than just mitochondrial DNA that
- 8 is getting transferred that has a genetic lineage.
- 9 That is just to make it a little more complicated.
- I am told the other mike is now fixed.
- 11 You will be the experiment on this.
- DR. SABLE: I am David Sable, medical
- 13 director for the Institute for Reproductive
- 14 Medicine at St. Barnabas. I really want to clarify
- 15 the very excellent point Dr. Moos made regarding
- 16 the baseline chromosomal abnormality issue, and I
- 17 really want to make sure that are assumptions for a
- 18 control group are appropriate. The pregnancy loss
- 19 rate in an IVF population at our center, and that
- 20 is what we are comparing this particular subset to,
- 21 with a mean age of 37 is 22 percent, and the
- 22 overwhelming majority of these are chromosomally
- 23 abnormal, and the single most common chromosomal
- 24 abnormality in a pregnancy loss is 45 XO. So,
- 25 these numbers together suggest that we are actually

- 1 very close to the middle of the bell curve. The
- 2 direction of the conversation seems to keep veering
- 3 to where we have this assumption that there is this
- 4 huge discrepancy behind the background population
- 5 and I don't believe the data supports that.
- 6 DR. SALOMON: That is an excellent point.
- 7 Before you sit down, the question then would be if
- 8 we have a population of infertile women, many of
- 9 whom are older but not all of whom are older, and
- 10 we now are capable, with this technique or a
- 11 technique that we are discussing a few months from
- 12 now, of rescuing a higher percentage of those
- 13 oocytes, is it not reasonable then to be concerned
- 14 about all the implications of rescuing embryos with
- 15 potential genetic abnormalities?
- DR. SABLE: That is an excellent point,
- 17 however, let's make sure we are not reading too
- 18 much into a single case. One of the XOs aborted
- 19 spontaneously.
- DR. SALOMON: We will stipulate that your
- 21 point on the XOs was well taken--
- DR. SABLE: No, theoretically I agree
- 23 completely. I just don't want to imply or allow us
- 24 to infer that the data supports that that is
- 25 actually happening. I think in theory, yes, it is

- 1 the same point that we would be concerned about
- 2 ourselves, however, I don't want to take that
- 3 additional step and say that the data so far,
- 4 including the losses we have had, really deviates
- 5 significantly from what the background control
- 6 should be.
- 7 DR. SIEGEL: In that same population
- 8 though, what is the proportion of 45 XO in the
- 9 successful live birth pregnancies?
- DR. SABLE: I am sorry, repeat the
- 11 question.
- 12 DR. SIEGEL: You said that 27 percent--I
- don't want to re-quote your numbers but that 45 XO
- 14 was a common cause in spontaneously aborted
- 15 pregnancies, many of which were chromosomal
- 16 abnormalities. What about in successful
- 17 pregnancies, what has been your incidence of 45 XO?
- DR. SABLE: I don't think we have had a
- 19 report of 45 XO, but we have had pregnancies
- 20 terminated after second trimester genetic testing.
- 21 Thank you.
- DR. SALOMON: I think that in general here
- 23 there is consensus on the part of the committee
- 24 that there are real safety issues potentially that
- 25 play in this field, and that the amount of data

- 1 that we have right now in animal models, which we
- 2 will talk about a little more a little later but
- 3 for right now the amount of data in the animal
- 4 models doesn't really settle the issue adequately,
- 5 albeit they contribute in some ways positively, and
- 6 the data in the human system is just really not
- 7 adequate to make any statements at all about,
- 8 neither safety or efficacy. That is my attempt to
- 9 summarize this first part of the discussion. Does
- 10 anyone disagree? I told you from the beginning you
- 11 are welcome to disagree. I am just trying to make
- 12 sure I am giving you a good summary.
- 5:30 DR. NOGUCHI: Dan, is it true that there
- 14 are a few safety issues that seem to have been at
- 15 least allayed to a certain extent? When you are
- 16 speaking of the human experience I think it is with
- 17 that caveat that in terms of some of the mechanical
- 18 parts of ICSI that may be helpful. But you are
- 19 talking about two and three specifically.
- DR. SALOMON: I think two, three and four.
- 21 I think number one, I think everybody kind of
- 22 agreed, you are right and thanks for pointing that
- 23 out, we sort of agreed that that didn't seem to be
- 24 a big deal in that they have a lot of experience
- 25 doing ICSI and this is an incrementally small

- 1 increase. I think we said that, if everybody
- 2 agrees with that.
- 3 But for two and three there is clearly
- 4 some real risk there and the clinical data doesn't
- 5 address it. For four, I don't think we really
- 6 know. I think it is correct to point out that at
- 7 least the animals are reproductively active and are
- 8 overtly healthy, but we are not very good mouse
- 9 veterinarians when it comes to really know what
- 10 their kidney, heart, liver and other functions are,
- 11 and living in little sterilized boxes, being
- 12 perfect food is not really a measure of health
- 13 either as judged by SKID animals, fine, but look at
- 14 SKID children. So, the heteroplasmy thing I think
- 15 still remains an unclear issue.
- DR. MURRAY: Just to follow-up on that
- 17 point, Lori Knowles observed, and I believe this is
- 18 correct, that many of the human manifestations of
- 19 mitochondrial disease are late onset. So, we would
- 20 have an issue of would we have an ability to
- 21 follow-up with such children to see if there are
- 22 early signs of these later onset diseases. That is
- 23 not, to me, an absolute barrier to doing it; it is
- 24 a challenge for us.
- DR. SALOMON: I think it is an interesting

- 1 similarity to all these other fields that we have
- 2 dealt with in biology, in gene therapy, cell
- 3 transplantation and stem cells that there is going
- 4 to be this demand or strong pressure for long-term
- 5 follow-up of the recipients.
- 6 DR. SCHON: I am not that worried about
- 7 item four, and on the particular case the worry
- 8 that is being mentioned, let me remind you that
- 9 this invisible woman is of age 25, 30, 35. She
- 10 carries the same genotype presumably as whatever is
- 11 being donated to this child, to this oocyte. The
- woman donating the cytoplasm is apparently normal.
- 13 That is why she is donating it. The presumption is
- 14 that her mitochondria are okay and, therefore, what
- is being transferred presumably is okay unless
- 16 there were some random mutation, and these things
- 17 happen and, in fact, that is what mitochondrial
- 18 diseases are. So, from that score, I am not all
- 19 that worried.
- DR. SIEGEL: Then that is predicated on
- 21 the assumption that the donor women are screened
- 22 for mitochondrial disease.
- DR. SCHON: No, no, the presumption is
- 24 that the donor woman looks normal when she walks
- 25 into the clinic.

- 1 DR. SIEGEL: Is that what you would
- 2 recommend as screening, that she looks normal? Is
- 3 that what you are saying?
- 4 DR. SCHON: I will rephrase it. This is
- 5 serious. Everybody in this room is different.
- 6 Everybody in this room had different mitochondrial
- 7 genotype. We all have a sort of societal consensus
- 8 presumably--physicians will disagree--that we are
- 9 fundamentally normal unless proven otherwise. And,
- 10 for me to, let's say, sequence somebody's genome
- 11 where there are 16,000 factorial possibilities of
- 12 genotype, and for me to then say that this genotype
- 13 is good and this one is not good is just not going
- 14 to happen. You have to have some kind of rule of
- 15 thumb. To me, if the physician says she passes my
- 16 criteria for donation, I have no way of saying at a
- 17 molecular level, except the most rough molecular
- 18 level, that she is not a candidate.
- DR. SALOMON: That is a key point,
- 20 particularly as one of the duties we have to this
- 21 field, to this group of people here is that we
- 22 don't demand unnecessary testing that is not
- 23 efficacious or doesn't answer the issue.
- DR. SCHON: We certainly could test for
- 25 the 150 known mutations. Fine.

