- 1 mentioned, of course, is the fact that with
- 2 increased maternal age the frequency of aneuploidy,
- 3 the frequency of chromosomal dysfunctions, as well
- 4 as dysfunctions in the organization of the spindle
- 5 to which these chromosomes are attached actually
- 6 increases substantially. So, a large number of
- 7 oocytes that exist in women of advanced
- 8 reproductive age will not be rescued by any means
- 9 because the chromosomal abnormalities, and
- 10 spindles, structural abnormalities exist and they
- 11 will not be fixable.
- But in other cases, especially for eggs of
- 13 older women, they look entirely normal and they
- 14 really are indistinguishable from oocytes of
- 15 younger women. But in large measure, whatever has
- 16 happened prior to this egg meeting sperm, which
- 17 this particular egg has not, things have happened
- 18 to this egg which largely determine its competence,
- 19 and it is the question of whether cytoplasm
- 20 transfer or other procedures actually will be able
- 21 to rescue whatever insults have been imposed on an
- 22 egg prior to its meeting with the sperm.
- This slide just shows examples of an egg.
- 24 Here is a two-cell embryo, starting off perfectly
- 25 normal except this has multiple nuclei. One of the

- 1 features that might be of interest to some in this
- 2 case, because the issues of chromosomal segregation
- 3 and additional chromosomal additions from
- 4 cytoplasmic transfer came up, is the fact that the
- 5 early human embryo, especially at the one- and
- 6 two-cell stage, has unique capacity actually to
- 7 encapsulate individual chromosomes in a nuclear
- 8 membrane. So, you can get multiple nuclei that
- 9 occur in these embryos, some of which you can show
- 10 have one or two chromosomes and others have more,
- 11 but these eggs tend to be developmentally lethal.
- 12 So the ectopic transmission of the chromosome may
- 13 or may not be an important issue in cytoplasmic
- 14 transfer.
- This slide shows an example of an embryo
- 16 which, as you have heard, is fragmented. You can
- 17 see some fragments here. The severity differs
- 18 between embryos within the same cohort so you can
- 19 have 12 or 15 embryos. Some of them have much more
- 20 extensive fragmentation, some have none. So, it is
- 21 an embryo-specific event. Some patients have all
- 22 their embryos fragment like this, which is
- 23 relatively rare, but it is common to see
- 24 fragmentation of this sort.
- The problem is, is this rescuable? Is it

- 1 a problem in terms of the ability of the embryo to
- 2 implant? Here again, as Jacques mentioned and
- 3 others have shown, in fact the fragmentation
- 4 patterns seen at a static image such as a four-cell
- 5 stage can change.
- 6 So, embryos that had this fragmentation
- 7 that looked relatively severe early, in fact, go to
- 8 the blastocyst and hatch and, in fact, implant. I
- 9 don't show baby pictures but I do show embryo
- 10 pictures, and this is a little girl that was born
- 11 about two years ago.
- 12 So, we have the situation where we can see
- 13 dysmorphologies and some may be of clinical
- 14 significance and others are not. There is recent
- 15 work that shows that some types of patterns of
- 16 fragmentation are transient; that they exist in one
- 17 stage and later on in development seem to
- 18 disappear. So, it is not clear whether subjective
- 19 criteria looking at embryos is actually predictive
- 20 of competence. In some cases, obviously, if there
- 21 are no cells left that is a problem.
- So, you have to look in terms of sort of
- 23 the molecular mechanisms that take place in eggs
- 24 where their competence may be affected by
- 25 influences that they have experienced.

- 1 This slide tells us a little something
- 2 about eggs in terms of mitochondria. What you see
- 3 here is a pronuclear human egg. These are the two
- 4 nuclei and these little dots here are mitochondria.
- 5 I always grew up with the notion that, in fact, the
- 6 number of mitochondria in human eggs was about
- 7 150,000, although that is not based on any
- 8 morphometric analysis but that is about the right
- 9 number. All these dots here are, in fact, what we
- 10 are talking about, mitochondria.
- 11 One of the interesting things about
- 12 mitochondria both in the human and in the mouse,
- 13 and in other systems as well, is the fact that
- 14 their distribution is not static, that during
- 15 different stages of oocyte maturation, especially
- 16 before the egg comes out of the follicle as well as
- during embryogenesis, there is a lot of spatial
- 18 remodeling of the cytoplasm. These mitochondria
- 19 can move around and have different locations and
- 20 different positions based on what the cell is
- 21 doing.
- 22 If we look at this slide, it gives you an
- 23 example of mitochondria in human at the electron
- 24 microscope level. These guys here, the little dots
- 25 are at the surface of the cell. It is upside down

- 1 but here are the mitochondria. They are fairly
- 2 unusual when compared to somatic cell mitochondria.
- 3 These are relatively undeveloped. They are not in
- 4 a dormant state but developmentally and in terms of
- 5 their differentiation they are in a more primitive
- 6 state. But they do move around. During oogenesis
- 7 for example, in the mouse and other rodents they
- 8 migrate around the nucleus. You can barely see
- 9 that here but they do. They form interesting
- 10 patterns that extend from the plasma membrane down
- 11 to the nuclear membrane, shown here, almost arrays
- 12 which we and others have suggested may be important
- in certain signal transduction pathways. So, they
- 14 are unusual. Their distribution is not static, and
- 15 they undergo remodeling as the embryo and oocyte
- 16 progress.
- 17 This slide shows this a little more here,
- 18 mitochondria at higher magnifications, a two-cell
- 19 embryo in the human. Their spherical structure is
- 20 about half a micron in diameter, and they remain
- 21 this way in a pretty undeveloped state until fairly
- 22 late in the pre-implantation period as the embryo
- 23 becomes a blastocyst. Some of these then will
- 24 start to change into the more orthodox
- 25 configuration that one sees in somatic cells, but

- 1 these are really unique structures.
- 2 This slide just shows some rearrangements
- 3 that occur fairly rapidly during oocyte maturation.
- 4 This is a mouse oocyte that is stained, the
- 5 mitochondria are stained with a mitochondrial
- 6 specific fluorescent probe, and what happens is
- 7 that as the oocyte matures, in this case in vitro,
- 8 mitochondria translocate and move around towards
- 9 the center of the cell around the nuclear region to
- 10 form a very compact structure here. Then, during
- 11 the first miosis they start to redistribute
- 12 themselves and they go back to a more or less
- 13 uniform distribution at metaphase II, which is when
- 14 the oocyte is ovulated.
- These are dynamic structures. They are
- 16 dynamic in their orientation and organization, and
- 17 they undergo spatial remodeling as eggs and embryos
- 18 divide. This is maybe actually an important
- 19 feature in determinants of the oocyte's competence
- 20 while the oocyte is still in the ovary. In other
- 21 words, how these organelles are located and
- 22 distributed may actually be fairly important.
- 23 Their distribution, shown in this slide,
- 24 is directed by microtubules in many species, in
- 25 this case the mouse, and you can see this is the

- 1 central region where chromosomes are maturing,
- 2 oocytes are forming. These are mitochondria that
- 3 have translocated from around the cytoplasm towards
- 4 this rim or ring of mitochondria around the nuclear
- 5 region. Here are microtubules and the
- 6 mitochondria, we think, migrate as in other cells
- 7 and are translocated along microtubular paths. So,
- 8 the organization of the cytoplasm in terms of its
- 9 microtubular organization may, in fact, be a very
- 10 important determinant of how mitochondria are
- 11 distributed, and whether the distribution of
- 12 mitochondria in space and time, in fact, turns out
- 13 to be determinant of competence.
- 14 This slide shows another example of
- 15 presumed mitochondrial function, and this has to do
- 16 with energy. We have heard, and it is true, that
- 17 energy may not be a critical component of
- 18 competence because it is clear that while you have
- 19 mutations in respiratory mitochondria the embryos
- 20 develop quite normally, otherwise they wouldn't be
- 21 individuals that carry this particular respiratory
- 22 mutations in their mitochondria.
- In this type of experiment, what we did in
- 24 the mouse was to knock down mitochondrial
- 25 respiration substantially and we found that you

- 1 could reduce mitochondrial respiration by about 60
- 2 percent and still get the eggs to mature normally.
- 3 They fertilize in vitro, but what is interesting
- 4 about this particular experiment is the fact that
- 5 when these embryos reach pre-implantation stages
- 6 they start to die off. This may or may not be a
- 7 mitochondrial effect. It may be a downstream toxic
- 8 effect of this treatment which was done days before
- 9 at the oocyte level. But the point is that we were
- 10 able to establish here that, in fact, there was a
- 11 downstream consequence during embryogenesis, early
- 12 embryogenesis of knocking down respiration at the
- 13 beginnings of maturation in vitro which is, in this
- 14 case the germinal vesicle stage.
- 15 This experiment showed that at zero hours
- 16 in culture knocking down mitochondrial respiration
- 17 actually had no effect on maturation, which is what
- 18 would occur in the ovary prior to ovulation,
- 19 fertilization cleavage but did progressively have
- 20 effects on the embryo's ability to develop to the
- 21 blastocyst stage and implant. So, it was an effect
- 22 that was actually seen four or five days later.
- In the case of the human, one of the
- 24 proposed effects of mitochondria and why would
- 25 mitochondrial transfer or cytoplasmic transfer if

- 1 it involves mitochondria be beneficial? One is ATP
- 2 generation during pre-compaction stages seems to be
- 3 respiratorily driven rather than driven by
- 4 glycolysis. So, the early stages seem to be
- 5 requiring some level of mitochondrial input. It is
- 6 not clear in the human whether glycolysis in the
- 7 presence of mitochondrial defects that affect
- 8 respiration can be up-regulated to supply enough
- 9 ATP.
- 10 Of course, mitochondrial replication
- 11 begins after implantation. So the putative effects
- 12 of mitochondrial dysfunctions that have been
- 13 suggested, not proven yet but suggested for early
- 14 human development which may be rescuable is
- 15 cytochrome C release if perhaps the mitochondria
- 16 are damaged resulting in apoptosis; reactive oxygen
- 17 species generation which may be a toxic effect from
- 18 mitochondrial dysfunction of some sort that hasn't
- 19 been identified; or low ATP production from
- 20 metabolically incompetent mitochondria. These have
- 21 been proposed but not clearly identified.
- This slide suggests something that is
- 23 really quite interesting. This asks the basic
- 24 question. As I said, I always grew up with the
- 25 notion that there were about 150,000 mitochondria

- 1 and a number of years ago we approached this
- 2 problem for actually completely different reasons,
- 3 looking at the question of how many mitochondrial
- 4 DNA copies were present and we looked at a
- 5 particular mitochondrial gene at that time using
- 6 PCR, and we had quite a few oocytes from gift
- 7 procedures that were left over. One of the things
- 8 that we saw and tried to quantitate is that the
- 9 number of copies of this participant mitochondrial
- 10 gene, in fact, ranged from about 30,000 upwards
- 11 to--I don't remember the actual number but
- 12 something like 400,000 or 500,000. We were seeing
- 13 variations in the number of mitochondrial DNA
- 14 copies per oocyte within the same patient.
- In that particular situation, what we were
- 16 seeing is almost an order of magnitude difference
- in the number of mitochondrial DNA copies in
- 18 oocytes from the same patient. We never did
- 19 anything with this data because, actually, I simply
- 20 didn't believe it. I didn't believe that you could
- 21 get that variability.
- 22 But recently work has come out from a
- 23 number of groups, including Jacques Cohen and
- 24 others, who have looked at the number of
- 25 mitochondrial DNA copies, and the number is about

- 1 20,000 to over 600,000, 700,000. Now, does that
- 2 mean that an oocyte that looks the same, that you
- 3 cannot distinguish at the light microscope level,
- 4 one from the other, that in one case you have
- 5 20,000 mitochondria if there is one mitochondrial
- 6 DNA copy per egg all the way up to 800,000? Which
- 7 is a problem because if that is the case, then if
- 8 there is one mitochondrial DNA copy per
- 9 mitochondria you are dealing with eggs that look
- 10 identical at the light microscope level from the
- 11 same patient, whether it is a patient or a donor,
- 12 where the number of mitochondria can differ by an
- 13 order of magnitude?
- 14 If that is the case, then going into an
- 15 egg with a pipet and removing cytoplasm could be
- 16 problematic because you cannot make the assumption
- 17 that the number of mitochondria that are being
- 18 transferred are the same. In other words, from egg
- 19 to egg or from patient to patient. That is a real
- 20 issue and that has to be addressed.
- 21 So, it looks like the number of
- 22 mitochondria, in fact, seem to vary, at least
- 23 mitochondrial DNA copy number almost by an order of
- 24 magnitude and that is not predictable by any
- 25 morphology or by any light microscopic inspection.

