

Protecting People and the Environment

The Role of a Nuclear Regulator The Honorable Peter B. Lyons Commissioner U.S. Nuclear Regulatory Commission

Young Professionals in Energy Columbia University New York April 29, 2009

Uranium Mining

Power Reactors

Waste Disposal

Uranium Conversion

Transportation

Medical/Industrial

Uranium Enrichment

Storage

New Reactors ²

NRC Commissioners

Commissioner Kristine Svinicki

Sworn In: 3/28/08 Term Ends: 6/30/12 Commissioner Gregory Jaczko

Sworn In: 1/21/05 Term Ends: 6/30/13 Chairman Dale Klein

Sworn In: 7/01/06 Term Ends: 6/30/11 Commissioner Peter Lyons

Sworn In: 1/25/05 Term Ends: 6/30/09

NRC's Legislative Mandate

• Atomic Energy Act (1954) as amended

- "Assure the adequate protection of public health and safety and the promotion of the common defense and security."
- National Environmental Policy Act (1969) as amended
 - "...to create and maintain conditions under which man and nature can exist in productive harmony, and fulfill the social, economic, and other requirements of present and future generations of Americans."

NRC Mission

 To license and regulate the nation's civilian use of byproduct, source, and special nuclear materials to ensure adequate protection of public health and safety, promote the common defense and security, and protect the environment.

Institute of Nuclear Power Operations

- INPO was formed by the U.S. nuclear industry following the Three Mile Island accident
 - Mission: To promote the highest levels of safety and reliability - to promote excellence in the operation of nuclear electric generating plants.

Some Statistics

NUCLEAR PLANT STATISTICS – 2008

Number of Plants Operating104Number of Plants Under Construction1(Watts Bar Unit 2)1Number of Plant Orders Canceled120Last Industry Order for a New Plant1973Last Construction Permit Issued1978

The Outlook?

Global Warming Concerns Energy Diversity/Resource Limitations Inter-relationship of Energy Policy and Foreign/Military Policy **New Licensing Process Increased Public Support** Government Policy – Energy Policy Act of 2005 **Demand for New Electricity Generation** Cost of Electricity Production

COL Applications Expected & Received

Valid as of April 8, 2009

Possible New Plants

Nuclear Renaissance ?

Favorable Outlook for Increased Safe and Secure Utilization of Nuclear Energy.....

Depends on a foundation of....

Demonstrated Continued Safe Operations

Historical Trend in Indicators of Safety Since 1985

Safety Performance Trends continued

Occupational Accident Rates: An Indicator of Safety Consciousness?

Source: U.S. Bureau of Labor Statistics, quoted in The GeoPolitics of Energy – Achieving a Just and Sustainable Energy Distribution by 2040, by Judith Wright and James Conca, BookSurge Publishing, 2007

Davis-Besse Reactor Vessel Head Corrosion

Photos: Davis-Besse Head Corrosion Model at USNRC HQ, Rockville, MD

Challenges NRC Faces

- Technology
 - Current
 - Digital
- Communications
- Workforce

Current Technology

Digital Technology

To be Seen as a Strong, Consistent, and Credible Regulator by our Stakeholders....

 Effective Communication is the Key —External Stakeholders
Internal Stakeholders

The Challenge of Informing the Public

"The professional person's standing in the community depends, in the final analysis, on the public's insight of his work, that is, on the educational level of the man in the street. When specialized knowledge of professional people is incomprehensible to the average man, he is apt to flounder between frustrated suspicion and excessive awe, leading him either to interfere unduly with professional independence or to accept naively every claim made by anyone who calls himself a professional."

Public Openness

- Essential to Regulatory Strength
- Opportunities for Public Comment
- Public Comments Addressed Openly
- Opportunities for Public Hearings
 - Licensing New Reactors
 - Renewing and Amending Licenses for Existing Reactors
- Balanced with Security Needs

"Risk" is perceived in many different ways

We must COMMUNICATE how NRC requirements adequately MANAGE the risk to acceptable levels – and how NRC ensures licensees are meeting those requirements

We must communicate with both internal and external stakeholders the assumptions underlying our risk analyses

Risk Communication

We must communicate risk concepts to the public in understandable terms

ANOTHER EXTERNAL CHALLENGE-THE NATION'S TECHNICAL WORKFORCE

WORKING TOGETHER, WE NEED TO COMMUNICATE THE SATISFACTION AND EXCITEMENT OF A TECHNICAL CAREER

Our Task as Educators

 "We cannot always build the future for our youth, but we can build our youth for the future."

Franklin D. Roosevelt

Societal Importance of Education

"If you can solve the education problem, you don't have to do anything else.

If you don't solve it, nothing else is going to matter all that much."

ALAN GREENSPAN, 2006

INTERNATIONAL MATH SCORE RANKINGS

- Top Five performers with the US ranking
 - Grade 4
 - Hong Kong
 - Singapore
 - Taiwan
 - Japan
 - Kazakhstan
 - 11th United States
 - Grade 8
 - Taiwan
 - South Korea
 - Singapore
 - Hong Kong
 - Japan
 - 9th United States

ENGINEERING First University Degree

Source: DOE Survey, J. Gutteridge (2008)

NE Enrollment Trends (2004-2009)

Nuclear Engineering Enrollments and Graduations - 2008-09

Goal – increase net staff by 200 per year Accomplishments

Fiscal Year	2006	2007	2008
Hired	371	441	521
Attrition	211	222	208
Net Gain	160	219	313

NRC's Challenge

Maintain recognition as one of the best U.S. Federal agency workplaces!

Institute for the Study of Public Policy Implementation (ISPPI) at American University 2007 Best Places to Work in Federal Government survey

Current Regulatory Issues of Interest

• For New Reactor Designs

- Aircraft Crash Assessment Rulemaking
- Digital Instrumentation and Controls
- Small Reactors

• For Operating Reactors

- Inattentive Security Guards
- Fire Protection Closure
- Digital Instrumentation and Controls

• Materials Licensing

- Medical Isotope Supply
- Cesium-137 Chloride continued use
- Spent Fuel Management Policy
 - Waste Confidence Policy/Rule
 - Repository Licensing

Uranium Mining

Power Reactors

Waste Disposal

Uranium Conversion

Transportation

Medical/Industrial

Uranium Enrichment

Storage

New Reactors 35