- 1 DR. MURRAY: I am wondering if a pedigree
- 2 would be useful for the cytoplasm provider.
- 3 DR. SHOUBRIDGE: If you look at the
- 4 pedigree that I showed in five generations, there
- 5 was one affected individual that happened in the
- 6 fifth generation. But I think the number that
- 7 might be important here is the prevalence of these
- 8 mutations that we know about in the population. No
- 9 epidemiological studies have been done in North
- 10 America, but those that have been done in Europe,
- in Continental Europe and in the United Kingdom,
- 12 suggest that it is about one in 8,000 or so, one in
- 13 8,500. So, the chances of having somebody who
- 14 looks, to use your words, normal walking into the
- 15 clinic as a carrier of one of these is pretty slim,
- 16 and many of these people will manifest some aspect
- 17 of these disorders which a physician could pick up.
- 18 So, you have to balance testing the whole genome
- 19 looking for mutations against the chances that
- 20 somebody will come in off the street who is a
- 21 carrier of a pathogenic mutation.
- DR. SCHON: This returns to the point that
- 23 I tried to make before, that I think heteroplasmy
- 24 is not without risk for the reasons that you cited.
- 25 I see the risk of an active mitochondrial disease

- 1 of being significant is relatively low. What you
- 2 get into is the unknown of having some sort of
- 3 interaction between a paternal genome with some
- 4 maternal mitochondrial genome that would not have
- 5 gone to fruition otherwise now being in an abnormal
- 6 context. Again, that is the sort of thing that, in
- 7 my mind, reflects an unknown procedure and could
- 8 probably put in some way into an informed consent
- 9 that could lay that out, not satisfactorily in an
- 10 absolute sense but in a way that certainly is no
- 11 different than we attempt to address when we bring
- 12 an unknown drug to a population for the first time.
- DR. SHOUBRIDGE: Just to make it clear,
- 14 the paternal genome sees a new mitochondrial DNA
- 15 every generation.
- DR. SCHON: But it is a contextual thing.
- 17 It is mitochondria in the context of a given
- 18 maternal gene.
- DR. MURRAY: I think that your work is so
- 20 interesting and important to hear because it says
- 21 that, depending upon the combination of the two,
- 22 different things can happen. You showed exactly
- 23 that. Right? So, if you put in something and have
- 24 a certain maternal copy, it may well behave
- 25 differently than it had behaved before because

- 1 there is some sort of complicated competition or
- 2 genetic background in the recipient that will maybe
- 3 accept that.
- DR. SCHON: In this case, of course, what
- 5 we are showing is that there is nuclear genetic
- 6 control which could just as easily come from mom or
- 7 dad. You are right. So, I accept the point.
- 8 DR. MURRAY: I would just say that on the
- 9 testing I think you would certainly want to test
- 10 for whatever it is, the 150 known things even
- 11 though they are infrequent. That is the least you
- 12 could do.
- DR. SCHON: It is easy to do.
- DR. SALOMON: It is easy to do?
- DR. SCHON: Yes. You would take a sample
- 16 from the mother and just sequence her genome.
- 17 DR. SALOMON: Sequence her mitochondrial
- 18 genome which is, what? 7,000 to 8,000 kb?
- DR. SCHON: Yes, not kb, 16 kb.
- DR. SALOMON: Whatever, right. I don't
- 21 know how easy that is.
- DR. SHOUBRIDGE: No, because you are
- 23 looking for heteroplasmy and sequencing is the
- 24 absolute worst way to look for heteroplasmy so it
- 25 is not a trivial matter.

- 1 DR. SALOMON: This is probably a little
- 2 too technical. This is something the FDA is going
- 3 to have to deal with but, again, I feel that one of
- 4 the things you should hear from us is that I don't
- 5 believe anyone wants to put an unreasonable demand
- 6 on these people. If it is easy to sequence and
- 7 find these, then it is easy. Those are the things
- 8 I hope you will do internally and be fair about it.
- 9 DR. HURSH: I just want to get out the
- 10 point that egg donors in the United States are not
- 11 tested for mitochondrial disease. There is a lot
- 12 of egg donation going on. If this was a serious
- 13 problem I think we would have seen it by now.
- 14 DR. SALOMON: That is another good point.
- 15 I would like to keep going here because time is
- 16 getting short.
- 17 DR. VAN BLERKOM: Just one point, I guess
- 18 I am not concerned so much about heteroplasmy per
- 19 se, but I think maybe one issue that needs to be
- 20 addressed is the extent of heteroplasmy. Is the
- 21 finding of 50 percent, or 30 percent or 40 percent
- 22 of donated mitochondria an issue to be concerned
- 23 with, number one.
- I guess the other issue, and maybe Dr.
- 25 Cohen can answer is, is whether or not in

- 1 successful cytoplasmic transfers there have been
- 2 cases where there are no detectable donated
- 3 mitochondria, so there is no issue of heteroplasmy
- 4 at all.
- 5 DR. COHEN: I think I said that 10/13
- 6 tested are homoplasmic. So, one could argue that
- 7 the tests are maybe not sensitive enough and that
- 8 it changes over time and next year it is better
- 9 again. The samples are stored and we will check
- 10 them again when the technology becomes available.
- DR. VAN BLERKOM: But using the same
- 12 methodology you were detecting high frequencies, in
- 13 fact there were ten cases where there was no
- 14 heteroplasmy.
- DR. COHEN: That is right.
- DR. SALOMON: The only other issue I would
- 17 add to that is that you are testing peripheral
- 18 blood. One of the problems with peripheral blood
- 19 testing of something as complex as heteroplasmy--
- 20 DR. COHEN: Yes, I would like to biopsy
- 21 all their vital organs twice a year but it is hard.
- DR. SALOMON: I wasn't trying to be
- 23 facetious.
- DR. COHEN: What we try to do is go with
- 25 pediatric care and when they go to the pediatrician

- 1 we come along. That is sort of what we do. I hear
- 2 from bioethicists that we have to follow them for
- 3 life, well, that is a stigma and we have no
- 4 intention at all to do that.
- DR. SALOMON: That is good to know.
- 6 DR. MURRAY: Don't over-interpret what has
- 7 been said here. I think you are taking that way
- 8 too far. What I heard Dr. Salomon saying was
- 9 weighing the pertinence of the data that in
- 10 peripheral blood you are not finding heteroplasmy,
- 11 one must take into account that one could find it
- 12 in other tissues because we know there is
- 13 differential expression, nor were the ethicists
- 14 that you have heard from today saying that these
- 15 children must be hounded for life. That is not the
- 16 point. The point is we have to think about the
- 17 issue of late onset and how we are going to deal
- 18 with it. One way to do it is to say it is just
- 19 impossible; it would be an unreasonable burden.
- 20 Another way is to try to at least persuade the
- 21 parents and eventually they will be young people,
- 22 not children, that it would be very helpful for the
- 23 future of this procedure for them to make
- 24 themselves available voluntarily. There are a lot
- of approaches.

- DR. SALOMON: I would like to go on.
- DR. SHOUBRIDGE: One small point, all the
- 3 data we have on humans, which is very limited, and
- 4 on mice, which is quite a lot, suggests that if you
- 5 sample one fetal tissue you have sampled them all.
- 6 So, if you really wanted to determine whether or
- 7 not a fetus was heteroplasmic you should be able to
- 8 do it from embryocytes and then you would know.
- 9 So, the issue of what to sample after birth to
- 10 determine heteroplasmy is a thorny one and you
- 11 won't solve it. You are not going to biopsy
- 12 perfectly health children; there is no way. But
- 13 you could determine it from either a CVS sample or
- 14 amniocytes.
- DR. SALOMON: The next big section is the
- 16 risks to the mother. Might risks to the mother be
- 17 different from those incurred with established ART
- 18 procedures? For example, the possibility exists
- 19 that the ooplasm might enhance the survival of
- 20 abnormal embryos to incur additional medical risks
- 21 to the mother, for example late term abortion. Any
- 22 comments?
- DR. RAO: I would say we just don't know.
- 24 There is just not enough data; the sample size is
- 25 too small.