- 1 So, this is a problem, potentially. It is
- 2 surprising in the human, but it may not be so
- 3 surprising as I will show you in the next slide.
- 4 This slide basically shows a picture of an
- 5 egg, and this is just stained for mitochondria and,
- 6 again, here we see some interesting differences.
- 7 In this particular egg, and these eggs are from the
- 8 same patient, pretty much the fluorescence is
- 9 uniformly distributed, very little in this case in
- 10 the polar body but pretty well uniformly
- 11 distributed, and we can quantitate and do all sorts
- 12 of interesting measurements about the fluorescence
- 13 intensity and correlate this with mitochondrial
- 14 numbers, the point being that here is one egg that
- 15 is stained.
- 16 The next egg from that same patient shows
- 17 something a little bit different. This is not an
- 18 artifact of the procedure or the staining. These
- 19 are live eggs. What has happened here is that, in
- 20 fact, there are regions of this particular
- 21 cytoplasm where mitochondria are absent. This is
- 22 something that we consistently see looking at eggs,
- 23 that you have regional differentiation and regional
- 24 specialization of mitochondrial distributions that
- 25 are not predicted by any other means, other than

- 1 this. So, you cannot say that going into this
- 2 particular region of the cytoplasm will produce an
- 3 equivalent number going into this region of the
- 4 cytoplasm. So, now we have the further complexity
- 5 of having perhaps a difference in an order of
- 6 magnitude or certainly mitochondrial DNA numbers
- 7 and now we have regional specializations in terms
- 8 of distribution within the cytoplasm that is not
- 9 predicted by just looking at morphology.
- This slide shows another example of this
- 11 where, in fact, the relative fluorescence intensity
- 12 is quite reduced. So, there may be something to
- 13 correlating fluorescence intensity by this method
- 14 and mitochondrial DNA numbers, except that in order
- 15 to do that you have to destroy the egg, which means
- 16 it is not very useful other than for experimental
- 17 purposes.
- 18 This slide shows something about energy
- 19 distributions in human eggs. This is some old data
- 20 that we published a number of years ago. It simply
- 21 asks a basic question, what is the ATP content of
- 22 eggs in the same cohort? A very simple-minded
- 23 question. Just look at the distribution. It is
- 24 quite remarkable. These are eggs that were gotten
- 25 by stimulation for IVF in the same way we normally

- 1 do it, and the distribution was over an order of
- 2 magnitude. Again, this was one of these puzzling
- 3 findings, except that in terms of outcome, when we
- 4 had eggs that were left over, excess donated, that
- 5 were in the high range of ATP content, those tended
- 6 to be the women that got pregnant from embryos that
- 7 were transferred in their cycles. Those that had a
- 8 preponderance of low ATP content eggs, when we
- 9 transferred their embryos, even though they were
- 10 morphologically identical to ones from high ATP
- 11 cohorts, in fact they rarely got pregnant.
- 12 So, here you have a spectrum of an order
- 13 of magnitude difference in ATP content, and both
- 14 differences within cohorts and between cohorts of
- 15 patients. So, in this case we now have the
- 16 complexity of saying we now know that not only do
- 17 we have a huge variability in mitochondrial DNA
- 18 content, we may have a mitochondrial numbers
- 19 variability in terms of how actual mitochondria are
- 20 in an egg, which is not detectable just by looking
- 21 at it, and now we have energy differences that may
- 22 be related either to mitochondria numbers or to
- 23 something else that is going on in these particular
- 24 cells.
- So, it is not just simple to say that, in

- 1 fact, when you have a mitochondrial basis for
- 2 certain types of infertility that, in fact, it is
- 3 related strictly to mitochondria because there are
- 4 too many complex, confounding issues with
- 5 mitochondria alone that are important.
- 6 This slide just sort of summarizes this.
- 7 The size of the mitochondrial complement, how many
- 8 mitochondria really are there? We really don't
- 9 know how mitochondria there are in human oocyte.
- 10 The variability in mitochondrial DNA content is
- 11 important, but how does it relate to the size of
- 12 the complement? And, is the size of the complement
- 13 actually important? Differential spatial
- 14 distribution at the pronuclear state, and I will
- 15 talk a little bit about that, and disproportionate
- 16 inheritance during cleavage, which is another issue
- in terms of how we understand the relationship
- 18 between mitochondria, if any, and development.
- 19 This is shown on this slide. I think I
- 20 will just pass this one up. Here, we started
- 21 looking at how mitochondria are spatial distributed
- 22 within the egg and in the early embryo. This is
- 23 one of the earlier pictures that we have seen from
- 24 looking at an analysis of the mitochondrial
- 25 distribution. Here are the two pronuclei, one here

- 1 and one there. Here is the mitochondria around it.
- 2 What you see here is the relative intensity of how
- 3 many mitochondria are present, but what is
- 4 particularly interesting about this guy is the fact
- 5 that the mitochondria are asymmetrically
- 6 distributed in the pronuclear stage. This is just
- 7 before cell division.
- 8 So, we followed this along in quite a few
- 9 embryos from the pronuclear stage onward. I will
- 10 just summarize the results. This basically says
- 11 that you have symmetrical and asymmetrical
- 12 distributions. Here are mitochondria around the
- 13 pronuclei from the one-cell stage, in a cross
- 14 section. The point being that the segregation, at
- 15 least the inheritance of the mitochondria at the
- 16 one-cell stage, the pattern or the spatial
- 17 distribution at the one-cell stage determines in
- 18 large measure the proportion of mitochondria that
- 19 are distributed at the first cell division in the
- 20 human.
- So, we follow this along and we see
- 22 embryos that have fairly good and equivalent
- 23 segregation, others where the segregation is
- 24 disproportionate. We can do this both by looking
- 25 at mitochondrial DNA copy numbers as well as by

- 1 metabolism.
- 2 Just to show you some examples of that,
- 3 here you have relatively unusual segregation.
- 4 Again, all of these were first examined at the
- 5 pronuclear stage, the one-cell stage, and then
- 6 subsequently. What we found is that you can have
- 7 different distributions. For example, a normal
- 8 appearing embryo, absolutely normal appearing, can
- 9 have some cells where you have relatively high,
- 10 relatively moderate and relatively low inheritance.
- 11 We can, again, quantify this in a number of ways
- 12 reflect the intensity of fluorescence. At the
- 13 eight-cell stage in perfectly normal embryo you
- 14 have some cells that have relatively few
- 15 mitochondria, others that have inherited quite a
- 16 few.
- 17 The consequence of this is that cells that
- 18 have under-representation of mitochondria tend to
- 19 die. They tend to divide more slowly, which may be
- 20 what Jacques Cohen described as the slowly dividing
- 21 embryos but, nevertheless, if there are enough
- 22 cells that have inherited a fairly reasonable
- 23 amount or close to normal amounts, the embryo is
- 24 still competent.
- 25 So here, just the organization of

- 1 mitochondria and their distribution can have
- 2 profound effects on embryo development and
- 3 competence, and that is shown on this slide, where
- 4 you have, for example, blastomeres of an eight-cell
- 5 stage, where you have mitochondria that are
- 6 relatively evenly distributed. So, here we have
- 7 relatively normal, even distribution.
- 8 This slide shows examples where that
- 9 distribution actually is quite asymmetric, again,
- 10 traceable back to the one-cell stage leaving
- 11 several cells that are deficient. These cells
- 12 eventually lyse and disappear. Other cells that
- 13 are deficient, such as this one, simply don't
- 14 divide again and remain in that position.
- So, not only do we have the situation
- 16 where we have differences in mitochondrial number
- initially present in the oocyte, but now we also
- 18 have the complexity of how these mitochondria are
- 19 distributed at cell division, which is not
- 20 necessarily uniform. It is not an equivalent
- 21 distribution.
- This slide just simply shows the basis of
- 23 this, and we think a lot of this has to do with
- 24 microtubules. These are mitochondria that you can
- 25 see. Most eggs and embryos will slide along

- 1 microtubular tracks. It is the position of the
- 2 microtubules and their organization, both at the
- 3 one-cell level and multi-cell level, that we think
- 4 determines the proportion or uniqueness of
- 5 segregation whether it is even or disproportionate
- 6 among blastomeres.
- 7 This slide is an example of what is called
- 8 a central zonal defect. What has happened here is
- 9 that you normally see mitochondrial clustering
- 10 around microtubules. In this case there are no
- 11 microtubules because he has a central zonal defect
- 12 and there is no migration of the mitochondria.
- This comes to another point, that I will
- 14 end with, and that has to do with the notion of
- 15 cytoplasmic transfer. We have talked about and
- 16 published work on mitochondrial transfusions, going
- 17 from one oocyte to another and I just want to show
- 18 you some of the complications that come in with
- 19 this type of approach to cytoplasmic transfer,
- 20 something that needs also to be considered.
- In this method what we have done, we have
- 22 segregated pretty much all the mitochondria into
- 23 one compartment. This was an original oocyte where
- 24 you can see one compartment here. This contains
- 25 DNA and here are the mitochondria.

- 1 This slide shows a different method. Here
- 2 is a cytoblast. Here is the nucleoblast which is
- 3 very, very efficient in mitochondria. This is very
- 4 heavy. So, we did a number of experiments, taking
- 5 by micropipet, mitochondria from this enriched
- 6 fraction and asking a very simple question, what
- 7 happened to it.
- 8 That is shown in the next series of
- 9 slides. Here what you see is the case of putting
- 10 mitochondria that are labeled into a germinal
- 11 vesicle stage oocyte, and this cloud material,
- 12 here, is about five to ten hours after mitochondria
- 13 were injected as a bolus, right around here. This
- 14 is stained both for mitochondria and nuclear DNA.
- 15 This is the nucleus of the germinal vesicle and
- 16 this was, with think, the injected mitochondria.
- 17 This is shown in other slides. This slide
- 18 shows different variations. Here is an oocyte
- 19 injected at an earlier stage of maturation, after
- 20 the germinal vesicle. These are the labeled
- 21 mitochondria and, in fact, some of those
- 22 mitochondria have gotten quite heavily into the
- 23 first polar body. So, this shows that, yes, you
- 24 can inject mitochondria and many hours later you
- 25 can detect them and they seem to be pretty well

- 1 segregated or at least spatially oriented in a sort
- 2 of uniform manner, except it again is egg specific.
- 3 So, if we look at this slide, it just
- 4 shows another example where mitochondria were
- 5 placed in the center of the egg. These are stained
- 6 mitochondria so the resident mitochondria are not
- 7 visible. In this case, here is a polar body but
- 8 there was virtually no detectable segregation of
- 9 mitochondria into this polar body. So, sometimes
- 10 they are lost; sometimes they are not. But in most
- 11 cases they seem to sort of evenly distribute when
- 12 injected early in the maturation phase, that is,
- 13 well before the time that we would consider doing
- 14 this in the human, which is after ovulation where
- 15 the egg is mature.
- Now, if we inject mature eggs, here is the
- 17 issue. These are metaphase II eggs. In this case,
- 18 what has been done is to inject mitochondria in
- 19 different places, here, here and here, and watch
- 20 what happens. In fact, in some cases the
- 21 mitochondria simply stay in one position. There is
- 22 no spatial remodeling or redistribution. If we
- 23 activate these eggs, not by fertilization but so
- 24 that they divide, in fact, the segregation is
- 25 entirely asymmetric. One cell will have a fairly

- 1 substantial, disproportionately high distribution
- 2 of the injected mitochondria, others will not.
- 3 Here is another example of this. Here you
- 4 can see three zones of mitochondria that were
- 5 injected at the metaphase II stage and they stayed
- 6 in place. They did not move in this particular
- 7 egg.
- 8 This shows another example where actually
- 9 they did move. Here we put mitochondria in the
- 10 center and a little bit later there were, in fact,
- 11 a lot in the center but they had actually migrated
- 12 to the cortex of the egg as well.
- This slide shows another pattern where
- 14 they were injected in the subcortical location and
- 15 pretty much stayed there. Again, when you activate
- 16 these eggs you get unequal segregation. We have
- 17 not yet seen in any of our eggs that we have
- 18 examined by this method of injection equivalent
- 19 segregation. It is all asymmetrical, which is a
- 20 problem in terms of how mitochondria may, in fact,
- 21 find their way into one-cell lineage or placenta or
- 22 perhaps different tissues in the fetus.
- I just want to end, if I have two more
- 24 minutes, and I just want to talk about one
- 25 potential other function of mitochondria early in

- 1 development that has very little to do with
- 2 metabolism. This has to do with the notion of
- 3 involvement in calcium signaling or in ionic
- 4 signaling.
- 5 This is a human egg that is stained with a
- 6 probe that picks up mitochondria that are high
- 7 polarized. These are mitochondria that have a high
- 8 membrane potential. We think these are actively
- 9 involved in other cells in calcium signaling. What
- 10 you are seeing here are these little dots or the
- 11 high polarized mitochondria. They are at the
- 12 cortex. What we think happens is that at
- 13 fertilization these mitochondria participate in an
- 14 important way in calcium modulation.
- 15 Shown in this slide is that when we
- 16 actually activate these eggs, in fact you get a
- 17 very early calcium discharge which we have now been
- 18 able to show comes from those mitochondria. We
- 19 think this discharge is actually very important in
- 20 terms of subsequent signal transduction pathways
- 21 that occur later on in development, which are
- 22 required for normal gene activation and normal
- 23 development.
- This slide shows an example--well, you
- 25 can't see it but there are very few asymmetric high

- 1 polarized mitochondria. When we activate this egg,
- 2 we see the following, which simply shows that, in
- 3 fact, the signaling is restricted to one part of
- 4 the egg.
- 5 This slide shows where, in fact, there are
- 6 no detectable, in the egg, high polarized
- 7 mitochondria. They are only found in the polar
- 8 body. When we activate these eggs we get nothing.
- 9 So, in addition to metabolic and in
- 10 addition to other functions that these mitochondria
- 11 may have, they also appear to be involved in early
- 12 events in calcium signaling which we think actually
- 13 turn out to be important in setting up the right
- 14 signaling transduction pathways in the cytoplasm as
- 15 the egg and embryo develops. It is an influence on
- 16 the normality of development. So, there are a
- 17 number of different functions that these organelles
- 18 are involved in, other perhaps than metabolic,
- 19 which are important in competence determination.
- 20 Thank you.
- 21 Question and Answer
- DR. SALOMON: Thank you very much for a
- 23 very interesting topic. We should have a
- 24 discussion of sort of mitochondria per se for a few
- 25 minutes. As a scientist, I have fifty questions

- 1 here that are just about mitochondria, but you
- 2 don't need to waste your valuable time answering
- 3 those. It is obviously a fascinating area.
- 4 There are a number of questions that
- 5 specifically relate to the issues on the table
- 6 today. So, just to kind of start, one of the
- 7 things I heard was that this is pretty safe because
- 8 there is a very high threshold for dysfunctional
- 9 mitochondria and that would be a safety feature. I
- 10 am just trying to get little key things here, but
- 11 that is something I got.
- DR. SHOUBRIDGE: Yes, I think that is
- 13 true. The other safety feature in the animal
- 14 experiments that we have, we really haven't seen
- 15 any evidence that the animals are sick in any way.
- 16 We haven't done careful studies in
- 17 histopathological things, behavioral tests or
- 18 anything, but we have had this colony since 1995, a
- 19 colony of heteroplasmic animals, and done all these
- 20 kinds of different genetic experiments and
- 21 different back crosses or half a dozen other
- 22 nuclear backgrounds and we have really never seen
- 23 anything unusual. I mean, we haven't been looking
- 24 for it either so we haven't done a careful analysis
- 25 but the mice look pretty normal.

```
1 DR. SALOMON: Good.
```