- 1 DR. SALOMON: In the clinical experience
- 2 we heard today--I am looking to Dr. Cohen and
- 3 others for confirmation--it seems like there was
- 4 one abortion in the group of three that Dr.
- 5 Lanzendorf presented. Is that correct? There was
- 6 one in three. One was a miscarriage and one
- 7 delivered twins. Is that correct?
- 8 DR. COHEN: There were a total of 15
- 9 pregnancies and two were just confirmation of
- 10 chemical rise in ACG. That was a biochemical
- 11 pregnancy. There was one who miscarried before.
- 12 It was after confirmation of the fetal sac but
- 13 before fetal heart beat.
- DR. SALOMON: That is early, right.
- DR. COHEN: That is early, six weeks, five
- 16 weeks, four weeks. Then there is the one twin that
- 17 was sustained until amnio.
- DR. SALOMON: What I was saying there is
- 19 not an overwhelming amount of evidence yet, albeit
- 20 the experience is extremely small, that there is a
- 21 whole bunch of late abortions due to chromosomal
- 22 abnormalities.
- DR. COHEN: Not yet.
- DR. SALOMON: Are the risks to the
- 25 mother's future fertility or ability to engage in

- 1 subsequent ART procedures? Actually, Dr. Cohen,
- 2 you addressed that specifically, or Dr. Lanzendorf.
- 3 I remember at least one or two mothers who had
- 4 failed this and went on to a second procedure and
- 5 delivered a normal pregnancy, or at least became
- 6 pregnant. I am not certain they said it was a
- 7 normal pregnancy. Is that fair?
- 8 So, I would say here the only way the
- 9 risks to the mother are going to get established
- 10 would be a formal clinical trial. I don't think
- 11 this is an issue that is going to get settled by
- 12 any further discussion here, unless someone
- 13 disagrees.
- I would like to go to question number
- 15 three or four. Three was kind of where I started
- 16 the afternoon. Are these data sufficient to
- 17 determine that ooplasm transfer does not present an
- 18 unreasonable and significant risk to offspring
- 19 and/or mother, and to support further clinical
- 20 investigations?
- 21 We began with our gut-level feelings on
- 22 it, went into the safety as I promised, and we are
- 23 sort of back here again. Is there more discussion
- 24 or do we all feel pretty comfortable with the
- 25 discussion we have already had?

- 1 DR. SIEGEL: Well, there has been
- 2 discussion but of a somewhat different and related
- 3 question. I would like to know the advice of the
- 4 committee on this question. I would on that point
- 5 clarify further that, because I gave a partial
- 6 clarification but I left an important piece out
- 7 when I said that we put trials on clinical hold
- 8 based on unreasonable and significant risks. We
- 9 also put trials on clinical hold based on
- 10 inadequate information to determine whether there
- 11 are unreasonable and significant risks. That is
- 12 what we will do, for example, if we believe that
- 13 there are important or critical preclinical studies
- 14 that could be done that would lead to a better
- 15 assessment of the risks, a better design of the
- 16 trial, a better informed consent, and so forth,
- 17 that need to be done before the trials are done.
- 18 That is sort of where we are going with this
- 19 question in asking are there sufficient data to
- 20 make that determination and, if so, is there a
- 21 determination that there is not unreasonable--
- DR. SALOMON: So, let me make sure that we
- 23 pose this just right because, as I told you at the
- 24 beginning, I think this is a very key issue that
- 25 formed my thinking around the discussion we have

- 1 had. If we determined that there is no
- 2 insufficient data to determine efficacy, regardless
- 3 of the discussion we have already had about the
- 4 amount of data sufficient to establish safety, just
- 5 on the efficacy issue could we advise, or would the
- 6 FDA agree to put a hold on a set of studies on that
- 7 basis?
- 8 DR. SIEGEL: If you were to determine or
- 9 advise that the rationale for any benefit is so
- 10 slim as to not justify the perceived risks, then we
- 11 could do that. So, we do consider risks in the
- 12 context of rationale but we are not, in general,
- 13 terribly aggressive on the rationale piece if the
- 14 hold is based on the risks, and I think where there
- 15 is scientific disagreement or where there is
- 16 scientific consensus, or pretty close to consensus
- 17 or pretty solid evidence that is one thing, but
- 18 where there is disagreement we are, I think
- 19 appropriately, reluctant to assess that our
- 20 assessment of the rationale is better than somebody
- 21 else's who is also appropriately assessing.
- DR. SALOMON: So, we are back to what I
- 23 described earlier as a sort of knife's edge here.
- 24 We have some safety issues. There are some
- 25 efficacy issues, and we need to think again now in

- 1 terms of the discussions we have already had how we
- 2 are going to balance because that is really an
- 3 important circle that we have to complete. So, Dr.
- 4 Murray?
- 5 DR. MURRAY: I may jot be formulating in a
- 6 way that the FDA will find useful but it is the way
- 7 I am formulating it. I think we have had a good
- 8 discussion about a number of risks to the offspring
- 9 and to the woman, to the point where we can say
- 10 that for most of them, and not all of them and that
- 11 is a big "but" there is reasonable either
- 12 combination of evidence or evidence sometimes by
- 13 analogy that they don't seem to be outrageous
- 14 risks.
- The one piece that remains for me of
- 16 significant concern is the possible transfer of
- 17 cellular components, DNA of various forms, etc. I
- 18 would refer to that as a very poorly characterized
- 19 risk. We really don't know what we are getting.
- 20 The problem is the stew problem.
- 21 The way I am formulating it that may not
- 22 be helpful is I feel like we need to know more
- 23 about what the active ingredient or ingredients are
- 24 in this stew because at this point we may be
- 25 exposing offspring to risks that are utterly

- 1 unrelated to the therapeutic component of the
- 2 ooplasm transfer. It is longer than I meant it to
- 3 be.
- 4 DR. SIEGEL: And that is pertinent because
- 5 risks that are unrelated to a therapeutic are
- 6 probably less reasonable from the perspective of
- 7 our regulatory authority than risks that have to be
- 8 accepted in order to have a chance of achieving the
- 9 benefit.
- DR. MURRAY: And we just don't know.
- DR. SIEGEL: No, definitely from
- 12 contaminants of active ingredients in terms of
- 13 whether they need to be removed, and if you don't
- 14 know which is which you are at a disadvantage.
- DR. SCHON: I would like to raise
- 16 something to be sure that we don't lose sight of at
- 17 least one part of this picture. My lab and a lot
- 18 of the labs of my colleagues work on mitochondrial
- 19 diseases because there are women who have children
- 20 who are destined to die, and some of them die very,
- 21 very early, and we work on treatment of various
- 22 kinds. I hope one of these days one of those
- 23 treatments will be debated in front of you guys.
- 24 But until that happens the risk to benefit for
- 25 helping such a woman and using a procedure like OT

- 1 is enormous. In the case of a woman who carries a
- 2 pathogenic mutation we actually know what the
- 3 beneficial principle is. It happens to be good
- 4 mitochondria, which is a slightly different way of
- 5 looking at it but, no matter how the FDA rules or
- 6 whatever you suggest, I would like you to take into
- 7 account the enormous benefit that might accrue to
- 8 those people who really have cytoplasmic transfer,
- 9 if you will, would really help even knowing that
- 10 there are these problems of potential chromosomal
- 11 transfer, and so forth.
- 12 DR. MOOS: You are proposing that perhaps
- 13 pursuing an indication where the rationale is
- 14 sufficiently strong that we are not on the knife's
- 15 edge anymore, but the balance is tipped strongly
- 16 gives us an entree into a human trial that can
- 17 examine in some kind of a safety series these
- 18 questions, and then that can be extended to future
- 19 trials in infertility.
- DR. SCHON: As the other Eric pointed out,
- 21 there are other ways to help these women that do
- 22 not necessarily require OT but I don't want to
- 23 eliminate it as a possibility, and some of these
- 24 other issues might piggyback on that.
- DR. SALOMON: Drs. Rao, Mulligan and then

- 1 Casper.
- DR. RAO: I have one clarification I need
- 3 about the question. When you say to support
- 4 further clinical investigations, this is distinct
- 5 from clinical research. Does clinical
- 6 investigation mean you are thinking about
- 7 pregnancies in follow-up and clinical research
- 8 means you are using human blastocysts and looking
- 9 at those, or is there no distinction?
- 10 DR. SIEGEL: I am not sure we intended a
- 11 specific distinction, but in this question what we
- 12 are asking is are there enough data to do clinical
- 13 research that would involve pregnancies? I am not
- 14 sure we have consistently made a distinction in the
- 15 use of those terms but I will tell you that in the
- 16 context of this, we have IND proposals to do those
- 17 studies but we have said they can only be done
- 18 under IND and we are seeking advice as to whether
- 19 there is more that needs to be done either in terms
- 20 of human egg research that doesn't lead to
- 21 pregnancies or in animal models prior to doing
- 22 that, or whether in fact there are sufficient data
- 23 to make a judgment that those studies with
- 24 pregnancies can proceed.
- DR. SALOMON: Dr. Mulligan and then Dr.

- 1 Casper.
- 2 DR. MULLIGAN: I was just going to propose
- 3 that we will never come to consensus on any animal
- 4 experiment to find the active ingredient because we
- 5 are not even at the point really of finding the
- 6 active ingredient. We are at the point of whether
- 7 or not there is anything to this. I mean, we are
- 8 all talking about finding the thing, and I don't
- 9 think we would ever agree, this group would ever
- 10 agree on anything that would be compelling, that
- 11 would definitively document that it is mitochondria
- 12 that is important or that some other thing is
- 13 important. So, I would opt just to see if we could
- 14 get a consensus that that is not an appropriate
- 15 avenue to pursue--well, it is an appropriate avenue
- 16 to pursue but it is not something that should limit
- 17 this going ahead and, rather, focus on what
- 18 preclinical things do we think really would have to
- 19 be accomplished before we would want to see the
- 20 clinical work go back.
- DR. SALOMON: So, the question, Richard,
- $22\,$ that you are getting is, that I want to get to here
- 23 before it gets too late, is it seems to me, and
- 24 correct me if my thinking is not straight, that
- 25 there is this fork in the road and we are not

- 1 getting past this fork in the road. Depending
- 2 where we go on this fork, it seems to me at least,
- 3 is telling us everything that we have to discuss
- 4 then.
- 5 So, the first fork is there is not
- 6 sufficient data. The trial designs weren't good;
- 7 there weren't enough patients, whatever, in the
- 8 human studies to say anything definitive. I think
- 9 we have all agreed on that.
- Now the question is do we think that we
- 11 should go ahead and do a study in humans, going all
- 12 the way to pregnancy, using this field's sense of
- 13 which are appropriate patients. Or, do we say, no,
- 14 there are too many unknowns. We are not going down
- 15 that fork and then we really have to define the bar
- 16 for preclinical studies. Right? Because they are
- 17 going to want it and they deserve that. We have to
- 18 go down one fork or the other, or we ought to agree
- 19 that we can't agree and we are stuck. That is okay
- 20 too, I guess.
- 21 DR. MULLIGAN: I am saying we could say
- 22 there is a limited number of things that could be
- 23 tested that would impact upon the most easily
- 24 assessable risk.
- DR. SALOMON: So, are you saying that we

- 1 shouldn't do any human clinical trials until we do
- 2 that?
- 3 DR. MULLIGAN: Yes, but what I am saying
- 4 that might be is to have people look at the
- 5 contaminated nuclear DNA content or--
- DR. SALOMON: That is what I am saying, if
- 7 we take that fork, then we can set the bar.
- 8 DR. MULLIGAN: I think that we ought to
- 9 have a consensus on this issue of is there
- 10 sufficient rationale, and I agree that this
- 11 probably meets that criteria, that there is some
- 12 rationale for this and no data.
- DR. SALOMON: That is exactly what I
- 14 trying to get that. Dr. Casper?
- DR. CASPER: I hope I can express this
- 16 properly, but I think one logical thing that
- 17 follows from Dr. Schon's comments that there could
- 18 be a huge upside from treating mitochondrial
- 19 diseases is why not think about mitochondrial
- 20 transfer, not ooplasm transfer but mitochondrial
- 21 transfer? That avoids the nuclear DNA issue and
- 22 you are looking at one specific component. So, if
- 23 it works, that would help you to determine whether
- 24 or not that is the right ingredient. If it doesn't
- 25 work, then you can look at other components of the

- 1 cytoplasm but you still might have some information
- 2 that may help people with mitochondrial problems is
- 3 because what you are really looking for is a good
- 4 source of mitochondria for them.
- DR. SALOMON: I was thinking about that
- 6 but it doesn't really address this fork in the road
- 7 issue, the reason being that a woman with
- 8 mitochondrial disease may be a candidate for
- 9 mitochondrial transfer--these guys could go in that
- 10 direction and maybe they have heard that today and
- 11 will do that. It might actually be a wonderful
- 12 thing to be doing, but it won't address this issue
- 13 because the idea of finding someone with
- 14 mitochondrial disease is also an infertile couple
- 15 that would benefit from this.
- DR. CASPER: I wasn't suggesting that we
- 17 go right to healing mitochondrial disease, I was
- 18 thinking that if you had somebody with fragmented
- 19 embryos and you do mitochondrial transfer, either
- 20 it will work or won't work. If it works, then
- 21 first of all, you have found the active ingredient
- 22 for ooplasm transfer, and also you have the upside
- 23 on mitochondrial disease. If it doesn't work, then
- 24 you have to look in another direction but you may
- 25 still have some information that will help you in

- 1 terms of treating mitochondrial disease.
- 2 DR. SALOMON: I am sorry, I misunderstood
- 3 you. So, your idea is take the fork in the road
- 4 that takes you to doing some limited clinical
- 5 trials now and do it with mitochondria. You went
- 6 another step, and I don't want to go there yet,
- 7 about what the clinical trial design should be.
- B DR. MOOS: With respect to the one issue
- 9 that I think many agree is significant, the DNA
- 10 transfer, mention was made of analyzing the donor
- 11 egg after transfer for cytogenetics and that this
- 12 was very insensitive. Is there any input that we
- 13 can get about how we can satisfy ourselves, because
- 14 Lori Knowles certainly made plain it was important
- 15 that we are not doing that, using animal model to
- 16 validate our assay for appropriate sensitivity.
- 17 You know 10-5 of the human genome is still how many
- 18 base pairs?
- DR. SALOMON: I don't know anymore.
- DR. MURRAY: You could do something like Y
- 21 chromosome, some sort of PCR, to look for whether
- 22 or not any inoculum that you are going to inject
- 23 has Y chromosome positively.
- DR. SALOMON: You could do genotyping on
- 25 the transfer and look for genotypes that would be

- 1 unique to the donor. You could take the ooplasm
- 2 and instead of injecting it in an egg just do
- 3 genotyping on that to see if there is chromosomal
- 4 DNA that was detectable. You would actually do
- 5 then just DNA PCR.
- 6 DR. SHOUBRIDGE: I just want to make a
- 7 couple of comments on what Dr. Casper said. One is
- 8 there is no evidence at all that women who carry
- 9 mitochondrial DNA mutations have a fertility
- 10 problem that is different than in the general
- 11 population.
- 12 DR. SALOMON: That is where I was heading
- 13 before.
- 14 DR. SHOUBRIDGE: Yes. The other thing is
- 15 that I think what you said sort of presupposes that
- 16 there is a magic bullet here, that all women have
- 17 the same problem and that by doing one set of
- 18 experiments you are going to identify it and I
- 19 would be pretty surprised if that were true.
- DR. SALOMON: We have kind of danced up to
- 21 this fork in the road a couple of different times.
- 22 A couple of people have walked down it a little bit
- 23 but it is not like we have rushed down it. Are
- 24 there some comments from the community? Are you
- 25 guys satisfied? You have heard our discussion.