- 2 DR. CASPER: From the other point of view
- 3 then, it was suggested earlier this morning that
- 4 you might be able to treat mitochondrial diseases
- 5 by mitochondrial transfer. In view of the
- 6 stochastic segregation that happens, is that
- 7 possible to actually happen from generation to
- 8 generation, or would it only be feasible in the
- 9 actual injected offspring?
- DR. SHOUBRIDGE: I am not quite sure I
- 11 understand the question. The transmission is
- 12 stochastic so if you look, for instance, at the
- 13 distribution of mutant mitochondrial DNA in the
- 14 ovary of the woman where about 50 or 60 oocytes are
- 15 available, some of them have no mitochondrial DNA
- 16 mutations at all. So, in that case, I think if you
- 17 were going to treat the disease, the best option
- 18 would be to look for an oocyte that didn't have any
- 19 mitochondrial DNA mutations at all. If you were to
- 20 completely remove that cytoplasm and then put in
- 21 donor cytoplasm, the prediction would be that to
- 22 the extent that you left the recipient cytoplasm in
- 23 there you would get the same kind of stochastic
- 24 transmission to the next generation. But having
- 25 taken out most of it, the chances are that the

- 1 child, if it developed in that egg, would have
- 2 mostly donor mitochondrial DNA and not very many
- 3 from mom, but in the next generation in the female
- 4 that would segregate.
- DR. CASPER: In other words, if you had an
- 6 embryo that would be heteroplasmic with a mutation
- 7 as well as normal mitochondrial DNA, you could
- 8 change the threshold by putting in more normal
- 9 mitochondria. Is that right?
- DR. SHOUBRIDGE: Probably, yes. It is
- 11 simply stochastic; it is a numbers game so you can
- 12 treat this as a bowl of marbles, black and white
- 13 marbles. The sample size with determine the rate
- 14 of segregation. So, if you actually do the
- 15 statistic, you can calculate in the mice under a
- 16 particular model the effective number of
- 17 segregating units as about 200 in the next
- 18 generation, and you can figure out, given the
- 19 sample size of 200, that you would get
- 20 distributions like I showed you.
- DR. MULLIGAN: On that point, if you had
- 22 diseased mitochondria that behaves like whatever
- 23 the mouse strain, wouldn't that be a way of
- 24 actually promoting disease because you would
- 25 actually over a time course--I mean, if you were so

- 1 unlucky that the diseased mitochondria also had the
- 2 same property that is the property that allows you
- 3 to selectively reconstitute cells, wouldn't that be
- 4 a way to amplify that?
- DR. SHOUBRIDGE: Absolutely, and that is
- 6 probably what happens in many of the diseases,
- 7 probably not all, but there is pretty good evidence
- 8 for directional increases in the mutant
- 9 mitochondrial DNAs in many diseases, in muscle
- 10 tissue for instance. The idea there is that the
- 11 muscle cell is continuously reading out the
- 12 oxidative phosphorylation capacity. So, if you
- 13 decided you wanted to be a marathon runner
- 14 tomorrow--maybe you are today, I don't know--but if
- 15 you wanted to be, you can up-regulate the number of
- 16 mitochondria in your post-mitotic muscle cells. We
- 17 don't really understand the nature of the signals
- 18 that are involved in that pathway. Then, if you
- 19 decide you don't want to run a race it will go
- 20 down.
- 21 The thinking is, at least my thinking on
- 22 this is that the selection of that occurs at the
- 23 level of organelles. So, some signals are given at
- 24 the organelles and that somehow feeds back to the
- 25 nucleus. Factors are produced to give you more

- 1 mitochondria. If you now have an organelle that
- 2 has mutant mitochondrial DNA the same signals go
- 3 back. It looks like overworked mitochondria. It
- 4 looks like it is running a marathon. In fact, it
- 5 is just the mutation. The nucleus doesn't know
- 6 that. What it does is make more of those guys and
- 7 so it makes more of the bad ones. So, there is
- 8 kind of a positive feedback loop. It doesn't seem
- 9 to happen in the context of every mutation so it
- 10 isn't a completely general phenomenon, but it
- 11 certainly could be a problem.
- 12 DR. MULLIGAN: In this concept of loading
- 13 with an excess of certain type, what is the role of
- 14 the decay of the existing mitochondria? That is,
- 15 in principle, there is a competition and there is a
- 16 fixed number of mitochondria that should be in this
- 17 particular kind of cell, then whatever determines
- 18 that number presumably influences the decay
- 19 characteristics of the mitochondria. So, if the
- 20 cell only usually has X number and you put in 10 X,
- 21 presumably for it to refix itself there has to be
- 22 loss of some mitochondria.
- DR. SHOUBRIDGE: Nothing, virtually
- 24 nothing is known about mitochondrial turnover.
- DR. SCHON: Maybe the definition of the

- 1 word mitochondria needs to be expanded a little.
- 2 What we do know is that cells control the mass of
- 3 mitochondrial DNA. That is what is being
- 4 regulated, and it is controlled rather well. The
- 5 number of organelles that enclose those DNAs is
- 6 what we don't know. But since it is a completely
- 7 dynamic system, at two o'clock in the afternoon you
- 8 can have a thousand organelles and at 3:30 you
- 9 could have two hundred merely because they are
- 10 fusing and then they are repartitioning. So, it
- 11 may not be that useful for this discussion to talk
- 12 about organelles per se, although I agree 100
- 13 percent, I think selection is at the level of the
- 14 organelle, not at the level of the DNA.
- I would like to amplify a little bit about
- 16 the tissue specificity. Bioenergetics probably
- 17 play some role in the distribution and the
- 18 amplification but it can't be everything, and I
- 19 will give you two examples.
- 20 There is a disease caused by deletions of
- 21 mitochondrial DNA. Invariably the deletions pile
- 22 up, among other places besides muscle, in the
- 23 choroid plexus of the brain and in the dentate
- 24 nucleus of the cerebellum more than they do in,
- 25 let's say, in the epithelium of the ventricles, and

- 1 we have no idea why that is but there is
- 2 predilection. There is some signal that is going
- 3 back and forth that is operating. It is hard to
- 4 see how it is operating at the level of the genome
- 5 but it is a genome-specific effect.
- DR. SHOUBRIDGE: There is one thing to
- 7 add. Even though it is true in cells in culture
- 8 that the regulating mitochondrial DNA mass seems to
- 9 be the signal, but obviously it is not happening in
- 10 pathology because there is dysregulation in muscle
- 11 cells. There can be 50 or 100 times more
- 12 mitochondrial DNAs in a segment of a muscle fiber
- 13 than normal. So, there is some feedback that is
- 14 due to the presence of the mutation, presumably,
- 15 which dysregulates that.
- DR. MULLIGAN: When the DNA replicates,
- 17 what is the organelle's status?
- DR. SCHON: I am not understanding the
- 19 question really.
- DR. MULLIGAN: Does the DNA replicate
- 21 within an otherwise intact organelle? Or, is it
- 22 compromised or changed in shape in some fashion?
- DR. SCHON: We don't know anything about
- 24 it. It just happens.
- DR. SALOMON: Remember, what I want to

- 1 focus you guys on is what about all of this relates
- 2 back to the safety and to the kinds of biological
- 3 questions that these guys in the IVF field are
- 4 going to face in developing an IND? I think they
- 5 will be happy to say that they will screen patient
- 6 donors for mitochondrial disease, which they have
- 7 admitted they haven't done up until now, but if
- 8 they do that, then one is assuming we are
- 9 transferring normal mitochondria and, therefore, if
- 10 they add that one little piece it seems like they
- 11 will substantially remove this as a safety issue,
- 12 and the fact that there is this high threshold
- 13 anyway would seem to even enhance that.
- So, that is all good news for them in
- 15 terms of safety issues. What I want to make sure
- 16 though is, as we go around here, that there aren't
- 17 other issues that they need to address.
- DR. VAN BLERKOM: So, maybe the first
- 19 question is, from what we have heard so far, is
- 20 there any evidence that mitochondria are rescuing
- 21 these eggs to begin with?
- DR. SALOMON: Right. I was listening to
- 23 you and the one question I wrote down, and I am
- 24 going to put it to you now--I wrote down first any
- 25 specific measure of oocyte mitochondrial function

- 1 that compares good or normal oocytes to those from
- 2 infertile females. You then launched into an ATP
- 3 content slide and made one comment, which I thought
- 4 was at least partially addressing this, and that is
- 5 that there seems to be some correlation. Now, how
- 6 much of that was hand waving and how much of that
- 7 was stuff that would really stand up to statistical
- 8 analysis?
- 9 DR. VAN BLERKOM: First of all, that was
- 10 published stuff and it was actually statistically
- 11 analyzed so it wasn't hand waving. But the point
- 12 is that at the time it was done there was a
- 13 relatively limited number of patients. We had 30
- 14 or 40 in that group. But there was no explanation
- 15 for why those differences existed because, again,
- 16 these were analyzed at the same time, from the same
- 17 patients, so there was no culture artifact or
- 18 anything of that sort.
- Now, with the notion that you have
- 20 differences in mitochondrial DNA copy numbers that
- 21 can be an order of magnitude, the question then
- 22 comes are the ones that are the low ATP producers
- 23 low ATP because they had, for some reason,
- 24 inherited a low number of mitochondria? What the
- 25 metabolic experiment showed was that, in fact, to

- 1 make an egg and to make an embryo you don't need a
- 2 lot of mitochondria, functional mitochondria. It
- 3 may be that at later stages at some point you do,
- 4 but the number of mitochondria that are being
- 5 injected is so small, and since they are not
- 6 replicating, it is hard to imagine that if you are
- 7 starting out with an egg that is below a certain
- 8 threshold to get a normal embryo through the first
- 9 four or five days of development you need 150,000
- 10 and you put an extra 10,000 in, it is hard to
- 11 imagine that that is going to make a difference.
- 12 So, numerically it doesn't make sense. I
- 13 think there are eggs that fall away in terms of
- 14 natural developmental failure, perhaps their
- 15 inheritance of mitochondria is very low for
- 16 whatever reason. But, you see, those are gone
- 17 anyway. They are not going to be rescued.
- DR. SALOMON: Can I follow-up on that?
- 19 Actually, another question I wrote down was just
- 20 what you said. I am still confused here. So, the
- 21 question I wrote down is why are there so many
- 22 mitochondria in an oocyte, 100,000, as compared to
- 23 a somatic cell--
- DR. VAN BLERKOM: Because they are
- 25 replicating until after implantation.

- 1 DR. SALOMON: So you think they need all
- 2 these in order to survive?
- 3 DR. VAN BLERKOM: I mean, that is it. I
- 4 mean, all mitochondria come from that. All the
- 5 mitochondria that are present as the cell divides
- 6 and parceled out come from that initial population.
- 7 DR. SALOMON: So, you think there has to
- 8 be this big reservoir of mitochondria and then, as
- 9 you go to eight and twelve and so many cells, you
- 10 start distributing around and you get down to what
- 11 a normal somatic cell has. So, that is a real
- 12 simple explanation like that. Does anyone know
- 13 what the function of the 100,000 mitochondria--it
- 14 is obviously not 100,000 times the ATP reservoir of
- 15 a somatic cell. Is that right?
- DR. VAN BLERKOM: Well, they are involved
- 17 in APTP product. They seem also to be involved in
- 18 calcium signaling in the cell. They also seem to
- 19 be involved in other functions that are not
- 20 necessarily metabolic. They redistribute
- 21 themselves, as I showed, in terms of spatial
- 22 remodeling, presumably for ionic purposes or energy
- 23 purposes, early in the division. But you are
- 24 dealing with a very big cell. I mean, this is a
- 25 100 micron cell. So, I don't know why whoever put

- 1 in 100,000 or whatever mitochondria decided that
- 2 was an important number, but it probably was an
- 3 important number in terms of the reservoir that
- 4 exists for later on. It is probably an
- 5 over-capacity or redundancy in terms of development
- 6 because you can knock out function for a fairly
- 7 substantial proportion of those mitochondria and
- 8 the egg still divides.
- 9 DR. SCHON: We shouldn't have tunnel
- 10 vision here. The mitochondria is not synonymous
- 11 for ATP production. There are TCA cycles, steroid
- 12 oogenesis, beta oxidation, amino acid synthesis,
- 13 and on and on and on, especially steroids for
- 14 oocytes. You might need 100,000 just to partition
- out little molecules that are important for this
- 16 egg, and that could be the end of it, and the ATP
- 17 goes to sleep because you don't need it until down
- 18 the road, and that is the simple answer.
- DR. SALOMON: I guess you guys see where I
- 20 am going with this. I am asking the question how
- 21 can you construct a rational series of experiments
- 22 even to test the hypothesis that injecting the
- 23 extra mitochondria from the good eggs into the bad
- 24 eggs, if you will allow me to be that simplistic,
- 25 is doing anything here? You are injecting 10,000

- 1 to 20,000, but the point is that if you don't know
- 2 what it is about the function of 100,000, what do
- 3 you measure? So, can we even think of a way to
- 4 compare these, or is this really possible right
- 5 now?
- DR. SCHON: I don't think this is the
- 7 venue for experimental design. Having said that,
- 8 if you want to test whether ATP production had an
- 9 impact, there is a line of cells that make no ATP;
- 10 they are otherwise normal and you can inject those.
- 11 It is not an easy experiment but it can be done. I
- 12 am not sure what you would learn from such a thing
- 13 however, to be honest. It goes back to the issue
- 14 of what I said before. This is a multi-level
- 15 interacting system and checking one at a time may
- or may not give an answer, and I don't know how to
- 17 interpret it.
- DR. SHOUBRIDGE: There is an experiment
- 19 you could do but it is an inhibitor experiment, and
- 20 they are all inherently dirty, but there are some
- 21 dyes that irreversibly knock out mitochondria, like
- 22 rhodamine 6G for instance, so you could treat your
- 23 extract with rhodamine 6G, kill the mito's and
- 24 inject the ooplasm and see if you got the same
- 25 rescue. So, I mean, it can be approached this way.