- 1 You have participated.
- 2 DR. WILLADSEN: Well, it is not for us to
- 3 be satisfied or dissatisfied at this point. We are
- 4 happy to be here, I guess. But I should say--
- DR. SALOMON: No, it is for you to be
- 6 satisfied.
- 7 DR. WILLADSEN: No, the committee is doing
- 8 its work. One speaker was saying that this type of
- 9 procedure would not be permitted in Britain, but it
- 10 is actually interesting that in Britain they left
- 11 an opening for oocytoplasm transfer in the
- 12 legislation, I quess on scientific advice. Now, we
- 13 know those people have been wrong before in the
- 14 decisions that the government makes there but,
- 15 nevertheless, they have been thinking about that
- 16 and this particular procedure has been kept open.
- 17 One of the reasons why we have tried to
- 18 minimize the intervention is that obviously at a
- 19 certain point if you transfer too much cytoplasm it
- 20 is no longer a cytoplasm transfer, it becomes a
- 21 nuclear transfer and nuclear transfer, as we know,
- 22 has some big problems that are special to itself.
- 23 Finally, on the technical side, I think
- 24 that the chances of getting little bits of DNA,
- 25 nuclear DNA transfer with this procedure are

- 1 virtually non-existent because the chromosomes are
- 2 aligned in one bundle. You would have to transfer
- 3 a whole chromosome virtually. I think it would be
- 4 impossible to tear off a bit of DNA from a
- 5 chromosome. I am not saying it couldn't happen but
- 6 I don't think that is a major concern.
- 7 Also, what one can do is to check, as we
- 8 have done, that the donor chromosomes are actually
- 9 in the remains of the egg. That is not a
- 10 particularly difficult thing to do. But the
- 11 concern is not nearly as grave as we may have been
- 12 led to believe.
- I should also say that the possibility
- 14 that the mitochondrial DNA that is being
- 15 transferred might somehow interact unfavorably, be
- 16 it ever so rarely, with the nuclear genome, well
- 17 the sperm provides disintegrating mitochondria
- 18 every time you have fertilization in the human.
- 19 Thank you.
- 20 MS. KNOWLES: Can I just clarify the
- 21 situation in the U.K.? I just want to be clear
- 22 that they have left open the possibility for
- 23 mitochondrial disease. The discussion is in the
- 24 context of mitochondrial disease. In addition,
- 25 they are not allowing clinical trials. They are

- 1 quite expressly not allowing clinical trials until
- there is more animal and preclinical work.
- 3 DR. WILLADSEN: I don't disagree about the
- 4 purpose of it, but you have to understand that the
- 5 technique whereby they are going to do it is going
- 6 to have to be this one or not at all.
- 7 DR. SALOMON: Anyone else? Dr. Cohen, at
- 8 this point you have participated in this
- 9 discussion--I don't think Dr. Lanzendorf is
- 10 here--and Dr. Grifo, do you think that you should
- 11 go forward with a limited clinical trial right now?
- 12 DR. COHEN: I think we should consider it.
- 13 We did a pilot experiment that has been a five-year
- 14 long pilot experiment. The clinical demand is
- 15 enormous. There are many patients who have this
- 16 particular profile have become successful. We
- 17 didn't do a randomized study but these patients
- 18 were at the end of their rope and considered egg
- 19 donation or nothing. And, there are other groups
- 20 of patients that are similarly interesting. There
- 21 is, for instance, one group of patients that has
- 22 recurrent implantation failure but has apparently
- 23 normal looking embryos and they still don't become
- 24 pregnant again, again and again. So, this is just
- one small part of the population but the population

- 1 is larger. I think I said in my presentation there
- 2 is a whole slew of techniques that are waiting at
- 3 the sideline that has just studied in animal models
- 4 that has tremendous potential. There are ways of
- 5 doing egg freezing using cytoplasmic transfer. I
- 6 won't go into details. It is not just
- 7 mitochondrial disease treatment that is a
- 8 potential. There are ways of duplicating sperm
- 9 genomes so that you can do a genetic test on one
- 10 duplication and use the other one, once you have
- 11 tested it, for fertilization. All these
- 12 technologies, aneuploidy correction, aneuploidy
- 13 avoidance, all these technologies at this point in
- 14 time involve, in one way or another, some
- 15 cytoplasmic transfer.
- So, this is a very important decision we
- 17 are taking, and the biggest concern we have had,
- 18 and I think you are sharing this, is the safety
- 19 concern. These are the biggest concerns. The
- 20 rationale, you can only find out when you do the
- 21 clinical work, when you do the trials. You can't
- $22\,$ base it on animal models. And, the safety concerns
- 23 have been highlighted appropriately today. I get a
- 24 lot of questions when I give presentations about
- 25 cytoplasm transfer, but the concern of little

- 1 pieces of DNA being slashed off chromosomes that
- 2 are now being transferred is a concern I haven't
- 3 heard about in the six, seven years of my
- 4 presentations. So, I must say I am not well
- 5 prepared. It is an original concern. The concerns
- 6 about the incidence of aneuploidy or the issue of
- 7 heteroplasmy I think were well highlighted today.
- 8 DR. SALOMON: As I said at the beginning
- 9 of the day, our purpose is to make sure that we
- 10 have adequately presented the whole discussion, and
- 11 when we get to the end of today, that is what I
- 12 hope people feel we have done.
- 13 How about a few minutes on what would be
- 14 an appropriate clinical trial? Similarly, what
- 15 would be the key animal experiments to do to bring
- 16 the whole group forward to the point where we would
- 17 all naturally go down the curve in the road that
- 18 says a clinical trial?
- DR. SIEGEL: Before we move on to that,
- 20 and I know we don't want to be here all night but
- 21 given that we are going to have to make some
- 22 difficult decisions, often when there is a
- 23 consensus of the committee you try to sum up. I
- 24 haven't heard you do that on this question.
- 25 Because you started asking the question differently

- 1 from the way it is posed, I am not sure I have an
- 2 appreciation of the consensus. If we move on, I
- 3 assume the best advice is that we are just supposed
- 4 to kind of put it all together, but I wonder if it
- 5 might be helpful--
- 6 DR. SALOMON: Well, I put it one way and
- 7 tried to get at it, and then I put it the other way
- 8 with your help, and I don't know that we got at it.
- 9 DR. SIEGEL: It might be useful to poll
- 10 the committee members as to whether they think
- 11 before doing trials in human during pregnancy there
- 12 is additional animal work to be done. If so, what?
- 13 That is sort of question number four and I think
- 14 Dr. Mulligan pointed out correctly that it is hard
- 15 to ask one question without the other because, in
- 16 fact, if there is no useful animal work, even if
- 17 you would like to have more data from animals if
- 18 there is nothing that is going to be relevant--
- 19 DR. SALOMON: Let me just try to get a
- 20 consensus here, what I have heard from everyone is
- 21 that this is the fork in the road. That probably
- 22 based on everything we have heard, most of us would
- 23 probably be okay with a well-designed, very limited
- 24 clinical trial going forward, but we haven't talked
- 25 enough about what a well-designed clinical trial

- 1 would be. The rest of us would be much happier if
- 2 they would put themselves on hold and do the animal
- 3 work and come back in, you know, six months to a
- 4 year and reassure us on some of what we have
- 5 articulated as safety issues. But I think we can
- 6 certainly poll the committee on that, but that is
- 7 my thinking. Let's go around. Dr. Casper?
- 8 MS. CASPER: I am not sure I am ready to
- 9 decide yet. I think it would be nice to do some
- 10 animal work. I am just not sure there is an
- 11 appropriate model available.
- 12 MS. KNOWLES: I think you probably know
- 13 what I am going to say. I think we should be doing
- 14 some animal work and some human embryo work before
- 15 a clinical trial.
- DR. NAVIAUX: From what we have heard,
- 17 there doesn't seem to be a defect in an animal
- 18 model to try to correct so we would never be able
- 19 to get an inactive principle in animal studies,
- 20 which is justification for well-designed basic work
- 21 in human studies.
- DR. SHOUBRIDGE: I think we should be
- 23 doing all of the above because I don't think there
- 24 is a right or wrong answer here. As Dr. Mulligan
- 25 said, no one will agree on an animal model. We

- 1 don't know what the principles are, and the only
- 2 way to move a little inch forward is to do some
- 3 limited, really good trial in humans I think.
- DR. VAN BLERKOM: I would agree also with
- 5 that. I think the trial should be designed to
- 6 address the fundamental issue of what defect is
- 7 being addressed. So, if you are transferring this
- 8 stew or soup, the point is what are you really
- 9 addressing? What is the defect? I think if you
- 10 couple the cytoplasmic transfer with the notion of
- 11 trying to identify defects, whether it is
- 12 mitochondrial fragmentation of whatever, I mean, I
- 13 think that is what is important and I think you
- 14 could design it in that way so you can get a handle
- on the problem, if there is one. It is a unique
- 16 situation because you are not quite sure what is
- 17 wrong and you are not quite sure if you are fixing
- 18 it.
- 19 DR. MURRAY: I am actually very close to
- 20 Jonathan Van Blerkom on this. We have questions
- 21 five and six, what defects are being addressed, and
- 22 I agree, we don't know. And number six, do
- 23 existing clinical data from humans support a
- 24 rationale? The as is no. So, I would be unwilling
- 25 to favor any trial in humans that did not have as a

- 1 main focus to identify what it is that is actually
- 2 being addressed by this therapy. In fact, I am in
- 3 no position to challenge the basic scientists here
- 4 but it seems to me one could do useful studies,
- 5 both in animals and in human embryos. Just trot
- 6 out a few hypotheses, it is the mitochondria. What
- 7 evidence would we have the mitochondria are working
- 8 through the mechanism of increased ATP, or calcium
- 9 ion transport? What sort of surrogate endpoints
- 10 could we study in either humans or animals to see
- 11 if, in fact, what in the cytoplasm transfer had
- 12 these effects? So, I think actually one could have
- 13 a number of hypotheses, generate a number of
- 14 interesting research questions. You know, it
- 15 wouldn't give you the final answer but it would
- 16 indicate whether the mechanisms we postulated are
- 17 plausible or not, and I would like to see that
- 18 happening preferably before we do it in humans, but
- 19 I wouldn't go to the mat and say that we shouldn't
- 20 do a human trial to elaborate those questions.
- DR. RAO: I looked through the risks with
- 22 the procedure that is there and I tried to see if
- 23 there was any real animal model in which one could
- 24 test this, and it is very clear that if you think
- 25 there are going to be late pregnancy problems or

- 1 childhood defects of chromosomal abnormalities,
- 2 there is no real clear-cut animal model which would
- 3 be appropriate. The best animal models are for
- 4 mitochondrial defects. For those, I think it is
- 5 worthwhile doing experiments in animal models.
- 6 But, on the other hand, there seemed to be a
- 7 consensus that while there might be a finite
- 8 unknowable risk in terms of heteroplasmy, it is not
- 9 clear that we should be stopping all experiments
- 10 because of that data.
- 11 So, what one is left with then is to day,
- 12 yes, you have to do this experiment. We need to
- 13 get more information, and that information can only
- 14 come from human testing. So, it seems that the
- 15 choice was between doing human clinical work and
- 16 doing human clinical investigations, and it seems
- 17 that both would be necessary and it is not clear to
- 18 me that one can do them one after the other or
- 19 whether one should do them in parallel.
- DR. MULLIGAN: I think I concur with that
- 21 point of view. I would want to see first just
- 22 better characterization of whatever is being
- 23 injected, not only the DNA thing but just
- 24 characterize the consistency, if possible, of DNA
- 25 content or something like that. Then, I like the

- 1 mouse model. I was intrigued by the mouse model
- 2 and I would encourage people to look at that in
- 3 more detail. You know, with the history of all the
- 4 mouse knockouts, if you look hard enough you may
- 5 well find something. So, that is really worth
- 6 looking at. But I wouldn't say that you need that
- 7 information to go ahead.
- 8 Scientifically, I think if you could get
- 9 the people who are going to do the clinical trial
- 10 to actually perhaps look at--I don't know if this
- 11 is technically possible--ooplasm without
- 12 mitochondria, or highly decreased in it by
- 13 depending on where you poke, or whatever, versus
- 14 things that are high, it seems to me like that
- 15 would be interesting too.
- DR. SALOMON: I try to be practical about
- 17 it. So, I see two sides to this coin. On one
- 18 side, I see some of the most competent clinical
- 19 investigators out there. This is a field that has
- 20 moved forward through doing this kind of clinical
- 21 research up until now. In general, I think
- 22 everyone respects the fact that it has been done
- 23 well and done ethically. There really are very few
- 24 smoking guns in this field. So, I think that the
- 25 first part of the coin is that I respect that, and

- 1 that gives me some sense that a clinical trial
- 2 could be done, managed properly under FDA
- 3 guidelines, that would be well designed enough to
- 4 address the questions, and that would be a step in
- 5 the direction of the clinical trial.
- The other part of me sees the other side
- 7 of the coin, and that is the reality that I am
- 8 looking out on a group that are some of the best
- 9 clinical investigators in the country, and the fact
- 10 is that I work in mice and I work in non-human
- 11 primates as well as humans and I think the truth is
- 12 that when I look at my mouse breeders, at a certain
- 13 point they start dropping off and I find that very
- 14 reasonable to document, and I am not at all
- 15 convinced sitting here that you couldn't find
- 16 quickly a mouse model of older, less functioning
- 17 breeder pairs and it wouldn't be that difficult,
- 18 and you would have your mouse model.
- 19 Similarly, I work at UC Davis primate
- 20 center where they have 3000 rhesus and over 1500
- 21 cinos, all of which have got very detailed breeding
- 22 records and, again, I am not certain that you
- 23 couldn't find--I don't think this community is
- 24 really set to look in those directions and that is
- 25 the other side of the coin.

- 1 So with that said, I think that I agree
- 2 with my colleagues. At this point the people in
- 3 this field are willing to do these clinical trials
- 4 and the mothers and fathers that are coming to them
- 5 are clearly willing, under the right umbrella of
- 6 consent and well-done trials, to participate in it.
- 7 So, you know, I think that is an argument for
- 8 taking that path. But I hope I have put it in some
- 9 perspective.
- 10 I certainly think that we have to do
- 11 things to insist that animal model work and safety
- 12 issues--I want to look at messenger RNA transcripts
- 13 too and how this is affecting the RNA
- 14 transcriptosome with the oocyte, and I think it is
- 15 pretty ridiculous how little data there is to
- 16 support any of this and that worries me because it
- 17 is kind of a slippery slope that I go through every
- 18 time, you know, whether it is xenotransplantation
- 19 and, "oh come on, leave us alone; we are just going
- 20 to do a little gene therapy", or "you don't know
- 21 what you are doing; we can just throw some genes
- 22 in." So, I am just saying I think as an overriding
- 23 principle if we are eventually going to go down
- 24 this clinical path, I hope that there is a
- 25 consensus that there is a real underpinning of

- 1 science.
- DR. VAN BLERKOM: Just to make a point, I
- 3 am not aware of mice having menopause or
- 4 perimenppausal conditions.
- 5 DR. SALOMON: In our breeding colony, and
- 6 we now maintain several different strains which we
- 7 have maintained for generations, there is no doubt
- 8 that not only are there better and worse breeding
- 9 pairs and we cull these out because we are always
- 10 selecting for good breeding pairs, but also after
- 11 some certain number of generations the number of
- 12 pups they have per delivery will decrease, and it
- 13 is very easy to document. So, I am just suggesting
- 14 that that might be when you step in and do the
- 15 ooplasm transfer from a young mother.
- MS. WOLFSON: I am not convinced that
- 17 there are animal studies that need to be done
- 18 before we go into human pregnancies. I am not a
- 19 scientist so I can't really go into those, but the
- 20 paucity of that information frightens me when we
- 21 look at such a huge outcome.
- DR. SALOMON: So, clinical studies or
- 23 animal studies?
- MS. WOLFSON: Animal and human embryo if
- 25 possible.