- 1 I prefer to do things genetically because I think
- 2 it is a little tidier, but there are ways to do
- 3 that genetically--not ways to do that experiment
- 4 but I can think of a lot of genetic experiments
- 5 that would test the notion that you need that many.
- I personally think, and this may be an
- 7 extreme view, that you just need them to parcel
- 8 them out. So, if you look at the mitochondria at
- 9 the egg level, morphologically the look like
- 10 mitochondria in the rozero cells that Eric was
- 11 talking about that have no mitochondrial DNA. They
- 12 look like inactive or dead mitochondria and I think
- 13 it is just a mechanism to hand them out to the
- 14 descendants in a system, for whatever reason, where
- 15 there is no mitochondrial replication.
- DR. MOOS: A couple of things, just a
- 17 quick, offhand comment although we are not going to
- 18 get into details of experimental design, if we
- 19 generate some good ideas for experiments that we
- 20 should all be thinking about, that is a great
- 21 outcome for this meeting.
- I too was struck by the ATP slide, not
- 23 necessarily because it might all by itself be
- 24 definitive but there is a hint there perhaps of
- 25 something that we can use. So, I am curious

- 1 whether what was done was simply to measure total
- 2 ATP content, or whether P31 NMR to look at energy
- 3 charge, or techniques to look at metabolism either
- 4 have been or might be considered because the other
- 5 thing that needs to be kept in mind is that the
- 6 oocyte is not a bag of stuff that is mixed
- 7 isotopically and, indeed, there might be extremely
- 8 rapid turnover of nucleotides tightly localized in
- 9 particular regions that, you know, some
- 10 high-powered analytical biochemistry might be used
- 11 to address. That would then give us the beginnings
- 12 of something that we can use to look at the process
- 13 and keep it characterized and controlled.
- 14 DR. VAN BLERKOM: Can I answer that? That
- 15 was total ATP measurements, but you are right about
- 16 micro-compartmentalization of ATP. It turns out to
- 17 be really important in terms of cell function, and
- 18 I don't know how you would actually study that--oh,
- 19 he does; he is smarter!
- The issue is that you want to keep these
- 21 things alive and actually do something to them
- 22 functionally afterwards rather than just looking at
- 23 them in static.
- DR. MOOS: Sure. There are two tiers.
- 25 There is the investigative tier and that is

- 1 separate from a QA sort of tier.
- DR. VAN BLERKOM: Right.
- 3 DR. SALOMON: Dr. Casper?
- 4 DR. CASPER: Coming back to the point of
- 5 why maybe just injecting 10,000 mitochondria would
- 6 be helpful, from the clinical point of view, we
- 7 have been discussing patients who make fragmented
- 8 embryos and trying to rescue those fragmented
- 9 embryos, there is some data that embryo
- 10 fragmentation may be related to apoptosis or
- 11 programmed cell death sort of issue. We have
- 12 actually shown that cell death gene transcription
- 13 does increase with increasing embryo fragmentation.
- 14 Nobody has mentioned so far that
- 15 mitochondria actually have Bcl-2 family member
- 16 proteins associated with them. So, one of the
- 17 issues may well be that we are injecting enough
- 18 mitochondria that we are adding some cell death
- 19 suppressors, enough to sort of inhibit or
- 20 antagonize cell death genes that could be turned on
- 21 abnormally in some of these embryos.
- DR. SALOMON: That is really interesting.
- 23 The problem with that is that at least our current
- 24 understanding of this is that these are occurring
- 25 at the mitochondrial cell surface itself. It would

- 1 be an interesting concept to set up competition
- 2 with controlling caspase activation at the native
- 3 mitochondria by injecting new mitochondria because
- 4 these proteins are not necessarily translocating to
- 5 new mitochondria in the process.
- 6 DR. CASPER: No, but they wouldn't
- 7 translocate. You are putting them in right at the
- 8 time of fertilization, so very early on in the
- 9 process. It could be controlled by the nucleus of
- 10 the cell. You may just have to get the embryo past
- 11 a certain stage so mitochondria can replicate and
- 12 make more of its own protective proteins.
- DR. SALOMON: Dr. Naviaux and then Dr.
- 14 Rao.
- DR. NAVIAUX: There is a dynamic interplay
- 16 in bioenergetics. There are two ways that the cell
- 17 can produce ATP and, because of the interplay where
- 18 we started to get some understanding of that,
- 19 actually in the last century when Pasteur, you
- 20 know, defined the suppression of glycolysis by
- 21 oxygen and later, around 1927 a biochemist,
- 22 Crabtree, defined the suppression of oxidase
- 23 phosphorylation by glucose. Traditionally, when
- 24 you try to measure the contributions of glycolytic
- 25 and ox phos pathways to overall ATP synthesis, you

- 1 do it under laboratory conditions of ambient
- 2 oxygen, let's say, at 20 percent. But the female
- 3 reproductive tract, of course, is one of the most
- 4 anaerobic environments in the human body and low
- 5 oxygen tension actually does alter the relative
- 6 contributions of bioenergetics available to the
- 7 egg, particularly before implantation and the blood
- 8 supply is established.
- 9 There are some early experiments that look
- 10 at radiolabeled glucose and its oxidation to either
- 11 lactate of 14-labeled CO2, and in early embryos a
- 12 very large proportion, exceeding 80 percent of the
- 13 carbon, can come out as 14C-labeled lactate as
- 14 opposed to 14C-labeled CO2, emphasizing the
- 15 importance of glycolysis in bioenergetics of
- 16 embryos at least at an early stage.
- 17 DR. SALOMON: Dr. Rao and then Dr. Murray.
- DR. RAO: I want to try and take off from
- 19 what you just said about rather than looking at
- 20 experiments to see what we can take home from here
- 21 in terms of application, and there are two issues
- 22 that struck me from the points you made. Does this
- 23 tell us anything about the reproducibility of
- 24 taking ooplasm at any site? Should one suggest a
- 25 particular site, or does it tell you that there is

- 1 going to be so much variability that you have no
- 2 predictive power at all?
- 3 The second thing is does this tell you
- 4 about selection of the donor oocyte or the
- 5 recipient oocyte in any fashion in terms of doing
- 6 this?
- 7 Lastly, if one assumes that mitochondria
- 8 can play an important role in signaling, then does
- 9 this tell us that even the small number that you
- 10 place, because of patterns of signaling which are
- 11 critical in terms of dynamism in this thing, that
- 12 small number can be quite critical and, therefore,
- 13 where you place them might be very important as
- 14 well? If anybody can comment on the
- 15 specifications?
- DR. WILLADSEN: I am Steen Willadsen, from
- 17 St. Barnabas. First of all, I think I should tell
- 18 you a little bit about the historical start of
- 19 this. We weren't concerned about mitochondria
- 20 specifically, and I think that in a way we are now
- 21 barking up the wrong tree with the wrong dog.
- Obviously, this committee is concerned
- 23 because there is DNA being transferred. That was
- 24 not our primary concern. It would be very easy, I
- 25 think, to design experiments where no mitochondria

- 1 were transferred. In fact, we don't even know that
- 2 the mitochondria that are in the egg have any
- 3 particular function at the time. As was pointed
- 4 out by one of the speakers, they are probably
- 5 useful for making the egg, which is a very
- 6 specialized cell. So, I think the real issue with
- 7 the mitochondria in this context is are they
- 8 dangerous and how the egg otherwise gets along. I
- 9 think it is wrong to focus so completely on the
- 10 mitochondria because they can very easily be
- 11 brought out of the picture. Then, where would the
- 12 FDA be?
- 13 The second thing is that obviously when
- 14 you look at these risks, and I think I will say at
- 15 this point if you look at the risks, I can only
- 16 speak from the basis of the evidence that I have
- 17 some insight into, the major risk if you enter as a
- 18 patient into this program is that you could get
- 19 pregnant. That is the major risk. Whether you
- 20 would like to say that this because it is a
- 21 treatment or whether you say it is because of the
- 22 place, it is a big risk if you go into the program
- 23 because 40 percent of the patients got pregnant.
- 24 Thank you.
- DR. RAO: Can I respond to that?

- DR. SALOMON: Okay, but I think what we
- 2 have to realize here is that what we are doing
- 3 right this second is focusing on the mitochondria.
- 4 It doesn't mean that we will end the day focusing
- 5 on it, it is just that we are following a
- 6 discussion of two very, you know, high level
- 7 professors telling us about mitochondria. So, I
- 8 think it is very appropriate right this minute to
- 9 be focusing on the mitochondria. But I think that
- 10 to think of this in context, to be reminded that we
- 11 have to put it in context is perfectly fair, and I
- 12 think we will have to come back to it because you
- 13 articulated some of the issues we are going to have
- 14 to deal with in about half an hour. But in that
- 15 context, it is okay. I just don't think we have to
- 16 defend why we are talking about mitochondria right
- 17 now. I think that is what we are supposed to be
- 18 doing.
- 19 DR. SCHON: This is not really in the
- 20 realm of safety but I would just like to bring it
- 21 to the floor. The transfer of ooplasm means the
- 22 transfer of mitochondria right now, unless the
- 23 protocol is changed. So, I would like to spend
- 24 just a couple of minutes talking about the
- 25 evolutionary implications of this, not safety, not

- 1 viability.
- 2 It comes to the heart of why nature
- 3 invented maternal inheritance in the first place.
- 4 So, why is that? In fact, nobody really knows but
- 5 the most reasonable answer is the same reason why
- 6 nature invented sex, and it comes down to something
- 7 Muller's ratchet which in economics would be called
- 8 Gresham's law--all things being equal, things go
- 9 from bad to worse. I think that would be the best
- 10 way to describe Muller's ratchet.
- 11 So, if you had clonal expansions of DNAs
- 12 that were going to their progeny, eventually they
- 13 would call up mutations and wipe out that organism
- 14 in evolutionary time. So, sex was invented to
- 15 erase that--well, that is a little bald statement
- 16 there. That is part of the reason I think sex was
- 17 invented, to help accommodate, to deal with those
- 18 kinds of mutations.
- Now, when you have an organelle that is
- 20 present not at one or two copies per cell but at
- 21 thousands, it is very difficult to deal with that
- 22 kind of a problem of Muller's ratchet where, if a
- 23 mutation arises, it just naturally will spread
- 24 through the population, as you saw so dramatically.
- 25 So, what appears to have happened is that maternal

- 1 inheritance came around so that when mutations
- 2 arose you shut them down. In fact, when we look at
- 3 pedigrees with real diseases, first of all, the
- 4 pedigrees are short, meaning they go from
- 5 great-grandmother to proband and might go one more
- 6 generation and then, like a light going out, that
- 7 pedigree is extinguished carrying that mutation.
- 8 That is what is really going on.
- 9 That mutation only passes through the
- 10 maternal line and goes nowhere else. So, all
- 11 mitochondrial mutations that we study are really
- 12 only a few hundred years old, if you will, or less
- 13 in time. They come on and they go out.
- So, what does this have to do with
- 15 ooplasmic transfer? So, now we are taking oocytes,
- 16 ooplasm containing mitochondrial haplotype A and
- 17 sticking it into a recipient cell with
- 18 mitochondrial haplotype B. This is lateral genetic
- 19 transfer. All right? We haven't eliminated
- 20 Muller's ratchet but we haven't made things that
- 21 much better either because now you are putting in a
- 22 new genotype from this pedigree into a new
- 23 pedigree. If you do this with one person, two
- 24 people, ten people, a hundred people it is probably
- 25 irrelevant. But if you start doing this with tens

- 1 of thousands of people--I don't expect this ever to
- 2 happen at that scale but it is something just to
- 3 think about--y are now transferring mitochondrial
- 4 genotypes horizontally through the population that
- 5 otherwise would never have been transferred because
- 6 they all pass vertically. That is the only point I
- 7 am trying to make. I can't quantitate the impact
- 8 of this, it is just a fact.
- 9 DR. MURRAY: This will be a question for
- 10 Dr. Van Blerkom. Thanks to both speakers.
- 11 Fascinating, I have learned a lot from both
- 12 presentations. I am going to focus on one thing
- 13 which we may actually be able to put aside, but one
- 14 of the striking things in your presentation was the
- 15 information about the dynamic patterning and
- 16 remodeling of the location of mitochondria in the
- 17 egg. You showed us some slides of how that might
- 18 affect calcium ion transport, and the like. Is
- 19 there any reason to think that the injection of
- another 10,000, a bolus of cytoplasm with 10,000
- 21 mitochondria in some particular site in the egg
- 22 would be either readily integrated and made to
- 23 dance the same way as the native ones, or might
- 24 there be some disruption of, say, fine structure of
- 25 transport structures, the architecture within the

- 1 cell that might make it more difficult? One, is
- 2 this important enough to worry about? Two, are
- 3 there ways to sort of answer that question?
- DR. VAN BLERKOM: I don't think I have an
- 5 answer for that, except to say that the work we
- 6 have done with regard to mitochondrial transfer
- 7 indicates that you can't predict how they we dance.
- 8 In some eggs they will remain where you place them
- 9 as the cells divide; in others there is a more
- 10 pronounced distribution. So, that is the level of
- 11 predictability, which is a problem.
- 12 As far as interrupting, I don't get the
- 13 sense that the amount of cytoplasm that is put in
- 14 and the number of mitochondria that are transferred
- 15 is actually significant in terms of disrupting any
- 16 of the normal cell functions or even contributing
- 17 to them, for that matter.
- DR. MURRAY: You don't think it makes a
- 19 difference?
- DR. VAN BLERKOM: I don't think it makes a
- 21 difference.
- DR. MULLIGAN: Is there anything that
- 23 aggregates the mitochondria or keeps them in any
- 24 constrained fashion that, upon transfer--this is
- 25 kind of a similar question to what Tom was asking,