- 1 MS. SERABIAN: I guess one thing I am
- 2 concerned with as a toxicologist is what I call
- 3 worst case scenario. I mean, here we have the best
- 4 of the best basically that are performing these
- 5 studies in humans, and when it gets to expanded
- 6 other sites, again, I am thinking worst case, you
- 7 know, just going a little too far, etc., that is
- 8 the kind of thing we would want to look at in
- 9 animals, assume a worst case scenario maybe not for
- 10 this initial phase that we are talking about but,
- 11 for sure, as it expands.
- 12 DR. SALOMON: At a minimum also, if they
- 13 do a clinical trial that they should do it with
- 14 very specific outcome parameters for the different
- 15 steps, many of which have been discussed.
- MS. SERABIAN: Right. Then, one other
- 17 comment with respect to the animal studies, it
- 18 sounds like there is a wealth of data that has been
- 19 published, maybe a bit of it not published. It
- 20 would be kind of an interesting idea if there are
- 21 certain organizations or groups to somehow put this
- 22 in a document, master files, a certain way to
- 23 submit to FDA that everyone could refer to in terms
- 24 of the animal data.
- DR. MURRAY: There is one more complexity

- 1 that has come up sporadically here but that we need
- 2 to bear in mind is that I realize that, number one,
- 3 this isn't the kind of thing people had in mind
- 4 when they wrote about inheritable genetic
- 5 modifications but this is plausibly, it will be at
- 6 least in some children if they have offspring, if
- 7 they are females if they have offspring, in a
- 8 stochastic fashion some of the transplanted
- 9 mitochondrial DNA does in fact end up in eggs that
- 10 become fertilized and have children later, and I
- 11 don't know what to do with that but I think it
- 12 would be a mistake to simply forget that that is on
- 13 the table.
- 14 DR. SALOMON: Dr. Schon, I realize that
- 15 you were out of the room. What we did was go
- 16 around and just basically gave some final thoughts
- 17 about which fork in the road would you be
- 18 comfortable taking, to clinical trials or no
- 19 clinical trials, animal or go down both in a
- 20 parallel way?
- DR. SCHON: I have to think about this.
- 22 Maybe the one comment I would like to make is that
- 23 it seemed to me that there was--is everybody like
- 24 me? You don't answer the question, you sort of
- 25 make up your own question and answer that one?

- 1 DR. SALOMON: There have been eight
- 2 variations of that so far.
- 3 DR. SCHON: I have detected sort of a
- 4 merging of two issues, which are the safety and the
- 5 efficacy, and I will answer the question. Safety
- 6 means you have a level of performance which suffers
- 7 no diminution when you do something. So you are
- 8 here and you go down. Efficacy is the reverse.
- 9 You are here and you want to go up. One of the
- 10 confusions is that when we discuss the analogy to
- 11 mitochondrial diseases the bar is actually down
- 12 here because kids are in bad shape, the eggs are in
- 13 bad shape genetically; they are actually not in
- 14 such bad shape physiologically. Now, anything you
- 15 do brings you up. So, to answer the question, for
- 16 issues of safety clearly I think animal models are
- 17 the way to go. I mean, the question answers
- 18 itself. For issues of efficacy what I am hearing,
- 19 and I am no expert, is that animal models are not
- 20 the way to go because it is so hard to do. So,
- 21 some kind of clinical trial for efficacy that
- 22 followed a preliminary question on safety--you can
- 23 ask these things about DNA fragments and so forth,
- 24 although you may not be able to answer questions
- 25 about aneuploidy, and maybe they can even go on

- 1 almost in parallel if you did some of the questions
- 2 on human embryos, fertilized human embryos without
- 3 implantation. I don't know of you are allowed to
- 4 do those kinds of things, but if you were, that is
- 5 the way I would do it.
- 6 DR. SALOMON: I think we have certainly
- 7 answered almost all the questions. I think the one
- 8 thing, sitting back here, that we didn't really get
- 9 to--I mean, we have talked about the preclinical
- 10 models. I don't know that there would be a lot
- 11 more. We have discussed the mouse model, talked
- 12 about the non-human primate models. I don't think
- 13 that this community has the tools to go into the
- 14 non-human primate and mouse model, so we would have
- 15 to interest other investigators around to come into
- 16 that area, and that is the kind of thing that could
- 17 be done potentially but those are unknowns.
- 18 The only thing that I think we just may
- 19 have fallen a little short of was exactly what
- 20 would be the clinical trial. That is not a minor
- 21 gap. I am sure I will be reminded of this year and
- 22 years from now about how I failed the FDA on this
- 23 one. But we have talked a lot about the aspects of
- 24 what the clinical trial ought to be. I am going to
- 25 try and get some consensus on that in a minute or

- 1 two. One thing I think we are all convinced of,
- 2 again correct me if I am wrong but I think we are
- 3 all convinced that there is a population of couples
- 4 who are not implanting and are not being able to
- 5 have successful pregnancies. I am not saying that
- 6 we all agree that there is one problem for all
- 7 those women, and there may not be, but there is
- 8 definitely an identifiable population that is the
- 9 target of this.
- 10 I think Dr. Cohen made the very good point
- 11 that there are a number of other variations that
- 12 are behind this that are relevant. So, the
- 13 population is outcome there. I think population
- 14 choice--I think these guys have that pretty well
- 15 nailed down. I don't think they have been picking
- 16 the wrong women to do it in.
- 17 We want to know efficacy. We have talked
- 18 about what the safety issues are. So, whatever
- 19 that clinical trial design is that you do, it has
- 20 to give us safety and it has to give us some
- 21 insight into the nature of the product, what is in
- 22 that ooplasm--DNA fragments, RNA transcripts? How
- 23 many mitochondria are in there? Does mitochondria
- 24 have anything to do with this? What kind of
- 25 measures would give you mitochondrial function? We

- 1 heard ATP and then we heard, come on, there are 50
- 2 other things that mitochondria can do; get a grip.
- 3 We heard about apoptosis testing, all of which is
- 4 commercially available, etc. So, I think that is
- 5 the kind of thing that would come relatively easy
- 6 is you sat down and said what are the aspects of a
- 7 clinical trial.
- 8 Actually, I have just talked myself into
- 9 the fact that we did answer all of the questions
- 10 and I don't want any grief later.
- [Laughter]
- DR. SIEGEL; Well, I could come back years
- 13 later or now, I guess--
- [Laughter]
- I don't want to keep the committee forever
- 16 and, obviously, there are a lot of unanswered
- 17 questions and we are not going to answer all of
- 18 them. One or two that stand out in my mind is that
- 19 we did hear a comment, I think from Dr. Cohen, that
- 20 there is no intent for long-term follow-up of these
- 21 children. I guess it would be useful to know from
- 22 the committee whether they think that is an
- 23 acceptable way to move forward, and if we allow
- 24 trials to be done without long-term follow-up, then
- 25 in the long term we still won't know what the

- 1 long-term effects are.
- 2 DR. SALOMON: We fought and died over this
- 3 one in gene therapy in xenotransplantation so I
- 4 can't believe I am back again discussing this
- 5 problem. Fro Dr. Cohen's sake, xenotransplantation
- 6 now is follow-up forever, and we are really not
- 7 interested in whether the investigators want to do
- 8 that or not. That is what has been said. In gene
- 9 transfer studies it is a movable target depending
- 10 on some of the issues of an integrating vector,
- 11 non-integrating vector etc., but it is as long as
- 12 15 years in some vector classes. But the good news
- 13 is that in these trials, just to give you the
- 14 background here so you guys don't faint, a lot of
- 15 the long-term follow-up came down to sending a
- 16 postcard once a year kind of thing: "are you
- 17 alive?" That sort of thing. So, you guys might
- 18 ask "are you alive? Do you have mitochondrial
- 19 defect."
- DR. SABLE: Just to give an idea how
- 21 seriously we do take it, we had one of our
- 22 investigators in the delivery room, breach
- 23 delivery, and the investigator has gone to the
- 24 pediatrician's appointments. So, we don't mean to
- 25 imply that we are not serious about follow-up, I

- 1 think it is just a matter of degree.
- DR. SALOMON: With that background, I also
- 3 wanted to educate those of you who are not privy to
- 4 these other long discussions at multiple BRMAC
- 5 meetings of long-term follow-up. What do you guys
- 6 think? Again, we can just get some quick opinions.
- 7 Why don't we just go around? Dr. Casper, long-term
- 8 follow-up?
- 9 DR. CASPER: Yes, I think it is
- 10 reasonable.
- 11 MS. KNOWLES: Yes, I think obviously there
- 12 should be a very rich informed consent procedure
- 13 about what long-term follow-up would look like up,
- 14 particularly when we are talking about inheritable
- 15 genetic modifications, how long that might have to
- 16 be.
- DR. NAVIAUX: Yes, I think long-term
- 18 follow-up is going to be required, and there should
- 19 be a default pathway. After doing the routine
- 20 monitoring, if anything abnormal comes out in
- 21 development, if there is abnormal growth of the
- 22 child or abnormal cognitive development, then there
- 23 should be an intensified examination to look for
- 24 why.
- DR. SHOUBRIDGE: I think so too. If you