- 1 that is, some cytoskeletal structure that you
- 2 transfer like a precipitative mitochondria?
- 3 DR. VAN BLERKOM: I think Jacques actually
- 4 alluded to this when he spoke about differences in
- 5 the cytoplasmic texture, and we have to think in
- 6 terms of the human and our experience, those of us
- 7 who have experience in working with human eggs, is
- 8 that even with the standard ICSI procedure eggs
- 9 differ substantially in how they receive sperm, how
- 10 the cytoplasm is withdrawn, the viscosity of the
- 11 cytoplasm, and you can actually see this as you do
- 12 it. I have seen this many times. I think the
- 13 situation that Jacques has described, where you
- 14 have different cytoplasmic textures and you can
- 15 actually see in his cytoplasmic transfer studies
- 16 the cytoplasm that is injected in some eggs but not
- 17 in others, I think indicates why in some cases when
- 18 you put in a bolus of mitochondria or a bolus or
- 19 cytoplasm they remain fixed in position and in
- 20 other cases they are more diffuse. I think you
- 21 cannot predict that. I don't think you want to
- 22 relax the cytoplasm by treating it with drugs so
- 23 that you have some sort of uniform distribution or
- 24 some controllable distribution.
- DR. MULLIGAN: Can you alter the viscosity

- 1 or whatever you want to call it--
- 2 DR. VAN BLERKOM: In a sense you can relax
- 3 the cytoplasm. It usually requires treatment with
- 4 some relaxant drugs that will relax
- 5 cytoarchitectural components. I don't think you
- 6 want to do that in clinical IVF. The problem in
- 7 the cytoplasm injection is that you have already
- 8 injected the cytoplasm and now you discover that,
- 9 in fact, the recipient egg has, let's say, a
- 10 particular viscosity where the cytoplasm remains
- 11 intact in one position. Maybe those type of
- 12 studies will be useful to determine whether or not
- 13 the mitochondria remain fixed or not as a prelude
- 14 to a clinical trial. But they are differences that
- 15 are egg specific. They are hard to predict and
- 16 what I tried to emphasize is that just by looking
- 17 at an egg you really can't tell.
- DR. SALOMON: Dr. Hursh and then Dr.
- 19 Sausville. Then what I would like to do is move on
- 20 to Dr. Knowles, only because I am just trying to
- 21 have some time at the end.
- DR. MALTER: Very brief?
- DR. SALOMON: Yes, sure.
- DR. MALTER: I am Henry Malter, from St.
- 25 Barnabas. Jonathan, the experience you showed,

- 1 what exactly did you do? Was that where you were
- 2 isolating essentially mitochondria in part of the
- 3 cytoplasm and taking it from there?
- DR. VAN BLERKOM: The experiments I showed
- 5 were not cytoplasmic injections. These were
- 6 procedure where we have actually compartmentalized
- 7 the mitochondria and then took mitochondria in
- 8 relatively small drops, smaller than you would
- 9 actually use in a cytoplasmic transfer, and
- 10 actually deposited it into the egg. So, those were
- 11 enriched mitochondrial fractions.
- 12 DR. MALTER: I just wanted to remind of
- 13 some images that actually Jacques showed because we
- 14 have done this as well. In fact, we have done it
- 15 with spare human material and it is essentially
- 16 duplicating exactly what is done during the
- 17 clinical cytoplasmic transfer material, loading an
- 18 egg with labeled mitochondria and injecting them.
- 19 Those were not extensive experiments but we never
- 20 saw that just sitting in one place. Basically, you
- 21 showed right after injection you can see this
- 22 bolus, this red image in part of the cytoplasm and
- 23 then, as development proceeded, they just
- 24 essentially seemed to disperse and it was just
- 25 variable. You would see it in some blastomeres.

- DR. VAN BLERKOM: So, these were
- 2 fertilized eggs after injection?
- 3 DR. MALTER: Yes.
- 4 DR. HURSH: This question is for Dr.
- 5 Shoubridge. You don't feel that heteroplasmy
- 6 itself is a problem, but if there was a situation
- 7 where the mitochondria became asymmetrically
- 8 distributed so you had one, say, organ that was
- 9 primarily donor mitochondria could you foresee any
- 10 problems with that mitochondria with a disconnect
- 11 with the nucleus in any way? Would that be a
- 12 safety consideration that we need to be
- 13 considering?
- DR. SHOUBRIDGE: Our data would suggest
- 15 that it is not a big problem, but I don't think you
- 16 can rule it out because, I mean, what happens
- 17 biologically is that every time you have a child,
- 18 of course, the father's nuclear DNA is introduced.
- 19 So, now that nuclear DNA is introduced to
- 20 mitochondrial DNA that it has never seen and the
- 21 mother's genome has seen that mitochondrial DNA.
- 22 So, it is a natural process for new nuclear genes
- 23 to be introduced into mitochondrial DNA genes to
- 24 dance with them and they have never danced with
- 25 them before, to follow the dancing analogy. But in

- 1 the case of our mice, of course, that is exactly
- 2 what we have, we have complete fixation of a donor
- 3 genotype in the liver. In that case it doesn't
- 4 seem to produce any particular phenotype that we
- 5 can recognize but we haven't done any liver
- 6 function tests. The mice seem to be pretty normal,
- 7 but I don't think you can rule it out.
- 8 DR. SAUSVILLE: So, this question's last
- 9 comment sort of follows along on that. First of
- 10 all, I want to thank both of the speakers this
- 11 afternoon because I think they have put, at least
- 12 for me, a lot of the biological issues somewhat in
- 13 greater perspective.
- 14 But, I guess, addressing one of the other
- 15 major concerns that goes into the IND and, again,
- 16 this is somewhat to what Dr. Hursh's question
- 17 alludes to, is the issue of safety. I seem to be
- 18 hearing that if one looks to safety either from the
- 19 implications for the recipient, the organism who
- 20 receives it, the mouse experiments don't suggest
- 21 that there is a tremendously great effect for
- 22 having radically different mitochondrial genomes
- 23 and, moreover, do suggest that if there were to be
- 24 a bad different you would have to have an enormous
- 25 amount of penetration in one participant organ.

- 1 Then, the comment that you made
- 2 subsequently is that if one looks at safety from
- 3 the standpoint of evolutionary safety, at one level
- 4 you could construe that as an argument that the
- 5 mechanism is designed to keep itself safe because
- 6 it is going to extinguish itself within a very few
- 7 generations and you would have to posit that if
- 8 this were a threat to our collective genomes you
- 9 would have to have a succession of almost continued
- 10 maintenance through some sort of artificial system.
- 11 So, I guess quite apart from the issue of
- 12 whether mitochondria really do anything for you or
- 13 whether, indeed, the cytoplasm does anything for
- 14 you, my initial reaction to this is that it is hard
- 15 to make the case that the procedure appears unsafe,
- 16 at least from the standpoint of mitochondrial
- 17 related matters.
- DR. SALOMON: Yes, I think I was earlier
- 19 saying the same thing in another way, that it seems
- 20 like with the threshold issue there is a lot of
- 21 safety.
- DR. SHOUBRIDGE: I guess the only thing I
- 23 would add there is that the slight caution is that
- 24 because we know there are mechanisms that increase
- 25 the proportion of bad guys in cells from patients

- 1 who have disease, if you unwittingly put in
- 2 something from an individual that is below the
- 3 threshold you could select for it in a
- 4 tissue-specific way. I think that may be a very
- 5 small risk but I don't think it is zero.
- 6 DR. MULLIGAN: I think that one issue
- 7 about mechanism that is important is that if you
- 8 really did think that mitochondria weren't
- 9 important, by not having mitochondria in your
- 10 ooplasm you could, obviously, reduce whatever risk
- 11 you otherwise would be concerned about. So, it is
- 12 a relevant issue just because you have wiped out
- 13 that risk completely if you didn't have any.
- DR. SAUSVILLE: But then that becomes
- impossible to investigate in the conventionally
- 16 clinically oriented situation since what we have
- 17 heard is that while, in an ideal sense, you would
- 18 parse out precisely which part of this works, I
- 19 inferred from the discussion earlier that that is
- 20 going to be very difficult from a practical point
- 21 of view to ever do in a meaningful sense
- 22 clinically.
- DR. MULLIGAN: There might be people who
- 24 don't feel that that is an important part of the
- 25 method and would choose to go down the regulatory

- 1 pathway that wouldn't make use of mitochondria.
- DR. SAUSVILLE: I don't think there is
- 3 anything that would prevent that from a regulatory
- 4 standpoint, but the issue is whether or not the
- 5 user community would actually go down that path. I
- 6 think that is uncertain to me from what I have
- 7 heard.
- 8 DR. SALOMON: We certainly haven't gotten
- 9 to where we need to be by the end of the day, but I
- 10 think we have made some progress along that line.
- 11 Ms. Knowles is going to talk to us about ethical
- 12 issues and then, just to give you the lay of the
- 13 land, we are going to do the public comment
- 14 section, take a break and come back and really get
- 15 into the key questions, and that is when we will
- 16 have to have it all in perspective, mitochondrial
- 17 safety, ooplasm, other components of the ooplasm
- 18 and its impact on this group of scientists and
- 19 physicians.
- 20 Ethical Issues in Human Ooplasm
- 21 Transfer Experimentation
- MS. KNOWLES: Thank you for inviting me to
- 23 be a part of this. I have been charged with
- 24 elucidating the ethical issues in human ooplasm
- 25 transfer experimentation. So, we are going to step

- 1 back a little bit from all the mitochondrial data
- 2 we have been talking about, and stepping back from
- 3 the animal models, and we are looking now at the
- 4 issue that we started with today, looking at the
- 5 experimentation of ooplasm transfer, that I am
- 6 going to call OT just for shorthand, in humans, and
- 7 looking at some of the ethical issues.
- 8 In terms of context, I just want to
- 9 highlight that all medical experimentation takes
- 10 place in the context of some risk and some
- 11 uncertainty. The question, therefore, is what is
- 12 the threshold of risk and uncertainty that is
- 13 acceptable? One way that we can better understand
- 14 the risk and uncertainty of OT experimentation is
- 15 by looking at what I am calling the knowns and
- 16 unknowns.
- So, in terms of elucidating safety and
- 18 efficacy concerns, we are going to say to ourselves
- 19 what threshold of risk and uncertainty exists in
- 20 this context and so what are the knowns and
- 21 unknowns. I am going to look at the implications
- 22 this has not only for whether it is ethical to
- 23 proceed with this technique in women and to create
- 24 children, but also the implications for informed
- 25 consent.

1 Considerable amount of thought, discussion

- 2 and work has been devoted to the question of the
- 3 ethics and science of both therapies and
- 4 experiments that result in inheritable genetic
- 5 modifications, and I adopt that term from the AAAS
- 6 report of 2000. In the time that is allotted to
- 7 me, I can't do justice to that work but what I can
- 8 do is nod to some of the work and some of the
- 9 issues that are on the table when we are talking
- 10 about inheritable genetic modifications.
- 11 Similarly, I don't actually have time to address
- 12 the depth of the issue of what I call the invisible
- 13 woman, the other woman who is involved in all of
- 14 these procedures, the egg provider.
- So, it is extremely important to realize
- 16 that the implications of proceeding with OT both in
- 17 experiments and as a clinical technique have larger
- 18 ripple effects which implicate the safety of the
- 19 women who undergo the egg provision, the egg
- 20 donation as it is called, to enable this technique
- 21 to go forward. So, whereas ooplasm transfer is
- 22 primarily concerned with transplanting genetic
- 23 material that is believed, although we don't know
- 24 certainly at all, to not have an impact on
- 25 phenotypic development of the embryo, there is a

- 1 likelihood then that the market for oocytes will be
- 2 increased and will pull on women who have not
- 3 typically been pulled on for provision of eggs
- 4 based on their phenotypic characteristics which
- 5 aren't going to be, we assume, as important in this
- 6 market. So, that has some larger social ripples
- 7 and ramifications that we should be thinking about
- 8 as well.
- 9 That leads me to my last area of concern
- 10 that I am actually not going to touch on. Given
- 11 FDA's mandate, I am not going to address the social
- 12 and legal ramifications of this technique but I
- 13 think it is necessary to underline the importance
- 14 these issues have, the uncertainty that exists
- 15 where genetic parenthood is tripartite and the
- 16 ethical imperative now to have a broad and
- 17 multidisciplinary review of the ethical and
- 18 scientific issues. So, somebody needs to be free
- 19 to deliberate about these larger ethical issues as
- 20 well, and I think it is my responsibility to just
- 21 outline that.
- 22 Turning then to safety and efficacy, we
- 23 are asking ourselves what are the unknowns. There
- 24 are clearly more unknowns than I have on this list
- 25 so I am just going to highlight what I think some

- 1 of the most important unknowns are. The first is
- 2 it is not known, and we have heard this many times
- 3 so a lot of what I am going to say is going to be
- 4 sort of summarizing--what is not known are the
- 5 defects that ooplasm transfer is trying to correct.
- 6 It is not known what is doing the work in
- 7 OT. Although we have concentrated on mitochondria
- 8 recently, we have to remember that we don't
- 9 actually know what is doing the work. We don't
- 10 know whether OT techniques have an adverse effect
- 11 on transferred material. We don't know that. We
- don't know whether OT helps actualize abnormal
- 13 embryos that would not otherwise be actualized.
- 14 And, we don't know the effects on embryos, infants
- and toddlers--humans--with heteroplasmy. Would
- 16 don't know what its effects are.
- 17 So, let's delve a little bit into that.
- 18 Our scientific understanding of why an embryo does
- 19 not develop is still incomplete. We heard that a
- 20 number of different ways today. We know there are
- 21 a number of different factors that may be
- 22 implicated including maternal age and including ATP
- 23 deficiencies. So, let's look at what some of the
- 24 other factors may be.
- 25 This is a partial quotation from The New