- 1 could demonstrate that you haven't actually
- 2 transferred DNA, then that would, of course, change
- 3 how long might want to follow-up.
- 4 DR. SALOMON: I just want to add that that
- 5 is one of the concepts that came out very clearly
- 6 in the gene transfer experiments as well.
- 7 DR. SCHON: I don't think I am competent
- 8 to answer the question. It seems to me that
- 9 whoever designs the clinical trial, it is incumbent
- 10 on them to figure out what the nature of the
- 11 follow-up is. I can't do it.
- DR. VAN BLERKOM: It would be nice to have
- 13 long-term trials, but I just would put in a caveat
- 14 that in this field, in IVF in particular,
- 15 compliance is an issue because, believe it or not,
- 16 patients disappear, regardless of what they signed
- 17 in their informed consent, they leave their embryos
- 18 in storage behind. So, it is a complicated issue
- 19 to get the type of follow-up. Yes, you can put it
- 20 there in writing but whether you actually get that
- 21 on the other end is a different story.
- DR. SALOMON: I don't know that this group
- 23 is any less likely or more likely to disappear than
- 24 our gene transfer patients or the patients who
- 25 eventually will be candidates for

- 1 xenotransplantation. But there certainly is, on
- 2 the other hand, a precedent for really
- 3 extraordinarily successful long-term trials and, as
- 4 a principle, it is quite possible to do, and I
- 5 don't think we should approach it by saying, you
- 6 know, all these patients disappear; there is no way
- 7 to do it.
- 8 DR. VAN BLERKOM: It is not what I meant,
- 9 but it may be a different category because it may
- 10 not be perceived on the part of the couples that
- 11 this is a pressing issue.
- 12 DR. SALOMON: They won't be able to put it
- 13 on the income tax return either.
- DR. MURRAY: No, but we can use the
- 15 internet. Years later it is eerily possible to
- 16 find you or anybody else if you know how to look
- 17 and you are determined. So, I would say, yes,
- 18 there should be long-term follow-up. It should not
- 19 be onerous on either the investigators or the
- 20 families, but reasonable thought needs to be given
- 21 to what would be an effective program of long-term
- 22 follow-up and I think that is all one can
- 23 reasonably ask of either party.
- DR. RAO: I can only second that. I just
- 25 wanted to add one more thing. There were some

- 1 issues raised by Dr. Lanzendorf about selection
- 2 criteria and controls, and I think those are going
- 3 to be important issues. Given that we don't think
- 4 there is a great amount of data on actual benefit
- 5 or efficacy, that means you have to select your
- 6 patient criteria for any kind of trial and you have
- 7 to really define it very carefully, along with
- 8 appropriate controls. That is going to be
- 9 something that needs to be factored in.
- DR. MULLIGAN: Yes, and with your point, I
- 11 think the consent form--I don't know if we are
- 12 going to get to that but I think it really ought to
- 13 deal with this issue of the data that does exist.
- 14 I am interested in whether or not patients and
- 15 families would actually find anything interesting
- 16 about the issue that I think you raised about the
- 17 evolutionary uncertainty. I think there ought to
- 18 be something about the evolutionary things that
- 19 could occur.
- DR. SALOMON: I certainly agree with
- 21 long-term follow-up. As I said, I have been chased
- 22 around and around on that already and I just accept
- 23 it as being a part of the responsibility I think we
- 24 have. I don't mean to be facetious about it. I
- 25 think that in the end the arguments for long-term

- 1 follow-up, when done in a way that is not onerous
- 2 on the patients, don't provide stigma, that carry
- 3 then anywhere from school to insurance etc., if it
- 4 is done right I think long-term follow-up is
- 5 important to the community at large for these sort
- 6 of cutting edge gene transfer experiments.
- 7 In terms of a clinical trial, the only
- 8 other thing that I would add to the picture is if
- 9 we go ahead with a clinical trial in this area, I
- 10 really hope that when you say, for example, that
- 11 here is a patient with repeated failures to
- 12 implantation and then we did the oocyte transfer
- 13 and we got such and such a result, that those
- 14 patients are really much better controlled than the
- 15 data we have seen so far. I want to make sure that
- 16 it is all done at your center under optimal
- 17 conditions and then at your center you do it.
- 18 I was also very concerned that 9 of your
- 19 28 patients in your study, Dr. Cohen, were patients
- 20 who supposedly had male infertility problems. I
- 21 wouldn't understand why you were doing oocyte
- 22 transfer. Now, I may have misunderstood that
- 23 slide, but that is an example of something I hope
- 24 you will design out of a clinical trial.
- DR. COHEN: Thank you for mentioning that.

- 1 It is a very good point. This was discovered after
- 2 the fact.
- 3 eggs were treated with ooplasmic donation and the
- 4 remaining eggs from the donor oocytes were injected
- 5 with the husband's sperm. So, it is like a control
- 6 with the purpose of freezing those embryos for
- 7 years clinically later. But what we found is that
- 8 in nine cases the embryos of those controls
- 9 developed as badly as the embryos of the patient,
- 10 and I think that is what I was trying to say. So,
- 11 it is sort of after the fact. Looking at it
- 12 closer, some of these were borderline male factors
- 13 and we could have probably figured it out before
- 14 but that is a very grey area.
- DR. SALOMON: Again, that would be
- 16 something that you presumably could exclude on the
- 17 way to deciding this is a repeat implantation
- 18 failure and won't benefit from ICSI.
- 19 DR. COHEN: Yes, you can do that but then
- 20 you have to do a really big experiment, which is
- 21 get an egg donor and test the sperm, yes.
- MS. WOLFSON: I think there should be
- 23 long-term follow-up in whatever way is possible,
- 24 and insofar as there could, in fact, be a DNA
- 25 transfer that is involved, I think the follow-up

- 1 should go into the second generation.
- 2 DR. SALOMON: Anyone else?
- 3 DR. NOGUCHI: What I do want to say is
- 4 that I think this has been an extraordinarily open
- 5 and frank meeting, and is exactly the kind of
- 6 discussion and interplay back and forth with the
- 7 community, the practitioners and our colleagues to
- 8 really obtain advice that we need, because these
- 9 are the questions that my colleagues face daily and
- 10 actually are going to have to do the reviews, and
- 11 this has been just an invaluable experience. So, I
- 12 personally want to thank all of you, all the
- 13 participants from the public as well. This was
- 14 great. Thank you very much.
- DR. MOOS: One quick extension on a
- 16 comment Mercedes made a bit ago, it seems as though
- 17 there are a couple of issues that could be
- 18 addressed in preclinical models, like validation of
- 19 DNA and so forth, that could be done once
- 20 definitively in a sort of platform mode and people
- 21 in the field could, in fact, work together to
- 22 present us with some useful approaches to
- 23 validating this. The quicker that some of these
- 24 safety issues, which can be addressed in animal
- 25 models, can be laid to rest, and it sounds like it

- 1 might be fairly easy to do the DNA one for example,
- 2 the better for all of us. Then we can begin with a
- 3 kind of staged approach in clinical models that we
- 4 have all talked about, and we have heard a lot of
- 5 discussion that it can only be evaluated there.
- 6 So, think about it and come talk to us.
- 7 DR. SALOMON: Are there any last comments
- 8 from anyone that have to be made before we adjourn?
- 9 If not, I would like to thank everyone who came,
- 10 both the expert panel, my committee, the FDA staff,
- 11 particularly staffers like Gail and her group who
- 12 put all this together, and everybody else. Thank
- 13 you very much for a successful meeting. That group
- 14 of you who will be here tomorrow, we will see you
- 15 tomorrow. Otherwise, everyone travel safely and
- 16 good health.
- 17 [Whereupon, at 6:45 p.m., the proceedings
- 18 were recessed, to reconvene on Friday, May 10,
- 19 2002.]

20 - - -