- 1 England Journal of Medicine, March 7, 2002, many
- 2 factors can lead to poor embryonic development,
- 3 including chromosomal abnormalities, genetic
- 4 defects, and cellular abnormalities. Impaired
- 5 embryonic development may also be consequence of
- 6 other problems within the embryo or in its
- 7 immediate environment.
- 8 In the Huang experiment, in fertility and
- 9 sterility, October, 1999 it was stated, the reasons
- 10 for previous implantation, and this is in
- 11 describing the failure of the nine patients in that
- 12 study, the reasons for previous implantation
- 13 failure in these nine patients are not clear
- 14 because their oocytes appeared morphologically
- 15 normal and the embryo transferred were of fair
- 16 quality.
- 17 This is complicated by a great variation
- in the women in each of the studies, incomplete
- 19 histories of the techniques each woman underwent
- 20 prior to OT, the number of attempts, the techniques
- 21 tried after OT and inclusion and exclusion criteria
- $22\,$ $\,$ for the women in each group. This is complicated
- 23 by what Dr. Lanzendorf and her colleagues refer to
- 24 as the subjective grading of embryos in vitro
- 25 performed by various embryologists, which renders a

- 1 comparison between patients' previous IVF cycles
- 2 and treatment cycles unavailable. So, we know that
- 3 that information in terms of comparison is not
- 4 available to us in many circumstances.
- 5 Continuing with the unknowns, what is
- 6 doing the work? We don't know this. Since we
- 7 don't know what is doing the work and whether in
- 8 all cases it is the same beneficial factor, which
- 9 we can't assume it necessarily is and we don't even
- 10 know if the same beneficial factors are
- 11 transferred, it is not actually possible to know
- 12 whether OT is clinically indicated in a particular
- 13 case.
- I have shorthanded the citations because I
- 15 have so many words on these slides, but I have the
- 16 citations if you would like them. The mechanisms
- 17 involved are still enigmatic. It remains unclear
- 18 as to which cellular components are transferred in
- 19 the donor ooplasm. Exact mechanisms and factors
- 20 that help to rescue the function of the defective
- 21 oocytes remain unknown. It is not yet clear how
- 22 ooplasm transfer works. Specialized proteins or
- 23 messenger RNAs may direct subsequent cell cycle
- 24 events. it is also possible that donor
- 25 mitochondria is providing the benefit.

```
1 So, can transfer techniques have an
```

- 2 adverse effect on material that is transferred,
- 3 transferred material? Here, of course, we are
- 4 concerned with the risks that are implicit in this
- 5 technique. Interestingly, it seems that all the
- 6 research of the clinicians in the protocols that we
- 7 were provided express some concern with the source
- 8 of ooplasm or cytoplasm used either in their own
- 9 experiment outcome used by other in the other
- 10 experiments. These concerns include the effects of
- 11 cryopreservation of the material transferred since
- 12 that has been studied and shows that
- 13 cryopreservation can have negative impact on
- 14 oocytes and embryos. That, obviously, has to be
- 15 considered.
- So, let's look at what they said, because
- 17 it is still not known what is being transferred to
- 18 recipient oocytes, it cannot be determined if
- 19 cryopreservation may have an averse effect on these
- 20 factors.
- 21 This is the 3PN protocol and they are
- 22 commenting on the use of metaphase II oocytes, one
- 23 concern we have is the risk of transferring donor
- 24 chromosomes, and we heard about this earlier, from
- 25 metaphase II oocytes of donors into the recipient's

- 1 oocytes.
- 2 We feel validation is still required to
- 3 provide absolute proof that donor nuclear DNA has
- 4 not been accidentally transferred. That is
- 5 referring to the 3PN protocol.
- 6 What are the effects on embryos? Well,
- 7 the bottom line is we don't actually know. Let's
- 8 take a look at what they said. Even though the use
- 9 of cytoplasmic transfer has been employed in
- 10 several IVF clinics--this is from the abstract, by
- 11 the way, of this report--and pregnancies have
- 12 resulted, it is not known definitively whether the
- 13 physiology of the early embryo is affected.
- There may be an improved developmental
- 15 potential of hybrid cytoplasm in chromosomally
- 16 normals as well as abnormal embryos. So, here we
- 17 know the following risk exists with respect to the
- 18 effect that OT may have on embryos and that
- 19 abnormal embryos may be actualized as well as
- 20 normal embryos getting the boost that we talked
- 21 about.
- We do know at this point that ooplasmic
- 23 transfer can alter the normal inheritance of
- 24 mitochondrial DNA resulting in sustained
- 25 heteroplasmy representing both donor and recipient

- 1 mitochondrial DNA. That is also a quotation.
- What are the effects on the embryos,
- 3 infants and toddlers with heteroplasmy? And, we
- 4 are talking about humans. Well, because little is
- 5 understood about the maintenance of mitochondrial
- 6 heteroplasmy and its nuclear regulation during
- 7 human development, the effects of potentially
- 8 mixing of two mitochondrial populations are still
- 9 being debated. In other words, we don't know.
- 10 We do know that mitochondrial heteroplasmy
- 11 may result in embryos, approximately 50 percent
- 12 from my reading that particular study, of
- 13 non-viable embryos used in Barritt's study
- 14 exhibited this trait. We also know that two
- 15 children now exhibit mitochondrial heteroplasmy,
- 16 but we don't know what this means and it is unclear
- 17 whether all the children created from ooplasm
- 18 transfer have been tested for mitochondrial
- 19 heteroplasmy. It sounds like, from the first
- 20 speaker's presentation, that we know that, in fact,
- 21 not all the children that have been created this
- 22 way have been tested.
- So, let's look at what we do know. Well,
- 24 we know that the incidence of chromosomal anomalies
- 25 is higher in this population than the rate of major

- 1 congenital abnormalities observed in the natural
- 2 population. This is a quotation from page 430 of
- 3 Barritt et al. in the European Society of Human
- 4 Reproduction and Embryology journal.
- 5 We know that one 18-month old boy, as Dr.
- 6 Cohen was mentioning this morning, has been
- 7 diagnosed with PDD. And, we know that the
- 8 mitochondrial DNA inheritance is changed in some
- 9 children resulting in an inheritable genetic
- 10 modification.
- 11 Let's talk about inheritable genetic
- 12 modification. I want to say first of all that
- 13 there has been kind of an interesting discussion
- 14 going on in the literature about whether this is,
- 15 in fact, a case of germline genetic modification.
- 16 I think that is, in fact, interesting in and of
- 17 itself, the fact that there is a lot of energy
- 18 being spent to make sure that we are not labeling
- 19 this a germline genetic modification. That should
- 20 be telling us something. I have seen some very
- 21 interesting arguments about why it is not a case of
- 22 germline genetic modification, including one that I
- 23 have mentioned to several people before, that it
- 24 can't be considered a germline genetic modification
- 25 because is doesn't pass through males. Well, I am

- 1 not actually going to discuss that particular
- 2 argument but the energy that is being expended
- 3 should be telling us something about whether, in
- 4 fact, it is an inheritable genetic modification.
- Well, why are we concerned about IGMs?
- 6 Here I have to be really very concise. This term
- 7 IGM, inheritable genetic modification, as I
- 8 mentioned, I am taking from the AAAS, the American
- 9 Association for the Advancement of Science, their
- 10 2000 report which brought together a group of
- 11 eminent scientists including gene therapists,
- 12 ethicists and policy analysts, and they say the
- 13 following, they say essentially due to the
- 14 transmission of inheritable genetic modifications,
- there would need to be compelling scientific
- 16 evidence that these procedures are safe and
- 17 effective, compelling scientific evidence. For
- 18 those techniques that have foreign material, their
- 19 stability across generations would need to be
- 20 determined based initially on molecular and animal
- 21 studies before proceeding with germline
- 22 interventions in humans. It is not yet possible to
- 23 meet these standards, nor is it possible to predict
- 24 when we will be able to do so. One footnote I
- 25 should add that was correctly mentioned earlier, we

- 1 don't know whether, because the blood only of these
- 2 children has been tested, the germ cells have also
- 3 inherited this mitochondrial heteroplasmy. But we
- 4 haven't tested for that yet because we can't at
- 5 this point. So, it is important to recognize that
- 6 that, in fact, is true but it doesn't mean that
- 7 this is not inheritable genetic modification. That
- 8 is important.
- 9 They also go on and say the possibility of
- 10 genetic problems occurring as a result of the
- 11 unintended germline side effects seems at least as
- 12 great or greater than those that might arise from
- 13 intentional inheritable genetic modifications which
- 14 at this time we don't permit in many, many
- 15 countries. Why? Because knowing you were creating
- 16 an IGM assumes that you would have safeguards and
- 17 rigorous monitoring in place and we know that in
- 18 this case that is actually not true because they
- 19 allegedly didn't think that they were going to be
- 20 transmitting genetic modification.
- So, those are the AAAS conclusions.
- 22 Clearly, we have a duty to future
- 23 generations--there is a lot of theoretical work on
- 24 this, but we can intuit that we do have a duty to
- 25 future generations to be thinking about what we

- 1 are, in fact, passing on to them, to be doing it
- 2 carefully if we are going to do it.
- 3 I would note that there is almost never
- 4 consensus in the international community, but there
- 5 is pretty close to a consensus in the international
- 6 community that we should not be doing research that
- 7 results in inheritable genetic modifications. I
- 8 just want to highlight, in terms of the
- 9 international work, that this would not be
- 10 permitted in most countries, this kind of protocol,
- 11 and in the U.K., which is arguably the most liberal
- 12 with respect to embryo research, they are going to
- 13 allow some stem cell protocols that we are not in
- 14 this country, they prohibit germline modification,
- and the House of Lords stem cell report noted
- 16 that--they didn't discuss OT in the context of
- 17 fertility treatments at all, but discussed what we
- 18 were discussing, the use of a similar procedure
- 19 with respect to screening out mitochondrial disease
- 20 and they said that very little research has been
- 21 carried out on this procedure and it would need
- $22\,$ $\,$ extensive testing in animal models and in human $\,$
- 23 eggs before it could be used therapeutically in
- 24 humans. Remember that they are talking about a
- 25 therapy in a disease, not fertility, in that

- 1 context.
- What does heteroplasmy of this type, the
- 3 type that we have been discussing in humans in the
- 4 two children that we have been talking about, what
- 5 does it mean? Well, the bottom line is we don't
- 6 know. We do know that there are diseases
- 7 associated with mitochondrial heteroplasmy. We
- 8 know that. Yet, there is no reason to consider
- 9 this mitochondrial DNA heteroplasmy from this OT
- 10 protocol as harmful because it is known to occur
- 11 naturally in normal individuals.
- 12 Well, to be fair, we don't know if this
- 13 type of heteroplasmy resulting from these
- 14 experiments results in mitochondrial disease
- 15 because it doesn't occur naturally. So, we haven't
- 16 been able yet to determine that it is benign. We
- 17 simply know that this other type of heteroplasmy
- 18 can occur in normal individuals and it can occur
- 19 and be associated with disease states as well. So,
- 20 we cannot say that it is benign because we don't
- 21 know. We don't have the information at hand to
- 22 know. We haven't done the experiments yet to know
- 23 or the follow-up to know.
- 24 We do know that one child has PDD but we
- 25 don't know whether that child actually is

- 1 heteroplasmic or not. I would like to know that if
- 2 we have that information available. I don't think
- 3 we know that.
- 4 What else? Well, since mitochondrial
- 5 diseases are associated with heteroplasmy that can
- 6 be early or late onset, we cannot know whether this
- 7 heteroplasmy is benign until these children grow
- 8 up. That is a basic conclusion from logic.
- 9 Limitations of clinical data, well we
- 10 heard very candidly from our speakers, and it is
- 11 much appreciated, some limitations of the clinical
- 12 data. It is very helpful. Small sample sizes;
- 13 incomplete information on the women in the
- 14 experiment for a number of very legitimate reasons.
- 15 We don't know necessarily whether previous
- 16 procedures are the reasons for their failure.
- 17 Incomplete testing of the children who have been
- 18 born; and the lack of long-term follow-up.
- 19 This is particularly troubling. There is
- 20 clearly a need for long-term monitoring of the
- 21 children that are born with a heteroplasmic
- 22 condition and those that aren't born with a
- 23 heteroplasmic condition. In addition, there is
- 24 likely going to need to be extensive follow-up of
- 25 these children until they have children to

- 1 determine whether, in fact, we have an inheritable
- 2 genetic modification and what happens to it through
- 3 the generations.
- 4 This follow-up can, and will likely be
- 5 very intrusive because, as we were hearing on the
- 6 mouse models, the mitochondrial segregation is
- 7 tissue specific and differs. So, if you are going
- 8 to do proper follow-up you would need to take
- 9 tissue biopsies from different tissues to
- 10 understand how the mitochondria has been
- 11 differentially segregated. This, of course, could
- 12 be extremely intrusive. Whether one could
- 13 ethically consent to this kind of long-term
- 14 monitoring and invasive follow-up for a child that
- 15 is not yet conceived has to be added to the ethical
- 16 picture when we are looking at this.
- 17 So, what do the knowns and unknowns tell
- 18 us? Well, this has pretty profound implications
- 19 for informed consent. How you get meaningful
- 20 informed consent in this environment is a real
- 21 question and a real challenge, not only because of
- 22 all the information that we don't know but also
- 23 because of the specific environment which we are
- 24 dealing with. We are dealing with the environment
- 25 of reproductive medicine which has a reputation for

- 1 having a tremendous overlap between clinical
- 2 innovation and human experimentation. This
- 3 environment has to be factored into the whole
- 4 question of the meaningfulness of informed consent.
- 5 Added on to that is the fact that patients
- 6 that come into fertility clinics are desperate,
- 7 truly desperate for real reasons to get pregnant.
- 8 We heard very candidly that they will pressure
- 9 concentrations, researchers, to provide techniques
- 10 for them even when they are not necessarily
- 11 indicated. We have clinicians who are very
- 12 thoughtful people but who have developed their
- 13 practice as clinician researchers where much of
- 14 their practice is the practice of experimentation
- 15 because they can. This is an interesting area
- 16 where they can actually do a lot of clinical
- innovation and human experimentation.
- 18 So, what does that mean? It means that
- 19 perhaps this is not the best environment for basic
- 20 research to be conducted when down the road the
- 21 risks could be much more than society or even the
- 22 individuals are actually willing to bear despite
- 23 what they say in this context. There is near
- 24 consensus in the literature, in the briefing
- 25 package, the protocols that we have been

- 1 discussing, that this is not ready for widespread
- 2 clinical applications. Pretty much all the
- 3 protocols we read or people who have spoken to us
- 4 earlier today indicate in their work that they do
- 5 not believe it is appropriate to conduct this
- 6 experiment in a widespread fashion in fertility
- 7 clinics in this country. They are very candid
- 8 about that.
- 9 So, should there be more animal testing?
- 10 Yes. At the very least, one of the things I was
- 11 struck by was when Dr. Shoubridge was talking is
- 12 that at the very least we could be doing the tests
- 13 on his animals, tissue-specific tests to find out
- 14 whether they are, in fact, normal. He says they
- 15 appear normal, very candidly, but he doesn't know.
- 16 They haven't tested for that. So, we could be
- 17 doing that work.
- 18 Given the level of uncertainty of the
- 19 risk, I think the answer is quite clearly yes. All
- 20 the studies that we look at rely on animal studies.
- 21 So little is known about the function of
- 22 mitochondria, about heteroplasmy, about the
- 23 bottleneck, about mitochondrial diseases that
- 24 animal experimentation of various kinds, mice,
- 25 primates, can surely help elucidate these

- 1 underlying uncertainties.
- 2 Finally, must there be further human
- 3 embryo experimentation before embryos are implanted
- 4 and children are born? Yes. There must be more
- 5 human embryo experimentation before implantation.
- 6 This is a lovely quote from The New England Journal
- 7 of Medicine, the use of novel reproductive
- 8 techniques must be based on more than their mere
- 9 availability. There has to be clear clinical
- 10 indication for using such techniques, evidence of
- 11 their efficacy and consideration of the risks to
- 12 the mother and society.
- 13 This is difficult. We make decisions
- 14 about bringing techniques to human trials by
- 15 looking at the risks and uncertainties, the
- 16 potential harm to the patients, offspring and other
- 17 individuals involved. But we have to also factor
- 18 in the nature of the condition that is the focus of
- 19 these experiments in examining the risk to the
- 20 patients. Here we are talking about how quickly we
- 21 move forward. How imperative is it that this
- 22 results in human experimentation in the clinics
- 23 tomorrow? So, this is a factor in our
- 24 deliberations.
- 25 In this case, although infertility can be

- 1 a very serious condition with serious and real
- 2 emotional impacts and personal side effects, this
- 3 is not always the case with infertility. More
- 4 importantly, we are talking about the ability to
- 5 have a genetically related child. Let's make it
- 6 even more of a finer point here. The inability to
- 7 have a genetically related child is not a
- 8 life-threatening or fatal condition.
- 9 So, my point is simply that when we
- 10 discuss how quickly we move forward, the necessity
- 11 of making this happen quickly in fertility clinics,
- 12 we have to keep this in mind as well. Finally and
- 13 very importantly, we have a duty to the children
- 14 that we help to be born to do our utmost to see
- 15 that they are born free from disease or impairment,
- 16 and we are not there yet.
- 17 The combination of these factors quite
- 18 clearly, in my mind, mandates that further trials
- 19 not be conducted on human embryos that will be
- 20 implanted in women with the hope of creating more
- 21 children at this time. If the FDA decides
- 22 otherwise, there are, in fact, all kinds of factors
- 23 that should be introduced, that I don't have time
- 24 to go through--informed consent procedures,
- 25 rigorous screening, etc. that we can discuss at

- 1 another time. That is the end of my remarks.
- DR. SALOMON: Thank you for a really
- 3 superb presentation and actually an excellent
- 4 transition. What I would like to do now, before
- 5 the break, is to invite three people who are on the
- 6 official docket for public comment. We have
- 7 allotted seven minutes each for these people. Then
- 8 we will take a break and then come back and face
- 9 the set of questions, many of which we have set
- 10 groundwork for and some of which we will have to
- 11 try and put in a proper context.
- 12 The first person I would call for the
- 13 public hearing is Dr. Jamie Grifo, representing the
- 14 American Society for Reproductive Technology.
- 15 Welcome, Dr. Grifo.
- 16 Open Public Hearing
- DR. GRIFO: Thank you. I appreciate the
- 18 opportunity to speak. My name is Jamie Grifo. I
- 19 am a clinician researcher. I am a reproductive
- 20 endocrinologist. I am the division director at
- 21 MIU, University School of Medicine for Reproductive
- 22 Endocrinology. I oversee our laboratory; I oversee
- 23 our research. I run the fellowship and I am a
- 24 practicing clinician.
- In my spare time I am the president of

- 1 SARD. SARD is an organization of the American
- 2 Society of Reproductive Medicine. It has been in
- 3 existence since 1988. We are composed of
- 4 physicians, scientists, researchers, embryologists,
- 5 nurses, mental health providers and patient
- 6 advocates. We set the standard for the practice of
- 7 our medicine.
- 8 You have never heard a story about this
- 9 organization because we are not sensational and
- 10 there is no journalist that will tell our story.
- 11 We have effectively set the standard for our field;
- 12 we have self-regulated and no one knows this story.
- 13 We are the only group of physicians in the world
- 14 who collect data, validate data, publish data in
- 15 collaboration with the CDC about clinic specific
- 16 and national birth rates. We have strict
- 17 membership guidelines. We have strict criteria for
- 18 lab and medical directors of programs. We validate
- 19 data by random site visits. We have ethical
- 20 guidelines and practice guidelines that are
- 21 required to be followed in order to maintain
- $22\,$ membership. We have teeth. We have eliminated $30\,$
- 23 people from our membership for failure to adhere to
- 24 our guidelines.
- More recently, we now require performance

- 1 standards and if they are not met we offer remedial
- 2 services to these clinics to assure quality of
- 3 care. We have also issued a statement saying that
- 4 we do not think reproductive cloning should be done
- 5 at the current time until it is proven to be safe
- 6 and effective.
- 7 So, we have set the standard for our
- 8 field. We do regulate our field, and we have done
- 9 a very good job. Unfortunately, the media prefers
- 10 to talk about people who are not our members and
- 11 who are not doing things that people say they are
- 12 doing.
- We are very pleased that the FDA has taken
- 14 an active role in regulating the medicines and the
- 15 devices that we use to assure safety for our
- 16 patients. Our goal is that our patients have
- 17 healthy outcomes.
- I do not believe, and we do not believe
- 19 that ooplasmic transfer is a food or a drug. It is
- 20 a research protocol. Research protocols
- 21 traditionally have been regulated by a very fine
- 22 situation that has withstood the test of time. It
- 23 is called informed consent and institutional review
- 24 board. That method has worked. Human research has
- 25 been done ethically. Results have been good.

- 1 Safety has been assured.
- 2 One must realize that you can never assure
- 3 safety in any new technique. The safest thing that
- 4 we can do is stop all research in our field.
- 5 Unfortunately, the series of letters sent out from
- 6 FDA has just done that in our field. That has
- 7 assured that our work will be done in other
- 8 countries by people who perhaps do not have the
- 9 skills or the support to do what we, Americans, can
- 10 do. We have been the best in our field.
- 11 Unfortunately, we have had that privilege taken
- 12 away from us.
- 13 Through informed consent and IRB we have
- 14 introduced in our specialty, in very rapid
- 15 sequence, techniques that did not exist. We have
- 16 made the practice of IVF better. We have helped
- 17 more patients. Techniques such as ICSI, assisted
- 18 hatching, embryo biopsy in co-culture have been in
- 19 existence and have helped many patients. Embryo
- 20 biopsy was done initially in England. It took me
- 21 four years to get institutional review board
- 22 approval to do embryo biopsy. In collaboration
- 23 with Jacques, we had the first baby in the United
- 24 States. We were the second group in the world.
- 25 There have been hundreds of thousands of babies

- 1 born free of genetic disease by this technique. If
- 2 we attempted to institute this practice into our
- 3 field today in this environment, we would not be
- 4 able to do that.
- 5 I applaud the FDA in wanting to assure
- 6 safety, but human research will always have
- 7 inherent risks. You cannot get rid of risk. With
- 8 informed consent patients are educated about what
- 9 those risks may be and they make a decision whether
- 10 or not to undergo those risks.
- 11 The FDA must add value to the practice of
- 12 research in this field. I hope that there is a
- 13 better mechanism, other than stopping us from doing
- 14 our research, that can exist. Thank you for the
- 15 opportunity to speak.
- DR. SALOMON: Thank you. The next speaker
- 17 is Dr. Sean Tipton, also from the American Society
- 18 for Reproductive Medicine. Does anyone know, is
- 19 Dr. Tipton here? Mr. Tipton, sorry. Maybe I could
- 20 invite the third speaker since there wasn't any
- 21 particular order or priority here, Pamela Madson,
- 22 from the American Infertility Association.
- MS. MADSEN: It is an honor to be with all
- 24 of you here today. It is an encouraging and
- 25 auspicious start that so many members of the

- 1 medical and scientific research and government
- 2 communities have come together.
- 3 For the millions of us who are locked
- 4 together in the wrenching battles against
- 5 infertility, this meeting embodies the hope of
- 6 achieving increasingly effective and safe
- 7 treatments as quickly as possible because we have
- 8 no time to waste.
- 9 The population of the infertile is
- 10 growing, with one in six couples actively
- 11 experiencing problems. Let's be clear, we are raw.
- 12 Recent headlines made public what most of us
- 13 already know, that our collective ignorance about
- 14 fertility is extracting an enormous toll. That
- 15 women who delayed childbearing, either by choice or
- 16 force of circumstance, feel duped out of their shot
- 17 at genetic motherhood. That their partners, who
- 18 also long for the children that are uniquely
- 19 theirs, are just as saddened and infuriated by the
- 20 loss. That the individual and societal costs of
- 21 infertility are intolerable. Let me respond to
- 22 you, no, it is not life-threatening; it is
- 23 life-stopping.
- What do we do about it? Certainly we
- 25 raise public awareness about infertility, its

- 1 prevalence, its causes and prevention. We make a
- 2 concerted effort to educate everyone about the
- 3 human reproductive life cycle. But we must also
- 4 rededicate ourselves to refining the infertility
- 5 treatments we have and to discovering new ones.
- 6 Like any other ruthless disease, infertility
- 7 ravages not just the immediate sufferers but their
- 8 families and friends, employers, peers and
- 9 employees. With age, a genetic inheritance, a
- 10 physiological fluke or a medical condition is to
- 11 blame, all those affected by infertility have one
- 12 thing in common, an urgent need for reliable paths
- 13 to biological parenthood.
- 14 As patients, we understand, to a large
- 15 extent, that the fees we pay for services propel
- 16 developments in reproductive technology. It is
- 17 worth noting, however, that we are here when our
- 18 government does not provide any funding for
- 19 research. Yes, we need more embryo research. No,
- 20 it is not funded by our government. We are
- 21 cognizant of the risks we voluntarily take as the
- 22 subjects of clinical experimentation that are
- 23 required to move the research expeditiously. We
- 24 know that we are treading on uncharted territory.
- To date, ooplasm transfer research offers

- 1 the greatest potential to help women with oocyte
- 2 problems. It is potential. We need research, we
- 3 need it to move forward. It is the avenue that
- 4 seems to be leading to many different technologies
- 5 that may deal with the multiple forms of
- 6 egg-related infertility. We want to do everything
- 7 we can to facilitate this work because right now,
- 8 as far as we know, there is nothing else.
- 9 Of course, we are concerned that
- 10 researchers adhere to the highest standards
- 11 possible. It is not only our health at stake, but
- 12 the health of future generations as well. We have
- 13 always relied on the twin mechanisms of IRBs and
- 14 informed patient consent, and it is our
- 15 understanding that the system has worked reasonably
- 16 well.
- 17 As willing participants in experimental
- 18 procedures, patients have the right to honest and
- 19 forthright information before giving consent. That
- 20 includes anticipated outcomes and possible
- 21 pitfalls; what is known and best guesses about what
- 22 isn't. We wonder why IRBs can't be overhauled to
- 23 include a broader array of interests--patient
- 24 advocates and possibly government representatives
- 25 among them. We wonder why we don't have uniform

- 1 IRB standards. This is likely to be far less
- 2 intrusive and economically onerous than the
- 3 creation of an entirely new system.
- 4 If, however, the government is committed
- 5 in its current plans, we do urge restraint. We
- 6 would like to know that government federal
- 7 guidelines will not be so cumbersome and expensive
- 8 that they inhibit researchers from pursuing
- 9 promising leads. We want to know that the costs of
- 10 regulation which are passed down to consumers will
- 11 be reasonable and contained. Remember, most of the
- 12 infertile around this country are paying out of
- 13 pocket. We don't have coverage.
- Otherwise, we jeopardize the access to
- 15 treatment for all but a very wealthy few. As it
- 16 is, the financial burden of largely uninsured
- 17 reproductive technology puts an enormous strain on
- 18 the infertile. We are asking that we build on the
- 19 cooperation and open communication that we have
- 20 witnessed here today, and we would urge, if we are
- 21 going to work together, that whatever body it is,
- 22 whether it is through overhauling of systems that
- 23 are in place or a new body, that it be composed of
- 24 regulators, researchers, reproductive clinicians
- 25 and patient advocates to ensure that politics do

- 1 not interfere with the community's need for
- 2 scientific breakthroughs. We are depending on a
- 3 true collaborative process. The infertile cannot
- 4 afford, and do not deserve any less. Thank you.
- 5 DR. SALOMON: Very nicely spoken. As I
- 6 said, we are going to take basically a ten-minute
- 7 break. It is 4:15 right now. We will start again
- 8 at 4:25 regardless of anyone who isn't here, just
- 9 so you take me seriously this time. I want to make
- 10 sure we have enough time. Thanks.
- 11 [Brief recess]
- 12 Questions to the Committee
- DR. SALOMON: To initiate the final phase
- 14 of this afternoon and where things have to come
- 15 together, all the different pieces that we have
- 16 explored all day, is in dealing with a series of
- 17 specific FDA questions. These will be briefly
- 18 reviewed by Dr. Moos.
- 19 DR. MOOS: I am just going to try and tie
- 20 together a few things that we have heard today by
- 21 way of introducing our list of questions. I am not
- 22 going to subject you to a detailed reiteration of
- 23 this list; it is in the briefing package.
- 24 The first thing I want to say is directed
- 25 to the folks whom we consider really the most

- 1 important people in the room, who are the patient
- 2 interest advocates. I think that if you have a
- 3 look at the kinds of questions we have been asking
- 4 and discussing, implicit in the entire format of
- 5 the meeting and the discussion is that we have no
- 6 intention of stopping any kind of research. Our
- 7 intention is to balance carefully the avoidable
- 8 risks and the benefits in a way that we optimize
- 9 the balance between the two.
- To do that, we need to make use of the
- 11 best scientific and medical evidence and analysis.
- 12 I think the presenters have done an excellent job
- 13 of laying out much of the critical information that
- 14 we will need to make use of to synthesize how we go
- 15 ahead with this.
- 16 Many of our judgments will depend on some
- 17 kind of treatment of numerical data. We have seen
- 18 a great many mentions of how small the numbers are
- 19 and what the statistics are like. And, one of the
- 20 things which, over in the FDA corner, we found very
- 21 striking is just this fact. We heard some very
- 22 useful information suggesting that experiments
- 23 might be quite feasible and relatively
- 24 straightforward to design that would satisfy us
- 25 that heteroplasmy per se represents a manageable

- 1 risk.
- 2 But there is a fly in the ointment,
- 3 particularly with respect to the incidence of
- 4 Turner syndrome that has been reported in some of
- 5 the data. We know that it is very common. The
- 6 best information that we can get out of the
- 7 literature suggests that the incidence of Turner
- 8 syndrome in the general population is perhaps 1/100
- 9 conceptions, not live births but conceptions. If
- 10 someone wants to weigh in with a better number, we
- 11 are all ears. In contrast, the series that has
- 12 been reported has an incidence of 23 percent, more
- 13 than 20-fold higher. If you factor in the
- 14 biochemical pregnancies, which were very likely
- 15 aneuploid, the figure becomes higher.
- 16 We acknowledge that the confidence
- 17 interval around 3/13 is very, very large, but this
- 18 is something that can't be ignored. There are a
- 19 couple of scenarios. We can reduce this with
- 20 respect to the efficacy question either to a
- 21 situation in which ooplasm transfer has no
- 22 beneficial effect on fertility, in which case the
- 23 additional risks of instrumentation, of
- 24 superovulation and so forth are not reasonable, or
- 25 that it does give a boost, in which case the

- 1 potential to bring marginal embryos that perhaps
- 2 should not come to term to a point where something
- 3 bad might happen actually exists. So, this is an
- 4 issue that we have not heard sufficient discussion
- 5 on and that I would like for the committee to keep
- 6 in mind as we tackle the question.
- 7 If we can address the salient safety
- 8 issues, I just want to say one or two words about
- 9 product characterization. There has been I think a
- 10 very interesting discussion about what it is that
- 11 is doing something. I would like to point out that
- 12 the better we characterize the material that is
- 13 being transferred, the better we will be able to
- 14 manage those risks from a number of standpoints.
- 15 There will be questions that we will need to
- 16 consider both to initiate experiments in what we
- 17 call Phase I or safety studies, and there will be
- 18 questions that we will need to confront at the time
- 19 of the licensure which will, indeed, require much
- 20 more detailed information about what is in the
- 21 product that is making it work and definitive proof
- 22 that the product, in fact, is working.
- 23 With that brief introduction to the
- 24 questions, I will yield the floor to our chairman,
- 25 with thanks for his able service, and to all the

- 1 members of the committee and panelists for the
- 2 discussion today. Thank you.
- 3 DR. SALOMON: Thank you very much. So,
- 4 there are two pages of questions, but some of them
- 5 are more important than others and I will do my
- 6 best to prioritize them.
- 7 As stated here, to me, there are a couple
- 8 of principal goals. The first is to determine
- 9 whether there are data available right now that
- 10 support the safety or support the rationale for
- 11 ooplasm transfer that is sufficient to justify any
- 12 perceived risk involved in the clinical trial. We
- 13 need to deal with that.
- We also need to determine a separate
- 15 issue, what additional data are needed prior to
- 16 initiation of a broader use of this technology or
- 17 clinical trials if the first discussion should come
- 18 to the conclusion that clinical trials shouldn't go
- 19 forward.
- 20 So, I think there are a couple of
- 21 different options that the committee can now
- 22 consider. You can consider that, no, there is not
- 23 enough data; no clinical trials. But you can't
- 24 just say that. You have to say what exactly has to
- 25 be done. We have to come to some grips with the

- 1 concept of where is the bar going to be set for
- 2 this. We can also say, no, there is sufficient
- 3 data; go forward with clinical trials but, in
- 4 parallel, we need additional data. You know, you
- 5 need to be show us evidence that the field is
- 6 working on these additional data but we can also
- 7 then go forward and talk about what is a good
- 8 clinical trial. So, I think that is a major issue.
- 9 We can't leave without really trying to come to
- 10 grips with it.
- 11 A second major issue to me is regardless
- of the answer to either of those, even though they
- 13 have such important immediate implications, another
- 14 issue here is to begin at least a dialogue with the
- 15 community regarding what you will need to
- 16 characterize this product. I mean, that is going
- 17 to be something that you can't change. Whether we
- 18 are talking about islet transplantation,
- 19 therapeutic gene transfer in any number of cells,
- 20 stem cells of any sort, you have to have a sense of
- 21 product. We are not talking about, "hey, trust me
- 22 with this wonderfully ethical group of scientists,"
- 23 it has to be, "trust me, we are going to do this in
- 40 centers, in 50 states and charge money for it."
- 25 I mean, that is okay. That is fine; that is the

- 1 American way. But in the process of doing that,
- 2 the direction that the FDA has to have from us is
- 3 how you are going to make sure that in 50 states
- 4 and 50 places or 100 places, or whatever, there is
- 5 a sense of objective measurements for the quality
- of the product, what we call lot release criteria.
- 7 Those things are much more difficult to do in a
- 8 biologic. I know that. We all know that. But
- 9 they are not impossible.
- 10 So, with that background let's start kind
- 11 of with the first concept. I am getting off the
- 12 strict question order a little bit but I am going
- 13 to do that on purpose. So, the first question here
- 14 is we have heard the clinical presentations and I
- 15 have to start with a discussion of is there enough
- 16 data, preclinical or clinical, right now to do a
- 17 human clinical trial? Let's assume that that is a
- 18 really good clinical trial that is going to answer
- 19 a question, just are we comfortable doing a
- 20 clinical trial or should we say, no, we are not
- 21 comfortable; it should be put on hold and then we
- 22 have to set a bar?
- MS. WOLFSON: Well, as one of the few
- 24 non-scientists here, first of all, I would like to
- 25 say I really thought that Lori posed very

- 1 interesting questions and I don't think you can
- 2 answer your question without kind of addressing all
- 3 of those questions.
- 4 From what I have heard and what I have
- 5 read up to this point, I do not think we have
- 6 enough clinical data to allow human studies in any
- 7 form. I think that there are so many things that
- 8 have to be answered that haven't been answered.
- 9 When Lori spoke about informed consent, I thought
- 10 to myself, well, it is one thing for a couple to
- 11 give informed consent for any dangers that they
- 12 might encounter, but how can they give informed
- 13 consent for future generations? I would even
- 14 wonder if they could really give informed consent
- 15 for their own possible child if there is a risk
- 16 that, for instance, there is a 23 percent chance
- 17 that that child would have Turner syndrome?
- I think these questions have to be
- 19 addressed. I don't think we got enough information
- 20 here today to say that there is enough clinical
- 21 data out there at all.
- DR. SALOMON: Okay, that is clear. What
- are other thoughts here?
- DR. NAVIAUX: An alternative to that would
- 25 be a limited number of expert centers, one, two--a

- 1 small number that would be guided by the
- 2 recommendations of this body in obtaining some of
- 3 the human data that is necessary in the process of
- 4 offering the technique. I will leave it at that
- 5 for now.
- 6 MS. WOLFSON: Just a point of
- 7 clarification, do you mean human data as in
- 8 pregnancies, or are you talking about
- 9 experimentation with human embryos?
- 10 DR. NAVIAUX: I think there are practical
- 11 difficulties. We definitely need the embryo
- 12 research but we have kind of left the human
- 13 reproductive technology people out on a limb
- 14 without any support because there is no mechanism
- 15 for funding human gamete research. So, yes, I we
- 16 need that data but, you know, in the U.S. there may
- 17 not be a mechanism, and someone can correct me
- 18 perhaps.
- DR. SALOMON: Dr. Sausville?
- DR. SAUSVILLE: I think there returns a
- 21 little bit to the importance of the animal
- 22 experiments that were discussed previously.
- 23 Recognizing that the lack of support for human
- 24 gamete related research and subsequent production
- of zygotes is an issue that is ultimately one that

- 1 this committee does not have the purview to, shall
- 2 we say, change, I do think that the scientific
- 3 rationale that might emerge from a considerably
- 4 larger body of research that can be funded on
- 5 animal-related matters would increase my enthusiasm
- 6 for the possibility, and possibly the fact, that
- 7 there is something actually happening here. We
- 8 heard that we don't know what components of this
- 9 process convey a salubrious outcome. Maybe the
- 10 whole combination of things is necessary, but then
- 11 that gets to the product issue that was raised. I
- 12 mean, do you define this product as having a lot of
- 13 ATP? Do you define it as having a certain minimum
- 14 level of ATP or calcium, or whatever you favorite
- 15 component is?
- So, to me, while I actually want the field
- 17 to move ahead and potentially give what benefit it
- 18 can within the context of its limitations, I just
- 19 feel that in comparison to many other therapies
- 20 that have come to this committee before, some of
- 21 which are very specialized, in each case the
- 22 proponents were able to make the scientific case
- 23 preclinically for the ones that went forward; that
- 24 there was a basis for actually regarding this as an
- 25 ultimately successful outcome and I don't actually

- 1 see that here.
- 2 DR. SALOMON: Lori?
- 3 MS. KNOWLES: I just want to make the
- 4 point that it is true, and we are obviously not
- 5 going to discuss it at any length, that there is a
- 6 lack of publicly funded human embryo research, but
- 7 there is private money for human embryo research
- 8 and the fact that there isn't public money for it
- 9 doesn't, to me, say that then you skip that stage
- 10 and do the experimentation in humans, live humans.
- 11 So, if you actually want to be able to
- 12 offer this technique and make money from it, you
- 13 have to do the experimentation that shows that it
- 14 is safe. It is just part of the equation, the way
- 15 that I see it.
- DR. SALOMON: I just want to point out
- 17 that here is where it gets kind of complicated
- 18 because we have to be very careful. One is talking
- 19 about efficacy and one is talking about safety. I
- 20 am not saying that we don't have to discuss both
- 21 but we need to be careful. Ed is talking about
- 22 efficacy and I was talking about efficacy, and now
- 23 you kind of throw in safety, that is okay but we
- 24 need to be sure that we stay intellectually clear
- 25 that the domains of safety and efficacy are

- 1 different.
- MS. KNOWLES: Right, and I actually agree.
- 3 My feeling is exactly what you were saying, that
- 4 there are all kinds of information that we can get
- 5 from animal models--it sounds like, about the
- 6 efficacy.
- 7 DR. SAUSVILLE: And I would go so far as
- 8 to say that both safety and efficacy are uncertain
- 9 to me.
- DR. VAN BLERKOM: As far as efficacy, we
- 11 are dealing with long-standing infertile couples,
- 12 women whether have been through lots of treatments
- 13 unsuccessfully. What animal model do you propose
- 14 that will be relevant? I mean, as far as a mouse,
- 15 put in cytoplasm and get mice. Would you use a
- 16 primate model. I don't know if there are any
- 17 long-standing infertile Macaques. Maybe there are.
- 18 So, I am not sure about the relevancy specifically
- 19 of animal models.
- I think the basic question is, is this
- 21 effective? If you look at all the publications on
- 22 cytoplasm transfer, they all say we don't know that
- 23 this is effective. We don't know what is causing,
- 24 if anything, a boost in efficacy. So, I think in
- 25 reality what it is going to come down to is that

- 1 the only system that is really suitable for a test
- 2 of efficacy is going to be the human. I just don't
- 3 see an animal system providing the types of
- 4 information that you would like to see.
- 5 DR. SAUSVILLE: I would respectfully
- 6 suggest that while I can understand the ultimate
- 7 human relevance of both the use of the procedure
- 8 and the judgment of its value, what we are talking
- 9 about here is the setting up of some boundary
- 10 conditions which would begin to be able to be
- 11 applied to that which is used in this critical
- 12 human experiment. I mean, the very presentation
- 13 that I believe came from you showed that there is a
- 14 great deal of variability in terms of where you
- 15 stick the needle, the different types of eggs--I
- 16 mean, this becomes very problematic, therefore, for
- 17 deciding how we would set up the human experiments,
- 18 at least to me it does.
- DR. VAN BLERKOM: That is the whole point.
- 20 I think the human experiment is unique, unique in
- 21 the sense that I think there are confounding issues
- 22 that happen in human eggs that you are not going to
- 23 find in other species.
- DR. SIEGEL: May I interrupt? We really
- 25 need to focus this in a context that will be more

- 1 useful to us if we are trying to deal with the
- 2 questions. The question you asked is whether there
- 3 is enough data to do clinical research but then you
- 4 are focusing on the efficacy side. We worded our
- 5 question somewhat differently, and for a reason,
- 6 and that has to do with what our regulatory
- 7 authorities are. I would like to have this
- 8 discussion within the context of what our
- 9 regulatory authorities are.
- 10 So, your question bears some significant
- 11 similarity to question number three, which I would
- 12 like to take just a moment to read and explain the
- 13 context of why it is worded that way. Are these
- 14 data, referring to the clinical and preclinical
- 15 data currently availability, sufficient to
- 16 determine that ooplasm transfer does not present an
- 17 unreasonable and significant risk to offspring and
- 18 mother, and to support further clinical
- 19 investigations?
- The determination we need to make
- 21 specifically is whether there is an unreasonable
- 22 and significant risk. That is largely a safety
- 23 determination, but what risks are reasonably and
- 24 what risks are not reasonable is clearly linked to
- 25 the issues of what disease is being treated, what